llvm-project/llvm/utils/TableGen/SubtargetEmitter.cpp
Rahul Joshi 8f0293695f
[NFC][TableGen] Eliminate use of ConstRecIter from SubtargetEmitter (#130162)
- Eliminate use of `ConstRecIter` from `expandProcResources` by using `all_of()` to simplify the code.
2025-03-10 12:23:25 -07:00

2208 lines
81 KiB
C++

//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits subtarget enumerations.
//
//===----------------------------------------------------------------------===//
#include "Common/CodeGenHwModes.h"
#include "Common/CodeGenSchedule.h"
#include "Common/CodeGenTarget.h"
#include "Common/PredicateExpander.h"
#include "Common/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include "llvm/TargetParser/SubtargetFeature.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <string>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "subtarget-emitter"
namespace {
using FeatureMapTy = DenseMap<const Record *, unsigned>;
/// Sorting predicate to sort record pointers by their
/// FieldName field.
struct LessRecordFieldFieldName {
bool operator()(const Record *Rec1, const Record *Rec2) const {
return Rec1->getValueAsString("FieldName") <
Rec2->getValueAsString("FieldName");
}
};
class SubtargetEmitter {
// Each processor has a SchedClassDesc table with an entry for each
// SchedClass. The SchedClassDesc table indexes into a global write resource
// table, write latency table, and read advance table.
struct SchedClassTables {
std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
std::vector<MCWriteProcResEntry> WriteProcResources;
std::vector<MCWriteLatencyEntry> WriteLatencies;
std::vector<std::string> WriterNames;
std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
// Reserve an invalid entry at index 0
SchedClassTables() {
ProcSchedClasses.resize(1);
WriteProcResources.resize(1);
WriteLatencies.resize(1);
WriterNames.push_back("InvalidWrite");
ReadAdvanceEntries.resize(1);
}
};
struct LessWriteProcResources {
bool operator()(const MCWriteProcResEntry &LHS,
const MCWriteProcResEntry &RHS) {
return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
}
};
CodeGenTarget TGT;
const RecordKeeper &Records;
CodeGenSchedModels &SchedModels;
std::string Target;
FeatureMapTy enumeration(raw_ostream &OS);
void emitSubtargetInfoMacroCalls(raw_ostream &OS);
unsigned featureKeyValues(raw_ostream &OS, const FeatureMapTy &FeatureMap);
unsigned cpuKeyValues(raw_ostream &OS, const FeatureMapTy &FeatureMap);
unsigned cpuNames(raw_ostream &OS);
void formItineraryStageString(const std::string &Names,
const Record *ItinData, std::string &ItinString,
unsigned &NStages);
void formItineraryOperandCycleString(const Record *ItinData,
std::string &ItinString,
unsigned &NOperandCycles);
void formItineraryBypassString(const std::string &Names,
const Record *ItinData,
std::string &ItinString,
unsigned NOperandCycles);
void emitStageAndOperandCycleData(
raw_ostream &OS, std::vector<std::vector<InstrItinerary>> &ProcItinLists);
void emitItineraries(raw_ostream &OS,
ArrayRef<std::vector<InstrItinerary>> ProcItinLists);
unsigned emitRegisterFileTables(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
void emitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
void emitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
void emitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
char Separator);
void emitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
void emitProcessorResources(const CodeGenProcModel &ProcModel,
raw_ostream &OS);
const Record *findWriteResources(const CodeGenSchedRW &SchedWrite,
const CodeGenProcModel &ProcModel);
const Record *findReadAdvance(const CodeGenSchedRW &SchedRead,
const CodeGenProcModel &ProcModel);
void expandProcResources(ConstRecVec &PRVec,
std::vector<int64_t> &ReleaseAtCycles,
std::vector<int64_t> &AcquireAtCycles,
const CodeGenProcModel &ProcModel);
void genSchedClassTables(const CodeGenProcModel &ProcModel,
SchedClassTables &SchedTables);
void emitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
void emitProcessorModels(raw_ostream &OS);
void emitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
void emitSchedModelHelpersImpl(raw_ostream &OS,
bool OnlyExpandMCInstPredicates = false);
void emitGenMCSubtargetInfo(raw_ostream &OS);
void emitMcInstrAnalysisPredicateFunctions(raw_ostream &OS);
void emitSchedModel(raw_ostream &OS);
void emitGetMacroFusions(const std::string &ClassName, raw_ostream &OS);
void emitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
void parseFeaturesFunction(raw_ostream &OS);
public:
SubtargetEmitter(const RecordKeeper &R)
: TGT(R), Records(R), SchedModels(TGT.getSchedModels()),
Target(TGT.getName()) {}
void run(raw_ostream &O);
};
} // end anonymous namespace
//
// Enumeration - Emit the specified class as an enumeration.
//
FeatureMapTy SubtargetEmitter::enumeration(raw_ostream &OS) {
ArrayRef<const Record *> DefList =
Records.getAllDerivedDefinitions("SubtargetFeature");
unsigned N = DefList.size();
if (N == 0)
return FeatureMapTy();
if (N + 1 > MAX_SUBTARGET_FEATURES)
PrintFatalError(
"Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
OS << "namespace " << Target << " {\n";
// Open enumeration.
OS << "enum {\n";
FeatureMapTy FeatureMap;
// For each record
for (unsigned I = 0; I < N; ++I) {
// Next record
const Record *Def = DefList[I];
// Get and emit name
OS << " " << Def->getName() << " = " << I << ",\n";
// Save the index for this feature.
FeatureMap[Def] = I;
}
OS << " "
<< "NumSubtargetFeatures = " << N << "\n";
// Close enumeration and namespace
OS << "};\n";
OS << "} // end namespace " << Target << "\n";
return FeatureMap;
}
static void printFeatureMask(raw_ostream &OS,
ArrayRef<const Record *> FeatureList,
const FeatureMapTy &FeatureMap) {
std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {};
for (const Record *Feature : FeatureList) {
unsigned Bit = FeatureMap.lookup(Feature);
Mask[Bit / 64] |= 1ULL << (Bit % 64);
}
OS << "{ { { ";
for (unsigned I = 0; I != Mask.size(); ++I) {
OS << "0x";
OS.write_hex(Mask[I]);
OS << "ULL, ";
}
OS << "} } }";
}
/// Emit some information about the SubtargetFeature as calls to a macro so
/// that they can be used from C++.
void SubtargetEmitter::emitSubtargetInfoMacroCalls(raw_ostream &OS) {
OS << "\n#ifdef GET_SUBTARGETINFO_MACRO\n";
std::vector<const Record *> FeatureList =
Records.getAllDerivedDefinitions("SubtargetFeature");
llvm::sort(FeatureList, LessRecordFieldFieldName());
for (const Record *Feature : FeatureList) {
const StringRef FieldName = Feature->getValueAsString("FieldName");
const StringRef Value = Feature->getValueAsString("Value");
// Only handle boolean features for now, excluding BitVectors and enums.
const bool IsBool = (Value == "false" || Value == "true") &&
!StringRef(FieldName).contains('[');
if (!IsBool)
continue;
// Some features default to true, with values set to false if enabled.
const char *Default = Value == "false" ? "true" : "false";
// Define the getter with lowercased first char: xxxYyy() { return XxxYyy; }
const std::string Getter =
FieldName.substr(0, 1).lower() + FieldName.substr(1).str();
OS << "GET_SUBTARGETINFO_MACRO(" << FieldName << ", " << Default << ", "
<< Getter << ")\n";
}
OS << "#undef GET_SUBTARGETINFO_MACRO\n";
OS << "#endif // GET_SUBTARGETINFO_MACRO\n\n";
OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
if (Target == "AArch64")
OS << "#include \"llvm/TargetParser/AArch64TargetParser.h\"\n\n";
}
//
// FeatureKeyValues - Emit data of all the subtarget features. Used by the
// command line.
//
unsigned SubtargetEmitter::featureKeyValues(raw_ostream &OS,
const FeatureMapTy &FeatureMap) {
std::vector<const Record *> FeatureList =
Records.getAllDerivedDefinitions("SubtargetFeature");
// Remove features with empty name.
llvm::erase_if(FeatureList, [](const Record *Rec) {
return Rec->getValueAsString("Name").empty();
});
if (FeatureList.empty())
return 0;
// Sort and check duplicate Feature name.
sortAndReportDuplicates(FeatureList, "Feature");
// Begin feature table.
OS << "// Sorted (by key) array of values for CPU features.\n"
<< "extern const llvm::SubtargetFeatureKV " << Target
<< "FeatureKV[] = {\n";
for (const Record *Feature : FeatureList) {
// Next feature
StringRef Name = Feature->getName();
StringRef CommandLineName = Feature->getValueAsString("Name");
StringRef Desc = Feature->getValueAsString("Desc");
// Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in
// } }
OS << " { "
<< "\"" << CommandLineName << "\", "
<< "\"" << Desc << "\", " << Target << "::" << Name << ", ";
ConstRecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
printFeatureMask(OS, ImpliesList, FeatureMap);
OS << " },\n";
}
// End feature table.
OS << "};\n";
return FeatureList.size();
}
unsigned SubtargetEmitter::cpuNames(raw_ostream &OS) {
// Begin processor name table.
OS << "// Sorted array of names of CPU subtypes, including aliases.\n"
<< "extern const llvm::StringRef " << Target << "Names[] = {\n";
std::vector<const Record *> ProcessorList =
Records.getAllDerivedDefinitions("Processor");
std::vector<const Record *> ProcessorAliasList =
Records.getAllDerivedDefinitionsIfDefined("ProcessorAlias");
SmallVector<StringRef> Names;
Names.reserve(ProcessorList.size() + ProcessorAliasList.size());
for (const Record *Processor : ProcessorList) {
StringRef Name = Processor->getValueAsString("Name");
Names.push_back(Name);
}
for (const Record *Rec : ProcessorAliasList) {
auto Name = Rec->getValueAsString("Name");
Names.push_back(Name);
}
llvm::sort(Names);
llvm::interleave(
Names, OS, [&](StringRef Name) { OS << '"' << Name << '"'; }, ",\n");
// End processor name table.
OS << "};\n";
return Names.size();
}
//
// CPUKeyValues - Emit data of all the subtarget processors. Used by command
// line.
//
unsigned SubtargetEmitter::cpuKeyValues(raw_ostream &OS,
const FeatureMapTy &FeatureMap) {
// Gather and sort processor information
std::vector<const Record *> ProcessorList =
Records.getAllDerivedDefinitions("Processor");
llvm::sort(ProcessorList, LessRecordFieldName());
// Note that unlike `FeatureKeyValues`, here we do not need to check for
// duplicate processors, since that is already done when the SubtargetEmitter
// constructor calls `getSchedModels` to build a `CodeGenSchedModels` object,
// which does the duplicate processor check.
// Begin processor table.
OS << "// Sorted (by key) array of values for CPU subtype.\n"
<< "extern const llvm::SubtargetSubTypeKV " << Target
<< "SubTypeKV[] = {\n";
for (const Record *Processor : ProcessorList) {
StringRef Name = Processor->getValueAsString("Name");
ConstRecVec FeatureList = Processor->getValueAsListOfDefs("Features");
ConstRecVec TuneFeatureList =
Processor->getValueAsListOfDefs("TuneFeatures");
// Emit as "{ "cpu", "description", 0, { f1 , f2 , ... fn } },".
OS << " { "
<< "\"" << Name << "\", ";
printFeatureMask(OS, FeatureList, FeatureMap);
OS << ", ";
printFeatureMask(OS, TuneFeatureList, FeatureMap);
// Emit the scheduler model pointer.
const std::string &ProcModelName =
SchedModels.getModelForProc(Processor).ModelName;
OS << ", &" << ProcModelName << " },\n";
}
// End processor table.
OS << "};\n";
return ProcessorList.size();
}
//
// FormItineraryStageString - Compose a string containing the stage
// data initialization for the specified itinerary. N is the number
// of stages.
//
void SubtargetEmitter::formItineraryStageString(const std::string &Name,
const Record *ItinData,
std::string &ItinString,
unsigned &NStages) {
// Get states list
ConstRecVec StageList = ItinData->getValueAsListOfDefs("Stages");
// For each stage
unsigned N = NStages = StageList.size();
for (unsigned I = 0; I < N;) {
// Next stage
const Record *Stage = StageList[I];
// Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
int Cycles = Stage->getValueAsInt("Cycles");
ItinString += " { " + itostr(Cycles) + ", ";
// Get unit list
ConstRecVec UnitList = Stage->getValueAsListOfDefs("Units");
// For each unit
for (unsigned J = 0, M = UnitList.size(); J < M;) {
// Add name and bitwise or
ItinString += Name + "FU::" + UnitList[J]->getName().str();
if (++J < M)
ItinString += " | ";
}
int TimeInc = Stage->getValueAsInt("TimeInc");
ItinString += ", " + itostr(TimeInc);
int Kind = Stage->getValueAsInt("Kind");
ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
// Close off stage
ItinString += " }";
if (++I < N)
ItinString += ", ";
}
}
//
// FormItineraryOperandCycleString - Compose a string containing the
// operand cycle initialization for the specified itinerary. N is the
// number of operands that has cycles specified.
//
void SubtargetEmitter::formItineraryOperandCycleString(
const Record *ItinData, std::string &ItinString, unsigned &NOperandCycles) {
// Get operand cycle list
std::vector<int64_t> OperandCycleList =
ItinData->getValueAsListOfInts("OperandCycles");
// For each operand cycle
NOperandCycles = OperandCycleList.size();
ListSeparator LS;
for (int OCycle : OperandCycleList) {
// Next operand cycle
ItinString += LS;
ItinString += " " + itostr(OCycle);
}
}
void SubtargetEmitter::formItineraryBypassString(const std::string &Name,
const Record *ItinData,
std::string &ItinString,
unsigned NOperandCycles) {
ConstRecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
unsigned N = BypassList.size();
unsigned I = 0;
ListSeparator LS;
for (; I < N; ++I) {
ItinString += LS;
ItinString += Name + "Bypass::" + BypassList[I]->getName().str();
}
for (; I < NOperandCycles; ++I) {
ItinString += LS;
ItinString += " 0";
}
}
//
// EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
// cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
// by CodeGenSchedClass::Index.
//
void SubtargetEmitter::emitStageAndOperandCycleData(
raw_ostream &OS, std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
// Multiple processor models may share an itinerary record. Emit it once.
SmallPtrSet<const Record *, 8> ItinsDefSet;
// Emit functional units for all the itineraries.
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
continue;
ConstRecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
if (FUs.empty())
continue;
StringRef Name = ProcModel.ItinsDef->getName();
OS << "\n// Functional units for \"" << Name << "\"\n"
<< "namespace " << Name << "FU {\n";
for (const auto &[Idx, FU] : enumerate(FUs))
OS << " const InstrStage::FuncUnits " << FU->getName() << " = 1ULL << "
<< Idx << ";\n";
OS << "} // end namespace " << Name << "FU\n";
ConstRecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
if (BPs.empty())
continue;
OS << "\n// Pipeline forwarding paths for itineraries \"" << Name << "\"\n"
<< "namespace " << Name << "Bypass {\n";
OS << " const unsigned NoBypass = 0;\n";
for (const auto &[Idx, BP] : enumerate(BPs))
OS << " const unsigned " << BP->getName() << " = 1 << " << Idx << ";\n";
OS << "} // end namespace " << Name << "Bypass\n";
}
// Begin stages table
std::string StageTable =
"\nextern const llvm::InstrStage " + Target + "Stages[] = {\n";
StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
// Begin operand cycle table
std::string OperandCycleTable =
"extern const unsigned " + Target + "OperandCycles[] = {\n";
OperandCycleTable += " 0, // No itinerary\n";
// Begin pipeline bypass table
std::string BypassTable =
"extern const unsigned " + Target + "ForwardingPaths[] = {\n";
BypassTable += " 0, // No itinerary\n";
// For each Itinerary across all processors, add a unique entry to the stages,
// operand cycles, and pipeline bypass tables. Then add the new Itinerary
// object with computed offsets to the ProcItinLists result.
unsigned StageCount = 1, OperandCycleCount = 1;
StringMap<unsigned> ItinStageMap, ItinOperandMap;
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
// Add process itinerary to the list.
std::vector<InstrItinerary> &ItinList = ProcItinLists.emplace_back();
// If this processor defines no itineraries, then leave the itinerary list
// empty.
if (!ProcModel.hasItineraries())
continue;
StringRef Name = ProcModel.ItinsDef->getName();
ItinList.resize(SchedModels.numInstrSchedClasses());
assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
// Next itinerary data
const Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
// Get string and stage count
std::string ItinStageString;
unsigned NStages = 0;
if (ItinData)
formItineraryStageString(std::string(Name), ItinData, ItinStageString,
NStages);
// Get string and operand cycle count
std::string ItinOperandCycleString;
unsigned NOperandCycles = 0;
std::string ItinBypassString;
if (ItinData) {
formItineraryOperandCycleString(ItinData, ItinOperandCycleString,
NOperandCycles);
formItineraryBypassString(std::string(Name), ItinData, ItinBypassString,
NOperandCycles);
}
// Check to see if stage already exists and create if it doesn't
uint16_t FindStage = 0;
if (NStages > 0) {
FindStage = ItinStageMap[ItinStageString];
if (FindStage == 0) {
// Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
StageTable += ItinStageString + ", // " + itostr(StageCount);
if (NStages > 1)
StageTable += "-" + itostr(StageCount + NStages - 1);
StageTable += "\n";
// Record Itin class number.
ItinStageMap[ItinStageString] = FindStage = StageCount;
StageCount += NStages;
}
}
// Check to see if operand cycle already exists and create if it doesn't
uint16_t FindOperandCycle = 0;
if (NOperandCycles > 0) {
std::string ItinOperandString =
ItinOperandCycleString + ItinBypassString;
FindOperandCycle = ItinOperandMap[ItinOperandString];
if (FindOperandCycle == 0) {
// Emit as cycle, // index
OperandCycleTable += ItinOperandCycleString + ", // ";
std::string OperandIdxComment = itostr(OperandCycleCount);
if (NOperandCycles > 1)
OperandIdxComment +=
"-" + itostr(OperandCycleCount + NOperandCycles - 1);
OperandCycleTable += OperandIdxComment + "\n";
// Record Itin class number.
ItinOperandMap[ItinOperandCycleString] = FindOperandCycle =
OperandCycleCount;
// Emit as bypass, // index
BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
OperandCycleCount += NOperandCycles;
}
}
// Set up itinerary as location and location + stage count
int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
InstrItinerary Intinerary = {
NumUOps,
FindStage,
uint16_t(FindStage + NStages),
FindOperandCycle,
uint16_t(FindOperandCycle + NOperandCycles),
};
// Inject - empty slots will be 0, 0
ItinList[SchedClassIdx] = Intinerary;
}
}
// Closing stage
StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
StageTable += "};\n";
// Closing operand cycles
OperandCycleTable += " 0 // End operand cycles\n";
OperandCycleTable += "};\n";
BypassTable += " 0 // End bypass tables\n";
BypassTable += "};\n";
// Emit tables.
OS << StageTable;
OS << OperandCycleTable;
OS << BypassTable;
}
//
// EmitProcessorData - Generate data for processor itineraries that were
// computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
// Itineraries for each processor. The Itinerary lists are indexed on
// CodeGenSchedClass::Index.
//
void SubtargetEmitter::emitItineraries(
raw_ostream &OS, ArrayRef<std::vector<InstrItinerary>> ProcItinLists) {
// Multiple processor models may share an itinerary record. Emit it once.
SmallPtrSet<const Record *, 8> ItinsDefSet;
for (const auto &[Proc, ItinList] :
zip_equal(SchedModels.procModels(), ProcItinLists)) {
const Record *ItinsDef = Proc.ItinsDef;
if (!ItinsDefSet.insert(ItinsDef).second)
continue;
// Empty itineraries aren't referenced anywhere in the tablegen output
// so don't emit them.
if (ItinList.empty())
continue;
// Begin processor itinerary table
OS << "\n";
OS << "static constexpr llvm::InstrItinerary " << ItinsDef->getName()
<< "[] = {\n";
ArrayRef<CodeGenSchedClass> ItinSchedClasses =
SchedModels.schedClasses().take_front(ItinList.size());
// For each itinerary class in CodeGenSchedClass::Index order.
for (const auto &[Idx, Intinerary, SchedClass] :
enumerate(ItinList, ItinSchedClasses)) {
// Emit Itinerary in the form of
// { NumMicroOps, FirstStage, LastStage, FirstOperandCycle,
// LastOperandCycle } // index class name
OS << " { " << Intinerary.NumMicroOps << ", " << Intinerary.FirstStage
<< ", " << Intinerary.LastStage << ", " << Intinerary.FirstOperandCycle
<< ", " << Intinerary.LastOperandCycle << " }" << ", // " << Idx << " "
<< SchedClass.Name << "\n";
}
// End processor itinerary table
OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
"// end marker\n";
OS << "};\n";
}
}
// Emit either the value defined in the TableGen Record, or the default
// value defined in the C++ header. The Record is null if the processor does not
// define a model.
void SubtargetEmitter::emitProcessorProp(raw_ostream &OS, const Record *R,
StringRef Name, char Separator) {
OS << " ";
int V = R ? R->getValueAsInt(Name) : -1;
if (V >= 0)
OS << V << Separator << " // " << Name;
else
OS << "MCSchedModel::Default" << Name << Separator;
OS << '\n';
}
void SubtargetEmitter::emitProcessorResourceSubUnits(
const CodeGenProcModel &ProcModel, raw_ostream &OS) {
OS << "\nstatic const unsigned " << ProcModel.ModelName
<< "ProcResourceSubUnits[] = {\n"
<< " 0, // Invalid\n";
for (unsigned I = 0, E = ProcModel.ProcResourceDefs.size(); I < E; ++I) {
const Record *PRDef = ProcModel.ProcResourceDefs[I];
if (!PRDef->isSubClassOf("ProcResGroup"))
continue;
for (const Record *RUDef : PRDef->getValueAsListOfDefs("Resources")) {
const Record *RU =
SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
OS << " " << ProcModel.getProcResourceIdx(RU) << ", ";
}
}
OS << " // " << PRDef->getName() << "\n";
}
OS << "};\n";
}
static void emitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
if (const Record *RCU = ProcModel.RetireControlUnit) {
ReorderBufferSize =
std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
MaxRetirePerCycle =
std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
}
OS << ReorderBufferSize << ", // ReorderBufferSize\n ";
OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n ";
}
static void emitRegisterFileInfo(const CodeGenProcModel &ProcModel,
unsigned NumRegisterFiles,
unsigned NumCostEntries, raw_ostream &OS) {
if (NumRegisterFiles)
OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles);
else
OS << "nullptr,\n 0";
OS << ", // Number of register files.\n ";
if (NumCostEntries)
OS << ProcModel.ModelName << "RegisterCosts,\n ";
else
OS << "nullptr,\n ";
OS << NumCostEntries << ", // Number of register cost entries.\n";
}
unsigned
SubtargetEmitter::emitRegisterFileTables(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
return RF.hasDefaultCosts();
}))
return 0;
// Print the RegisterCost table first.
OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
<< "RegisterCosts"
<< "[] = {\n";
for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
// Skip register files with a default cost table.
if (RF.hasDefaultCosts())
continue;
// Add entries to the cost table.
for (const CodeGenRegisterCost &RC : RF.Costs) {
OS << " { ";
const Record *Rec = RC.RCDef;
if (Rec->getValue("Namespace"))
OS << Rec->getValueAsString("Namespace") << "::";
OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
<< RC.AllowMoveElimination << "},\n";
}
}
OS << "};\n";
// Now generate a table with register file info.
OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
<< "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
<< "RegisterFiles"
<< "[] = {\n"
<< " { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
unsigned CostTblIndex = 0;
for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
OS << " { ";
OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
unsigned NumCostEntries = RD.Costs.size();
OS << NumCostEntries << ", " << CostTblIndex << ", "
<< RD.MaxMovesEliminatedPerCycle << ", "
<< RD.AllowZeroMoveEliminationOnly << "},\n";
CostTblIndex += NumCostEntries;
}
OS << "};\n";
return CostTblIndex;
}
void SubtargetEmitter::emitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
unsigned QueueID = 0;
if (ProcModel.LoadQueue) {
const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
find(ProcModel.ProcResourceDefs, Queue));
}
OS << " " << QueueID << ", // Resource Descriptor for the Load Queue\n";
QueueID = 0;
if (ProcModel.StoreQueue) {
const Record *Queue =
ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(),
find(ProcModel.ProcResourceDefs, Queue));
}
OS << " " << QueueID << ", // Resource Descriptor for the Store Queue\n";
}
void SubtargetEmitter::emitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
// Generate a table of register file descriptors (one entry per each user
// defined register file), and a table of register costs.
unsigned NumCostEntries = emitRegisterFileTables(ProcModel, OS);
// Now generate a table for the extra processor info.
OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
<< "ExtraInfo = {\n ";
// Add information related to the retire control unit.
emitRetireControlUnitInfo(ProcModel, OS);
// Add information related to the register files (i.e. where to find register
// file descriptors and register costs).
emitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
NumCostEntries, OS);
// Add information about load/store queues.
emitLoadStoreQueueInfo(ProcModel, OS);
OS << "};\n";
}
void SubtargetEmitter::emitProcessorResources(const CodeGenProcModel &ProcModel,
raw_ostream &OS) {
emitProcessorResourceSubUnits(ProcModel, OS);
OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
<< "ProcResources"
<< "[] = {\n"
<< " {\"InvalidUnit\", 0, 0, 0, 0},\n";
unsigned SubUnitsOffset = 1;
for (unsigned I = 0, E = ProcModel.ProcResourceDefs.size(); I < E; ++I) {
const Record *PRDef = ProcModel.ProcResourceDefs[I];
const Record *SuperDef = nullptr;
unsigned SuperIdx = 0;
unsigned NumUnits = 0;
const unsigned SubUnitsBeginOffset = SubUnitsOffset;
int BufferSize = PRDef->getValueAsInt("BufferSize");
if (PRDef->isSubClassOf("ProcResGroup")) {
for (const Record *RU : PRDef->getValueAsListOfDefs("Resources")) {
NumUnits += RU->getValueAsInt("NumUnits");
SubUnitsOffset += RU->getValueAsInt("NumUnits");
}
} else {
// Find the SuperIdx
if (PRDef->getValueInit("Super")->isComplete()) {
SuperDef = SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
ProcModel, PRDef->getLoc());
SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
}
NumUnits = PRDef->getValueAsInt("NumUnits");
}
// Emit the ProcResourceDesc
OS << " {\"" << PRDef->getName() << "\", ";
if (PRDef->getName().size() < 15)
OS.indent(15 - PRDef->getName().size());
OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
if (SubUnitsBeginOffset != SubUnitsOffset) {
OS << ProcModel.ModelName << "ProcResourceSubUnits + "
<< SubUnitsBeginOffset;
} else {
OS << "nullptr";
}
OS << "}, // #" << I + 1;
if (SuperDef)
OS << ", Super=" << SuperDef->getName();
OS << "\n";
}
OS << "};\n";
}
// Find the WriteRes Record that defines processor resources for this
// SchedWrite.
const Record *
SubtargetEmitter::findWriteResources(const CodeGenSchedRW &SchedWrite,
const CodeGenProcModel &ProcModel) {
// Check if the SchedWrite is already subtarget-specific and directly
// specifies a set of processor resources.
if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
return SchedWrite.TheDef;
const Record *AliasDef = nullptr;
for (const Record *A : SchedWrite.Aliases) {
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
const Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(),
"Multiple aliases "
"defined for processor " +
ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
return AliasDef;
// Check this processor's list of write resources.
const Record *ResDef = nullptr;
auto I = ProcModel.WriteResMap.find(SchedWrite.TheDef);
if (I != ProcModel.WriteResMap.end())
ResDef = I->second;
if (AliasDef) {
I = ProcModel.WriteResMap.find(AliasDef);
if (I != ProcModel.WriteResMap.end()) {
if (ResDef)
PrintFatalError(I->second->getLoc(),
"Resources are defined for both SchedWrite and its "
"alias on processor " +
ProcModel.ModelName);
ResDef = I->second;
}
}
// TODO: If ProcModel has a base model (previous generation processor),
// then call FindWriteResources recursively with that model here.
if (!ResDef) {
PrintFatalError(ProcModel.ModelDef->getLoc(),
Twine("Processor does not define resources for ") +
SchedWrite.TheDef->getName());
}
return ResDef;
}
/// Find the ReadAdvance record for the given SchedRead on this processor or
/// return NULL.
const Record *
SubtargetEmitter::findReadAdvance(const CodeGenSchedRW &SchedRead,
const CodeGenProcModel &ProcModel) {
// Check for SchedReads that directly specify a ReadAdvance.
if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
return SchedRead.TheDef;
// Check this processor's list of aliases for SchedRead.
const Record *AliasDef = nullptr;
for (const Record *A : SchedRead.Aliases) {
const CodeGenSchedRW &AliasRW =
SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
const Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
continue;
}
if (AliasDef)
PrintFatalError(AliasRW.TheDef->getLoc(),
"Multiple aliases "
"defined for processor " +
ProcModel.ModelName +
" Ensure only one SchedAlias exists per RW.");
AliasDef = AliasRW.TheDef;
}
if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
return AliasDef;
// Check this processor's ReadAdvanceList.
const Record *ResDef = nullptr;
auto I = ProcModel.ReadAdvanceMap.find(SchedRead.TheDef);
if (I != ProcModel.ReadAdvanceMap.end())
ResDef = I->second;
if (AliasDef) {
I = ProcModel.ReadAdvanceMap.find(AliasDef);
if (I != ProcModel.ReadAdvanceMap.end()) {
if (ResDef)
PrintFatalError(
I->second->getLoc(),
"Resources are defined for both SchedRead and its alias on "
"processor " +
ProcModel.ModelName);
ResDef = I->second;
}
}
// TODO: If ProcModel has a base model (previous generation processor),
// then call FindReadAdvance recursively with that model here.
if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
PrintFatalError(ProcModel.ModelDef->getLoc(),
Twine("Processor does not define resources for ") +
SchedRead.TheDef->getName());
}
return ResDef;
}
// Expand an explicit list of processor resources into a full list of implied
// resource groups and super resources that cover them.
void SubtargetEmitter::expandProcResources(
ConstRecVec &PRVec, std::vector<int64_t> &ReleaseAtCycles,
std::vector<int64_t> &AcquireAtCycles, const CodeGenProcModel &PM) {
assert(PRVec.size() == ReleaseAtCycles.size() && "failed precondition");
for (unsigned I = 0, E = PRVec.size(); I != E; ++I) {
const Record *PRDef = PRVec[I];
ConstRecVec SubResources;
if (PRDef->isSubClassOf("ProcResGroup")) {
SubResources = PRDef->getValueAsListOfDefs("Resources");
} else {
SubResources.push_back(PRDef);
PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
for (const Record *SubDef = PRDef;
SubDef->getValueInit("Super")->isComplete();) {
if (SubDef->isSubClassOf("ProcResGroup")) {
// Disallow this for simplicitly.
PrintFatalError(SubDef->getLoc(), "Processor resource group "
" cannot be a super resources.");
}
const Record *SuperDef = SchedModels.findProcResUnits(
SubDef->getValueAsDef("Super"), PM, SubDef->getLoc());
PRVec.push_back(SuperDef);
ReleaseAtCycles.push_back(ReleaseAtCycles[I]);
AcquireAtCycles.push_back(AcquireAtCycles[I]);
SubDef = SuperDef;
}
}
for (const Record *PR : PM.ProcResourceDefs) {
if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
continue;
ConstRecVec SuperResources = PR->getValueAsListOfDefs("Resources");
bool AllContained =
all_of(SubResources, [SuperResources](const Record *SubResource) {
return is_contained(SuperResources, SubResource);
});
if (AllContained) {
PRVec.push_back(PR);
ReleaseAtCycles.push_back(ReleaseAtCycles[I]);
AcquireAtCycles.push_back(AcquireAtCycles[I]);
}
}
}
}
// Generate the SchedClass table for this processor and update global
// tables. Must be called for each processor in order.
void SubtargetEmitter::genSchedClassTables(const CodeGenProcModel &ProcModel,
SchedClassTables &SchedTables) {
std::vector<MCSchedClassDesc> &SCTab =
SchedTables.ProcSchedClasses.emplace_back();
if (!ProcModel.hasInstrSchedModel())
return;
LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
LLVM_DEBUG(SC.dump(&SchedModels));
MCSchedClassDesc &SCDesc = SCTab.emplace_back();
// SCDesc.Name is guarded by NDEBUG
SCDesc.NumMicroOps = 0;
SCDesc.BeginGroup = false;
SCDesc.EndGroup = false;
SCDesc.RetireOOO = false;
SCDesc.WriteProcResIdx = 0;
SCDesc.WriteLatencyIdx = 0;
SCDesc.ReadAdvanceIdx = 0;
// A Variant SchedClass has no resources of its own.
bool HasVariants = false;
for (const CodeGenSchedTransition &CGT : SC.Transitions) {
if (CGT.ProcIndex == ProcModel.Index) {
HasVariants = true;
break;
}
}
if (HasVariants) {
SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
continue;
}
// Determine if the SchedClass is actually reachable on this processor. If
// not don't try to locate the processor resources, it will fail.
// If ProcIndices contains 0, this class applies to all processors.
assert(!SC.ProcIndices.empty() && "expect at least one procidx");
if (SC.ProcIndices[0] != 0) {
if (!is_contained(SC.ProcIndices, ProcModel.Index))
continue;
}
IdxVec Writes = SC.Writes;
IdxVec Reads = SC.Reads;
if (!SC.InstRWs.empty()) {
// This class has a default ReadWrite list which can be overridden by
// InstRW definitions.
const Record *RWDef = nullptr;
for (const Record *RW : SC.InstRWs) {
const Record *RWModelDef = RW->getValueAsDef("SchedModel");
if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
RWDef = RW;
break;
}
}
if (RWDef) {
Writes.clear();
Reads.clear();
SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
}
}
if (Writes.empty()) {
// Check this processor's itinerary class resources.
for (const Record *I : ProcModel.ItinRWDefs) {
ConstRecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
if (is_contained(Matched, SC.ItinClassDef)) {
SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
Writes, Reads);
break;
}
}
if (Writes.empty()) {
LLVM_DEBUG(dbgs() << ProcModel.ModelName
<< " does not have resources for class " << SC.Name
<< '\n');
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
}
}
// Sum resources across all operand writes.
std::vector<MCWriteProcResEntry> WriteProcResources;
std::vector<MCWriteLatencyEntry> WriteLatencies;
std::vector<std::string> WriterNames;
std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
for (unsigned W : Writes) {
IdxVec WriteSeq;
SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, ProcModel);
// For each operand, create a latency entry.
MCWriteLatencyEntry WLEntry;
WLEntry.Cycles = 0;
unsigned WriteID = WriteSeq.back();
WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
// If this Write is not referenced by a ReadAdvance, don't distinguish it
// from other WriteLatency entries.
if (!ProcModel.hasReadOfWrite(SchedModels.getSchedWrite(WriteID).TheDef))
WriteID = 0;
WLEntry.WriteResourceID = WriteID;
for (unsigned WS : WriteSeq) {
const Record *WriteRes =
findWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
// Mark the parent class as invalid for unsupported write types.
if (WriteRes->getValueAsBit("Unsupported")) {
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
break;
}
WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
SCDesc.RetireOOO |= WriteRes->getValueAsBit("RetireOOO");
// Create an entry for each ProcResource listed in WriteRes.
ConstRecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
std::vector<int64_t> ReleaseAtCycles =
WriteRes->getValueAsListOfInts("ReleaseAtCycles");
std::vector<int64_t> AcquireAtCycles =
WriteRes->getValueAsListOfInts("AcquireAtCycles");
// Check consistency of the two vectors carrying the start and
// stop cycles of the resources.
if (!ReleaseAtCycles.empty() &&
ReleaseAtCycles.size() != PRVec.size()) {
// If ReleaseAtCycles is provided, check consistency.
PrintFatalError(
WriteRes->getLoc(),
Twine("Inconsistent release at cycles: size(ReleaseAtCycles) != "
"size(ProcResources): ")
.concat(Twine(PRVec.size()))
.concat(" vs ")
.concat(Twine(ReleaseAtCycles.size())));
}
if (!AcquireAtCycles.empty() &&
AcquireAtCycles.size() != PRVec.size()) {
PrintFatalError(
WriteRes->getLoc(),
Twine("Inconsistent resource cycles: size(AcquireAtCycles) != "
"size(ProcResources): ")
.concat(Twine(AcquireAtCycles.size()))
.concat(" vs ")
.concat(Twine(PRVec.size())));
}
if (ReleaseAtCycles.empty()) {
// If ReleaseAtCycles is not provided, default to one cycle
// per resource.
ReleaseAtCycles.resize(PRVec.size(), 1);
}
if (AcquireAtCycles.empty()) {
// If AcquireAtCycles is not provided, reserve the resource
// starting from cycle 0.
AcquireAtCycles.resize(PRVec.size(), 0);
}
assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
expandProcResources(PRVec, ReleaseAtCycles, AcquireAtCycles, ProcModel);
assert(AcquireAtCycles.size() == ReleaseAtCycles.size());
for (unsigned PRIdx = 0, PREnd = PRVec.size(); PRIdx != PREnd;
++PRIdx) {
MCWriteProcResEntry WPREntry;
WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
WPREntry.ReleaseAtCycle = ReleaseAtCycles[PRIdx];
WPREntry.AcquireAtCycle = AcquireAtCycles[PRIdx];
if (AcquireAtCycles[PRIdx] > ReleaseAtCycles[PRIdx]) {
PrintFatalError(
WriteRes->getLoc(),
Twine("Inconsistent resource cycles: AcquireAtCycles "
"< ReleaseAtCycles must hold."));
}
if (AcquireAtCycles[PRIdx] < 0) {
PrintFatalError(WriteRes->getLoc(),
Twine("Invalid value: AcquireAtCycle "
"must be a non-negative value."));
}
// If this resource is already used in this sequence, add the current
// entry's cycles so that the same resource appears to be used
// serially, rather than multiple parallel uses. This is important for
// in-order machine where the resource consumption is a hazard.
unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
for (; WPRIdx != WPREnd; ++WPRIdx) {
if (WriteProcResources[WPRIdx].ProcResourceIdx ==
WPREntry.ProcResourceIdx) {
// TODO: multiple use of the same resources would
// require either 1. thinking of how to handle multiple
// intervals for the same resource in
// `<Target>WriteProcResTable` (see
// `SubtargetEmitter::EmitSchedClassTables`), or
// 2. thinking how to merge multiple intervals into a
// single interval.
assert(WPREntry.AcquireAtCycle == 0 &&
"multiple use ofthe same resource is not yet handled");
WriteProcResources[WPRIdx].ReleaseAtCycle +=
WPREntry.ReleaseAtCycle;
break;
}
}
if (WPRIdx == WPREnd)
WriteProcResources.push_back(WPREntry);
}
}
WriteLatencies.push_back(WLEntry);
}
// Create an entry for each operand Read in this SchedClass.
// Entries must be sorted first by UseIdx then by WriteResourceID.
for (unsigned UseIdx = 0, EndIdx = Reads.size(); UseIdx != EndIdx;
++UseIdx) {
const Record *ReadAdvance =
findReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
if (!ReadAdvance)
continue;
// Mark the parent class as invalid for unsupported write types.
if (ReadAdvance->getValueAsBit("Unsupported")) {
SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
break;
}
ConstRecVec ValidWrites =
ReadAdvance->getValueAsListOfDefs("ValidWrites");
std::vector<int64_t> CycleTunables =
ReadAdvance->getValueAsListOfInts("CycleTunables");
std::vector<std::pair<unsigned, int>> WriteIDs;
assert(CycleTunables.size() <= ValidWrites.size() && "Bad ReadAdvance");
CycleTunables.resize(ValidWrites.size(), 0);
if (ValidWrites.empty())
WriteIDs.emplace_back(0, 0);
else {
for (const auto [VW, CT] : zip_equal(ValidWrites, CycleTunables)) {
unsigned WriteID = SchedModels.getSchedRWIdx(VW, /*IsRead=*/false);
assert(WriteID != 0 &&
"Expected a valid SchedRW in the list of ValidWrites");
WriteIDs.emplace_back(WriteID, CT);
}
}
llvm::sort(WriteIDs);
for (const auto &[W, T] : WriteIDs) {
MCReadAdvanceEntry RAEntry;
RAEntry.UseIdx = UseIdx;
RAEntry.WriteResourceID = W;
RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles") + T;
ReadAdvanceEntries.push_back(RAEntry);
}
}
if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
WriteProcResources.clear();
WriteLatencies.clear();
ReadAdvanceEntries.clear();
}
// Add the information for this SchedClass to the global tables using basic
// compression.
//
// WritePrecRes entries are sorted by ProcResIdx.
llvm::sort(WriteProcResources, LessWriteProcResources());
SCDesc.NumWriteProcResEntries = WriteProcResources.size();
std::vector<MCWriteProcResEntry>::iterator WPRPos =
std::search(SchedTables.WriteProcResources.begin(),
SchedTables.WriteProcResources.end(),
WriteProcResources.begin(), WriteProcResources.end());
if (WPRPos != SchedTables.WriteProcResources.end())
SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
else {
SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
WriteProcResources.end());
}
// Latency entries must remain in operand order.
SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
std::vector<MCWriteLatencyEntry>::iterator WLPos = std::search(
SchedTables.WriteLatencies.begin(), SchedTables.WriteLatencies.end(),
WriteLatencies.begin(), WriteLatencies.end());
if (WLPos != SchedTables.WriteLatencies.end()) {
unsigned Idx = WLPos - SchedTables.WriteLatencies.begin();
SCDesc.WriteLatencyIdx = Idx;
for (unsigned I = 0, E = WriteLatencies.size(); I < E; ++I)
if (SchedTables.WriterNames[Idx + I].find(WriterNames[I]) ==
std::string::npos) {
SchedTables.WriterNames[Idx + I] += std::string("_") + WriterNames[I];
}
} else {
SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
llvm::append_range(SchedTables.WriteLatencies, WriteLatencies);
llvm::append_range(SchedTables.WriterNames, WriterNames);
}
// ReadAdvanceEntries must remain in operand order.
SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
std::vector<MCReadAdvanceEntry>::iterator RAPos =
std::search(SchedTables.ReadAdvanceEntries.begin(),
SchedTables.ReadAdvanceEntries.end(),
ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
if (RAPos != SchedTables.ReadAdvanceEntries.end())
SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
else {
SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries);
}
}
}
// Emit SchedClass tables for all processors and associated global tables.
void SubtargetEmitter::emitSchedClassTables(SchedClassTables &SchedTables,
raw_ostream &OS) {
// Emit global WriteProcResTable.
OS << "\n// {ProcResourceIdx, ReleaseAtCycle, AcquireAtCycle}\n"
<< "extern const llvm::MCWriteProcResEntry " << Target
<< "WriteProcResTable[] = {\n"
<< " { 0, 0, 0 }, // Invalid\n";
for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
WPRIdx != WPREnd; ++WPRIdx) {
MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
<< format("%2d", WPREntry.ReleaseAtCycle) << ", "
<< format("%2d", WPREntry.AcquireAtCycle) << "}";
if (WPRIdx + 1 < WPREnd)
OS << ',';
OS << " // #" << WPRIdx << '\n';
}
OS << "}; // " << Target << "WriteProcResTable\n";
// Emit global WriteLatencyTable.
OS << "\n// {Cycles, WriteResourceID}\n"
<< "extern const llvm::MCWriteLatencyEntry " << Target
<< "WriteLatencyTable[] = {\n"
<< " { 0, 0}, // Invalid\n";
for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
WLIdx != WLEnd; ++WLIdx) {
MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
OS << " {" << format("%2d", WLEntry.Cycles) << ", "
<< format("%2d", WLEntry.WriteResourceID) << "}";
if (WLIdx + 1 < WLEnd)
OS << ',';
OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
}
OS << "}; // " << Target << "WriteLatencyTable\n";
// Emit global ReadAdvanceTable.
OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
<< "extern const llvm::MCReadAdvanceEntry " << Target
<< "ReadAdvanceTable[] = {\n"
<< " {0, 0, 0}, // Invalid\n";
for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
RAIdx != RAEnd; ++RAIdx) {
MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
OS << " {" << RAEntry.UseIdx << ", "
<< format("%2d", RAEntry.WriteResourceID) << ", "
<< format("%2d", RAEntry.Cycles) << "}";
if (RAIdx + 1 < RAEnd)
OS << ',';
OS << " // #" << RAIdx << '\n';
}
OS << "}; // " << Target << "ReadAdvanceTable\n";
// Emit a SchedClass table for each processor.
for (const auto &[Idx, Proc] : enumerate(SchedModels.procModels())) {
if (!Proc.hasInstrSchedModel())
continue;
std::vector<MCSchedClassDesc> &SCTab =
SchedTables.ProcSchedClasses[1 + Idx];
OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup, RetireOOO,"
<< " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
OS << "static const llvm::MCSchedClassDesc " << Proc.ModelName
<< "SchedClasses[] = {\n";
// The first class is always invalid. We no way to distinguish it except by
// name and position.
assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" &&
"invalid class not first");
OS << " {DBGFIELD(\"InvalidSchedClass\") "
<< MCSchedClassDesc::InvalidNumMicroOps
<< ", false, false, false, 0, 0, 0, 0, 0, 0},\n";
for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
MCSchedClassDesc &MCDesc = SCTab[SCIdx];
const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
OS << " {DBGFIELD(\"" << SchedClass.Name << "\") ";
if (SchedClass.Name.size() < 18)
OS.indent(18 - SchedClass.Name.size());
OS << MCDesc.NumMicroOps << ", " << (MCDesc.BeginGroup ? "true" : "false")
<< ", " << (MCDesc.EndGroup ? "true" : "false") << ", "
<< (MCDesc.RetireOOO ? "true" : "false") << ", "
<< format("%2d", MCDesc.WriteProcResIdx) << ", "
<< MCDesc.NumWriteProcResEntries << ", "
<< format("%2d", MCDesc.WriteLatencyIdx) << ", "
<< MCDesc.NumWriteLatencyEntries << ", "
<< format("%2d", MCDesc.ReadAdvanceIdx) << ", "
<< MCDesc.NumReadAdvanceEntries << "}, // #" << SCIdx << '\n';
}
OS << "}; // " << Proc.ModelName << "SchedClasses\n";
}
}
void SubtargetEmitter::emitProcessorModels(raw_ostream &OS) {
// For each processor model.
for (const CodeGenProcModel &PM : SchedModels.procModels()) {
// Emit extra processor info if available.
if (PM.hasExtraProcessorInfo())
emitExtraProcessorInfo(PM, OS);
// Emit processor resource table.
if (PM.hasInstrSchedModel())
emitProcessorResources(PM, OS);
else if (!PM.ProcResourceDefs.empty())
PrintFatalError(PM.ModelDef->getLoc(),
"SchedMachineModel defines "
"ProcResources without defining WriteRes SchedWriteRes");
// Begin processor itinerary properties
OS << "\n";
OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
emitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
emitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
emitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
emitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
emitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
emitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
bool PostRAScheduler =
(PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
OS << " " << (PostRAScheduler ? "true" : "false") << ", // "
<< "PostRAScheduler\n";
bool CompleteModel =
(PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
OS << " " << (CompleteModel ? "true" : "false") << ", // "
<< "CompleteModel\n";
bool EnableIntervals =
(PM.ModelDef ? PM.ModelDef->getValueAsBit("EnableIntervals") : false);
OS << " " << (EnableIntervals ? "true" : "false") << ", // "
<< "EnableIntervals\n";
OS << " " << PM.Index << ", // Processor ID\n";
if (PM.hasInstrSchedModel())
OS << " " << PM.ModelName << "ProcResources" << ",\n"
<< " " << PM.ModelName << "SchedClasses" << ",\n"
<< " " << PM.ProcResourceDefs.size() + 1 << ",\n"
<< " " << SchedModels.schedClasses().size() << ",\n";
else
OS << " nullptr, nullptr, 0, 0,"
<< " // No instruction-level machine model.\n";
if (PM.hasItineraries())
OS << " " << PM.ItinsDef->getName() << ",\n";
else
OS << " nullptr, // No Itinerary\n";
if (PM.hasExtraProcessorInfo())
OS << " &" << PM.ModelName << "ExtraInfo,\n";
else
OS << " nullptr // No extra processor descriptor\n";
OS << "};\n";
}
}
//
// EmitSchedModel - Emits all scheduling model tables, folding common patterns.
//
void SubtargetEmitter::emitSchedModel(raw_ostream &OS) {
OS << "#ifdef DBGFIELD\n"
<< "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
<< "#endif\n"
<< "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
<< "#define DBGFIELD(x) x,\n"
<< "#else\n"
<< "#define DBGFIELD(x)\n"
<< "#endif\n";
if (SchedModels.hasItineraries()) {
std::vector<std::vector<InstrItinerary>> ProcItinLists;
// Emit the stage data
emitStageAndOperandCycleData(OS, ProcItinLists);
emitItineraries(OS, ProcItinLists);
}
OS << "\n// ===============================================================\n"
<< "// Data tables for the new per-operand machine model.\n";
SchedClassTables SchedTables;
for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
genSchedClassTables(ProcModel, SchedTables);
}
emitSchedClassTables(SchedTables, OS);
OS << "\n#undef DBGFIELD\n";
// Emit the processor machine model
emitProcessorModels(OS);
}
static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
std::string Buffer;
raw_string_ostream Stream(Buffer);
// Print all PredicateProlog records to the output stream.
for (const Record *P : Records.getAllDerivedDefinitions("PredicateProlog"))
Stream << P->getValueAsString("Code") << '\n';
OS << Buffer;
}
static bool isTruePredicate(const Record *Rec) {
return Rec->isSubClassOf("MCSchedPredicate") &&
Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
}
static void emitPredicates(const CodeGenSchedTransition &T,
const CodeGenSchedClass &SC, PredicateExpander &PE,
raw_ostream &OS) {
std::string Buffer;
raw_string_ostream SS(Buffer);
// If not all predicates are MCTrue, then we need an if-stmt.
unsigned NumNonTruePreds =
T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate);
SS << PE.getIndent();
if (NumNonTruePreds) {
bool FirstNonTruePredicate = true;
SS << "if (";
PE.getIndent() += 2;
for (const Record *Rec : T.PredTerm) {
// Skip predicates that evaluate to "true".
if (isTruePredicate(Rec))
continue;
if (FirstNonTruePredicate) {
FirstNonTruePredicate = false;
} else {
SS << "\n";
SS << PE.getIndent();
SS << "&& ";
}
if (Rec->isSubClassOf("MCSchedPredicate")) {
PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
continue;
}
// Expand this legacy predicate and wrap it around braces if there is more
// than one predicate to expand.
SS << ((NumNonTruePreds > 1) ? "(" : "")
<< Rec->getValueAsString("Predicate")
<< ((NumNonTruePreds > 1) ? ")" : "");
}
SS << ")\n"; // end of if-stmt
--PE.getIndent();
SS << PE.getIndent();
--PE.getIndent();
}
SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
OS << Buffer;
}
// Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
// epilogue code for the auto-generated helper.
static void emitSchedModelHelperEpilogue(raw_ostream &OS,
bool ShouldReturnZero) {
if (ShouldReturnZero) {
OS << " // Don't know how to resolve this scheduling class.\n"
<< " return 0;\n";
return;
}
OS << " report_fatal_error(\"Expected a variant SchedClass\");\n";
}
static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
return all_of(T.PredTerm, [](const Record *Rec) {
return Rec->isSubClassOf("MCSchedPredicate");
});
}
static void collectVariantClasses(const CodeGenSchedModels &SchedModels,
IdxVec &VariantClasses,
bool OnlyExpandMCInstPredicates) {
for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
// Ignore non-variant scheduling classes.
if (SC.Transitions.empty())
continue;
if (OnlyExpandMCInstPredicates) {
// Ignore this variant scheduling class no transitions use any meaningful
// MCSchedPredicate definitions.
if (llvm::none_of(SC.Transitions, hasMCSchedPredicates))
continue;
}
VariantClasses.push_back(SC.Index);
}
}
static void collectProcessorIndices(const CodeGenSchedClass &SC,
IdxVec &ProcIndices) {
// A variant scheduling class may define transitions for multiple
// processors. This function identifies wich processors are associated with
// transition rules specified by variant class `SC`.
for (const CodeGenSchedTransition &T : SC.Transitions) {
IdxVec PI;
std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(),
ProcIndices.end(), std::back_inserter(PI));
ProcIndices = std::move(PI);
}
}
static bool isAlwaysTrue(const CodeGenSchedTransition &T) {
return llvm::all_of(T.PredTerm, isTruePredicate);
}
void SubtargetEmitter::emitSchedModelHelpersImpl(
raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
IdxVec VariantClasses;
collectVariantClasses(SchedModels, VariantClasses,
OnlyExpandMCInstPredicates);
if (VariantClasses.empty()) {
emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
return;
}
// Construct a switch statement where the condition is a check on the
// scheduling class identifier. There is a `case` for every variant class
// defined by the processor models of this target.
// Each `case` implements a number of rules to resolve (i.e. to transition
// from) a variant scheduling class to another scheduling class. Rules are
// described by instances of CodeGenSchedTransition. Note that transitions may
// not be valid for all processors.
OS << " switch (SchedClass) {\n";
for (unsigned VC : VariantClasses) {
IdxVec ProcIndices;
const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
collectProcessorIndices(SC, ProcIndices);
OS << " case " << VC << ": // " << SC.Name << '\n';
PredicateExpander PE(Target);
PE.setByRef(false);
PE.setExpandForMC(OnlyExpandMCInstPredicates);
for (unsigned PI : ProcIndices) {
OS << " ";
// Emit a guard on the processor ID.
if (PI != 0) {
OS << (OnlyExpandMCInstPredicates
? "if (CPUID == "
: "if (SchedModel->getProcessorID() == ");
OS << PI << ") ";
OS << "{ // " << SchedModels.procModels()[PI].ModelName << '\n';
}
// Now emit transitions associated with processor PI.
const CodeGenSchedTransition *FinalT = nullptr;
for (const CodeGenSchedTransition &T : SC.Transitions) {
if (PI != 0 && T.ProcIndex != PI)
continue;
// Emit only transitions based on MCSchedPredicate, if it's the case.
// At least the transition specified by NoSchedPred is emitted,
// which becomes the default transition for those variants otherwise
// not based on MCSchedPredicate.
// FIXME: preferably, llvm-mca should instead assume a reasonable
// default when a variant transition is not based on MCSchedPredicate
// for a given processor.
if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
continue;
// If transition is folded to 'return X' it should be the last one.
if (isAlwaysTrue(T)) {
FinalT = &T;
continue;
}
PE.getIndent() = 3;
emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
}
if (FinalT)
emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx),
PE, OS);
OS << " }\n";
if (PI == 0)
break;
}
if (SC.isInferred())
OS << " return " << SC.Index << ";\n";
OS << " break;\n";
}
OS << " };\n";
emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
}
void SubtargetEmitter::emitSchedModelHelpers(const std::string &ClassName,
raw_ostream &OS) {
OS << "unsigned " << ClassName
<< "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
<< " const TargetSchedModel *SchedModel) const {\n";
// Emit the predicate prolog code.
emitPredicateProlog(Records, OS);
// Emit target predicates.
emitSchedModelHelpersImpl(OS);
OS << "} // " << ClassName << "::resolveSchedClass\n\n";
OS << "unsigned " << ClassName
<< "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
<< " const MCInstrInfo *MCII, unsigned CPUID) const {\n"
<< " return " << Target << "_MC"
<< "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"
<< "} // " << ClassName << "::resolveVariantSchedClass\n\n";
STIPredicateExpander PE(Target, /*Indent=*/0);
PE.setClassPrefix(ClassName);
PE.setExpandDefinition(true);
PE.setByRef(false);
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
PE.expandSTIPredicate(OS, Fn);
}
void SubtargetEmitter::emitHwModeCheck(const std::string &ClassName,
raw_ostream &OS) {
const CodeGenHwModes &CGH = TGT.getHwModes();
assert(CGH.getNumModeIds() > 0);
if (CGH.getNumModeIds() == 1)
return;
// Collect all HwModes and related features defined in the TD files,
// and store them as a bit set.
unsigned ValueTypeModes = 0;
unsigned RegInfoModes = 0;
unsigned EncodingInfoModes = 0;
for (const auto &MS : CGH.getHwModeSelects()) {
for (const HwModeSelect::PairType &P : MS.second.Items) {
if (P.first == DefaultMode)
continue;
if (P.second->isSubClassOf("ValueType")) {
ValueTypeModes |= (1 << (P.first - 1));
} else if (P.second->isSubClassOf("RegInfo") ||
P.second->isSubClassOf("SubRegRange")) {
RegInfoModes |= (1 << (P.first - 1));
} else if (P.second->isSubClassOf("InstructionEncoding")) {
EncodingInfoModes |= (1 << (P.first - 1));
}
}
}
// Start emitting for getHwModeSet().
OS << "unsigned " << ClassName << "::getHwModeSet() const {\n";
OS << " // Collect HwModes and store them as a bit set.\n";
OS << " unsigned Modes = 0;\n";
for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
const HwMode &HM = CGH.getMode(M);
OS << " if (checkFeatures(\"" << HM.Features << "\")) Modes |= (1 << "
<< (M - 1) << ");\n";
}
OS << " return Modes;\n}\n";
// End emitting for getHwModeSet().
auto HandlePerMode = [&](std::string ModeType, unsigned ModeInBitSet) {
OS << " case HwMode_" << ModeType << ":\n"
<< " Modes &= " << ModeInBitSet << ";\n"
<< " if (!Modes)\n return Modes;\n"
<< " if (!llvm::has_single_bit<unsigned>(Modes))\n"
<< " llvm_unreachable(\"Two or more HwModes for " << ModeType
<< " were found!\");\n"
<< " return llvm::countr_zero(Modes) + 1;\n";
};
// Start emitting for getHwMode().
OS << "unsigned " << ClassName
<< "::getHwMode(enum HwModeType type) const {\n";
OS << " unsigned Modes = getHwModeSet();\n\n";
OS << " if (!Modes)\n return Modes;\n\n";
OS << " switch (type) {\n";
OS << " case HwMode_Default:\n return llvm::countr_zero(Modes) + 1;\n";
HandlePerMode("ValueType", ValueTypeModes);
HandlePerMode("RegInfo", RegInfoModes);
HandlePerMode("EncodingInfo", EncodingInfoModes);
OS << " }\n";
OS << " llvm_unreachable(\"unexpected HwModeType\");\n"
<< " return 0; // should not get here\n}\n";
// End emitting for getHwMode().
}
void SubtargetEmitter::emitGetMacroFusions(const std::string &ClassName,
raw_ostream &OS) {
if (!TGT.hasMacroFusion())
return;
OS << "std::vector<MacroFusionPredTy> " << ClassName
<< "::getMacroFusions() const {\n";
OS.indent(2) << "std::vector<MacroFusionPredTy> Fusions;\n";
for (auto *Fusion : TGT.getMacroFusions()) {
std::string Name = Fusion->getNameInitAsString();
OS.indent(2) << "if (hasFeature(" << Target << "::" << Name
<< ")) Fusions.push_back(llvm::is" << Name << ");\n";
}
OS.indent(2) << "return Fusions;\n";
OS << "}\n";
}
// Produces a subtarget specific function for parsing
// the subtarget features string.
void SubtargetEmitter::parseFeaturesFunction(raw_ostream &OS) {
ArrayRef<const Record *> Features =
Records.getAllDerivedDefinitions("SubtargetFeature");
OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
<< "// subtarget options.\n"
<< "void llvm::";
OS << Target;
OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, "
<< "StringRef FS) {\n"
<< " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
<< " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n"
<< " LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n";
if (Features.empty()) {
OS << "}\n";
return;
}
if (Target == "AArch64")
OS << " CPU = AArch64::resolveCPUAlias(CPU);\n"
<< " TuneCPU = AArch64::resolveCPUAlias(TuneCPU);\n";
OS << " InitMCProcessorInfo(CPU, TuneCPU, FS);\n"
<< " const FeatureBitset &Bits = getFeatureBits();\n";
for (const Record *R : Features) {
// Next record
StringRef Instance = R->getName();
StringRef Value = R->getValueAsString("Value");
StringRef FieldName = R->getValueAsString("FieldName");
if (Value == "true" || Value == "false")
OS << " if (Bits[" << Target << "::" << Instance << "]) " << FieldName
<< " = " << Value << ";\n";
else
OS << " if (Bits[" << Target << "::" << Instance << "] && " << FieldName
<< " < " << Value << ") " << FieldName << " = " << Value << ";\n";
}
OS << "}\n";
}
void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
OS << "namespace " << Target << "_MC {\n"
<< "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
<< " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n";
emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
OS << "}\n";
OS << "} // end namespace " << Target << "_MC\n\n";
OS << "struct " << Target
<< "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
OS << " " << Target << "GenMCSubtargetInfo(const Triple &TT,\n"
<< " StringRef CPU, StringRef TuneCPU, StringRef FS,\n"
<< " ArrayRef<StringRef> PN,\n"
<< " ArrayRef<SubtargetFeatureKV> PF,\n"
<< " ArrayRef<SubtargetSubTypeKV> PD,\n"
<< " const MCWriteProcResEntry *WPR,\n"
<< " const MCWriteLatencyEntry *WL,\n"
<< " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
<< " const unsigned *OC, const unsigned *FP) :\n"
<< " MCSubtargetInfo(TT, CPU, TuneCPU, FS, PN, PF, PD,\n"
<< " WPR, WL, RA, IS, OC, FP) { }\n\n"
<< " unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
<< " const MCInst *MI, const MCInstrInfo *MCII,\n"
<< " unsigned CPUID) const override {\n"
<< " return " << Target << "_MC"
<< "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n";
OS << " }\n";
if (TGT.getHwModes().getNumModeIds() > 1) {
OS << " unsigned getHwModeSet() const override;\n";
OS << " unsigned getHwMode(enum HwModeType type = HwMode_Default) const "
"override;\n";
}
if (Target == "AArch64")
OS << " bool isCPUStringValid(StringRef CPU) const override {\n"
<< " CPU = AArch64::resolveCPUAlias(CPU);\n"
<< " return MCSubtargetInfo::isCPUStringValid(CPU);\n"
<< " }\n";
OS << "};\n";
emitHwModeCheck(Target + "GenMCSubtargetInfo", OS);
}
void SubtargetEmitter::emitMcInstrAnalysisPredicateFunctions(raw_ostream &OS) {
OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
STIPredicateExpander PE(Target, /*Indent=*/0);
PE.setExpandForMC(true);
PE.setByRef(true);
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
PE.expandSTIPredicate(OS, Fn);
OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
std::string ClassPrefix = Target + "MCInstrAnalysis";
PE.setExpandDefinition(true);
PE.setClassPrefix(ClassPrefix);
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
PE.expandSTIPredicate(OS, Fn);
OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
}
//
// SubtargetEmitter::run - Main subtarget enumeration emitter.
//
void SubtargetEmitter::run(raw_ostream &OS) {
emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
OS << "namespace llvm {\n";
auto FeatureMap = enumeration(OS);
OS << "} // end namespace llvm\n\n";
OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
emitSubtargetInfoMacroCalls(OS);
OS << "namespace llvm {\n";
unsigned NumFeatures = featureKeyValues(OS, FeatureMap);
OS << "\n";
emitSchedModel(OS);
OS << "\n";
unsigned NumProcs = cpuKeyValues(OS, FeatureMap);
OS << "\n";
unsigned NumNames = cpuNames(OS);
OS << "\n";
// MCInstrInfo initialization routine.
emitGenMCSubtargetInfo(OS);
OS << "\nstatic inline MCSubtargetInfo *create" << Target
<< "MCSubtargetInfoImpl("
<< "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n";
if (Target == "AArch64")
OS << " CPU = AArch64::resolveCPUAlias(CPU);\n"
<< " TuneCPU = AArch64::resolveCPUAlias(TuneCPU);\n";
OS << " return new " << Target
<< "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, ";
if (NumNames)
OS << Target << "Names, ";
else
OS << "{}, ";
if (NumFeatures)
OS << Target << "FeatureKV, ";
else
OS << "{}, ";
if (NumProcs)
OS << Target << "SubTypeKV, ";
else
OS << "{}, ";
OS << '\n';
OS.indent(22);
OS << Target << "WriteProcResTable, " << Target << "WriteLatencyTable, "
<< Target << "ReadAdvanceTable, ";
OS << '\n';
OS.indent(22);
if (SchedModels.hasItineraries()) {
OS << Target << "Stages, " << Target << "OperandCycles, " << Target
<< "ForwardingPaths";
} else
OS << "nullptr, nullptr, nullptr";
OS << ");\n}\n\n";
OS << "} // end namespace llvm\n\n";
OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
OS << "#include \"llvm/ADT/BitmaskEnum.h\"\n";
OS << "#include \"llvm/Support/Debug.h\"\n";
OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
if (Target == "AArch64")
OS << "#include \"llvm/TargetParser/AArch64TargetParser.h\"\n\n";
parseFeaturesFunction(OS);
OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
// Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
std::string ClassName = Target + "GenSubtargetInfo";
OS << "namespace llvm {\n";
OS << "class DFAPacketizer;\n";
OS << "namespace " << Target << "_MC {\n"
<< "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
<< " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n"
<< "} // end namespace " << Target << "_MC\n\n";
OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
<< " explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
<< "StringRef TuneCPU, StringRef FS);\n"
<< "public:\n"
<< " unsigned resolveSchedClass(unsigned SchedClass, "
<< " const MachineInstr *DefMI,"
<< " const TargetSchedModel *SchedModel) const override;\n"
<< " unsigned resolveVariantSchedClass(unsigned SchedClass,"
<< " const MCInst *MI, const MCInstrInfo *MCII,"
<< " unsigned CPUID) const override;\n"
<< " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
<< " const;\n";
const CodeGenHwModes &CGH = TGT.getHwModes();
if (CGH.getNumModeIds() > 1) {
OS << " enum class " << Target << "HwModeBits : unsigned {\n";
for (unsigned M = 0, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
StringRef ModeName = CGH.getModeName(M, /*IncludeDefault=*/true);
OS << " " << ModeName << " = ";
if (M == 0)
OS << "0";
else
OS << "(1 << " << (M - 1) << ")";
OS << ",\n";
if (M == NumModes - 1) {
OS << "\n";
OS << " LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/" << ModeName
<< "),\n";
}
}
OS << " };\n";
OS << " unsigned getHwModeSet() const override;\n";
OS << " unsigned getHwMode(enum HwModeType type = HwMode_Default) const "
"override;\n";
}
if (TGT.hasMacroFusion())
OS << " std::vector<MacroFusionPredTy> getMacroFusions() const "
"override;\n";
STIPredicateExpander PE(Target);
PE.setByRef(false);
for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
PE.expandSTIPredicate(OS, Fn);
OS << "};\n"
<< "} // end namespace llvm\n\n";
OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
OS << "namespace llvm {\n";
OS << "extern const llvm::StringRef " << Target << "Names[];\n";
OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n";
OS << "extern const llvm::MCWriteProcResEntry " << Target
<< "WriteProcResTable[];\n";
OS << "extern const llvm::MCWriteLatencyEntry " << Target
<< "WriteLatencyTable[];\n";
OS << "extern const llvm::MCReadAdvanceEntry " << Target
<< "ReadAdvanceTable[];\n";
if (SchedModels.hasItineraries()) {
OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
OS << "extern const unsigned " << Target << "OperandCycles[];\n";
OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
}
OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
<< "StringRef TuneCPU, StringRef FS)\n";
if (Target == "AArch64")
OS << " : TargetSubtargetInfo(TT, AArch64::resolveCPUAlias(CPU),\n"
<< " AArch64::resolveCPUAlias(TuneCPU), FS, ";
else
OS << " : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, ";
if (NumNames)
OS << "ArrayRef(" << Target << "Names, " << NumNames << "), ";
else
OS << "{}, ";
if (NumFeatures)
OS << "ArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
else
OS << "{}, ";
if (NumProcs)
OS << "ArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
else
OS << "{}, ";
OS << '\n';
OS.indent(24);
OS << Target << "WriteProcResTable, " << Target << "WriteLatencyTable, "
<< Target << "ReadAdvanceTable, ";
OS << '\n';
OS.indent(24);
if (SchedModels.hasItineraries()) {
OS << Target << "Stages, " << Target << "OperandCycles, " << Target
<< "ForwardingPaths";
} else
OS << "nullptr, nullptr, nullptr";
OS << ") {}\n\n";
emitSchedModelHelpers(ClassName, OS);
emitHwModeCheck(ClassName, OS);
emitGetMacroFusions(ClassName, OS);
OS << "} // end namespace llvm\n\n";
OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
emitMcInstrAnalysisPredicateFunctions(OS);
}
static TableGen::Emitter::OptClass<SubtargetEmitter>
X("gen-subtarget", "Generate subtarget enumerations");