llvm-project/lldb/source/Expression/FunctionCaller.cpp
Sean Callanan 579e70c9b0 Add a DiagnosticManager replace error streams in the expression parser.
We want to do a better job presenting errors that occur when evaluating
expressions. Key to this effort is getting away from a model where all
errors are spat out onto a stream where the client has to take or leave
all of them.

To this end, this patch adds a new class, DiagnosticManager, which
contains errors produced by the compiler or by LLDB as an expression
is created. The DiagnosticManager can dump itself to a log as well as
to a string. Clients will (in the future) be able to filter out the
errors they're interested in by ID or present subsets of these errors
to the user.

This patch is not intended to change the *users* of errors - only to
thread DiagnosticManagers to all the places where streams are used. I
also attempt to standardize our use of errors a bit, removing trailing
newlines and making clients omit 'error:', 'warning:' etc. and instead
pass the Severity flag.

The patch is testsuite-neutral, with modifications to one part of the
MI tests because it relied on "error: error:" being erroneously
printed. This patch fixes the MI variable handling and the testcase.

<rdar://problem/22864976>

llvm-svn: 263859
2016-03-19 00:03:59 +00:00

402 lines
14 KiB
C++

//===-- FunctionCaller.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Expression/FunctionCaller.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/State.h"
#include "lldb/Core/ValueObject.h"
#include "lldb/Core/ValueObjectList.h"
#include "lldb/Expression/DiagnosticManager.h"
#include "lldb/Expression/IRExecutionUnit.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlan.h"
#include "lldb/Target/ThreadPlanCallFunction.h"
using namespace lldb_private;
//----------------------------------------------------------------------
// FunctionCaller constructor
//----------------------------------------------------------------------
FunctionCaller::FunctionCaller
(
ExecutionContextScope &exe_scope,
const CompilerType &return_type,
const Address& functionAddress,
const ValueList &arg_value_list,
const char *name
) :
Expression (exe_scope),
m_execution_unit_sp(),
m_parser(),
m_jit_module_wp(),
m_name (name ? name : "<unknown>"),
m_function_ptr (NULL),
m_function_addr (functionAddress),
m_function_return_type(return_type),
m_wrapper_function_name ("__lldb_caller_function"),
m_wrapper_struct_name ("__lldb_caller_struct"),
m_wrapper_args_addrs (),
m_arg_values (arg_value_list),
m_compiled (false),
m_JITted (false)
{
m_jit_process_wp = lldb::ProcessWP(exe_scope.CalculateProcess());
// Can't make a FunctionCaller without a process.
assert (m_jit_process_wp.lock());
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
FunctionCaller::~FunctionCaller()
{
lldb::ProcessSP process_sp (m_jit_process_wp.lock());
if (process_sp)
{
lldb::ModuleSP jit_module_sp (m_jit_module_wp.lock());
if (jit_module_sp)
process_sp->GetTarget().GetImages().Remove(jit_module_sp);
}
}
bool
FunctionCaller::WriteFunctionWrapper(ExecutionContext &exe_ctx, DiagnosticManager &diagnostic_manager)
{
Process *process = exe_ctx.GetProcessPtr();
if (!process)
return false;
lldb::ProcessSP jit_process_sp(m_jit_process_wp.lock());
if (process != jit_process_sp.get())
return false;
if (!m_compiled)
return false;
if (m_JITted)
return true;
bool can_interpret = false; // should stay that way
Error jit_error (m_parser->PrepareForExecution (m_jit_start_addr,
m_jit_end_addr,
m_execution_unit_sp,
exe_ctx,
can_interpret,
eExecutionPolicyAlways));
if (!jit_error.Success())
return false;
if (m_parser->GetGenerateDebugInfo())
{
lldb::ModuleSP jit_module_sp ( m_execution_unit_sp->GetJITModule());
if (jit_module_sp)
{
ConstString const_func_name(FunctionName());
FileSpec jit_file;
jit_file.GetFilename() = const_func_name;
jit_module_sp->SetFileSpecAndObjectName (jit_file, ConstString());
m_jit_module_wp = jit_module_sp;
process->GetTarget().GetImages().Append(jit_module_sp);
}
}
if (process && m_jit_start_addr)
m_jit_process_wp = process->shared_from_this();
m_JITted = true;
return true;
}
bool
FunctionCaller::WriteFunctionArguments(ExecutionContext &exe_ctx, lldb::addr_t &args_addr_ref,
DiagnosticManager &diagnostic_manager)
{
return WriteFunctionArguments(exe_ctx, args_addr_ref, m_arg_values, diagnostic_manager);
}
// FIXME: Assure that the ValueList we were passed in is consistent with the one that defined this function.
bool
FunctionCaller::WriteFunctionArguments(ExecutionContext &exe_ctx, lldb::addr_t &args_addr_ref, ValueList &arg_values,
DiagnosticManager &diagnostic_manager)
{
// All the information to reconstruct the struct is provided by the
// StructExtractor.
if (!m_struct_valid)
{
diagnostic_manager.PutCString(
eDiagnosticSeverityError,
"Argument information was not correctly parsed, so the function cannot be called.");
return false;
}
Error error;
lldb::ExpressionResults return_value = lldb::eExpressionSetupError;
Process *process = exe_ctx.GetProcessPtr();
if (process == NULL)
return return_value;
lldb::ProcessSP jit_process_sp(m_jit_process_wp.lock());
if (process != jit_process_sp.get())
return false;
if (args_addr_ref == LLDB_INVALID_ADDRESS)
{
args_addr_ref = process->AllocateMemory(m_struct_size, lldb::ePermissionsReadable|lldb::ePermissionsWritable, error);
if (args_addr_ref == LLDB_INVALID_ADDRESS)
return false;
m_wrapper_args_addrs.push_back (args_addr_ref);
}
else
{
// Make sure this is an address that we've already handed out.
if (find (m_wrapper_args_addrs.begin(), m_wrapper_args_addrs.end(), args_addr_ref) == m_wrapper_args_addrs.end())
{
return false;
}
}
// TODO: verify fun_addr needs to be a callable address
Scalar fun_addr (m_function_addr.GetCallableLoadAddress(exe_ctx.GetTargetPtr()));
uint64_t first_offset = m_member_offsets[0];
process->WriteScalarToMemory(args_addr_ref + first_offset, fun_addr, process->GetAddressByteSize(), error);
// FIXME: We will need to extend this for Variadic functions.
Error value_error;
size_t num_args = arg_values.GetSize();
if (num_args != m_arg_values.GetSize())
{
diagnostic_manager.Printf(eDiagnosticSeverityError,
"Wrong number of arguments - was: %" PRIu64 " should be: %" PRIu64 "",
(uint64_t)num_args, (uint64_t)m_arg_values.GetSize());
return false;
}
for (size_t i = 0; i < num_args; i++)
{
// FIXME: We should sanity check sizes.
uint64_t offset = m_member_offsets[i+1]; // Clang sizes are in bytes.
Value *arg_value = arg_values.GetValueAtIndex(i);
// FIXME: For now just do scalars:
// Special case: if it's a pointer, don't do anything (the ABI supports passing cstrings)
if (arg_value->GetValueType() == Value::eValueTypeHostAddress &&
arg_value->GetContextType() == Value::eContextTypeInvalid &&
arg_value->GetCompilerType().IsPointerType())
continue;
const Scalar &arg_scalar = arg_value->ResolveValue(&exe_ctx);
if (!process->WriteScalarToMemory(args_addr_ref + offset, arg_scalar, arg_scalar.GetByteSize(), error))
return false;
}
return true;
}
bool
FunctionCaller::InsertFunction(ExecutionContext &exe_ctx, lldb::addr_t &args_addr_ref,
DiagnosticManager &diagnostic_manager)
{
if (CompileFunction(diagnostic_manager) != 0)
return false;
if (!WriteFunctionWrapper(exe_ctx, diagnostic_manager))
return false;
if (!WriteFunctionArguments(exe_ctx, args_addr_ref, diagnostic_manager))
return false;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP));
if (log)
log->Printf ("Call Address: 0x%" PRIx64 " Struct Address: 0x%" PRIx64 ".\n", m_jit_start_addr, args_addr_ref);
return true;
}
lldb::ThreadPlanSP
FunctionCaller::GetThreadPlanToCallFunction(ExecutionContext &exe_ctx, lldb::addr_t args_addr,
const EvaluateExpressionOptions &options,
DiagnosticManager &diagnostic_manager)
{
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EXPRESSIONS | LIBLLDB_LOG_STEP));
if (log)
log->Printf("-- [FunctionCaller::GetThreadPlanToCallFunction] Creating thread plan to call function \"%s\" --", m_name.c_str());
// FIXME: Use the errors Stream for better error reporting.
Thread *thread = exe_ctx.GetThreadPtr();
if (thread == NULL)
{
diagnostic_manager.PutCString(eDiagnosticSeverityError, "Can't call a function without a valid thread.");
return NULL;
}
// Okay, now run the function:
Address wrapper_address (m_jit_start_addr);
lldb::addr_t args = { args_addr };
lldb::ThreadPlanSP new_plan_sp (new ThreadPlanCallFunction (*thread,
wrapper_address,
CompilerType(),
args,
options));
new_plan_sp->SetIsMasterPlan(true);
new_plan_sp->SetOkayToDiscard (false);
return new_plan_sp;
}
bool
FunctionCaller::FetchFunctionResults (ExecutionContext &exe_ctx, lldb::addr_t args_addr, Value &ret_value)
{
// Read the return value - it is the last field in the struct:
// FIXME: How does clang tell us there's no return value? We need to handle that case.
// FIXME: Create our ThreadPlanCallFunction with the return CompilerType, and then use GetReturnValueObject
// to fetch the value. That way we can fetch any values we need.
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_EXPRESSIONS | LIBLLDB_LOG_STEP));
if (log)
log->Printf("-- [FunctionCaller::FetchFunctionResults] Fetching function results for \"%s\"--", m_name.c_str());
Process *process = exe_ctx.GetProcessPtr();
if (process == NULL)
return false;
lldb::ProcessSP jit_process_sp(m_jit_process_wp.lock());
if (process != jit_process_sp.get())
return false;
Error error;
ret_value.GetScalar() = process->ReadUnsignedIntegerFromMemory (args_addr + m_return_offset, m_return_size, 0, error);
if (error.Fail())
return false;
ret_value.SetCompilerType(m_function_return_type);
ret_value.SetValueType(Value::eValueTypeScalar);
return true;
}
void
FunctionCaller::DeallocateFunctionResults (ExecutionContext &exe_ctx, lldb::addr_t args_addr)
{
std::list<lldb::addr_t>::iterator pos;
pos = std::find(m_wrapper_args_addrs.begin(), m_wrapper_args_addrs.end(), args_addr);
if (pos != m_wrapper_args_addrs.end())
m_wrapper_args_addrs.erase(pos);
exe_ctx.GetProcessRef().DeallocateMemory(args_addr);
}
lldb::ExpressionResults
FunctionCaller::ExecuteFunction(ExecutionContext &exe_ctx, lldb::addr_t *args_addr_ptr,
const EvaluateExpressionOptions &options, DiagnosticManager &diagnostic_manager,
Value &results)
{
lldb::ExpressionResults return_value = lldb::eExpressionSetupError;
// FunctionCaller::ExecuteFunction execution is always just to get the result. Do make sure we ignore
// breakpoints, unwind on error, and don't try to debug it.
EvaluateExpressionOptions real_options = options;
real_options.SetDebug(false);
real_options.SetUnwindOnError(true);
real_options.SetIgnoreBreakpoints(true);
lldb::addr_t args_addr;
if (args_addr_ptr != NULL)
args_addr = *args_addr_ptr;
else
args_addr = LLDB_INVALID_ADDRESS;
if (CompileFunction(diagnostic_manager) != 0)
return lldb::eExpressionSetupError;
if (args_addr == LLDB_INVALID_ADDRESS)
{
if (!InsertFunction(exe_ctx, args_addr, diagnostic_manager))
return lldb::eExpressionSetupError;
}
Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_EXPRESSIONS | LIBLLDB_LOG_STEP));
if (log)
log->Printf("== [FunctionCaller::ExecuteFunction] Executing function \"%s\" ==", m_name.c_str());
lldb::ThreadPlanSP call_plan_sp = GetThreadPlanToCallFunction(exe_ctx, args_addr, real_options, diagnostic_manager);
if (!call_plan_sp)
return lldb::eExpressionSetupError;
// We need to make sure we record the fact that we are running an expression here
// otherwise this fact will fail to be recorded when fetching an Objective-C object description
if (exe_ctx.GetProcessPtr())
exe_ctx.GetProcessPtr()->SetRunningUserExpression(true);
return_value = exe_ctx.GetProcessRef().RunThreadPlan(exe_ctx, call_plan_sp, real_options, diagnostic_manager);
if (log)
{
if (return_value != lldb::eExpressionCompleted)
{
log->Printf("== [FunctionCaller::ExecuteFunction] Execution of \"%s\" completed abnormally ==", m_name.c_str());
}
else
{
log->Printf("== [FunctionCaller::ExecuteFunction] Execution of \"%s\" completed normally ==", m_name.c_str());
}
}
if (exe_ctx.GetProcessPtr())
exe_ctx.GetProcessPtr()->SetRunningUserExpression(false);
if (args_addr_ptr != NULL)
*args_addr_ptr = args_addr;
if (return_value != lldb::eExpressionCompleted)
return return_value;
FetchFunctionResults(exe_ctx, args_addr, results);
if (args_addr_ptr == NULL)
DeallocateFunctionResults(exe_ctx, args_addr);
return lldb::eExpressionCompleted;
}