llvm-project/clang/lib/Analysis/IntervalPartition.cpp
Yitzhak Mandelbaum e21b1dd9cc [clang][CFG] Fix 2 memory errors in interval computation.
This fixes 2 bugs and adds corresponding tests. Both related to unreachable
blocks. One occured in the `WTOCompare` construction, which assumed the size of
the order was the same as the number of blocks in the CFG, which isn't true when
some blocks are unreachable.  The other assumed predecessor pointers were
non-null, which can be false for blocks with unreachable predecessors.

Differential Revision: https://reviews.llvm.org/D157033
2023-08-04 21:10:35 +00:00

242 lines
8.6 KiB
C++

//===- IntervalPartition.cpp - CFG Partitioning into Intervals --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines functionality for partitioning a CFG into intervals.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/IntervalPartition.h"
#include "clang/Analysis/CFG.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include <optional>
#include <queue>
#include <vector>
namespace clang {
// Intermediate data used in constructing a CFGIntervalNode.
template <typename Node> struct BuildResult {
// Use a vector to maintain the insertion order. Given the expected small
// number of nodes, vector should be sufficiently efficient. Elements must not
// be null.
std::vector<const Node *> Nodes;
// Elements must not be null.
llvm::SmallDenseSet<const Node *> Successors;
};
namespace internal {
static unsigned getID(const CFGBlock &B) { return B.getBlockID(); }
static unsigned getID(const CFGIntervalNode &I) { return I.ID; }
// `Node` must be one of `CFGBlock` or `CFGIntervalNode`.
template <typename Node>
BuildResult<Node> buildInterval(llvm::BitVector &Partitioned,
const Node *Header) {
assert(Header != nullptr);
BuildResult<Node> Interval;
Interval.Nodes.push_back(Header);
Partitioned.set(getID(*Header));
// FIXME: Compare performance against using RPO to consider nodes, rather than
// following successors.
//
// Elements must not be null. Duplicates are prevented using `Workset`, below.
std::queue<const Node *> Worklist;
llvm::BitVector Workset(Partitioned.size(), false);
for (const Node *S : Header->succs())
if (S != nullptr)
if (auto SID = getID(*S); !Partitioned.test(SID)) {
// Successors are unique, so we don't test against `Workset` before
// adding to `Worklist`.
Worklist.push(S);
Workset.set(SID);
}
// Contains successors of blocks in the interval that couldn't be added to the
// interval on their first encounter. This occurs when they have a predecessor
// that is either definitively outside the interval or hasn't been considered
// yet. In the latter case, we'll revisit the block through some other path
// from the interval. At the end of processing the worklist, we filter out any
// that ended up in the interval to produce the output set of interval
// successors. Elements are never null.
std::vector<const Node *> MaybeSuccessors;
while (!Worklist.empty()) {
const auto *B = Worklist.front();
auto ID = getID(*B);
Worklist.pop();
Workset.reset(ID);
// Check whether all predecessors are in the interval, in which case `B`
// is included as well.
bool AllInInterval = llvm::all_of(B->preds(), [&](const Node *P) {
return llvm::is_contained(Interval.Nodes, P);
});
if (AllInInterval) {
Interval.Nodes.push_back(B);
Partitioned.set(ID);
for (const Node *S : B->succs())
if (S != nullptr)
if (auto SID = getID(*S);
!Partitioned.test(SID) && !Workset.test(SID)) {
Worklist.push(S);
Workset.set(SID);
}
} else {
MaybeSuccessors.push_back(B);
}
}
// Any block successors not in the current interval are interval successors.
for (const Node *B : MaybeSuccessors)
if (!llvm::is_contained(Interval.Nodes, B))
Interval.Successors.insert(B);
return Interval;
}
template <typename Node>
void fillIntervalNode(CFGIntervalGraph &Graph,
std::vector<CFGIntervalNode *> &Index,
std::queue<const Node *> &Successors,
llvm::BitVector &Partitioned, const Node *Header) {
BuildResult<Node> Result = buildInterval(Partitioned, Header);
for (const auto *S : Result.Successors)
Successors.push(S);
CFGIntervalNode &Interval = Graph.emplace_back(Graph.size());
// Index the nodes of the new interval. The index maps nodes from the input
// graph (specifically, `Result.Nodes`) to identifiers of nodes in the output
// graph. In this case, the new interval has identifier `ID` so all of its
// nodes (`Result.Nodes`) map to `ID`.
for (const auto *N : Result.Nodes) {
assert(N != nullptr);
assert(getID(*N) < Index.size());
Index[getID(*N)] = &Interval;
}
if constexpr (std::is_same_v<std::decay_t<Node>, CFGBlock>)
Interval.Nodes = std::move(Result.Nodes);
else {
std::vector<const CFGBlock *> Nodes;
// Flatten the sub vectors into a single list.
size_t Count = 0;
for (auto &N : Result.Nodes)
Count += N->Nodes.size();
Nodes.reserve(Count);
for (auto &N : Result.Nodes)
Nodes.insert(Nodes.end(), N->Nodes.begin(), N->Nodes.end());
Interval.Nodes = std::move(Nodes);
}
}
template <typename Node>
CFGIntervalGraph partitionIntoIntervalsImpl(unsigned NumBlockIDs,
const Node *EntryBlock) {
assert(EntryBlock != nullptr);
CFGIntervalGraph Graph;
// `Index` maps all of the nodes of the input graph to the interval to which
// they are assigned in the output graph. The values (interval pointers) are
// never null.
std::vector<CFGIntervalNode *> Index(NumBlockIDs, nullptr);
// Lists header nodes (from the input graph) and their associated
// interval. Since header nodes can vary in type and are only needed within
// this function, we record them separately from `CFGIntervalNode`. This
// choice enables to express `CFGIntervalNode` without using a variant.
std::vector<std::pair<const Node *, CFGIntervalNode *>> Intervals;
llvm::BitVector Partitioned(NumBlockIDs, false);
std::queue<const Node *> Successors;
fillIntervalNode(Graph, Index, Successors, Partitioned, EntryBlock);
Intervals.emplace_back(EntryBlock, &Graph.back());
while (!Successors.empty()) {
const auto *B = Successors.front();
Successors.pop();
assert(B != nullptr);
if (Partitioned.test(getID(*B)))
continue;
// B has not been partitioned, but it has a predecessor that has. Create a
// new interval from `B`.
fillIntervalNode(Graph, Index, Successors, Partitioned, B);
Intervals.emplace_back(B, &Graph.back());
}
// Go back and patch up all the Intervals -- the successors and predecessors.
for (auto [H, N] : Intervals) {
// Map input-graph predecessors to output-graph nodes and mark those as
// predecessors of `N`. Then, mark `N` as a successor of said predecessor.
for (const Node *P : H->preds()) {
if (P == nullptr)
continue;
assert(getID(*P) < NumBlockIDs);
CFGIntervalNode *Pred = Index[getID(*P)];
if (Pred == nullptr)
// Unreachable node.
continue;
if (Pred != N // Not a backedge.
&& N->Predecessors.insert(Pred).second)
// Note: given the guard above, which guarantees we only ever insert
// unique elements, we could use a simple list (like `vector`) for
// `Successors`, rather than a set.
Pred->Successors.insert(N);
}
}
return Graph;
}
std::vector<const CFGBlock *> buildInterval(const CFGBlock *Header) {
llvm::BitVector Partitioned(Header->getParent()->getNumBlockIDs(), false);
return buildInterval(Partitioned, Header).Nodes;
}
CFGIntervalGraph partitionIntoIntervals(const CFG &Cfg) {
return partitionIntoIntervalsImpl(Cfg.getNumBlockIDs(), &Cfg.getEntry());
}
CFGIntervalGraph partitionIntoIntervals(const CFGIntervalGraph &Graph) {
return partitionIntoIntervalsImpl(Graph.size(), &Graph[0]);
}
} // namespace internal
std::optional<std::vector<const CFGBlock *>> getIntervalWTO(const CFG &Cfg) {
// Backing storage for the allocated nodes in each graph.
unsigned PrevSize = Cfg.size();
if (PrevSize == 0)
return {};
internal::CFGIntervalGraph Graph = internal::partitionIntoIntervals(Cfg);
unsigned Size = Graph.size();
while (Size > 1 && Size < PrevSize) {
PrevSize = Graph.size();
Graph = internal::partitionIntoIntervals(Graph);
Size = Graph.size();
}
if (Size > 1)
// Not reducible.
return std::nullopt;
assert(Size != 0);
return std::move(Graph[0].Nodes);
}
WTOCompare::WTOCompare(const WeakTopologicalOrdering &WTO) {
if (WTO.empty())
return;
auto N = WTO[0]->getParent()->getNumBlockIDs();
BlockOrder.resize(N, 0);
for (unsigned I = 0, S = WTO.size(); I < S; ++I)
BlockOrder[WTO[I]->getBlockID()] = I + 1;
}
} // namespace clang