llvm-project/clang/lib/Sema/HeuristicResolver.cpp
Matheus Izvekov 5b6f71b8f6
WIP: [clang] store sugared converted arguments on TemplateSpecializationType
Not ready for review

This is a quite large patch, half of which will
be redone following a different approach.

Although it improves sugar retention in template argument
deduction on its own, this is an enabler for resugaring.

This stores the sugared converted template arguments in
a TST, in addition to the existing as-written ones,
so this is quite wasteful.

This is the biggest performance impact on the whole
of resugaring so far, although it is hoped the
new approach will have negligible impact.

This is a continuation of https://reviews.llvm.org/D134113
2025-04-03 14:29:45 -03:00

560 lines
21 KiB
C++

//===--- HeuristicResolver.cpp ---------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/HeuristicResolver.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
namespace clang {
namespace {
// Helper class for implementing HeuristicResolver.
// Unlike HeuristicResolver which is a long-lived class,
// a new instance of this class is created for every external
// call into a HeuristicResolver operation. That allows this
// class to store state that's local to such a top-level call,
// particularly "recursion protection sets" that keep track of
// nodes that have already been seen to avoid infinite recursion.
class HeuristicResolverImpl {
public:
HeuristicResolverImpl(ASTContext &Ctx) : Ctx(Ctx) {}
// These functions match the public interface of HeuristicResolver
// (but aren't const since they may modify the recursion protection sets).
std::vector<const NamedDecl *>
resolveMemberExpr(const CXXDependentScopeMemberExpr *ME);
std::vector<const NamedDecl *>
resolveDeclRefExpr(const DependentScopeDeclRefExpr *RE);
std::vector<const NamedDecl *> resolveTypeOfCallExpr(const CallExpr *CE);
std::vector<const NamedDecl *> resolveCalleeOfCallExpr(const CallExpr *CE);
std::vector<const NamedDecl *>
resolveUsingValueDecl(const UnresolvedUsingValueDecl *UUVD);
std::vector<const NamedDecl *>
resolveDependentNameType(const DependentNameType *DNT);
std::vector<const NamedDecl *> resolveTemplateSpecializationType(
const DependentTemplateSpecializationType *DTST);
QualType resolveNestedNameSpecifierToType(const NestedNameSpecifier *NNS);
QualType getPointeeType(QualType T);
std::vector<const NamedDecl *>
lookupDependentName(CXXRecordDecl *RD, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter);
private:
ASTContext &Ctx;
// Recursion protection sets
llvm::SmallSet<const DependentNameType *, 4> SeenDependentNameTypes;
// Given a tag-decl type and a member name, heuristically resolve the
// name to one or more declarations.
// The current heuristic is simply to look up the name in the primary
// template. This is a heuristic because the template could potentially
// have specializations that declare different members.
// Multiple declarations could be returned if the name is overloaded
// (e.g. an overloaded method in the primary template).
// This heuristic will give the desired answer in many cases, e.g.
// for a call to vector<T>::size().
std::vector<const NamedDecl *>
resolveDependentMember(QualType T, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter);
// Try to heuristically resolve the type of a possibly-dependent expression
// `E`.
QualType resolveExprToType(const Expr *E);
std::vector<const NamedDecl *> resolveExprToDecls(const Expr *E);
// Helper function for HeuristicResolver::resolveDependentMember()
// which takes a possibly-dependent type `T` and heuristically
// resolves it to a TagDecl in which we can try name lookup.
TagDecl *resolveTypeToTagDecl(const Type *T);
// Helper function for simplifying a type.
// `Type` is the type to simplify.
// `E` is the expression whose type `Type` is, if known. This sometimes
// contains information relevant to the type that's not stored in `Type`
// itself.
// If `UnwrapPointer` is true, exactly only pointer type will be unwrapped
// during simplification, and the operation fails if no pointer type is found.
QualType simplifyType(QualType Type, const Expr *E, bool UnwrapPointer);
bool findOrdinaryMemberInDependentClasses(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
DeclarationName Name);
};
// Convenience lambdas for use as the 'Filter' parameter of
// HeuristicResolver::resolveDependentMember().
const auto NoFilter = [](const NamedDecl *D) { return true; };
const auto NonStaticFilter = [](const NamedDecl *D) {
return D->isCXXInstanceMember();
};
const auto StaticFilter = [](const NamedDecl *D) {
return !D->isCXXInstanceMember();
};
const auto ValueFilter = [](const NamedDecl *D) { return isa<ValueDecl>(D); };
const auto TypeFilter = [](const NamedDecl *D) { return isa<TypeDecl>(D); };
const auto TemplateFilter = [](const NamedDecl *D) {
return isa<TemplateDecl>(D);
};
QualType resolveDeclsToType(const std::vector<const NamedDecl *> &Decls,
ASTContext &Ctx) {
if (Decls.size() != 1) // Names an overload set -- just bail.
return QualType();
if (const auto *TD = dyn_cast<TypeDecl>(Decls[0])) {
return Ctx.getTypeDeclType(TD);
}
if (const auto *VD = dyn_cast<ValueDecl>(Decls[0])) {
return VD->getType();
}
return QualType();
}
TemplateName getReferencedTemplateName(const Type *T) {
if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
return TST->getTemplateName();
}
if (const auto *DTST = T->getAs<DeducedTemplateSpecializationType>()) {
return DTST->getTemplateName();
}
return TemplateName();
}
// Helper function for HeuristicResolver::resolveDependentMember()
// which takes a possibly-dependent type `T` and heuristically
// resolves it to a CXXRecordDecl in which we can try name lookup.
TagDecl *HeuristicResolverImpl::resolveTypeToTagDecl(const Type *T) {
assert(T);
// Unwrap type sugar such as type aliases.
T = T->getCanonicalTypeInternal().getTypePtr();
if (const auto *DNT = T->getAs<DependentNameType>()) {
T = resolveDeclsToType(resolveDependentNameType(DNT), Ctx)
.getTypePtrOrNull();
if (!T)
return nullptr;
T = T->getCanonicalTypeInternal().getTypePtr();
}
if (auto *TT = T->getAs<TagType>()) {
return TT->getDecl();
}
if (const auto *ICNT = T->getAs<InjectedClassNameType>())
T = ICNT->getInjectedSpecializationType().getTypePtrOrNull();
if (!T)
return nullptr;
TemplateName TN = getReferencedTemplateName(T);
if (TN.isNull())
return nullptr;
const ClassTemplateDecl *TD =
dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
if (!TD)
return nullptr;
return TD->getTemplatedDecl();
}
QualType HeuristicResolverImpl::getPointeeType(QualType T) {
if (T.isNull())
return QualType();
if (T->isPointerType())
return T->castAs<PointerType>()->getPointeeType();
// Try to handle smart pointer types.
// Look up operator-> in the primary template. If we find one, it's probably a
// smart pointer type.
auto ArrowOps = resolveDependentMember(
T, Ctx.DeclarationNames.getCXXOperatorName(OO_Arrow), NonStaticFilter);
if (ArrowOps.empty())
return QualType();
// Getting the return type of the found operator-> method decl isn't useful,
// because we discarded template arguments to perform lookup in the primary
// template scope, so the return type would just have the form U* where U is a
// template parameter type.
// Instead, just handle the common case where the smart pointer type has the
// form of SmartPtr<X, ...>, and assume X is the pointee type.
auto *TST = T->getAs<TemplateSpecializationType>();
if (!TST)
return QualType();
if (TST->getSpecifiedArguments().size() == 0)
return QualType();
const TemplateArgument &FirstArg = TST->getSpecifiedArguments()[0];
if (FirstArg.getKind() != TemplateArgument::Type)
return QualType();
return FirstArg.getAsType();
}
QualType HeuristicResolverImpl::simplifyType(QualType Type, const Expr *E,
bool UnwrapPointer) {
bool DidUnwrapPointer = false;
// A type, together with an optional expression whose type it represents
// which may have additional information about the expression's type
// not stored in the QualType itself.
struct TypeExprPair {
QualType Type;
const Expr *E = nullptr;
};
TypeExprPair Current{Type, E};
auto SimplifyOneStep = [UnwrapPointer, &DidUnwrapPointer,
this](TypeExprPair T) -> TypeExprPair {
if (UnwrapPointer) {
if (QualType Pointee = getPointeeType(T.Type); !Pointee.isNull()) {
DidUnwrapPointer = true;
return {Pointee};
}
}
if (const auto *RT = T.Type->getAs<ReferenceType>()) {
// Does not count as "unwrap pointer".
return {RT->getPointeeType()};
}
if (const auto *BT = T.Type->getAs<BuiltinType>()) {
// If BaseType is the type of a dependent expression, it's just
// represented as BuiltinType::Dependent which gives us no information. We
// can get further by analyzing the dependent expression.
if (T.E && BT->getKind() == BuiltinType::Dependent) {
return {resolveExprToType(T.E), T.E};
}
}
if (const auto *AT = T.Type->getContainedAutoType()) {
// If T contains a dependent `auto` type, deduction will not have
// been performed on it yet. In simple cases (e.g. `auto` variable with
// initializer), get the approximate type that would result from
// deduction.
// FIXME: A more accurate implementation would propagate things like the
// `const` in `const auto`.
if (T.E && AT->isUndeducedAutoType()) {
if (const auto *DRE = dyn_cast<DeclRefExpr>(T.E)) {
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
if (auto *Init = VD->getInit())
return {resolveExprToType(Init), Init};
}
}
}
}
if (const auto *TTPT = dyn_cast_if_present<TemplateTypeParmType>(T.Type)) {
// We can't do much useful with a template parameter (e.g. we cannot look
// up member names inside it). However, if the template parameter has a
// default argument, as a heuristic we can replace T with the default
// argument type.
if (const auto *TTPD = TTPT->getDecl()) {
if (TTPD->hasDefaultArgument()) {
const auto &DefaultArg = TTPD->getDefaultArgument().getArgument();
if (DefaultArg.getKind() == TemplateArgument::Type) {
return {DefaultArg.getAsType()};
}
}
}
}
return T;
};
// As an additional protection against infinite loops, bound the number of
// simplification steps.
size_t StepCount = 0;
const size_t MaxSteps = 64;
while (!Current.Type.isNull() && StepCount++ < MaxSteps) {
TypeExprPair New = SimplifyOneStep(Current);
if (New.Type == Current.Type)
break;
Current = New;
}
if (UnwrapPointer && !DidUnwrapPointer)
return QualType();
return Current.Type;
}
std::vector<const NamedDecl *> HeuristicResolverImpl::resolveMemberExpr(
const CXXDependentScopeMemberExpr *ME) {
// If the expression has a qualifier, try resolving the member inside the
// qualifier's type.
// Note that we cannot use a NonStaticFilter in either case, for a couple
// of reasons:
// 1. It's valid to access a static member using instance member syntax,
// e.g. `instance.static_member`.
// 2. We can sometimes get a CXXDependentScopeMemberExpr for static
// member syntax too, e.g. if `X::static_member` occurs inside
// an instance method, it's represented as a CXXDependentScopeMemberExpr
// with `this` as the base expression as `X` as the qualifier
// (which could be valid if `X` names a base class after instantiation).
if (NestedNameSpecifier *NNS = ME->getQualifier()) {
if (QualType QualifierType = resolveNestedNameSpecifierToType(NNS);
!QualifierType.isNull()) {
auto Decls =
resolveDependentMember(QualifierType, ME->getMember(), NoFilter);
if (!Decls.empty())
return Decls;
}
// Do not proceed to try resolving the member in the expression's base type
// without regard to the qualifier, as that could produce incorrect results.
// For example, `void foo() { this->Base::foo(); }` shouldn't resolve to
// foo() itself!
return {};
}
// Try resolving the member inside the expression's base type.
Expr *Base = ME->isImplicitAccess() ? nullptr : ME->getBase();
QualType BaseType = ME->getBaseType();
BaseType = simplifyType(BaseType, Base, ME->isArrow());
return resolveDependentMember(BaseType, ME->getMember(), NoFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveDeclRefExpr(const DependentScopeDeclRefExpr *RE) {
return resolveDependentMember(
resolveNestedNameSpecifierToType(RE->getQualifier()), RE->getDeclName(),
StaticFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveTypeOfCallExpr(const CallExpr *CE) {
QualType CalleeType = resolveExprToType(CE->getCallee());
if (CalleeType.isNull())
return {};
if (const auto *FnTypePtr = CalleeType->getAs<PointerType>())
CalleeType = FnTypePtr->getPointeeType();
if (const FunctionType *FnType = CalleeType->getAs<FunctionType>()) {
if (const auto *D =
resolveTypeToTagDecl(FnType->getReturnType().getTypePtr())) {
return {D};
}
}
return {};
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveCalleeOfCallExpr(const CallExpr *CE) {
if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
return {ND};
}
return resolveExprToDecls(CE->getCallee());
}
std::vector<const NamedDecl *> HeuristicResolverImpl::resolveUsingValueDecl(
const UnresolvedUsingValueDecl *UUVD) {
return resolveDependentMember(QualType(UUVD->getQualifier()->getAsType(), 0),
UUVD->getNameInfo().getName(), ValueFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveDependentNameType(const DependentNameType *DNT) {
if (auto [_, inserted] = SeenDependentNameTypes.insert(DNT); !inserted)
return {};
return resolveDependentMember(
resolveNestedNameSpecifierToType(DNT->getQualifier()),
DNT->getIdentifier(), TypeFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveTemplateSpecializationType(
const DependentTemplateSpecializationType *DTST) {
const DependentTemplateStorage &DTN = DTST->getDependentTemplateName();
return resolveDependentMember(
resolveNestedNameSpecifierToType(DTN.getQualifier()),
DTN.getName().getIdentifier(), TemplateFilter);
}
std::vector<const NamedDecl *>
HeuristicResolverImpl::resolveExprToDecls(const Expr *E) {
if (const auto *ME = dyn_cast<CXXDependentScopeMemberExpr>(E)) {
return resolveMemberExpr(ME);
}
if (const auto *RE = dyn_cast<DependentScopeDeclRefExpr>(E)) {
return resolveDeclRefExpr(RE);
}
if (const auto *OE = dyn_cast<OverloadExpr>(E)) {
return {OE->decls_begin(), OE->decls_end()};
}
if (const auto *CE = dyn_cast<CallExpr>(E)) {
return resolveTypeOfCallExpr(CE);
}
if (const auto *ME = dyn_cast<MemberExpr>(E))
return {ME->getMemberDecl()};
return {};
}
QualType HeuristicResolverImpl::resolveExprToType(const Expr *E) {
std::vector<const NamedDecl *> Decls = resolveExprToDecls(E);
if (!Decls.empty())
return resolveDeclsToType(Decls, Ctx);
return E->getType();
}
QualType HeuristicResolverImpl::resolveNestedNameSpecifierToType(
const NestedNameSpecifier *NNS) {
if (!NNS)
return QualType();
// The purpose of this function is to handle the dependent (Kind ==
// Identifier) case, but we need to recurse on the prefix because
// that may be dependent as well, so for convenience handle
// the TypeSpec cases too.
switch (NNS->getKind()) {
case NestedNameSpecifier::TypeSpec:
return QualType(NNS->getAsType(), 0);
case NestedNameSpecifier::Identifier: {
return resolveDeclsToType(
resolveDependentMember(
resolveNestedNameSpecifierToType(NNS->getPrefix()),
NNS->getAsIdentifier(), TypeFilter),
Ctx);
}
default:
break;
}
return QualType();
}
bool isOrdinaryMember(const NamedDecl *ND) {
return ND->isInIdentifierNamespace(Decl::IDNS_Ordinary | Decl::IDNS_Tag |
Decl::IDNS_Member);
}
bool findOrdinaryMember(const CXXRecordDecl *RD, CXXBasePath &Path,
DeclarationName Name) {
Path.Decls = RD->lookup(Name).begin();
for (DeclContext::lookup_iterator I = Path.Decls, E = I.end(); I != E; ++I)
if (isOrdinaryMember(*I))
return true;
return false;
}
bool HeuristicResolverImpl::findOrdinaryMemberInDependentClasses(
const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
DeclarationName Name) {
TagDecl *TD = resolveTypeToTagDecl(Specifier->getType().getTypePtr());
if (const auto *RD = dyn_cast_if_present<CXXRecordDecl>(TD)) {
return findOrdinaryMember(RD, Path, Name);
}
return false;
}
std::vector<const NamedDecl *> HeuristicResolverImpl::lookupDependentName(
CXXRecordDecl *RD, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
std::vector<const NamedDecl *> Results;
// Lookup in the class.
bool AnyOrdinaryMembers = false;
for (const NamedDecl *ND : RD->lookup(Name)) {
if (isOrdinaryMember(ND))
AnyOrdinaryMembers = true;
if (Filter(ND))
Results.push_back(ND);
}
if (AnyOrdinaryMembers)
return Results;
// Perform lookup into our base classes.
CXXBasePaths Paths;
Paths.setOrigin(RD);
if (!RD->lookupInBases(
[&](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
return findOrdinaryMemberInDependentClasses(Specifier, Path, Name);
},
Paths, /*LookupInDependent=*/true))
return Results;
for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
I != E; ++I) {
if (isOrdinaryMember(*I) && Filter(*I))
Results.push_back(*I);
}
return Results;
}
std::vector<const NamedDecl *> HeuristicResolverImpl::resolveDependentMember(
QualType QT, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
const Type *T = QT.getTypePtrOrNull();
if (!T)
return {};
TagDecl *TD = resolveTypeToTagDecl(T);
if (!TD)
return {};
if (auto *ED = dyn_cast<EnumDecl>(TD)) {
auto Result = ED->lookup(Name);
return {Result.begin(), Result.end()};
}
if (auto *RD = dyn_cast<CXXRecordDecl>(TD)) {
if (!RD->hasDefinition())
return {};
RD = RD->getDefinition();
return lookupDependentName(RD, Name, [&](const NamedDecl *ND) {
if (!Filter(ND))
return false;
if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) {
return !MD->isInstance() ||
MD->getMethodQualifiers().compatiblyIncludes(QT.getQualifiers(),
Ctx);
}
return true;
});
}
return {};
}
} // namespace
std::vector<const NamedDecl *> HeuristicResolver::resolveMemberExpr(
const CXXDependentScopeMemberExpr *ME) const {
return HeuristicResolverImpl(Ctx).resolveMemberExpr(ME);
}
std::vector<const NamedDecl *> HeuristicResolver::resolveDeclRefExpr(
const DependentScopeDeclRefExpr *RE) const {
return HeuristicResolverImpl(Ctx).resolveDeclRefExpr(RE);
}
std::vector<const NamedDecl *>
HeuristicResolver::resolveTypeOfCallExpr(const CallExpr *CE) const {
return HeuristicResolverImpl(Ctx).resolveTypeOfCallExpr(CE);
}
std::vector<const NamedDecl *>
HeuristicResolver::resolveCalleeOfCallExpr(const CallExpr *CE) const {
return HeuristicResolverImpl(Ctx).resolveCalleeOfCallExpr(CE);
}
std::vector<const NamedDecl *> HeuristicResolver::resolveUsingValueDecl(
const UnresolvedUsingValueDecl *UUVD) const {
return HeuristicResolverImpl(Ctx).resolveUsingValueDecl(UUVD);
}
std::vector<const NamedDecl *> HeuristicResolver::resolveDependentNameType(
const DependentNameType *DNT) const {
return HeuristicResolverImpl(Ctx).resolveDependentNameType(DNT);
}
std::vector<const NamedDecl *>
HeuristicResolver::resolveTemplateSpecializationType(
const DependentTemplateSpecializationType *DTST) const {
return HeuristicResolverImpl(Ctx).resolveTemplateSpecializationType(DTST);
}
QualType HeuristicResolver::resolveNestedNameSpecifierToType(
const NestedNameSpecifier *NNS) const {
return HeuristicResolverImpl(Ctx).resolveNestedNameSpecifierToType(NNS);
}
std::vector<const NamedDecl *> HeuristicResolver::lookupDependentName(
CXXRecordDecl *RD, DeclarationName Name,
llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
return HeuristicResolverImpl(Ctx).lookupDependentName(RD, Name, Filter);
}
const QualType HeuristicResolver::getPointeeType(QualType T) const {
return HeuristicResolverImpl(Ctx).getPointeeType(T);
}
} // namespace clang