llvm-project/clang/lib/Lex/ModuleMap.cpp
Ben Langmuir 5984ea216d [clang] Prevent creation of new submodules in ASTWriter
Avoid inferring new submodules for headers in ASTWriter's collection of
affecting modulemap files, since we don't want to pick up dependencies
that didn't actually exist during parsing.

rdar://109112624

Differential Revision: https://reviews.llvm.org/D150151
2023-05-09 13:02:36 -07:00

3130 lines
102 KiB
C++

//===- ModuleMap.cpp - Describe the layout of modules ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the ModuleMap implementation, which describes the layout
// of a module as it relates to headers.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/ModuleMap.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Token.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <optional>
#include <string>
#include <system_error>
#include <utility>
using namespace clang;
void ModuleMapCallbacks::anchor() {}
void ModuleMap::resolveLinkAsDependencies(Module *Mod) {
auto PendingLinkAs = PendingLinkAsModule.find(Mod->Name);
if (PendingLinkAs != PendingLinkAsModule.end()) {
for (auto &Name : PendingLinkAs->second) {
auto *M = findModule(Name.getKey());
if (M)
M->UseExportAsModuleLinkName = true;
}
}
}
void ModuleMap::addLinkAsDependency(Module *Mod) {
if (findModule(Mod->ExportAsModule))
Mod->UseExportAsModuleLinkName = true;
else
PendingLinkAsModule[Mod->ExportAsModule].insert(Mod->Name);
}
Module::HeaderKind ModuleMap::headerRoleToKind(ModuleHeaderRole Role) {
switch ((int)Role) {
case NormalHeader:
return Module::HK_Normal;
case PrivateHeader:
return Module::HK_Private;
case TextualHeader:
return Module::HK_Textual;
case PrivateHeader | TextualHeader:
return Module::HK_PrivateTextual;
case ExcludedHeader:
return Module::HK_Excluded;
}
llvm_unreachable("unknown header role");
}
ModuleMap::ModuleHeaderRole
ModuleMap::headerKindToRole(Module::HeaderKind Kind) {
switch ((int)Kind) {
case Module::HK_Normal:
return NormalHeader;
case Module::HK_Private:
return PrivateHeader;
case Module::HK_Textual:
return TextualHeader;
case Module::HK_PrivateTextual:
return ModuleHeaderRole(PrivateHeader | TextualHeader);
case Module::HK_Excluded:
return ExcludedHeader;
}
llvm_unreachable("unknown header kind");
}
bool ModuleMap::isModular(ModuleHeaderRole Role) {
return !(Role & (ModuleMap::TextualHeader | ModuleMap::ExcludedHeader));
}
Module::ExportDecl
ModuleMap::resolveExport(Module *Mod,
const Module::UnresolvedExportDecl &Unresolved,
bool Complain) const {
// We may have just a wildcard.
if (Unresolved.Id.empty()) {
assert(Unresolved.Wildcard && "Invalid unresolved export");
return Module::ExportDecl(nullptr, true);
}
// Resolve the module-id.
Module *Context = resolveModuleId(Unresolved.Id, Mod, Complain);
if (!Context)
return {};
return Module::ExportDecl(Context, Unresolved.Wildcard);
}
Module *ModuleMap::resolveModuleId(const ModuleId &Id, Module *Mod,
bool Complain) const {
// Find the starting module.
Module *Context = lookupModuleUnqualified(Id[0].first, Mod);
if (!Context) {
if (Complain)
Diags.Report(Id[0].second, diag::err_mmap_missing_module_unqualified)
<< Id[0].first << Mod->getFullModuleName();
return nullptr;
}
// Dig into the module path.
for (unsigned I = 1, N = Id.size(); I != N; ++I) {
Module *Sub = lookupModuleQualified(Id[I].first, Context);
if (!Sub) {
if (Complain)
Diags.Report(Id[I].second, diag::err_mmap_missing_module_qualified)
<< Id[I].first << Context->getFullModuleName()
<< SourceRange(Id[0].second, Id[I-1].second);
return nullptr;
}
Context = Sub;
}
return Context;
}
/// Append to \p Paths the set of paths needed to get to the
/// subframework in which the given module lives.
static void appendSubframeworkPaths(Module *Mod,
SmallVectorImpl<char> &Path) {
// Collect the framework names from the given module to the top-level module.
SmallVector<StringRef, 2> Paths;
for (; Mod; Mod = Mod->Parent) {
if (Mod->IsFramework)
Paths.push_back(Mod->Name);
}
if (Paths.empty())
return;
// Add Frameworks/Name.framework for each subframework.
for (StringRef Framework : llvm::drop_begin(llvm::reverse(Paths)))
llvm::sys::path::append(Path, "Frameworks", Framework + ".framework");
}
OptionalFileEntryRef ModuleMap::findHeader(
Module *M, const Module::UnresolvedHeaderDirective &Header,
SmallVectorImpl<char> &RelativePathName, bool &NeedsFramework) {
// Search for the header file within the module's home directory.
auto *Directory = M->Directory;
SmallString<128> FullPathName(Directory->getName());
auto GetFile = [&](StringRef Filename) -> OptionalFileEntryRef {
auto File =
expectedToOptional(SourceMgr.getFileManager().getFileRef(Filename));
if (!File || (Header.Size && File->getSize() != *Header.Size) ||
(Header.ModTime && File->getModificationTime() != *Header.ModTime))
return std::nullopt;
return *File;
};
auto GetFrameworkFile = [&]() -> OptionalFileEntryRef {
unsigned FullPathLength = FullPathName.size();
appendSubframeworkPaths(M, RelativePathName);
unsigned RelativePathLength = RelativePathName.size();
// Check whether this file is in the public headers.
llvm::sys::path::append(RelativePathName, "Headers", Header.FileName);
llvm::sys::path::append(FullPathName, RelativePathName);
if (auto File = GetFile(FullPathName))
return File;
// Check whether this file is in the private headers.
// Ideally, private modules in the form 'FrameworkName.Private' should
// be defined as 'module FrameworkName.Private', and not as
// 'framework module FrameworkName.Private', since a 'Private.Framework'
// does not usually exist. However, since both are currently widely used
// for private modules, make sure we find the right path in both cases.
if (M->IsFramework && M->Name == "Private")
RelativePathName.clear();
else
RelativePathName.resize(RelativePathLength);
FullPathName.resize(FullPathLength);
llvm::sys::path::append(RelativePathName, "PrivateHeaders",
Header.FileName);
llvm::sys::path::append(FullPathName, RelativePathName);
return GetFile(FullPathName);
};
if (llvm::sys::path::is_absolute(Header.FileName)) {
RelativePathName.clear();
RelativePathName.append(Header.FileName.begin(), Header.FileName.end());
return GetFile(Header.FileName);
}
if (M->isPartOfFramework())
return GetFrameworkFile();
// Lookup for normal headers.
llvm::sys::path::append(RelativePathName, Header.FileName);
llvm::sys::path::append(FullPathName, RelativePathName);
auto NormalHdrFile = GetFile(FullPathName);
if (!NormalHdrFile && Directory->getName().endswith(".framework")) {
// The lack of 'framework' keyword in a module declaration it's a simple
// mistake we can diagnose when the header exists within the proper
// framework style path.
FullPathName.assign(Directory->getName());
RelativePathName.clear();
if (GetFrameworkFile()) {
Diags.Report(Header.FileNameLoc,
diag::warn_mmap_incomplete_framework_module_declaration)
<< Header.FileName << M->getFullModuleName();
NeedsFramework = true;
}
return std::nullopt;
}
return NormalHdrFile;
}
void ModuleMap::resolveHeader(Module *Mod,
const Module::UnresolvedHeaderDirective &Header,
bool &NeedsFramework) {
SmallString<128> RelativePathName;
if (OptionalFileEntryRef File =
findHeader(Mod, Header, RelativePathName, NeedsFramework)) {
if (Header.IsUmbrella) {
const DirectoryEntry *UmbrellaDir = &File->getDir().getDirEntry();
if (Module *UmbrellaMod = UmbrellaDirs[UmbrellaDir])
Diags.Report(Header.FileNameLoc, diag::err_mmap_umbrella_clash)
<< UmbrellaMod->getFullModuleName();
else
// Record this umbrella header.
setUmbrellaHeader(Mod, *File, Header.FileName, RelativePathName.str());
} else {
Module::Header H = {Header.FileName, std::string(RelativePathName.str()),
*File};
addHeader(Mod, H, headerKindToRole(Header.Kind));
}
} else if (Header.HasBuiltinHeader && !Header.Size && !Header.ModTime) {
// There's a builtin header but no corresponding on-disk header. Assume
// this was supposed to modularize the builtin header alone.
} else if (Header.Kind == Module::HK_Excluded) {
// Ignore missing excluded header files. They're optional anyway.
} else {
// If we find a module that has a missing header, we mark this module as
// unavailable and store the header directive for displaying diagnostics.
Mod->MissingHeaders.push_back(Header);
// A missing header with stat information doesn't make the module
// unavailable; this keeps our behavior consistent as headers are lazily
// resolved. (Such a module still can't be built though, except from
// preprocessed source.)
if (!Header.Size && !Header.ModTime)
Mod->markUnavailable(/*Unimportable=*/false);
}
}
bool ModuleMap::resolveAsBuiltinHeader(
Module *Mod, const Module::UnresolvedHeaderDirective &Header) {
if (Header.Kind == Module::HK_Excluded ||
llvm::sys::path::is_absolute(Header.FileName) ||
Mod->isPartOfFramework() || !Mod->IsSystem || Header.IsUmbrella ||
!BuiltinIncludeDir || BuiltinIncludeDir == Mod->Directory ||
!isBuiltinHeader(Header.FileName))
return false;
// This is a system module with a top-level header. This header
// may have a counterpart (or replacement) in the set of headers
// supplied by Clang. Find that builtin header.
SmallString<128> Path;
llvm::sys::path::append(Path, BuiltinIncludeDir->getName(), Header.FileName);
auto File = SourceMgr.getFileManager().getOptionalFileRef(Path);
if (!File)
return false;
auto Role = headerKindToRole(Header.Kind);
Module::Header H = {Header.FileName, std::string(Path.str()), *File};
addHeader(Mod, H, Role);
return true;
}
ModuleMap::ModuleMap(SourceManager &SourceMgr, DiagnosticsEngine &Diags,
const LangOptions &LangOpts, const TargetInfo *Target,
HeaderSearch &HeaderInfo)
: SourceMgr(SourceMgr), Diags(Diags), LangOpts(LangOpts), Target(Target),
HeaderInfo(HeaderInfo) {
MMapLangOpts.LineComment = true;
}
ModuleMap::~ModuleMap() {
for (auto &M : Modules)
delete M.getValue();
for (auto *M : ShadowModules)
delete M;
}
void ModuleMap::setTarget(const TargetInfo &Target) {
assert((!this->Target || this->Target == &Target) &&
"Improper target override");
this->Target = &Target;
}
/// "Sanitize" a filename so that it can be used as an identifier.
static StringRef sanitizeFilenameAsIdentifier(StringRef Name,
SmallVectorImpl<char> &Buffer) {
if (Name.empty())
return Name;
if (!isValidAsciiIdentifier(Name)) {
// If we don't already have something with the form of an identifier,
// create a buffer with the sanitized name.
Buffer.clear();
if (isDigit(Name[0]))
Buffer.push_back('_');
Buffer.reserve(Buffer.size() + Name.size());
for (unsigned I = 0, N = Name.size(); I != N; ++I) {
if (isAsciiIdentifierContinue(Name[I]))
Buffer.push_back(Name[I]);
else
Buffer.push_back('_');
}
Name = StringRef(Buffer.data(), Buffer.size());
}
while (llvm::StringSwitch<bool>(Name)
#define KEYWORD(Keyword,Conditions) .Case(#Keyword, true)
#define ALIAS(Keyword, AliasOf, Conditions) .Case(Keyword, true)
#include "clang/Basic/TokenKinds.def"
.Default(false)) {
if (Name.data() != Buffer.data())
Buffer.append(Name.begin(), Name.end());
Buffer.push_back('_');
Name = StringRef(Buffer.data(), Buffer.size());
}
return Name;
}
/// Determine whether the given file name is the name of a builtin
/// header, supplied by Clang to replace, override, or augment existing system
/// headers.
bool ModuleMap::isBuiltinHeader(StringRef FileName) {
return llvm::StringSwitch<bool>(FileName)
.Case("float.h", true)
.Case("iso646.h", true)
.Case("limits.h", true)
.Case("stdalign.h", true)
.Case("stdarg.h", true)
.Case("stdatomic.h", true)
.Case("stdbool.h", true)
.Case("stddef.h", true)
.Case("stdint.h", true)
.Case("tgmath.h", true)
.Case("unwind.h", true)
.Default(false);
}
bool ModuleMap::isBuiltinHeader(const FileEntry *File) {
return File->getDir() == BuiltinIncludeDir &&
ModuleMap::isBuiltinHeader(llvm::sys::path::filename(File->getName()));
}
ModuleMap::HeadersMap::iterator
ModuleMap::findKnownHeader(const FileEntry *File) {
resolveHeaderDirectives(File);
HeadersMap::iterator Known = Headers.find(File);
if (HeaderInfo.getHeaderSearchOpts().ImplicitModuleMaps &&
Known == Headers.end() && ModuleMap::isBuiltinHeader(File)) {
HeaderInfo.loadTopLevelSystemModules();
return Headers.find(File);
}
return Known;
}
ModuleMap::KnownHeader
ModuleMap::findHeaderInUmbrellaDirs(const FileEntry *File,
SmallVectorImpl<const DirectoryEntry *> &IntermediateDirs) {
if (UmbrellaDirs.empty())
return {};
const DirectoryEntry *Dir = File->getDir();
assert(Dir && "file in no directory");
// Note: as an egregious but useful hack we use the real path here, because
// frameworks moving from top-level frameworks to embedded frameworks tend
// to be symlinked from the top-level location to the embedded location,
// and we need to resolve lookups as if we had found the embedded location.
StringRef DirName = SourceMgr.getFileManager().getCanonicalName(Dir);
// Keep walking up the directory hierarchy, looking for a directory with
// an umbrella header.
do {
auto KnownDir = UmbrellaDirs.find(Dir);
if (KnownDir != UmbrellaDirs.end())
return KnownHeader(KnownDir->second, NormalHeader);
IntermediateDirs.push_back(Dir);
// Retrieve our parent path.
DirName = llvm::sys::path::parent_path(DirName);
if (DirName.empty())
break;
// Resolve the parent path to a directory entry.
if (auto DirEntry = SourceMgr.getFileManager().getDirectory(DirName))
Dir = *DirEntry;
else
Dir = nullptr;
} while (Dir);
return {};
}
static bool violatesPrivateInclude(Module *RequestingModule,
const FileEntry *IncFileEnt,
ModuleMap::KnownHeader Header) {
#ifndef NDEBUG
if (Header.getRole() & ModuleMap::PrivateHeader) {
// Check for consistency between the module header role
// as obtained from the lookup and as obtained from the module.
// This check is not cheap, so enable it only for debugging.
bool IsPrivate = false;
SmallVectorImpl<Module::Header> *HeaderList[] = {
&Header.getModule()->Headers[Module::HK_Private],
&Header.getModule()->Headers[Module::HK_PrivateTextual]};
for (auto *Hs : HeaderList)
IsPrivate |= llvm::any_of(
*Hs, [&](const Module::Header &H) { return H.Entry == IncFileEnt; });
assert(IsPrivate && "inconsistent headers and roles");
}
#endif
return !Header.isAccessibleFrom(RequestingModule);
}
static Module *getTopLevelOrNull(Module *M) {
return M ? M->getTopLevelModule() : nullptr;
}
void ModuleMap::diagnoseHeaderInclusion(Module *RequestingModule,
bool RequestingModuleIsModuleInterface,
SourceLocation FilenameLoc,
StringRef Filename, FileEntryRef File) {
// No errors for indirect modules. This may be a bit of a problem for modules
// with no source files.
if (getTopLevelOrNull(RequestingModule) != getTopLevelOrNull(SourceModule))
return;
if (RequestingModule) {
resolveUses(RequestingModule, /*Complain=*/false);
resolveHeaderDirectives(RequestingModule, /*File=*/std::nullopt);
}
bool Excluded = false;
Module *Private = nullptr;
Module *NotUsed = nullptr;
HeadersMap::iterator Known = findKnownHeader(File);
if (Known != Headers.end()) {
for (const KnownHeader &Header : Known->second) {
// Excluded headers don't really belong to a module.
if (Header.getRole() == ModuleMap::ExcludedHeader) {
Excluded = true;
continue;
}
// Remember private headers for later printing of a diagnostic.
if (violatesPrivateInclude(RequestingModule, File, Header)) {
Private = Header.getModule();
continue;
}
// If uses need to be specified explicitly, we are only allowed to return
// modules that are explicitly used by the requesting module.
if (RequestingModule && LangOpts.ModulesDeclUse &&
!RequestingModule->directlyUses(Header.getModule())) {
NotUsed = Header.getModule();
continue;
}
// We have found a module that we can happily use.
return;
}
Excluded = true;
}
// We have found a header, but it is private.
if (Private) {
Diags.Report(FilenameLoc, diag::warn_use_of_private_header_outside_module)
<< Filename;
return;
}
// We have found a module, but we don't use it.
if (NotUsed) {
Diags.Report(FilenameLoc, diag::err_undeclared_use_of_module_indirect)
<< RequestingModule->getTopLevelModule()->Name << Filename
<< NotUsed->Name;
return;
}
if (Excluded || isHeaderInUmbrellaDirs(File))
return;
// At this point, only non-modular includes remain.
if (RequestingModule && LangOpts.ModulesStrictDeclUse) {
Diags.Report(FilenameLoc, diag::err_undeclared_use_of_module)
<< RequestingModule->getTopLevelModule()->Name << Filename;
} else if (RequestingModule && RequestingModuleIsModuleInterface &&
LangOpts.isCompilingModule()) {
// Do not diagnose when we are not compiling a module.
diag::kind DiagID = RequestingModule->getTopLevelModule()->IsFramework ?
diag::warn_non_modular_include_in_framework_module :
diag::warn_non_modular_include_in_module;
Diags.Report(FilenameLoc, DiagID) << RequestingModule->getFullModuleName()
<< File.getName();
}
}
static bool isBetterKnownHeader(const ModuleMap::KnownHeader &New,
const ModuleMap::KnownHeader &Old) {
// Prefer available modules.
// FIXME: Considering whether the module is available rather than merely
// importable is non-hermetic and can result in surprising behavior for
// prebuilt modules. Consider only checking for importability here.
if (New.getModule()->isAvailable() && !Old.getModule()->isAvailable())
return true;
// Prefer a public header over a private header.
if ((New.getRole() & ModuleMap::PrivateHeader) !=
(Old.getRole() & ModuleMap::PrivateHeader))
return !(New.getRole() & ModuleMap::PrivateHeader);
// Prefer a non-textual header over a textual header.
if ((New.getRole() & ModuleMap::TextualHeader) !=
(Old.getRole() & ModuleMap::TextualHeader))
return !(New.getRole() & ModuleMap::TextualHeader);
// Prefer a non-excluded header over an excluded header.
if ((New.getRole() == ModuleMap::ExcludedHeader) !=
(Old.getRole() == ModuleMap::ExcludedHeader))
return New.getRole() != ModuleMap::ExcludedHeader;
// Don't have a reason to choose between these. Just keep the first one.
return false;
}
ModuleMap::KnownHeader ModuleMap::findModuleForHeader(const FileEntry *File,
bool AllowTextual,
bool AllowExcluded) {
auto MakeResult = [&](ModuleMap::KnownHeader R) -> ModuleMap::KnownHeader {
if (!AllowTextual && R.getRole() & ModuleMap::TextualHeader)
return {};
return R;
};
HeadersMap::iterator Known = findKnownHeader(File);
if (Known != Headers.end()) {
ModuleMap::KnownHeader Result;
// Iterate over all modules that 'File' is part of to find the best fit.
for (KnownHeader &H : Known->second) {
// Cannot use a module if the header is excluded in it.
if (!AllowExcluded && H.getRole() == ModuleMap::ExcludedHeader)
continue;
// Prefer a header from the source module over all others.
if (H.getModule()->getTopLevelModule() == SourceModule)
return MakeResult(H);
if (!Result || isBetterKnownHeader(H, Result))
Result = H;
}
return MakeResult(Result);
}
return MakeResult(findOrCreateModuleForHeaderInUmbrellaDir(File));
}
ModuleMap::KnownHeader
ModuleMap::findOrCreateModuleForHeaderInUmbrellaDir(const FileEntry *File) {
assert(!Headers.count(File) && "already have a module for this header");
SmallVector<const DirectoryEntry *, 2> SkippedDirs;
KnownHeader H = findHeaderInUmbrellaDirs(File, SkippedDirs);
if (H) {
Module *Result = H.getModule();
// Search up the module stack until we find a module with an umbrella
// directory.
Module *UmbrellaModule = Result;
while (!UmbrellaModule->getUmbrellaDir() && UmbrellaModule->Parent)
UmbrellaModule = UmbrellaModule->Parent;
if (UmbrellaModule->InferSubmodules) {
OptionalFileEntryRefDegradesToFileEntryPtr UmbrellaModuleMap =
getModuleMapFileForUniquing(UmbrellaModule);
// Infer submodules for each of the directories we found between
// the directory of the umbrella header and the directory where
// the actual header is located.
bool Explicit = UmbrellaModule->InferExplicitSubmodules;
for (const DirectoryEntry *SkippedDir : llvm::reverse(SkippedDirs)) {
// Find or create the module that corresponds to this directory name.
SmallString<32> NameBuf;
StringRef Name = sanitizeFilenameAsIdentifier(
llvm::sys::path::stem(SkippedDir->getName()), NameBuf);
Result = findOrCreateModule(Name, Result, /*IsFramework=*/false,
Explicit).first;
InferredModuleAllowedBy[Result] = UmbrellaModuleMap;
Result->IsInferred = true;
// Associate the module and the directory.
UmbrellaDirs[SkippedDir] = Result;
// If inferred submodules export everything they import, add a
// wildcard to the set of exports.
if (UmbrellaModule->InferExportWildcard && Result->Exports.empty())
Result->Exports.push_back(Module::ExportDecl(nullptr, true));
}
// Infer a submodule with the same name as this header file.
SmallString<32> NameBuf;
StringRef Name = sanitizeFilenameAsIdentifier(
llvm::sys::path::stem(File->getName()), NameBuf);
Result = findOrCreateModule(Name, Result, /*IsFramework=*/false,
Explicit).first;
InferredModuleAllowedBy[Result] = UmbrellaModuleMap;
Result->IsInferred = true;
Result->addTopHeader(File);
// If inferred submodules export everything they import, add a
// wildcard to the set of exports.
if (UmbrellaModule->InferExportWildcard && Result->Exports.empty())
Result->Exports.push_back(Module::ExportDecl(nullptr, true));
} else {
// Record each of the directories we stepped through as being part of
// the module we found, since the umbrella header covers them all.
for (unsigned I = 0, N = SkippedDirs.size(); I != N; ++I)
UmbrellaDirs[SkippedDirs[I]] = Result;
}
KnownHeader Header(Result, NormalHeader);
Headers[File].push_back(Header);
return Header;
}
return {};
}
ArrayRef<ModuleMap::KnownHeader>
ModuleMap::findAllModulesForHeader(const FileEntry *File, bool AllowCreation) {
HeadersMap::iterator Known = findKnownHeader(File);
if (Known != Headers.end())
return Known->second;
if (AllowCreation && findOrCreateModuleForHeaderInUmbrellaDir(File))
return Headers.find(File)->second;
return std::nullopt;
}
ArrayRef<ModuleMap::KnownHeader>
ModuleMap::findResolvedModulesForHeader(const FileEntry *File) const {
// FIXME: Is this necessary?
resolveHeaderDirectives(File);
auto It = Headers.find(File);
if (It == Headers.end())
return std::nullopt;
return It->second;
}
bool ModuleMap::isHeaderInUnavailableModule(const FileEntry *Header) const {
return isHeaderUnavailableInModule(Header, nullptr);
}
bool
ModuleMap::isHeaderUnavailableInModule(const FileEntry *Header,
const Module *RequestingModule) const {
resolveHeaderDirectives(Header);
HeadersMap::const_iterator Known = Headers.find(Header);
if (Known != Headers.end()) {
for (SmallVectorImpl<KnownHeader>::const_iterator
I = Known->second.begin(),
E = Known->second.end();
I != E; ++I) {
if (I->getRole() == ModuleMap::ExcludedHeader)
continue;
if (I->isAvailable() &&
(!RequestingModule ||
I->getModule()->isSubModuleOf(RequestingModule))) {
// When no requesting module is available, the caller is looking if a
// header is part a module by only looking into the module map. This is
// done by warn_uncovered_module_header checks; don't consider textual
// headers part of it in this mode, otherwise we get misleading warnings
// that a umbrella header is not including a textual header.
if (!RequestingModule && I->getRole() == ModuleMap::TextualHeader)
continue;
return false;
}
}
return true;
}
const DirectoryEntry *Dir = Header->getDir();
SmallVector<const DirectoryEntry *, 2> SkippedDirs;
StringRef DirName = Dir->getName();
auto IsUnavailable = [&](const Module *M) {
return !M->isAvailable() && (!RequestingModule ||
M->isSubModuleOf(RequestingModule));
};
// Keep walking up the directory hierarchy, looking for a directory with
// an umbrella header.
do {
llvm::DenseMap<const DirectoryEntry *, Module *>::const_iterator KnownDir
= UmbrellaDirs.find(Dir);
if (KnownDir != UmbrellaDirs.end()) {
Module *Found = KnownDir->second;
if (IsUnavailable(Found))
return true;
// Search up the module stack until we find a module with an umbrella
// directory.
Module *UmbrellaModule = Found;
while (!UmbrellaModule->getUmbrellaDir() && UmbrellaModule->Parent)
UmbrellaModule = UmbrellaModule->Parent;
if (UmbrellaModule->InferSubmodules) {
for (const DirectoryEntry *SkippedDir : llvm::reverse(SkippedDirs)) {
// Find or create the module that corresponds to this directory name.
SmallString<32> NameBuf;
StringRef Name = sanitizeFilenameAsIdentifier(
llvm::sys::path::stem(SkippedDir->getName()), NameBuf);
Found = lookupModuleQualified(Name, Found);
if (!Found)
return false;
if (IsUnavailable(Found))
return true;
}
// Infer a submodule with the same name as this header file.
SmallString<32> NameBuf;
StringRef Name = sanitizeFilenameAsIdentifier(
llvm::sys::path::stem(Header->getName()),
NameBuf);
Found = lookupModuleQualified(Name, Found);
if (!Found)
return false;
}
return IsUnavailable(Found);
}
SkippedDirs.push_back(Dir);
// Retrieve our parent path.
DirName = llvm::sys::path::parent_path(DirName);
if (DirName.empty())
break;
// Resolve the parent path to a directory entry.
if (auto DirEntry = SourceMgr.getFileManager().getDirectory(DirName))
Dir = *DirEntry;
else
Dir = nullptr;
} while (Dir);
return false;
}
Module *ModuleMap::findModule(StringRef Name) const {
llvm::StringMap<Module *>::const_iterator Known = Modules.find(Name);
if (Known != Modules.end())
return Known->getValue();
return nullptr;
}
Module *ModuleMap::lookupModuleUnqualified(StringRef Name,
Module *Context) const {
for(; Context; Context = Context->Parent) {
if (Module *Sub = lookupModuleQualified(Name, Context))
return Sub;
}
return findModule(Name);
}
Module *ModuleMap::lookupModuleQualified(StringRef Name, Module *Context) const{
if (!Context)
return findModule(Name);
return Context->findSubmodule(Name);
}
std::pair<Module *, bool> ModuleMap::findOrCreateModule(StringRef Name,
Module *Parent,
bool IsFramework,
bool IsExplicit) {
// Try to find an existing module with this name.
if (Module *Sub = lookupModuleQualified(Name, Parent))
return std::make_pair(Sub, false);
// Create a new module with this name.
Module *Result = new Module(Name, SourceLocation(), Parent, IsFramework,
IsExplicit, NumCreatedModules++);
if (!Parent) {
if (LangOpts.CurrentModule == Name)
SourceModule = Result;
Modules[Name] = Result;
ModuleScopeIDs[Result] = CurrentModuleScopeID;
}
return std::make_pair(Result, true);
}
Module *ModuleMap::createGlobalModuleFragmentForModuleUnit(SourceLocation Loc,
Module *Parent) {
auto *Result = new Module("<global>", Loc, Parent, /*IsFramework*/ false,
/*IsExplicit*/ true, NumCreatedModules++);
Result->Kind = Module::ExplicitGlobalModuleFragment;
// If the created module isn't owned by a parent, send it to PendingSubmodules
// to wait for its parent.
if (!Result->Parent)
PendingSubmodules.emplace_back(Result);
return Result;
}
Module *ModuleMap::createImplicitGlobalModuleFragmentForModuleUnit(
SourceLocation Loc, bool IsExported, Module *Parent) {
assert(Parent && "We should only create an implicit global module fragment "
"in a module purview");
// Note: Here the `IsExplicit` parameter refers to the semantics in clang
// modules. All the non-explicit submodules in clang modules will be exported
// too. Here we simplify the implementation by using the concept.
auto *Result = new Module(IsExported ? "<exported implicit global>"
: "<implicit global>",
Loc, Parent, /*IsFramework*/ false,
/*IsExplicit*/ !IsExported, NumCreatedModules++);
Result->Kind = Module::ImplicitGlobalModuleFragment;
return Result;
}
Module *
ModuleMap::createPrivateModuleFragmentForInterfaceUnit(Module *Parent,
SourceLocation Loc) {
auto *Result =
new Module("<private>", Loc, Parent, /*IsFramework*/ false,
/*IsExplicit*/ true, NumCreatedModules++);
Result->Kind = Module::PrivateModuleFragment;
return Result;
}
Module *ModuleMap::createModuleUnitWithKind(SourceLocation Loc, StringRef Name,
Module::ModuleKind Kind) {
auto *Result =
new Module(Name, Loc, nullptr, /*IsFramework*/ false,
/*IsExplicit*/ false, NumCreatedModules++);
Result->Kind = Kind;
// Reparent any current global module fragment as a submodule of this module.
for (auto &Submodule : PendingSubmodules) {
Submodule->setParent(Result);
Submodule.release(); // now owned by parent
}
PendingSubmodules.clear();
return Result;
}
Module *ModuleMap::createModuleForInterfaceUnit(SourceLocation Loc,
StringRef Name) {
assert(LangOpts.CurrentModule == Name && "module name mismatch");
assert(!Modules[Name] && "redefining existing module");
auto *Result =
createModuleUnitWithKind(Loc, Name, Module::ModuleInterfaceUnit);
Modules[Name] = SourceModule = Result;
// Mark the main source file as being within the newly-created module so that
// declarations and macros are properly visibility-restricted to it.
auto *MainFile = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID());
assert(MainFile && "no input file for module interface");
Headers[MainFile].push_back(KnownHeader(Result, PrivateHeader));
return Result;
}
Module *ModuleMap::createModuleForImplementationUnit(SourceLocation Loc,
StringRef Name) {
assert(LangOpts.CurrentModule == Name && "module name mismatch");
// The interface for this implementation must exist and be loaded.
assert(Modules[Name] && Modules[Name]->Kind == Module::ModuleInterfaceUnit &&
"creating implementation module without an interface");
// Create an entry in the modules map to own the implementation unit module.
// User module names must not start with a period (so that this cannot clash
// with any legal user-defined module name).
StringRef IName = ".ImplementationUnit";
assert(!Modules[IName] && "multiple implementation units?");
auto *Result =
createModuleUnitWithKind(Loc, Name, Module::ModuleImplementationUnit);
Modules[IName] = SourceModule = Result;
// Check that the main file is present.
assert(SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) &&
"no input file for module implementation");
return Result;
}
Module *ModuleMap::createHeaderUnit(SourceLocation Loc, StringRef Name,
Module::Header H) {
assert(LangOpts.CurrentModule == Name && "module name mismatch");
assert(!Modules[Name] && "redefining existing module");
auto *Result = new Module(Name, Loc, nullptr, /*IsFramework*/ false,
/*IsExplicit*/ false, NumCreatedModules++);
Result->Kind = Module::ModuleHeaderUnit;
Modules[Name] = SourceModule = Result;
addHeader(Result, H, NormalHeader);
return Result;
}
/// For a framework module, infer the framework against which we
/// should link.
static void inferFrameworkLink(Module *Mod) {
assert(Mod->IsFramework && "Can only infer linking for framework modules");
assert(!Mod->isSubFramework() &&
"Can only infer linking for top-level frameworks");
Mod->LinkLibraries.push_back(Module::LinkLibrary(Mod->Name,
/*IsFramework=*/true));
}
Module *ModuleMap::inferFrameworkModule(const DirectoryEntry *FrameworkDir,
bool IsSystem, Module *Parent) {
Attributes Attrs;
Attrs.IsSystem = IsSystem;
return inferFrameworkModule(FrameworkDir, Attrs, Parent);
}
Module *ModuleMap::inferFrameworkModule(const DirectoryEntry *FrameworkDir,
Attributes Attrs, Module *Parent) {
// Note: as an egregious but useful hack we use the real path here, because
// we might be looking at an embedded framework that symlinks out to a
// top-level framework, and we need to infer as if we were naming the
// top-level framework.
StringRef FrameworkDirName =
SourceMgr.getFileManager().getCanonicalName(FrameworkDir);
// In case this is a case-insensitive filesystem, use the canonical
// directory name as the ModuleName, since modules are case-sensitive.
// FIXME: we should be able to give a fix-it hint for the correct spelling.
SmallString<32> ModuleNameStorage;
StringRef ModuleName = sanitizeFilenameAsIdentifier(
llvm::sys::path::stem(FrameworkDirName), ModuleNameStorage);
// Check whether we've already found this module.
if (Module *Mod = lookupModuleQualified(ModuleName, Parent))
return Mod;
FileManager &FileMgr = SourceMgr.getFileManager();
// If the framework has a parent path from which we're allowed to infer
// a framework module, do so.
const FileEntry *ModuleMapFile = nullptr;
if (!Parent) {
// Determine whether we're allowed to infer a module map.
bool canInfer = false;
if (llvm::sys::path::has_parent_path(FrameworkDirName)) {
// Figure out the parent path.
StringRef Parent = llvm::sys::path::parent_path(FrameworkDirName);
if (auto ParentDir = FileMgr.getDirectory(Parent)) {
// Check whether we have already looked into the parent directory
// for a module map.
llvm::DenseMap<const DirectoryEntry *, InferredDirectory>::const_iterator
inferred = InferredDirectories.find(*ParentDir);
if (inferred == InferredDirectories.end()) {
// We haven't looked here before. Load a module map, if there is
// one.
bool IsFrameworkDir = Parent.endswith(".framework");
if (const FileEntry *ModMapFile =
HeaderInfo.lookupModuleMapFile(*ParentDir, IsFrameworkDir)) {
parseModuleMapFile(ModMapFile, Attrs.IsSystem, *ParentDir);
inferred = InferredDirectories.find(*ParentDir);
}
if (inferred == InferredDirectories.end())
inferred = InferredDirectories.insert(
std::make_pair(*ParentDir, InferredDirectory())).first;
}
if (inferred->second.InferModules) {
// We're allowed to infer for this directory, but make sure it's okay
// to infer this particular module.
StringRef Name = llvm::sys::path::stem(FrameworkDirName);
canInfer =
!llvm::is_contained(inferred->second.ExcludedModules, Name);
Attrs.IsSystem |= inferred->second.Attrs.IsSystem;
Attrs.IsExternC |= inferred->second.Attrs.IsExternC;
Attrs.IsExhaustive |= inferred->second.Attrs.IsExhaustive;
Attrs.NoUndeclaredIncludes |=
inferred->second.Attrs.NoUndeclaredIncludes;
ModuleMapFile = inferred->second.ModuleMapFile;
}
}
}
// If we're not allowed to infer a framework module, don't.
if (!canInfer)
return nullptr;
} else {
OptionalFileEntryRefDegradesToFileEntryPtr ModuleMapRef =
getModuleMapFileForUniquing(Parent);
ModuleMapFile = ModuleMapRef;
}
// Look for an umbrella header.
SmallString<128> UmbrellaName = StringRef(FrameworkDir->getName());
llvm::sys::path::append(UmbrellaName, "Headers", ModuleName + ".h");
auto UmbrellaHeader = FileMgr.getOptionalFileRef(UmbrellaName);
// FIXME: If there's no umbrella header, we could probably scan the
// framework to load *everything*. But, it's not clear that this is a good
// idea.
if (!UmbrellaHeader)
return nullptr;
Module *Result = new Module(ModuleName, SourceLocation(), Parent,
/*IsFramework=*/true, /*IsExplicit=*/false,
NumCreatedModules++);
InferredModuleAllowedBy[Result] = ModuleMapFile;
Result->IsInferred = true;
if (!Parent) {
if (LangOpts.CurrentModule == ModuleName)
SourceModule = Result;
Modules[ModuleName] = Result;
ModuleScopeIDs[Result] = CurrentModuleScopeID;
}
Result->IsSystem |= Attrs.IsSystem;
Result->IsExternC |= Attrs.IsExternC;
Result->ConfigMacrosExhaustive |= Attrs.IsExhaustive;
Result->NoUndeclaredIncludes |= Attrs.NoUndeclaredIncludes;
Result->Directory = FrameworkDir;
// Chop off the first framework bit, as that is implied.
StringRef RelativePath = UmbrellaName.str().substr(
Result->getTopLevelModule()->Directory->getName().size());
RelativePath = llvm::sys::path::relative_path(RelativePath);
// umbrella header "umbrella-header-name"
setUmbrellaHeader(Result, *UmbrellaHeader, ModuleName + ".h", RelativePath);
// export *
Result->Exports.push_back(Module::ExportDecl(nullptr, true));
// module * { export * }
Result->InferSubmodules = true;
Result->InferExportWildcard = true;
// Look for subframeworks.
std::error_code EC;
SmallString<128> SubframeworksDirName
= StringRef(FrameworkDir->getName());
llvm::sys::path::append(SubframeworksDirName, "Frameworks");
llvm::sys::path::native(SubframeworksDirName);
llvm::vfs::FileSystem &FS = FileMgr.getVirtualFileSystem();
for (llvm::vfs::directory_iterator
Dir = FS.dir_begin(SubframeworksDirName, EC),
DirEnd;
Dir != DirEnd && !EC; Dir.increment(EC)) {
if (!StringRef(Dir->path()).endswith(".framework"))
continue;
if (auto SubframeworkDir =
FileMgr.getDirectory(Dir->path())) {
// Note: as an egregious but useful hack, we use the real path here and
// check whether it is actually a subdirectory of the parent directory.
// This will not be the case if the 'subframework' is actually a symlink
// out to a top-level framework.
StringRef SubframeworkDirName =
FileMgr.getCanonicalName(*SubframeworkDir);
bool FoundParent = false;
do {
// Get the parent directory name.
SubframeworkDirName
= llvm::sys::path::parent_path(SubframeworkDirName);
if (SubframeworkDirName.empty())
break;
if (auto SubDir = FileMgr.getDirectory(SubframeworkDirName)) {
if (*SubDir == FrameworkDir) {
FoundParent = true;
break;
}
}
} while (true);
if (!FoundParent)
continue;
// FIXME: Do we want to warn about subframeworks without umbrella headers?
inferFrameworkModule(*SubframeworkDir, Attrs, Result);
}
}
// If the module is a top-level framework, automatically link against the
// framework.
if (!Result->isSubFramework())
inferFrameworkLink(Result);
return Result;
}
Module *ModuleMap::createShadowedModule(StringRef Name, bool IsFramework,
Module *ShadowingModule) {
// Create a new module with this name.
Module *Result =
new Module(Name, SourceLocation(), /*Parent=*/nullptr, IsFramework,
/*IsExplicit=*/false, NumCreatedModules++);
Result->ShadowingModule = ShadowingModule;
Result->markUnavailable(/*Unimportable*/true);
ModuleScopeIDs[Result] = CurrentModuleScopeID;
ShadowModules.push_back(Result);
return Result;
}
void ModuleMap::setUmbrellaHeader(
Module *Mod, FileEntryRef UmbrellaHeader, const Twine &NameAsWritten,
const Twine &PathRelativeToRootModuleDirectory) {
Headers[UmbrellaHeader].push_back(KnownHeader(Mod, NormalHeader));
Mod->Umbrella = &UmbrellaHeader.getMapEntry();
Mod->UmbrellaAsWritten = NameAsWritten.str();
Mod->UmbrellaRelativeToRootModuleDirectory =
PathRelativeToRootModuleDirectory.str();
UmbrellaDirs[UmbrellaHeader.getDir()] = Mod;
// Notify callbacks that we just added a new header.
for (const auto &Cb : Callbacks)
Cb->moduleMapAddUmbrellaHeader(&SourceMgr.getFileManager(), UmbrellaHeader);
}
void ModuleMap::setUmbrellaDir(Module *Mod, const DirectoryEntry *UmbrellaDir,
const Twine &NameAsWritten,
const Twine &PathRelativeToRootModuleDirectory) {
Mod->Umbrella = UmbrellaDir;
Mod->UmbrellaAsWritten = NameAsWritten.str();
Mod->UmbrellaRelativeToRootModuleDirectory =
PathRelativeToRootModuleDirectory.str();
UmbrellaDirs[UmbrellaDir] = Mod;
}
void ModuleMap::addUnresolvedHeader(Module *Mod,
Module::UnresolvedHeaderDirective Header,
bool &NeedsFramework) {
// If there is a builtin counterpart to this file, add it now so it can
// wrap the system header.
if (resolveAsBuiltinHeader(Mod, Header)) {
// If we have both a builtin and system version of the file, the
// builtin version may want to inject macros into the system header, so
// force the system header to be treated as a textual header in this
// case.
Header.Kind = headerRoleToKind(ModuleMap::ModuleHeaderRole(
headerKindToRole(Header.Kind) | ModuleMap::TextualHeader));
Header.HasBuiltinHeader = true;
}
// If possible, don't stat the header until we need to. This requires the
// user to have provided us with some stat information about the file.
// FIXME: Add support for lazily stat'ing umbrella headers and excluded
// headers.
if ((Header.Size || Header.ModTime) && !Header.IsUmbrella &&
Header.Kind != Module::HK_Excluded) {
// We expect more variation in mtime than size, so if we're given both,
// use the mtime as the key.
if (Header.ModTime)
LazyHeadersByModTime[*Header.ModTime].push_back(Mod);
else
LazyHeadersBySize[*Header.Size].push_back(Mod);
Mod->UnresolvedHeaders.push_back(Header);
return;
}
// We don't have stat information or can't defer looking this file up.
// Perform the lookup now.
resolveHeader(Mod, Header, NeedsFramework);
}
void ModuleMap::resolveHeaderDirectives(const FileEntry *File) const {
auto BySize = LazyHeadersBySize.find(File->getSize());
if (BySize != LazyHeadersBySize.end()) {
for (auto *M : BySize->second)
resolveHeaderDirectives(M, File);
LazyHeadersBySize.erase(BySize);
}
auto ByModTime = LazyHeadersByModTime.find(File->getModificationTime());
if (ByModTime != LazyHeadersByModTime.end()) {
for (auto *M : ByModTime->second)
resolveHeaderDirectives(M, File);
LazyHeadersByModTime.erase(ByModTime);
}
}
void ModuleMap::resolveHeaderDirectives(
Module *Mod, std::optional<const FileEntry *> File) const {
bool NeedsFramework = false;
SmallVector<Module::UnresolvedHeaderDirective, 1> NewHeaders;
const auto Size = File ? (*File)->getSize() : 0;
const auto ModTime = File ? (*File)->getModificationTime() : 0;
for (auto &Header : Mod->UnresolvedHeaders) {
if (File && ((Header.ModTime && Header.ModTime != ModTime) ||
(Header.Size && Header.Size != Size)))
NewHeaders.push_back(Header);
else
// This operation is logically const; we're just changing how we represent
// the header information for this file.
const_cast<ModuleMap *>(this)->resolveHeader(Mod, Header, NeedsFramework);
}
Mod->UnresolvedHeaders.swap(NewHeaders);
}
void ModuleMap::addHeader(Module *Mod, Module::Header Header,
ModuleHeaderRole Role, bool Imported) {
KnownHeader KH(Mod, Role);
// Only add each header to the headers list once.
// FIXME: Should we diagnose if a header is listed twice in the
// same module definition?
auto &HeaderList = Headers[Header.Entry];
if (llvm::is_contained(HeaderList, KH))
return;
HeaderList.push_back(KH);
Mod->Headers[headerRoleToKind(Role)].push_back(Header);
bool isCompilingModuleHeader =
LangOpts.isCompilingModule() && Mod->getTopLevelModule() == SourceModule;
if (!Imported || isCompilingModuleHeader) {
// When we import HeaderFileInfo, the external source is expected to
// set the isModuleHeader flag itself.
HeaderInfo.MarkFileModuleHeader(Header.Entry, Role,
isCompilingModuleHeader);
}
// Notify callbacks that we just added a new header.
for (const auto &Cb : Callbacks)
Cb->moduleMapAddHeader(Header.Entry->getName());
}
OptionalFileEntryRef
ModuleMap::getContainingModuleMapFile(const Module *Module) const {
if (Module->DefinitionLoc.isInvalid())
return std::nullopt;
return SourceMgr.getFileEntryRefForID(
SourceMgr.getFileID(Module->DefinitionLoc));
}
OptionalFileEntryRef
ModuleMap::getModuleMapFileForUniquing(const Module *M) const {
if (M->IsInferred) {
assert(InferredModuleAllowedBy.count(M) && "missing inferred module map");
// FIXME: Update InferredModuleAllowedBy to use FileEntryRef.
return InferredModuleAllowedBy.find(M)->second->getLastRef();
}
return getContainingModuleMapFile(M);
}
void ModuleMap::setInferredModuleAllowedBy(Module *M, const FileEntry *ModMap) {
assert(M->IsInferred && "module not inferred");
InferredModuleAllowedBy[M] = ModMap;
}
std::error_code
ModuleMap::canonicalizeModuleMapPath(SmallVectorImpl<char> &Path) {
StringRef Dir = llvm::sys::path::parent_path({Path.data(), Path.size()});
// Do not canonicalize within the framework; the module map parser expects
// Modules/ not Versions/A/Modules.
if (llvm::sys::path::filename(Dir) == "Modules") {
StringRef Parent = llvm::sys::path::parent_path(Dir);
if (Parent.endswith(".framework"))
Dir = Parent;
}
FileManager &FM = SourceMgr.getFileManager();
auto DirEntry = FM.getDirectory(Dir.empty() ? "." : Dir);
if (!DirEntry)
return DirEntry.getError();
// Canonicalize the directory.
StringRef CanonicalDir = FM.getCanonicalName(*DirEntry);
if (CanonicalDir != Dir) {
auto CanonicalDirEntry = FM.getDirectory(CanonicalDir);
// Only use the canonicalized path if it resolves to the same entry as the
// original. This is not true if there's a VFS overlay on top of a FS where
// the directory is a symlink. The overlay would not remap the target path
// of the symlink to the same directory entry in that case.
if (CanonicalDirEntry && *CanonicalDirEntry == *DirEntry) {
bool Done = llvm::sys::path::replace_path_prefix(Path, Dir, CanonicalDir);
(void)Done;
assert(Done && "Path should always start with Dir");
}
}
// In theory, the filename component should also be canonicalized if it
// on a case-insensitive filesystem. However, the extra canonicalization is
// expensive and if clang looked up the filename it will always be lowercase.
// Remove ., remove redundant separators, and switch to native separators.
// This is needed for separators between CanonicalDir and the filename.
llvm::sys::path::remove_dots(Path);
return std::error_code();
}
void ModuleMap::addAdditionalModuleMapFile(const Module *M,
const FileEntry *ModuleMap) {
AdditionalModMaps[M].insert(ModuleMap);
}
LLVM_DUMP_METHOD void ModuleMap::dump() {
llvm::errs() << "Modules:";
for (llvm::StringMap<Module *>::iterator M = Modules.begin(),
MEnd = Modules.end();
M != MEnd; ++M)
M->getValue()->print(llvm::errs(), 2);
llvm::errs() << "Headers:";
for (HeadersMap::iterator H = Headers.begin(), HEnd = Headers.end();
H != HEnd; ++H) {
llvm::errs() << " \"" << H->first->getName() << "\" -> ";
for (SmallVectorImpl<KnownHeader>::const_iterator I = H->second.begin(),
E = H->second.end();
I != E; ++I) {
if (I != H->second.begin())
llvm::errs() << ",";
llvm::errs() << I->getModule()->getFullModuleName();
}
llvm::errs() << "\n";
}
}
bool ModuleMap::resolveExports(Module *Mod, bool Complain) {
auto Unresolved = std::move(Mod->UnresolvedExports);
Mod->UnresolvedExports.clear();
for (auto &UE : Unresolved) {
Module::ExportDecl Export = resolveExport(Mod, UE, Complain);
if (Export.getPointer() || Export.getInt())
Mod->Exports.push_back(Export);
else
Mod->UnresolvedExports.push_back(UE);
}
return !Mod->UnresolvedExports.empty();
}
bool ModuleMap::resolveUses(Module *Mod, bool Complain) {
auto Unresolved = std::move(Mod->UnresolvedDirectUses);
Mod->UnresolvedDirectUses.clear();
for (auto &UDU : Unresolved) {
Module *DirectUse = resolveModuleId(UDU, Mod, Complain);
if (DirectUse)
Mod->DirectUses.push_back(DirectUse);
else
Mod->UnresolvedDirectUses.push_back(UDU);
}
return !Mod->UnresolvedDirectUses.empty();
}
bool ModuleMap::resolveConflicts(Module *Mod, bool Complain) {
auto Unresolved = std::move(Mod->UnresolvedConflicts);
Mod->UnresolvedConflicts.clear();
for (auto &UC : Unresolved) {
if (Module *OtherMod = resolveModuleId(UC.Id, Mod, Complain)) {
Module::Conflict Conflict;
Conflict.Other = OtherMod;
Conflict.Message = UC.Message;
Mod->Conflicts.push_back(Conflict);
} else
Mod->UnresolvedConflicts.push_back(UC);
}
return !Mod->UnresolvedConflicts.empty();
}
//----------------------------------------------------------------------------//
// Module map file parser
//----------------------------------------------------------------------------//
namespace clang {
/// A token in a module map file.
struct MMToken {
enum TokenKind {
Comma,
ConfigMacros,
Conflict,
EndOfFile,
HeaderKeyword,
Identifier,
Exclaim,
ExcludeKeyword,
ExplicitKeyword,
ExportKeyword,
ExportAsKeyword,
ExternKeyword,
FrameworkKeyword,
LinkKeyword,
ModuleKeyword,
Period,
PrivateKeyword,
UmbrellaKeyword,
UseKeyword,
RequiresKeyword,
Star,
StringLiteral,
IntegerLiteral,
TextualKeyword,
LBrace,
RBrace,
LSquare,
RSquare
} Kind;
SourceLocation::UIntTy Location;
unsigned StringLength;
union {
// If Kind != IntegerLiteral.
const char *StringData;
// If Kind == IntegerLiteral.
uint64_t IntegerValue;
};
void clear() {
Kind = EndOfFile;
Location = 0;
StringLength = 0;
StringData = nullptr;
}
bool is(TokenKind K) const { return Kind == K; }
SourceLocation getLocation() const {
return SourceLocation::getFromRawEncoding(Location);
}
uint64_t getInteger() const {
return Kind == IntegerLiteral ? IntegerValue : 0;
}
StringRef getString() const {
return Kind == IntegerLiteral ? StringRef()
: StringRef(StringData, StringLength);
}
};
class ModuleMapParser {
Lexer &L;
SourceManager &SourceMgr;
/// Default target information, used only for string literal
/// parsing.
const TargetInfo *Target;
DiagnosticsEngine &Diags;
ModuleMap &Map;
/// The current module map file.
const FileEntry *ModuleMapFile;
/// Source location of most recent parsed module declaration
SourceLocation CurrModuleDeclLoc;
/// The directory that file names in this module map file should
/// be resolved relative to.
const DirectoryEntry *Directory;
/// Whether this module map is in a system header directory.
bool IsSystem;
/// Whether an error occurred.
bool HadError = false;
/// Stores string data for the various string literals referenced
/// during parsing.
llvm::BumpPtrAllocator StringData;
/// The current token.
MMToken Tok;
/// The active module.
Module *ActiveModule = nullptr;
/// Whether a module uses the 'requires excluded' hack to mark its
/// contents as 'textual'.
///
/// On older Darwin SDK versions, 'requires excluded' is used to mark the
/// contents of the Darwin.C.excluded (assert.h) and Tcl.Private modules as
/// non-modular headers. For backwards compatibility, we continue to
/// support this idiom for just these modules, and map the headers to
/// 'textual' to match the original intent.
llvm::SmallPtrSet<Module *, 2> UsesRequiresExcludedHack;
/// Consume the current token and return its location.
SourceLocation consumeToken();
/// Skip tokens until we reach the a token with the given kind
/// (or the end of the file).
void skipUntil(MMToken::TokenKind K);
using ModuleId = SmallVector<std::pair<std::string, SourceLocation>, 2>;
bool parseModuleId(ModuleId &Id);
void parseModuleDecl();
void parseExternModuleDecl();
void parseRequiresDecl();
void parseHeaderDecl(MMToken::TokenKind, SourceLocation LeadingLoc);
void parseUmbrellaDirDecl(SourceLocation UmbrellaLoc);
void parseExportDecl();
void parseExportAsDecl();
void parseUseDecl();
void parseLinkDecl();
void parseConfigMacros();
void parseConflict();
void parseInferredModuleDecl(bool Framework, bool Explicit);
/// Private modules are canonicalized as Foo_Private. Clang provides extra
/// module map search logic to find the appropriate private module when PCH
/// is used with implicit module maps. Warn when private modules are written
/// in other ways (FooPrivate and Foo.Private), providing notes and fixits.
void diagnosePrivateModules(SourceLocation ExplicitLoc,
SourceLocation FrameworkLoc);
using Attributes = ModuleMap::Attributes;
bool parseOptionalAttributes(Attributes &Attrs);
public:
explicit ModuleMapParser(Lexer &L, SourceManager &SourceMgr,
const TargetInfo *Target, DiagnosticsEngine &Diags,
ModuleMap &Map, const FileEntry *ModuleMapFile,
const DirectoryEntry *Directory, bool IsSystem)
: L(L), SourceMgr(SourceMgr), Target(Target), Diags(Diags), Map(Map),
ModuleMapFile(ModuleMapFile), Directory(Directory),
IsSystem(IsSystem) {
Tok.clear();
consumeToken();
}
bool parseModuleMapFile();
bool terminatedByDirective() { return false; }
SourceLocation getLocation() { return Tok.getLocation(); }
};
} // namespace clang
SourceLocation ModuleMapParser::consumeToken() {
SourceLocation Result = Tok.getLocation();
retry:
Tok.clear();
Token LToken;
L.LexFromRawLexer(LToken);
Tok.Location = LToken.getLocation().getRawEncoding();
switch (LToken.getKind()) {
case tok::raw_identifier: {
StringRef RI = LToken.getRawIdentifier();
Tok.StringData = RI.data();
Tok.StringLength = RI.size();
Tok.Kind = llvm::StringSwitch<MMToken::TokenKind>(RI)
.Case("config_macros", MMToken::ConfigMacros)
.Case("conflict", MMToken::Conflict)
.Case("exclude", MMToken::ExcludeKeyword)
.Case("explicit", MMToken::ExplicitKeyword)
.Case("export", MMToken::ExportKeyword)
.Case("export_as", MMToken::ExportAsKeyword)
.Case("extern", MMToken::ExternKeyword)
.Case("framework", MMToken::FrameworkKeyword)
.Case("header", MMToken::HeaderKeyword)
.Case("link", MMToken::LinkKeyword)
.Case("module", MMToken::ModuleKeyword)
.Case("private", MMToken::PrivateKeyword)
.Case("requires", MMToken::RequiresKeyword)
.Case("textual", MMToken::TextualKeyword)
.Case("umbrella", MMToken::UmbrellaKeyword)
.Case("use", MMToken::UseKeyword)
.Default(MMToken::Identifier);
break;
}
case tok::comma:
Tok.Kind = MMToken::Comma;
break;
case tok::eof:
Tok.Kind = MMToken::EndOfFile;
break;
case tok::l_brace:
Tok.Kind = MMToken::LBrace;
break;
case tok::l_square:
Tok.Kind = MMToken::LSquare;
break;
case tok::period:
Tok.Kind = MMToken::Period;
break;
case tok::r_brace:
Tok.Kind = MMToken::RBrace;
break;
case tok::r_square:
Tok.Kind = MMToken::RSquare;
break;
case tok::star:
Tok.Kind = MMToken::Star;
break;
case tok::exclaim:
Tok.Kind = MMToken::Exclaim;
break;
case tok::string_literal: {
if (LToken.hasUDSuffix()) {
Diags.Report(LToken.getLocation(), diag::err_invalid_string_udl);
HadError = true;
goto retry;
}
// Parse the string literal.
LangOptions LangOpts;
StringLiteralParser StringLiteral(LToken, SourceMgr, LangOpts, *Target);
if (StringLiteral.hadError)
goto retry;
// Copy the string literal into our string data allocator.
unsigned Length = StringLiteral.GetStringLength();
char *Saved = StringData.Allocate<char>(Length + 1);
memcpy(Saved, StringLiteral.GetString().data(), Length);
Saved[Length] = 0;
// Form the token.
Tok.Kind = MMToken::StringLiteral;
Tok.StringData = Saved;
Tok.StringLength = Length;
break;
}
case tok::numeric_constant: {
// We don't support any suffixes or other complications.
SmallString<32> SpellingBuffer;
SpellingBuffer.resize(LToken.getLength() + 1);
const char *Start = SpellingBuffer.data();
unsigned Length =
Lexer::getSpelling(LToken, Start, SourceMgr, Map.LangOpts);
uint64_t Value;
if (StringRef(Start, Length).getAsInteger(0, Value)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_unknown_token);
HadError = true;
goto retry;
}
Tok.Kind = MMToken::IntegerLiteral;
Tok.IntegerValue = Value;
break;
}
case tok::comment:
goto retry;
case tok::hash:
// A module map can be terminated prematurely by
// #pragma clang module contents
// When building the module, we'll treat the rest of the file as the
// contents of the module.
{
auto NextIsIdent = [&](StringRef Str) -> bool {
L.LexFromRawLexer(LToken);
return !LToken.isAtStartOfLine() && LToken.is(tok::raw_identifier) &&
LToken.getRawIdentifier() == Str;
};
if (NextIsIdent("pragma") && NextIsIdent("clang") &&
NextIsIdent("module") && NextIsIdent("contents")) {
Tok.Kind = MMToken::EndOfFile;
break;
}
}
[[fallthrough]];
default:
Diags.Report(Tok.getLocation(), diag::err_mmap_unknown_token);
HadError = true;
goto retry;
}
return Result;
}
void ModuleMapParser::skipUntil(MMToken::TokenKind K) {
unsigned braceDepth = 0;
unsigned squareDepth = 0;
do {
switch (Tok.Kind) {
case MMToken::EndOfFile:
return;
case MMToken::LBrace:
if (Tok.is(K) && braceDepth == 0 && squareDepth == 0)
return;
++braceDepth;
break;
case MMToken::LSquare:
if (Tok.is(K) && braceDepth == 0 && squareDepth == 0)
return;
++squareDepth;
break;
case MMToken::RBrace:
if (braceDepth > 0)
--braceDepth;
else if (Tok.is(K))
return;
break;
case MMToken::RSquare:
if (squareDepth > 0)
--squareDepth;
else if (Tok.is(K))
return;
break;
default:
if (braceDepth == 0 && squareDepth == 0 && Tok.is(K))
return;
break;
}
consumeToken();
} while (true);
}
/// Parse a module-id.
///
/// module-id:
/// identifier
/// identifier '.' module-id
///
/// \returns true if an error occurred, false otherwise.
bool ModuleMapParser::parseModuleId(ModuleId &Id) {
Id.clear();
do {
if (Tok.is(MMToken::Identifier) || Tok.is(MMToken::StringLiteral)) {
Id.push_back(
std::make_pair(std::string(Tok.getString()), Tok.getLocation()));
consumeToken();
} else {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module_name);
return true;
}
if (!Tok.is(MMToken::Period))
break;
consumeToken();
} while (true);
return false;
}
namespace {
/// Enumerates the known attributes.
enum AttributeKind {
/// An unknown attribute.
AT_unknown,
/// The 'system' attribute.
AT_system,
/// The 'extern_c' attribute.
AT_extern_c,
/// The 'exhaustive' attribute.
AT_exhaustive,
/// The 'no_undeclared_includes' attribute.
AT_no_undeclared_includes
};
} // namespace
/// Private modules are canonicalized as Foo_Private. Clang provides extra
/// module map search logic to find the appropriate private module when PCH
/// is used with implicit module maps. Warn when private modules are written
/// in other ways (FooPrivate and Foo.Private), providing notes and fixits.
void ModuleMapParser::diagnosePrivateModules(SourceLocation ExplicitLoc,
SourceLocation FrameworkLoc) {
auto GenNoteAndFixIt = [&](StringRef BadName, StringRef Canonical,
const Module *M, SourceRange ReplLoc) {
auto D = Diags.Report(ActiveModule->DefinitionLoc,
diag::note_mmap_rename_top_level_private_module);
D << BadName << M->Name;
D << FixItHint::CreateReplacement(ReplLoc, Canonical);
};
for (auto E = Map.module_begin(); E != Map.module_end(); ++E) {
auto const *M = E->getValue();
if (M->Directory != ActiveModule->Directory)
continue;
SmallString<128> FullName(ActiveModule->getFullModuleName());
if (!FullName.startswith(M->Name) && !FullName.endswith("Private"))
continue;
SmallString<128> FixedPrivModDecl;
SmallString<128> Canonical(M->Name);
Canonical.append("_Private");
// Foo.Private -> Foo_Private
if (ActiveModule->Parent && ActiveModule->Name == "Private" && !M->Parent &&
M->Name == ActiveModule->Parent->Name) {
Diags.Report(ActiveModule->DefinitionLoc,
diag::warn_mmap_mismatched_private_submodule)
<< FullName;
SourceLocation FixItInitBegin = CurrModuleDeclLoc;
if (FrameworkLoc.isValid())
FixItInitBegin = FrameworkLoc;
if (ExplicitLoc.isValid())
FixItInitBegin = ExplicitLoc;
if (FrameworkLoc.isValid() || ActiveModule->Parent->IsFramework)
FixedPrivModDecl.append("framework ");
FixedPrivModDecl.append("module ");
FixedPrivModDecl.append(Canonical);
GenNoteAndFixIt(FullName, FixedPrivModDecl, M,
SourceRange(FixItInitBegin, ActiveModule->DefinitionLoc));
continue;
}
// FooPrivate and whatnots -> Foo_Private
if (!ActiveModule->Parent && !M->Parent && M->Name != ActiveModule->Name &&
ActiveModule->Name != Canonical) {
Diags.Report(ActiveModule->DefinitionLoc,
diag::warn_mmap_mismatched_private_module_name)
<< ActiveModule->Name;
GenNoteAndFixIt(ActiveModule->Name, Canonical, M,
SourceRange(ActiveModule->DefinitionLoc));
}
}
}
/// Parse a module declaration.
///
/// module-declaration:
/// 'extern' 'module' module-id string-literal
/// 'explicit'[opt] 'framework'[opt] 'module' module-id attributes[opt]
/// { module-member* }
///
/// module-member:
/// requires-declaration
/// header-declaration
/// submodule-declaration
/// export-declaration
/// export-as-declaration
/// link-declaration
///
/// submodule-declaration:
/// module-declaration
/// inferred-submodule-declaration
void ModuleMapParser::parseModuleDecl() {
assert(Tok.is(MMToken::ExplicitKeyword) || Tok.is(MMToken::ModuleKeyword) ||
Tok.is(MMToken::FrameworkKeyword) || Tok.is(MMToken::ExternKeyword));
if (Tok.is(MMToken::ExternKeyword)) {
parseExternModuleDecl();
return;
}
// Parse 'explicit' or 'framework' keyword, if present.
SourceLocation ExplicitLoc;
SourceLocation FrameworkLoc;
bool Explicit = false;
bool Framework = false;
// Parse 'explicit' keyword, if present.
if (Tok.is(MMToken::ExplicitKeyword)) {
ExplicitLoc = consumeToken();
Explicit = true;
}
// Parse 'framework' keyword, if present.
if (Tok.is(MMToken::FrameworkKeyword)) {
FrameworkLoc = consumeToken();
Framework = true;
}
// Parse 'module' keyword.
if (!Tok.is(MMToken::ModuleKeyword)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module);
consumeToken();
HadError = true;
return;
}
CurrModuleDeclLoc = consumeToken(); // 'module' keyword
// If we have a wildcard for the module name, this is an inferred submodule.
// Parse it.
if (Tok.is(MMToken::Star))
return parseInferredModuleDecl(Framework, Explicit);
// Parse the module name.
ModuleId Id;
if (parseModuleId(Id)) {
HadError = true;
return;
}
if (ActiveModule) {
if (Id.size() > 1) {
Diags.Report(Id.front().second, diag::err_mmap_nested_submodule_id)
<< SourceRange(Id.front().second, Id.back().second);
HadError = true;
return;
}
} else if (Id.size() == 1 && Explicit) {
// Top-level modules can't be explicit.
Diags.Report(ExplicitLoc, diag::err_mmap_explicit_top_level);
Explicit = false;
ExplicitLoc = SourceLocation();
HadError = true;
}
Module *PreviousActiveModule = ActiveModule;
if (Id.size() > 1) {
// This module map defines a submodule. Go find the module of which it
// is a submodule.
ActiveModule = nullptr;
const Module *TopLevelModule = nullptr;
for (unsigned I = 0, N = Id.size() - 1; I != N; ++I) {
if (Module *Next = Map.lookupModuleQualified(Id[I].first, ActiveModule)) {
if (I == 0)
TopLevelModule = Next;
ActiveModule = Next;
continue;
}
Diags.Report(Id[I].second, diag::err_mmap_missing_parent_module)
<< Id[I].first << (ActiveModule != nullptr)
<< (ActiveModule
? ActiveModule->getTopLevelModule()->getFullModuleName()
: "");
HadError = true;
}
if (TopLevelModule &&
ModuleMapFile != Map.getContainingModuleMapFile(TopLevelModule)) {
assert(ModuleMapFile != Map.getModuleMapFileForUniquing(TopLevelModule) &&
"submodule defined in same file as 'module *' that allowed its "
"top-level module");
Map.addAdditionalModuleMapFile(TopLevelModule, ModuleMapFile);
}
}
StringRef ModuleName = Id.back().first;
SourceLocation ModuleNameLoc = Id.back().second;
// Parse the optional attribute list.
Attributes Attrs;
if (parseOptionalAttributes(Attrs))
return;
// Parse the opening brace.
if (!Tok.is(MMToken::LBrace)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_lbrace)
<< ModuleName;
HadError = true;
return;
}
SourceLocation LBraceLoc = consumeToken();
// Determine whether this (sub)module has already been defined.
Module *ShadowingModule = nullptr;
if (Module *Existing = Map.lookupModuleQualified(ModuleName, ActiveModule)) {
// We might see a (re)definition of a module that we already have a
// definition for in two cases:
// - If we loaded one definition from an AST file and we've just found a
// corresponding definition in a module map file, or
bool LoadedFromASTFile = Existing->DefinitionLoc.isInvalid();
// - If we're building a (preprocessed) module and we've just loaded the
// module map file from which it was created.
bool ParsedAsMainInput =
Map.LangOpts.getCompilingModule() == LangOptions::CMK_ModuleMap &&
Map.LangOpts.CurrentModule == ModuleName &&
SourceMgr.getDecomposedLoc(ModuleNameLoc).first !=
SourceMgr.getDecomposedLoc(Existing->DefinitionLoc).first;
if (!ActiveModule && (LoadedFromASTFile || ParsedAsMainInput)) {
// Skip the module definition.
skipUntil(MMToken::RBrace);
if (Tok.is(MMToken::RBrace))
consumeToken();
else {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace);
Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match);
HadError = true;
}
return;
}
if (!Existing->Parent && Map.mayShadowNewModule(Existing)) {
ShadowingModule = Existing;
} else {
// This is not a shawdowed module decl, it is an illegal redefinition.
Diags.Report(ModuleNameLoc, diag::err_mmap_module_redefinition)
<< ModuleName;
Diags.Report(Existing->DefinitionLoc, diag::note_mmap_prev_definition);
// Skip the module definition.
skipUntil(MMToken::RBrace);
if (Tok.is(MMToken::RBrace))
consumeToken();
HadError = true;
return;
}
}
// Start defining this module.
if (ShadowingModule) {
ActiveModule =
Map.createShadowedModule(ModuleName, Framework, ShadowingModule);
} else {
ActiveModule =
Map.findOrCreateModule(ModuleName, ActiveModule, Framework, Explicit)
.first;
}
ActiveModule->DefinitionLoc = ModuleNameLoc;
if (Attrs.IsSystem || IsSystem)
ActiveModule->IsSystem = true;
if (Attrs.IsExternC)
ActiveModule->IsExternC = true;
if (Attrs.NoUndeclaredIncludes)
ActiveModule->NoUndeclaredIncludes = true;
ActiveModule->Directory = Directory;
StringRef MapFileName(ModuleMapFile->getName());
if (MapFileName.endswith("module.private.modulemap") ||
MapFileName.endswith("module_private.map")) {
ActiveModule->ModuleMapIsPrivate = true;
}
// Private modules named as FooPrivate, Foo.Private or similar are likely a
// user error; provide warnings, notes and fixits to direct users to use
// Foo_Private instead.
SourceLocation StartLoc =
SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
if (Map.HeaderInfo.getHeaderSearchOpts().ImplicitModuleMaps &&
!Diags.isIgnored(diag::warn_mmap_mismatched_private_submodule,
StartLoc) &&
!Diags.isIgnored(diag::warn_mmap_mismatched_private_module_name,
StartLoc) &&
ActiveModule->ModuleMapIsPrivate)
diagnosePrivateModules(ExplicitLoc, FrameworkLoc);
bool Done = false;
do {
switch (Tok.Kind) {
case MMToken::EndOfFile:
case MMToken::RBrace:
Done = true;
break;
case MMToken::ConfigMacros:
parseConfigMacros();
break;
case MMToken::Conflict:
parseConflict();
break;
case MMToken::ExplicitKeyword:
case MMToken::ExternKeyword:
case MMToken::FrameworkKeyword:
case MMToken::ModuleKeyword:
parseModuleDecl();
break;
case MMToken::ExportKeyword:
parseExportDecl();
break;
case MMToken::ExportAsKeyword:
parseExportAsDecl();
break;
case MMToken::UseKeyword:
parseUseDecl();
break;
case MMToken::RequiresKeyword:
parseRequiresDecl();
break;
case MMToken::TextualKeyword:
parseHeaderDecl(MMToken::TextualKeyword, consumeToken());
break;
case MMToken::UmbrellaKeyword: {
SourceLocation UmbrellaLoc = consumeToken();
if (Tok.is(MMToken::HeaderKeyword))
parseHeaderDecl(MMToken::UmbrellaKeyword, UmbrellaLoc);
else
parseUmbrellaDirDecl(UmbrellaLoc);
break;
}
case MMToken::ExcludeKeyword:
parseHeaderDecl(MMToken::ExcludeKeyword, consumeToken());
break;
case MMToken::PrivateKeyword:
parseHeaderDecl(MMToken::PrivateKeyword, consumeToken());
break;
case MMToken::HeaderKeyword:
parseHeaderDecl(MMToken::HeaderKeyword, consumeToken());
break;
case MMToken::LinkKeyword:
parseLinkDecl();
break;
default:
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_member);
consumeToken();
break;
}
} while (!Done);
if (Tok.is(MMToken::RBrace))
consumeToken();
else {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace);
Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match);
HadError = true;
}
// If the active module is a top-level framework, and there are no link
// libraries, automatically link against the framework.
if (ActiveModule->IsFramework && !ActiveModule->isSubFramework() &&
ActiveModule->LinkLibraries.empty())
inferFrameworkLink(ActiveModule);
// If the module meets all requirements but is still unavailable, mark the
// whole tree as unavailable to prevent it from building.
if (!ActiveModule->IsAvailable && !ActiveModule->IsUnimportable &&
ActiveModule->Parent) {
ActiveModule->getTopLevelModule()->markUnavailable(/*Unimportable=*/false);
ActiveModule->getTopLevelModule()->MissingHeaders.append(
ActiveModule->MissingHeaders.begin(), ActiveModule->MissingHeaders.end());
}
// We're done parsing this module. Pop back to the previous module.
ActiveModule = PreviousActiveModule;
}
/// Parse an extern module declaration.
///
/// extern module-declaration:
/// 'extern' 'module' module-id string-literal
void ModuleMapParser::parseExternModuleDecl() {
assert(Tok.is(MMToken::ExternKeyword));
SourceLocation ExternLoc = consumeToken(); // 'extern' keyword
// Parse 'module' keyword.
if (!Tok.is(MMToken::ModuleKeyword)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module);
consumeToken();
HadError = true;
return;
}
consumeToken(); // 'module' keyword
// Parse the module name.
ModuleId Id;
if (parseModuleId(Id)) {
HadError = true;
return;
}
// Parse the referenced module map file name.
if (!Tok.is(MMToken::StringLiteral)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_mmap_file);
HadError = true;
return;
}
std::string FileName = std::string(Tok.getString());
consumeToken(); // filename
StringRef FileNameRef = FileName;
SmallString<128> ModuleMapFileName;
if (llvm::sys::path::is_relative(FileNameRef)) {
ModuleMapFileName += Directory->getName();
llvm::sys::path::append(ModuleMapFileName, FileName);
FileNameRef = ModuleMapFileName;
}
if (auto File = SourceMgr.getFileManager().getFile(FileNameRef))
Map.parseModuleMapFile(
*File, IsSystem,
Map.HeaderInfo.getHeaderSearchOpts().ModuleMapFileHomeIsCwd
? Directory
: (*File)->getDir(),
FileID(), nullptr, ExternLoc);
}
/// Whether to add the requirement \p Feature to the module \p M.
///
/// This preserves backwards compatibility for two hacks in the Darwin system
/// module map files:
///
/// 1. The use of 'requires excluded' to make headers non-modular, which
/// should really be mapped to 'textual' now that we have this feature. We
/// drop the 'excluded' requirement, and set \p IsRequiresExcludedHack to
/// true. Later, this bit will be used to map all the headers inside this
/// module to 'textual'.
///
/// This affects Darwin.C.excluded (for assert.h) and Tcl.Private.
///
/// 2. Removes a bogus cplusplus requirement from IOKit.avc. This requirement
/// was never correct and causes issues now that we check it, so drop it.
static bool shouldAddRequirement(Module *M, StringRef Feature,
bool &IsRequiresExcludedHack) {
if (Feature == "excluded" &&
(M->fullModuleNameIs({"Darwin", "C", "excluded"}) ||
M->fullModuleNameIs({"Tcl", "Private"}))) {
IsRequiresExcludedHack = true;
return false;
} else if (Feature == "cplusplus" && M->fullModuleNameIs({"IOKit", "avc"})) {
return false;
}
return true;
}
/// Parse a requires declaration.
///
/// requires-declaration:
/// 'requires' feature-list
///
/// feature-list:
/// feature ',' feature-list
/// feature
///
/// feature:
/// '!'[opt] identifier
void ModuleMapParser::parseRequiresDecl() {
assert(Tok.is(MMToken::RequiresKeyword));
// Parse 'requires' keyword.
consumeToken();
// Parse the feature-list.
do {
bool RequiredState = true;
if (Tok.is(MMToken::Exclaim)) {
RequiredState = false;
consumeToken();
}
if (!Tok.is(MMToken::Identifier)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_feature);
HadError = true;
return;
}
// Consume the feature name.
std::string Feature = std::string(Tok.getString());
consumeToken();
bool IsRequiresExcludedHack = false;
bool ShouldAddRequirement =
shouldAddRequirement(ActiveModule, Feature, IsRequiresExcludedHack);
if (IsRequiresExcludedHack)
UsesRequiresExcludedHack.insert(ActiveModule);
if (ShouldAddRequirement) {
// Add this feature.
ActiveModule->addRequirement(Feature, RequiredState, Map.LangOpts,
*Map.Target);
}
if (!Tok.is(MMToken::Comma))
break;
// Consume the comma.
consumeToken();
} while (true);
}
/// Parse a header declaration.
///
/// header-declaration:
/// 'textual'[opt] 'header' string-literal
/// 'private' 'textual'[opt] 'header' string-literal
/// 'exclude' 'header' string-literal
/// 'umbrella' 'header' string-literal
///
/// FIXME: Support 'private textual header'.
void ModuleMapParser::parseHeaderDecl(MMToken::TokenKind LeadingToken,
SourceLocation LeadingLoc) {
// We've already consumed the first token.
ModuleMap::ModuleHeaderRole Role = ModuleMap::NormalHeader;
if (LeadingToken == MMToken::PrivateKeyword) {
Role = ModuleMap::PrivateHeader;
// 'private' may optionally be followed by 'textual'.
if (Tok.is(MMToken::TextualKeyword)) {
LeadingToken = Tok.Kind;
consumeToken();
}
} else if (LeadingToken == MMToken::ExcludeKeyword) {
Role = ModuleMap::ExcludedHeader;
}
if (LeadingToken == MMToken::TextualKeyword)
Role = ModuleMap::ModuleHeaderRole(Role | ModuleMap::TextualHeader);
if (UsesRequiresExcludedHack.count(ActiveModule)) {
// Mark this header 'textual' (see doc comment for
// Module::UsesRequiresExcludedHack).
Role = ModuleMap::ModuleHeaderRole(Role | ModuleMap::TextualHeader);
}
if (LeadingToken != MMToken::HeaderKeyword) {
if (!Tok.is(MMToken::HeaderKeyword)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header)
<< (LeadingToken == MMToken::PrivateKeyword ? "private" :
LeadingToken == MMToken::ExcludeKeyword ? "exclude" :
LeadingToken == MMToken::TextualKeyword ? "textual" : "umbrella");
return;
}
consumeToken();
}
// Parse the header name.
if (!Tok.is(MMToken::StringLiteral)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header)
<< "header";
HadError = true;
return;
}
Module::UnresolvedHeaderDirective Header;
Header.FileName = std::string(Tok.getString());
Header.FileNameLoc = consumeToken();
Header.IsUmbrella = LeadingToken == MMToken::UmbrellaKeyword;
Header.Kind = Map.headerRoleToKind(Role);
// Check whether we already have an umbrella.
if (Header.IsUmbrella && ActiveModule->Umbrella) {
Diags.Report(Header.FileNameLoc, diag::err_mmap_umbrella_clash)
<< ActiveModule->getFullModuleName();
HadError = true;
return;
}
// If we were given stat information, parse it so we can skip looking for
// the file.
if (Tok.is(MMToken::LBrace)) {
SourceLocation LBraceLoc = consumeToken();
while (!Tok.is(MMToken::RBrace) && !Tok.is(MMToken::EndOfFile)) {
enum Attribute { Size, ModTime, Unknown };
StringRef Str = Tok.getString();
SourceLocation Loc = consumeToken();
switch (llvm::StringSwitch<Attribute>(Str)
.Case("size", Size)
.Case("mtime", ModTime)
.Default(Unknown)) {
case Size:
if (Header.Size)
Diags.Report(Loc, diag::err_mmap_duplicate_header_attribute) << Str;
if (!Tok.is(MMToken::IntegerLiteral)) {
Diags.Report(Tok.getLocation(),
diag::err_mmap_invalid_header_attribute_value) << Str;
skipUntil(MMToken::RBrace);
break;
}
Header.Size = Tok.getInteger();
consumeToken();
break;
case ModTime:
if (Header.ModTime)
Diags.Report(Loc, diag::err_mmap_duplicate_header_attribute) << Str;
if (!Tok.is(MMToken::IntegerLiteral)) {
Diags.Report(Tok.getLocation(),
diag::err_mmap_invalid_header_attribute_value) << Str;
skipUntil(MMToken::RBrace);
break;
}
Header.ModTime = Tok.getInteger();
consumeToken();
break;
case Unknown:
Diags.Report(Loc, diag::err_mmap_expected_header_attribute);
skipUntil(MMToken::RBrace);
break;
}
}
if (Tok.is(MMToken::RBrace))
consumeToken();
else {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace);
Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match);
HadError = true;
}
}
bool NeedsFramework = false;
Map.addUnresolvedHeader(ActiveModule, std::move(Header), NeedsFramework);
if (NeedsFramework && ActiveModule)
Diags.Report(CurrModuleDeclLoc, diag::note_mmap_add_framework_keyword)
<< ActiveModule->getFullModuleName()
<< FixItHint::CreateReplacement(CurrModuleDeclLoc, "framework module");
}
static int compareModuleHeaders(const Module::Header *A,
const Module::Header *B) {
return A->NameAsWritten.compare(B->NameAsWritten);
}
/// Parse an umbrella directory declaration.
///
/// umbrella-dir-declaration:
/// umbrella string-literal
void ModuleMapParser::parseUmbrellaDirDecl(SourceLocation UmbrellaLoc) {
// Parse the directory name.
if (!Tok.is(MMToken::StringLiteral)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header)
<< "umbrella";
HadError = true;
return;
}
std::string DirName = std::string(Tok.getString());
std::string DirNameAsWritten = DirName;
SourceLocation DirNameLoc = consumeToken();
// Check whether we already have an umbrella.
if (ActiveModule->Umbrella) {
Diags.Report(DirNameLoc, diag::err_mmap_umbrella_clash)
<< ActiveModule->getFullModuleName();
HadError = true;
return;
}
// Look for this file.
const DirectoryEntry *Dir = nullptr;
if (llvm::sys::path::is_absolute(DirName)) {
if (auto D = SourceMgr.getFileManager().getDirectory(DirName))
Dir = *D;
} else {
SmallString<128> PathName;
PathName = Directory->getName();
llvm::sys::path::append(PathName, DirName);
if (auto D = SourceMgr.getFileManager().getDirectory(PathName))
Dir = *D;
}
if (!Dir) {
Diags.Report(DirNameLoc, diag::warn_mmap_umbrella_dir_not_found)
<< DirName;
return;
}
if (UsesRequiresExcludedHack.count(ActiveModule)) {
// Mark this header 'textual' (see doc comment for
// ModuleMapParser::UsesRequiresExcludedHack). Although iterating over the
// directory is relatively expensive, in practice this only applies to the
// uncommonly used Tcl module on Darwin platforms.
std::error_code EC;
SmallVector<Module::Header, 6> Headers;
llvm::vfs::FileSystem &FS =
SourceMgr.getFileManager().getVirtualFileSystem();
for (llvm::vfs::recursive_directory_iterator I(FS, Dir->getName(), EC), E;
I != E && !EC; I.increment(EC)) {
if (auto FE = SourceMgr.getFileManager().getOptionalFileRef(I->path())) {
Module::Header Header = {"", std::string(I->path()), FE};
Headers.push_back(std::move(Header));
}
}
// Sort header paths so that the pcm doesn't depend on iteration order.
llvm::array_pod_sort(Headers.begin(), Headers.end(), compareModuleHeaders);
for (auto &Header : Headers)
Map.addHeader(ActiveModule, std::move(Header), ModuleMap::TextualHeader);
return;
}
if (Module *OwningModule = Map.UmbrellaDirs[Dir]) {
Diags.Report(UmbrellaLoc, diag::err_mmap_umbrella_clash)
<< OwningModule->getFullModuleName();
HadError = true;
return;
}
// Record this umbrella directory.
Map.setUmbrellaDir(ActiveModule, Dir, DirNameAsWritten, DirName);
}
/// Parse a module export declaration.
///
/// export-declaration:
/// 'export' wildcard-module-id
///
/// wildcard-module-id:
/// identifier
/// '*'
/// identifier '.' wildcard-module-id
void ModuleMapParser::parseExportDecl() {
assert(Tok.is(MMToken::ExportKeyword));
SourceLocation ExportLoc = consumeToken();
// Parse the module-id with an optional wildcard at the end.
ModuleId ParsedModuleId;
bool Wildcard = false;
do {
// FIXME: Support string-literal module names here.
if (Tok.is(MMToken::Identifier)) {
ParsedModuleId.push_back(
std::make_pair(std::string(Tok.getString()), Tok.getLocation()));
consumeToken();
if (Tok.is(MMToken::Period)) {
consumeToken();
continue;
}
break;
}
if(Tok.is(MMToken::Star)) {
Wildcard = true;
consumeToken();
break;
}
Diags.Report(Tok.getLocation(), diag::err_mmap_module_id);
HadError = true;
return;
} while (true);
Module::UnresolvedExportDecl Unresolved = {
ExportLoc, ParsedModuleId, Wildcard
};
ActiveModule->UnresolvedExports.push_back(Unresolved);
}
/// Parse a module export_as declaration.
///
/// export-as-declaration:
/// 'export_as' identifier
void ModuleMapParser::parseExportAsDecl() {
assert(Tok.is(MMToken::ExportAsKeyword));
consumeToken();
if (!Tok.is(MMToken::Identifier)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_module_id);
HadError = true;
return;
}
if (ActiveModule->Parent) {
Diags.Report(Tok.getLocation(), diag::err_mmap_submodule_export_as);
consumeToken();
return;
}
if (!ActiveModule->ExportAsModule.empty()) {
if (ActiveModule->ExportAsModule == Tok.getString()) {
Diags.Report(Tok.getLocation(), diag::warn_mmap_redundant_export_as)
<< ActiveModule->Name << Tok.getString();
} else {
Diags.Report(Tok.getLocation(), diag::err_mmap_conflicting_export_as)
<< ActiveModule->Name << ActiveModule->ExportAsModule
<< Tok.getString();
}
}
ActiveModule->ExportAsModule = std::string(Tok.getString());
Map.addLinkAsDependency(ActiveModule);
consumeToken();
}
/// Parse a module use declaration.
///
/// use-declaration:
/// 'use' wildcard-module-id
void ModuleMapParser::parseUseDecl() {
assert(Tok.is(MMToken::UseKeyword));
auto KWLoc = consumeToken();
// Parse the module-id.
ModuleId ParsedModuleId;
parseModuleId(ParsedModuleId);
if (ActiveModule->Parent)
Diags.Report(KWLoc, diag::err_mmap_use_decl_submodule);
else
ActiveModule->UnresolvedDirectUses.push_back(ParsedModuleId);
}
/// Parse a link declaration.
///
/// module-declaration:
/// 'link' 'framework'[opt] string-literal
void ModuleMapParser::parseLinkDecl() {
assert(Tok.is(MMToken::LinkKeyword));
SourceLocation LinkLoc = consumeToken();
// Parse the optional 'framework' keyword.
bool IsFramework = false;
if (Tok.is(MMToken::FrameworkKeyword)) {
consumeToken();
IsFramework = true;
}
// Parse the library name
if (!Tok.is(MMToken::StringLiteral)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_library_name)
<< IsFramework << SourceRange(LinkLoc);
HadError = true;
return;
}
std::string LibraryName = std::string(Tok.getString());
consumeToken();
ActiveModule->LinkLibraries.push_back(Module::LinkLibrary(LibraryName,
IsFramework));
}
/// Parse a configuration macro declaration.
///
/// module-declaration:
/// 'config_macros' attributes[opt] config-macro-list?
///
/// config-macro-list:
/// identifier (',' identifier)?
void ModuleMapParser::parseConfigMacros() {
assert(Tok.is(MMToken::ConfigMacros));
SourceLocation ConfigMacrosLoc = consumeToken();
// Only top-level modules can have configuration macros.
if (ActiveModule->Parent) {
Diags.Report(ConfigMacrosLoc, diag::err_mmap_config_macro_submodule);
}
// Parse the optional attributes.
Attributes Attrs;
if (parseOptionalAttributes(Attrs))
return;
if (Attrs.IsExhaustive && !ActiveModule->Parent) {
ActiveModule->ConfigMacrosExhaustive = true;
}
// If we don't have an identifier, we're done.
// FIXME: Support macros with the same name as a keyword here.
if (!Tok.is(MMToken::Identifier))
return;
// Consume the first identifier.
if (!ActiveModule->Parent) {
ActiveModule->ConfigMacros.push_back(Tok.getString().str());
}
consumeToken();
do {
// If there's a comma, consume it.
if (!Tok.is(MMToken::Comma))
break;
consumeToken();
// We expect to see a macro name here.
// FIXME: Support macros with the same name as a keyword here.
if (!Tok.is(MMToken::Identifier)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_config_macro);
break;
}
// Consume the macro name.
if (!ActiveModule->Parent) {
ActiveModule->ConfigMacros.push_back(Tok.getString().str());
}
consumeToken();
} while (true);
}
/// Format a module-id into a string.
static std::string formatModuleId(const ModuleId &Id) {
std::string result;
{
llvm::raw_string_ostream OS(result);
for (unsigned I = 0, N = Id.size(); I != N; ++I) {
if (I)
OS << ".";
OS << Id[I].first;
}
}
return result;
}
/// Parse a conflict declaration.
///
/// module-declaration:
/// 'conflict' module-id ',' string-literal
void ModuleMapParser::parseConflict() {
assert(Tok.is(MMToken::Conflict));
SourceLocation ConflictLoc = consumeToken();
Module::UnresolvedConflict Conflict;
// Parse the module-id.
if (parseModuleId(Conflict.Id))
return;
// Parse the ','.
if (!Tok.is(MMToken::Comma)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_conflicts_comma)
<< SourceRange(ConflictLoc);
return;
}
consumeToken();
// Parse the message.
if (!Tok.is(MMToken::StringLiteral)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_conflicts_message)
<< formatModuleId(Conflict.Id);
return;
}
Conflict.Message = Tok.getString().str();
consumeToken();
// Add this unresolved conflict.
ActiveModule->UnresolvedConflicts.push_back(Conflict);
}
/// Parse an inferred module declaration (wildcard modules).
///
/// module-declaration:
/// 'explicit'[opt] 'framework'[opt] 'module' * attributes[opt]
/// { inferred-module-member* }
///
/// inferred-module-member:
/// 'export' '*'
/// 'exclude' identifier
void ModuleMapParser::parseInferredModuleDecl(bool Framework, bool Explicit) {
assert(Tok.is(MMToken::Star));
SourceLocation StarLoc = consumeToken();
bool Failed = false;
// Inferred modules must be submodules.
if (!ActiveModule && !Framework) {
Diags.Report(StarLoc, diag::err_mmap_top_level_inferred_submodule);
Failed = true;
}
if (ActiveModule) {
// Inferred modules must have umbrella directories.
if (!Failed && ActiveModule->IsAvailable &&
!ActiveModule->getUmbrellaDir()) {
Diags.Report(StarLoc, diag::err_mmap_inferred_no_umbrella);
Failed = true;
}
// Check for redefinition of an inferred module.
if (!Failed && ActiveModule->InferSubmodules) {
Diags.Report(StarLoc, diag::err_mmap_inferred_redef);
if (ActiveModule->InferredSubmoduleLoc.isValid())
Diags.Report(ActiveModule->InferredSubmoduleLoc,
diag::note_mmap_prev_definition);
Failed = true;
}
// Check for the 'framework' keyword, which is not permitted here.
if (Framework) {
Diags.Report(StarLoc, diag::err_mmap_inferred_framework_submodule);
Framework = false;
}
} else if (Explicit) {
Diags.Report(StarLoc, diag::err_mmap_explicit_inferred_framework);
Explicit = false;
}
// If there were any problems with this inferred submodule, skip its body.
if (Failed) {
if (Tok.is(MMToken::LBrace)) {
consumeToken();
skipUntil(MMToken::RBrace);
if (Tok.is(MMToken::RBrace))
consumeToken();
}
HadError = true;
return;
}
// Parse optional attributes.
Attributes Attrs;
if (parseOptionalAttributes(Attrs))
return;
if (ActiveModule) {
// Note that we have an inferred submodule.
ActiveModule->InferSubmodules = true;
ActiveModule->InferredSubmoduleLoc = StarLoc;
ActiveModule->InferExplicitSubmodules = Explicit;
} else {
// We'll be inferring framework modules for this directory.
Map.InferredDirectories[Directory].InferModules = true;
Map.InferredDirectories[Directory].Attrs = Attrs;
Map.InferredDirectories[Directory].ModuleMapFile = ModuleMapFile;
// FIXME: Handle the 'framework' keyword.
}
// Parse the opening brace.
if (!Tok.is(MMToken::LBrace)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_lbrace_wildcard);
HadError = true;
return;
}
SourceLocation LBraceLoc = consumeToken();
// Parse the body of the inferred submodule.
bool Done = false;
do {
switch (Tok.Kind) {
case MMToken::EndOfFile:
case MMToken::RBrace:
Done = true;
break;
case MMToken::ExcludeKeyword:
if (ActiveModule) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member)
<< (ActiveModule != nullptr);
consumeToken();
break;
}
consumeToken();
// FIXME: Support string-literal module names here.
if (!Tok.is(MMToken::Identifier)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_missing_exclude_name);
break;
}
Map.InferredDirectories[Directory].ExcludedModules.push_back(
std::string(Tok.getString()));
consumeToken();
break;
case MMToken::ExportKeyword:
if (!ActiveModule) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member)
<< (ActiveModule != nullptr);
consumeToken();
break;
}
consumeToken();
if (Tok.is(MMToken::Star))
ActiveModule->InferExportWildcard = true;
else
Diags.Report(Tok.getLocation(),
diag::err_mmap_expected_export_wildcard);
consumeToken();
break;
case MMToken::ExplicitKeyword:
case MMToken::ModuleKeyword:
case MMToken::HeaderKeyword:
case MMToken::PrivateKeyword:
case MMToken::UmbrellaKeyword:
default:
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member)
<< (ActiveModule != nullptr);
consumeToken();
break;
}
} while (!Done);
if (Tok.is(MMToken::RBrace))
consumeToken();
else {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace);
Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match);
HadError = true;
}
}
/// Parse optional attributes.
///
/// attributes:
/// attribute attributes
/// attribute
///
/// attribute:
/// [ identifier ]
///
/// \param Attrs Will be filled in with the parsed attributes.
///
/// \returns true if an error occurred, false otherwise.
bool ModuleMapParser::parseOptionalAttributes(Attributes &Attrs) {
bool HadError = false;
while (Tok.is(MMToken::LSquare)) {
// Consume the '['.
SourceLocation LSquareLoc = consumeToken();
// Check whether we have an attribute name here.
if (!Tok.is(MMToken::Identifier)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_attribute);
skipUntil(MMToken::RSquare);
if (Tok.is(MMToken::RSquare))
consumeToken();
HadError = true;
}
// Decode the attribute name.
AttributeKind Attribute
= llvm::StringSwitch<AttributeKind>(Tok.getString())
.Case("exhaustive", AT_exhaustive)
.Case("extern_c", AT_extern_c)
.Case("no_undeclared_includes", AT_no_undeclared_includes)
.Case("system", AT_system)
.Default(AT_unknown);
switch (Attribute) {
case AT_unknown:
Diags.Report(Tok.getLocation(), diag::warn_mmap_unknown_attribute)
<< Tok.getString();
break;
case AT_system:
Attrs.IsSystem = true;
break;
case AT_extern_c:
Attrs.IsExternC = true;
break;
case AT_exhaustive:
Attrs.IsExhaustive = true;
break;
case AT_no_undeclared_includes:
Attrs.NoUndeclaredIncludes = true;
break;
}
consumeToken();
// Consume the ']'.
if (!Tok.is(MMToken::RSquare)) {
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rsquare);
Diags.Report(LSquareLoc, diag::note_mmap_lsquare_match);
skipUntil(MMToken::RSquare);
HadError = true;
}
if (Tok.is(MMToken::RSquare))
consumeToken();
}
return HadError;
}
/// Parse a module map file.
///
/// module-map-file:
/// module-declaration*
bool ModuleMapParser::parseModuleMapFile() {
do {
switch (Tok.Kind) {
case MMToken::EndOfFile:
return HadError;
case MMToken::ExplicitKeyword:
case MMToken::ExternKeyword:
case MMToken::ModuleKeyword:
case MMToken::FrameworkKeyword:
parseModuleDecl();
break;
case MMToken::Comma:
case MMToken::ConfigMacros:
case MMToken::Conflict:
case MMToken::Exclaim:
case MMToken::ExcludeKeyword:
case MMToken::ExportKeyword:
case MMToken::ExportAsKeyword:
case MMToken::HeaderKeyword:
case MMToken::Identifier:
case MMToken::LBrace:
case MMToken::LinkKeyword:
case MMToken::LSquare:
case MMToken::Period:
case MMToken::PrivateKeyword:
case MMToken::RBrace:
case MMToken::RSquare:
case MMToken::RequiresKeyword:
case MMToken::Star:
case MMToken::StringLiteral:
case MMToken::IntegerLiteral:
case MMToken::TextualKeyword:
case MMToken::UmbrellaKeyword:
case MMToken::UseKeyword:
Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module);
HadError = true;
consumeToken();
break;
}
} while (true);
}
bool ModuleMap::parseModuleMapFile(const FileEntry *File, bool IsSystem,
const DirectoryEntry *Dir, FileID ID,
unsigned *Offset,
SourceLocation ExternModuleLoc) {
assert(Target && "Missing target information");
llvm::DenseMap<const FileEntry *, bool>::iterator Known
= ParsedModuleMap.find(File);
if (Known != ParsedModuleMap.end())
return Known->second;
// If the module map file wasn't already entered, do so now.
if (ID.isInvalid()) {
auto FileCharacter =
IsSystem ? SrcMgr::C_System_ModuleMap : SrcMgr::C_User_ModuleMap;
ID = SourceMgr.createFileID(File, ExternModuleLoc, FileCharacter);
}
assert(Target && "Missing target information");
std::optional<llvm::MemoryBufferRef> Buffer = SourceMgr.getBufferOrNone(ID);
if (!Buffer)
return ParsedModuleMap[File] = true;
assert((!Offset || *Offset <= Buffer->getBufferSize()) &&
"invalid buffer offset");
// Parse this module map file.
Lexer L(SourceMgr.getLocForStartOfFile(ID), MMapLangOpts,
Buffer->getBufferStart(),
Buffer->getBufferStart() + (Offset ? *Offset : 0),
Buffer->getBufferEnd());
SourceLocation Start = L.getSourceLocation();
ModuleMapParser Parser(L, SourceMgr, Target, Diags, *this, File, Dir,
IsSystem);
bool Result = Parser.parseModuleMapFile();
ParsedModuleMap[File] = Result;
if (Offset) {
auto Loc = SourceMgr.getDecomposedLoc(Parser.getLocation());
assert(Loc.first == ID && "stopped in a different file?");
*Offset = Loc.second;
}
// Notify callbacks that we parsed it.
for (const auto &Cb : Callbacks)
Cb->moduleMapFileRead(Start, *File, IsSystem);
return Result;
}