mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-17 22:16:46 +00:00
365 lines
14 KiB
C++
365 lines
14 KiB
C++
//===- VPlanAnalysis.cpp - Various Analyses working on VPlan ----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlanAnalysis.h"
|
|
#include "VPlan.h"
|
|
#include "VPlanCFG.h"
|
|
#include "VPlanDominatorTree.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/GenericDomTreeConstruction.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "vplan"
|
|
|
|
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPBlendRecipe *R) {
|
|
Type *ResTy = inferScalarType(R->getIncomingValue(0));
|
|
for (unsigned I = 1, E = R->getNumIncomingValues(); I != E; ++I) {
|
|
VPValue *Inc = R->getIncomingValue(I);
|
|
assert(inferScalarType(Inc) == ResTy &&
|
|
"different types inferred for different incoming values");
|
|
CachedTypes[Inc] = ResTy;
|
|
}
|
|
return ResTy;
|
|
}
|
|
|
|
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPInstruction *R) {
|
|
// Set the result type from the first operand, check if the types for all
|
|
// other operands match and cache them.
|
|
auto SetResultTyFromOp = [this, R]() {
|
|
Type *ResTy = inferScalarType(R->getOperand(0));
|
|
for (unsigned Op = 1; Op != R->getNumOperands(); ++Op) {
|
|
VPValue *OtherV = R->getOperand(Op);
|
|
assert(inferScalarType(OtherV) == ResTy &&
|
|
"different types inferred for different operands");
|
|
CachedTypes[OtherV] = ResTy;
|
|
}
|
|
return ResTy;
|
|
};
|
|
|
|
unsigned Opcode = R->getOpcode();
|
|
if (Instruction::isBinaryOp(Opcode) || Instruction::isUnaryOp(Opcode))
|
|
return SetResultTyFromOp();
|
|
|
|
switch (Opcode) {
|
|
case Instruction::ExtractElement:
|
|
case Instruction::Freeze:
|
|
return inferScalarType(R->getOperand(0));
|
|
case Instruction::Select: {
|
|
Type *ResTy = inferScalarType(R->getOperand(1));
|
|
VPValue *OtherV = R->getOperand(2);
|
|
assert(inferScalarType(OtherV) == ResTy &&
|
|
"different types inferred for different operands");
|
|
CachedTypes[OtherV] = ResTy;
|
|
return ResTy;
|
|
}
|
|
case Instruction::ICmp:
|
|
case VPInstruction::ActiveLaneMask:
|
|
assert(inferScalarType(R->getOperand(0)) ==
|
|
inferScalarType(R->getOperand(1)) &&
|
|
"different types inferred for different operands");
|
|
return IntegerType::get(Ctx, 1);
|
|
case VPInstruction::ComputeFindLastIVResult:
|
|
case VPInstruction::ComputeReductionResult: {
|
|
auto *PhiR = cast<VPReductionPHIRecipe>(R->getOperand(0));
|
|
auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
|
|
return OrigPhi->getType();
|
|
}
|
|
case VPInstruction::ExplicitVectorLength:
|
|
return Type::getIntNTy(Ctx, 32);
|
|
case Instruction::PHI:
|
|
// Infer the type of first operand only, as other operands of header phi's
|
|
// may lead to infinite recursion.
|
|
return inferScalarType(R->getOperand(0));
|
|
case VPInstruction::FirstOrderRecurrenceSplice:
|
|
case VPInstruction::Not:
|
|
case VPInstruction::ResumePhi:
|
|
case VPInstruction::CalculateTripCountMinusVF:
|
|
case VPInstruction::CanonicalIVIncrementForPart:
|
|
case VPInstruction::AnyOf:
|
|
return SetResultTyFromOp();
|
|
case VPInstruction::FirstActiveLane:
|
|
return Type::getIntNTy(Ctx, 64);
|
|
case VPInstruction::ExtractFromEnd: {
|
|
Type *BaseTy = inferScalarType(R->getOperand(0));
|
|
if (auto *VecTy = dyn_cast<VectorType>(BaseTy))
|
|
return VecTy->getElementType();
|
|
return BaseTy;
|
|
}
|
|
case VPInstruction::LogicalAnd:
|
|
assert(inferScalarType(R->getOperand(0))->isIntegerTy(1) &&
|
|
inferScalarType(R->getOperand(1))->isIntegerTy(1) &&
|
|
"LogicalAnd operands should be bool");
|
|
return IntegerType::get(Ctx, 1);
|
|
case VPInstruction::Broadcast:
|
|
case VPInstruction::PtrAdd:
|
|
// Return the type based on first operand.
|
|
return inferScalarType(R->getOperand(0));
|
|
case VPInstruction::BranchOnCond:
|
|
case VPInstruction::BranchOnCount:
|
|
return Type::getVoidTy(Ctx);
|
|
default:
|
|
break;
|
|
}
|
|
// Type inference not implemented for opcode.
|
|
LLVM_DEBUG({
|
|
dbgs() << "LV: Found unhandled opcode for: ";
|
|
R->getVPSingleValue()->dump();
|
|
});
|
|
llvm_unreachable("Unhandled opcode!");
|
|
}
|
|
|
|
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenRecipe *R) {
|
|
unsigned Opcode = R->getOpcode();
|
|
if (Instruction::isBinaryOp(Opcode) || Instruction::isShift(Opcode) ||
|
|
Instruction::isBitwiseLogicOp(Opcode)) {
|
|
Type *ResTy = inferScalarType(R->getOperand(0));
|
|
assert(ResTy == inferScalarType(R->getOperand(1)) &&
|
|
"types for both operands must match for binary op");
|
|
CachedTypes[R->getOperand(1)] = ResTy;
|
|
return ResTy;
|
|
}
|
|
|
|
switch (Opcode) {
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return IntegerType::get(Ctx, 1);
|
|
case Instruction::FNeg:
|
|
case Instruction::Freeze:
|
|
return inferScalarType(R->getOperand(0));
|
|
case Instruction::ExtractValue: {
|
|
assert(R->getNumOperands() == 2 && "expected single level extractvalue");
|
|
auto *StructTy = cast<StructType>(inferScalarType(R->getOperand(0)));
|
|
auto *CI = cast<ConstantInt>(R->getOperand(1)->getLiveInIRValue());
|
|
return StructTy->getTypeAtIndex(CI->getZExtValue());
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Type inference not implemented for opcode.
|
|
LLVM_DEBUG({
|
|
dbgs() << "LV: Found unhandled opcode for: ";
|
|
R->getVPSingleValue()->dump();
|
|
});
|
|
llvm_unreachable("Unhandled opcode!");
|
|
}
|
|
|
|
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenCallRecipe *R) {
|
|
auto &CI = *cast<CallInst>(R->getUnderlyingInstr());
|
|
return CI.getType();
|
|
}
|
|
|
|
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenMemoryRecipe *R) {
|
|
assert((isa<VPWidenLoadRecipe, VPWidenLoadEVLRecipe>(R)) &&
|
|
"Store recipes should not define any values");
|
|
return cast<LoadInst>(&R->getIngredient())->getType();
|
|
}
|
|
|
|
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenSelectRecipe *R) {
|
|
Type *ResTy = inferScalarType(R->getOperand(1));
|
|
VPValue *OtherV = R->getOperand(2);
|
|
assert(inferScalarType(OtherV) == ResTy &&
|
|
"different types inferred for different operands");
|
|
CachedTypes[OtherV] = ResTy;
|
|
return ResTy;
|
|
}
|
|
|
|
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPReplicateRecipe *R) {
|
|
unsigned Opcode = R->getUnderlyingInstr()->getOpcode();
|
|
|
|
if (Instruction::isBinaryOp(Opcode) || Instruction::isShift(Opcode) ||
|
|
Instruction::isBitwiseLogicOp(Opcode)) {
|
|
Type *ResTy = inferScalarType(R->getOperand(0));
|
|
assert(ResTy == inferScalarType(R->getOperand(1)) &&
|
|
"inferred types for operands of binary op don't match");
|
|
CachedTypes[R->getOperand(1)] = ResTy;
|
|
return ResTy;
|
|
}
|
|
|
|
if (Instruction::isCast(Opcode))
|
|
return R->getUnderlyingInstr()->getType();
|
|
|
|
switch (Opcode) {
|
|
case Instruction::Call: {
|
|
unsigned CallIdx = R->getNumOperands() - (R->isPredicated() ? 2 : 1);
|
|
return cast<Function>(R->getOperand(CallIdx)->getLiveInIRValue())
|
|
->getReturnType();
|
|
}
|
|
case Instruction::Select: {
|
|
Type *ResTy = inferScalarType(R->getOperand(1));
|
|
assert(ResTy == inferScalarType(R->getOperand(2)) &&
|
|
"inferred types for operands of select op don't match");
|
|
CachedTypes[R->getOperand(2)] = ResTy;
|
|
return ResTy;
|
|
}
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return IntegerType::get(Ctx, 1);
|
|
case Instruction::Alloca:
|
|
case Instruction::ExtractValue:
|
|
return R->getUnderlyingInstr()->getType();
|
|
case Instruction::Freeze:
|
|
case Instruction::FNeg:
|
|
case Instruction::GetElementPtr:
|
|
return inferScalarType(R->getOperand(0));
|
|
case Instruction::Load:
|
|
return cast<LoadInst>(R->getUnderlyingInstr())->getType();
|
|
case Instruction::Store:
|
|
// FIXME: VPReplicateRecipes with store opcodes still define a result
|
|
// VPValue, so we need to handle them here. Remove the code here once this
|
|
// is modeled accurately in VPlan.
|
|
return Type::getVoidTy(Ctx);
|
|
default:
|
|
break;
|
|
}
|
|
// Type inference not implemented for opcode.
|
|
LLVM_DEBUG({
|
|
dbgs() << "LV: Found unhandled opcode for: ";
|
|
R->getVPSingleValue()->dump();
|
|
});
|
|
llvm_unreachable("Unhandled opcode");
|
|
}
|
|
|
|
Type *VPTypeAnalysis::inferScalarType(const VPValue *V) {
|
|
if (Type *CachedTy = CachedTypes.lookup(V))
|
|
return CachedTy;
|
|
|
|
if (V->isLiveIn()) {
|
|
if (auto *IRValue = V->getLiveInIRValue())
|
|
return IRValue->getType();
|
|
// All VPValues without any underlying IR value (like the vector trip count
|
|
// or the backedge-taken count) have the same type as the canonical IV.
|
|
return CanonicalIVTy;
|
|
}
|
|
|
|
Type *ResultTy =
|
|
TypeSwitch<const VPRecipeBase *, Type *>(V->getDefiningRecipe())
|
|
.Case<VPActiveLaneMaskPHIRecipe, VPCanonicalIVPHIRecipe,
|
|
VPFirstOrderRecurrencePHIRecipe, VPReductionPHIRecipe,
|
|
VPWidenPointerInductionRecipe, VPEVLBasedIVPHIRecipe>(
|
|
[this](const auto *R) {
|
|
// Handle header phi recipes, except VPWidenIntOrFpInduction
|
|
// which needs special handling due it being possibly truncated.
|
|
// TODO: consider inferring/caching type of siblings, e.g.,
|
|
// backedge value, here and in cases below.
|
|
return inferScalarType(R->getStartValue());
|
|
})
|
|
.Case<VPWidenIntOrFpInductionRecipe, VPDerivedIVRecipe>(
|
|
[](const auto *R) { return R->getScalarType(); })
|
|
.Case<VPReductionRecipe, VPPredInstPHIRecipe, VPWidenPHIRecipe,
|
|
VPScalarIVStepsRecipe, VPWidenGEPRecipe, VPVectorPointerRecipe,
|
|
VPVectorEndPointerRecipe, VPWidenCanonicalIVRecipe,
|
|
VPPartialReductionRecipe>([this](const VPRecipeBase *R) {
|
|
return inferScalarType(R->getOperand(0));
|
|
})
|
|
// VPInstructionWithType must be handled before VPInstruction.
|
|
.Case<VPInstructionWithType, VPWidenIntrinsicRecipe,
|
|
VPWidenCastRecipe>(
|
|
[](const auto *R) { return R->getResultType(); })
|
|
.Case<VPBlendRecipe, VPInstruction, VPWidenRecipe, VPReplicateRecipe,
|
|
VPWidenCallRecipe, VPWidenMemoryRecipe, VPWidenSelectRecipe>(
|
|
[this](const auto *R) { return inferScalarTypeForRecipe(R); })
|
|
.Case<VPInterleaveRecipe>([V](const VPInterleaveRecipe *R) {
|
|
// TODO: Use info from interleave group.
|
|
return V->getUnderlyingValue()->getType();
|
|
})
|
|
.Case<VPExpandSCEVRecipe>([](const VPExpandSCEVRecipe *R) {
|
|
return R->getSCEV()->getType();
|
|
})
|
|
.Case<VPReductionRecipe>([this](const auto *R) {
|
|
return inferScalarType(R->getChainOp());
|
|
});
|
|
|
|
assert(ResultTy && "could not infer type for the given VPValue");
|
|
CachedTypes[V] = ResultTy;
|
|
return ResultTy;
|
|
}
|
|
|
|
void llvm::collectEphemeralRecipesForVPlan(
|
|
VPlan &Plan, DenseSet<VPRecipeBase *> &EphRecipes) {
|
|
// First, collect seed recipes which are operands of assumes.
|
|
SmallVector<VPRecipeBase *> Worklist;
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
|
|
vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry()))) {
|
|
for (VPRecipeBase &R : *VPBB) {
|
|
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
|
|
if (!RepR || !match(RepR->getUnderlyingInstr(),
|
|
PatternMatch::m_Intrinsic<Intrinsic::assume>()))
|
|
continue;
|
|
Worklist.push_back(RepR);
|
|
EphRecipes.insert(RepR);
|
|
}
|
|
}
|
|
|
|
// Process operands of candidates in worklist and add them to the set of
|
|
// ephemeral recipes, if they don't have side-effects and are only used by
|
|
// other ephemeral recipes.
|
|
while (!Worklist.empty()) {
|
|
VPRecipeBase *Cur = Worklist.pop_back_val();
|
|
for (VPValue *Op : Cur->operands()) {
|
|
auto *OpR = Op->getDefiningRecipe();
|
|
if (!OpR || OpR->mayHaveSideEffects() || EphRecipes.contains(OpR))
|
|
continue;
|
|
if (any_of(Op->users(), [EphRecipes](VPUser *U) {
|
|
auto *UR = dyn_cast<VPRecipeBase>(U);
|
|
return !UR || !EphRecipes.contains(UR);
|
|
}))
|
|
continue;
|
|
EphRecipes.insert(OpR);
|
|
Worklist.push_back(OpR);
|
|
}
|
|
}
|
|
}
|
|
|
|
template void DomTreeBuilder::Calculate<DominatorTreeBase<VPBlockBase, false>>(
|
|
DominatorTreeBase<VPBlockBase, false> &DT);
|
|
|
|
bool VPDominatorTree::properlyDominates(const VPRecipeBase *A,
|
|
const VPRecipeBase *B) {
|
|
if (A == B)
|
|
return false;
|
|
|
|
auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) {
|
|
for (auto &R : *A->getParent()) {
|
|
if (&R == A)
|
|
return true;
|
|
if (&R == B)
|
|
return false;
|
|
}
|
|
llvm_unreachable("recipe not found");
|
|
};
|
|
const VPBlockBase *ParentA = A->getParent();
|
|
const VPBlockBase *ParentB = B->getParent();
|
|
if (ParentA == ParentB)
|
|
return LocalComesBefore(A, B);
|
|
|
|
#ifndef NDEBUG
|
|
auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
|
|
auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
|
|
if (Region && Region->isReplicator()) {
|
|
assert(Region->getNumSuccessors() == 1 &&
|
|
Region->getNumPredecessors() == 1 && "Expected SESE region!");
|
|
assert(R->getParent()->size() == 1 &&
|
|
"A recipe in an original replicator region must be the only "
|
|
"recipe in its block");
|
|
return Region;
|
|
}
|
|
return nullptr;
|
|
};
|
|
assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(A)) &&
|
|
"No replicate regions expected at this point");
|
|
assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(B)) &&
|
|
"No replicate regions expected at this point");
|
|
#endif
|
|
return Base::properlyDominates(ParentA, ParentB);
|
|
}
|