Rob Suderman 5b89c1dd68 [mlir] DenseStringElementsAttr added to default attribute types
Summary:
Implemented a DenseStringsElements attr for handling arrays / tensors of strings. This includes the
necessary logic for parsing and printing the attribute from MLIR's text format.

To store the attribute we perform a single allocation that includes all wrapped string data tightly packed.
This means no padding characters and no null terminators (as they could be present in the string). This
buffer includes a first chunk of data that represents an array of StringRefs, that contain address pointers
into the string data, with the length of each string wrapped. At this point there is no Sparse representation
however strings are not typically represented sparsely.

Differential Revision: https://reviews.llvm.org/D78600
2020-04-23 19:02:15 -07:00

1270 lines
42 KiB
TableGen

//===-- TestOps.td - Test dialect operation definitions ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef TEST_OPS
#define TEST_OPS
include "mlir/IR/OpBase.td"
include "mlir/IR/OpAsmInterface.td"
include "mlir/Interfaces/SideEffects.td"
include "mlir/Interfaces/CallInterfaces.td"
include "mlir/Interfaces/ControlFlowInterfaces.td"
include "mlir/Interfaces/InferTypeOpInterface.td"
include "mlir/Interfaces/SideEffects.td"
def Test_Dialect : Dialect {
let name = "test";
let cppNamespace = "";
let hasOperationAttrVerify = 1;
let hasRegionArgAttrVerify = 1;
let hasRegionResultAttrVerify = 1;
}
class TEST_Op<string mnemonic, list<OpTrait> traits = []> :
Op<Test_Dialect, mnemonic, traits>;
//===----------------------------------------------------------------------===//
// Test Types
//===----------------------------------------------------------------------===//
def IntTypesOp : TEST_Op<"int_types"> {
let results = (outs
AnyI16:$any_i16,
SI32:$si32,
UI64:$ui64,
AnyInteger:$any_int
);
}
def ComplexF64 : Complex<F64>;
def ComplexOp : TEST_Op<"complex_f64"> {
let results = (outs ComplexF64);
}
def ComplexTensorOp : TEST_Op<"complex_f64_tensor"> {
let results = (outs TensorOf<[ComplexF64]>);
}
def AnyShaped: ShapedContainerType<[AnyType], IsShapedTypePred, "shaped">;
def TupleOp : TEST_Op<"tuple_32_bit"> {
let results = (outs TupleOf<[I32, F32]>);
}
def NestedTupleOp : TEST_Op<"nested_tuple_32_bit"> {
let results = (outs NestedTupleOf<[I32, F32]>);
}
def TakesStaticMemRefOp : TEST_Op<"takes_static_memref"> {
let arguments = (ins AnyStaticShapeMemRef:$x);
}
def RankLessThan2I8F32MemRefOp : TEST_Op<"rank_less_than_2_I8_F32_memref"> {
let results = (outs MemRefRankOf<[I8, F32], [0, 1]>);
}
def NDTensorOfOp : TEST_Op<"nd_tensor_of"> {
let arguments = (ins
0DTensorOf<[F32]>:$arg0,
1DTensorOf<[F32]>:$arg1,
2DTensorOf<[I16]>:$arg2,
3DTensorOf<[I16]>:$arg3,
4DTensorOf<[I16]>:$arg4
);
}
def RankedTensorOp : TEST_Op<"ranked_tensor_op"> {
let arguments = (ins AnyRankedTensor:$input);
}
def MultiTensorRankOf : TEST_Op<"multi_tensor_rank_of"> {
let arguments = (ins
TensorRankOf<[I8, I32, F32], [0, 1]>:$arg0
);
}
//===----------------------------------------------------------------------===//
// Test Symbols
//===----------------------------------------------------------------------===//
def SymbolOp : TEST_Op<"symbol", [Symbol]> {
let summary = "operation which defines a new symbol";
let arguments = (ins StrAttr:$sym_name,
OptionalAttr<StrAttr>:$sym_visibility);
}
def SymbolScopeOp : TEST_Op<"symbol_scope",
[SymbolTable, SingleBlockImplicitTerminator<"TerminatorOp">]> {
let summary = "operation which defines a new symbol table";
let regions = (region SizedRegion<1>:$region);
}
def SymbolTableRegionOp : TEST_Op<"symbol_table_region", [SymbolTable]> {
let summary = "operation which defines a new symbol table without a "
"restriction on a terminator";
let regions = (region SizedRegion<1>:$region);
}
//===----------------------------------------------------------------------===//
// Test Operands
//===----------------------------------------------------------------------===//
def MixedNormalVariadicOperandOp : TEST_Op<
"mixed_normal_variadic_operand", [SameVariadicOperandSize]> {
let arguments = (ins
Variadic<AnyTensor>:$input1,
AnyTensor:$input2,
Variadic<AnyTensor>:$input3
);
}
//===----------------------------------------------------------------------===//
// Test Results
//===----------------------------------------------------------------------===//
def MixedNormalVariadicResults : TEST_Op<
"mixed_normal_variadic_result", [SameVariadicResultSize]> {
let results = (outs
Variadic<AnyTensor>:$output1,
AnyTensor:$output2,
Variadic<AnyTensor>:$output3
);
}
//===----------------------------------------------------------------------===//
// Test Attributes
//===----------------------------------------------------------------------===//
def NonNegIntAttrOp : TEST_Op<"non_negative_int_attr"> {
let arguments = (ins
Confined<I32Attr, [IntNonNegative]>:$i32attr,
Confined<I64Attr, [IntNonNegative]>:$i64attr
);
}
def PositiveIntAttrOp : TEST_Op<"positive_int_attr"> {
let arguments = (ins
Confined<I32Attr, [IntPositive]>:$i32attr,
Confined<I64Attr, [IntPositive]>:$i64attr
);
}
def TypeArrayAttrOp : TEST_Op<"type_array_attr"> {
let arguments = (ins TypeArrayAttr:$attr);
}
def TypeStringAttrWithTypeOp : TEST_Op<"string_attr_with_type"> {
let arguments = (ins TypedStrAttr<AnyType>:$attr);
let assemblyFormat = "$attr attr-dict";
}
def StrCaseA: StrEnumAttrCase<"A">;
def StrCaseB: StrEnumAttrCase<"B">;
def SomeStrEnum: StrEnumAttr<
"SomeStrEnum", "", [StrCaseA, StrCaseB]>;
def StrEnumAttrOp : TEST_Op<"str_enum_attr"> {
let arguments = (ins SomeStrEnum:$attr);
let results = (outs I32:$val);
}
def I32Case5: I32EnumAttrCase<"case5", 5>;
def I32Case10: I32EnumAttrCase<"case10", 10>;
def SomeI32Enum: I32EnumAttr<
"SomeI32Enum", "", [I32Case5, I32Case10]>;
def I32EnumAttrOp : TEST_Op<"i32_enum_attr"> {
let arguments = (ins SomeI32Enum:$attr);
let results = (outs I32:$val);
}
def I64Case5: I64EnumAttrCase<"case5", 5>;
def I64Case10: I64EnumAttrCase<"case10", 10>;
def SomeI64Enum: I64EnumAttr<
"SomeI64Enum", "", [I64Case5, I64Case10]>;
def I64EnumAttrOp : TEST_Op<"i64_enum_attr"> {
let arguments = (ins SomeI64Enum:$attr);
let results = (outs I32:$val);
}
def IntAttrOp : TEST_Op<"int_attrs"> {
let arguments = (ins
AnyI32Attr:$any_i32_attr,
IndexAttr:$index_attr,
UI32Attr:$ui32_attr,
SI32Attr:$si32_attr
);
}
def FloatElementsAttrOp : TEST_Op<"float_elements_attr"> {
let arguments = (ins
RankedF32ElementsAttr<[2]>:$scalar_f32_attr,
RankedF64ElementsAttr<[4, 8]>:$tensor_f64_attr
);
}
// A pattern that updates dense<[3.0, 4.0]> to dense<[5.0, 6.0]>.
// This tests both matching and generating float elements attributes.
def UpdateFloatElementsAttr : Pat<
(FloatElementsAttrOp
ConstantAttr<RankedF32ElementsAttr<[2]>, "{3.0f, 4.0f}">:$f32attr,
$f64attr),
(FloatElementsAttrOp
ConstantAttr<RankedF32ElementsAttr<[2]>, "{5.0f, 6.0f}">:$f32attr,
$f64attr)>;
def IntElementsAttrOp : TEST_Op<"int_elements_attr"> {
let arguments = (ins
AnyI32ElementsAttr:$any_i32_attr,
I32ElementsAttr:$i32_attr
);
}
def RankedIntElementsAttrOp : TEST_Op<"ranked_int_elements_attr"> {
let arguments = (ins
RankedI32ElementsAttr<[2]>:$vector_i32_attr,
RankedI64ElementsAttr<[4, 8]>:$matrix_i64_attr
);
}
def DerivedTypeAttrOp : TEST_Op<"derived_type_attr", []> {
let results = (outs AnyTensor:$output);
DerivedTypeAttr element_dtype =
DerivedTypeAttr<"return getElementTypeOrSelf(output().getType());">;
DerivedAttr size = DerivedAttr<"int",
"return output().getType().cast<ShapedType>().getSizeInBits();",
"$_builder.getI32IntegerAttr($_self)">;
}
def StringElementsAttrOp : TEST_Op<"string_elements_attr"> {
let arguments = (ins
StringElementsAttr:$scalar_string_attr
);
}
//===----------------------------------------------------------------------===//
// Test Attribute Constraints
//===----------------------------------------------------------------------===//
def SymbolRefOp : TEST_Op<"symbol_ref_attr"> {
let arguments = (ins
Confined<FlatSymbolRefAttr, [ReferToOp<"FuncOp">]>:$symbol
);
}
//===----------------------------------------------------------------------===//
// Test Regions
//===----------------------------------------------------------------------===//
def OneRegionOp : TEST_Op<"one_region_op", []> {
let regions = (region AnyRegion);
}
def TwoRegionOp : TEST_Op<"two_region_op", []> {
let regions = (region AnyRegion, AnyRegion);
}
def SizedRegionOp : TEST_Op<"sized_region_op", []> {
let regions = (region SizedRegion<2>:$my_region, SizedRegion<1>);
}
//===----------------------------------------------------------------------===//
// Test Call Interfaces
//===----------------------------------------------------------------------===//
def ConversionCallOp : TEST_Op<"conversion_call_op",
[CallOpInterface]> {
let arguments = (ins Variadic<AnyType>:$inputs, SymbolRefAttr:$callee);
let results = (outs Variadic<AnyType>);
let extraClassDeclaration = [{
/// Get the argument operands to the called function.
operand_range getArgOperands() { return inputs(); }
/// Return the callee of this operation.
CallInterfaceCallable getCallableForCallee() {
return getAttrOfType<SymbolRefAttr>("callee");
}
}];
}
def FunctionalRegionOp : TEST_Op<"functional_region_op",
[CallableOpInterface]> {
let regions = (region AnyRegion:$body);
let results = (outs FunctionType);
let extraClassDeclaration = [{
Region *getCallableRegion() { return &body(); }
ArrayRef<Type> getCallableResults() {
return getType().cast<FunctionType>().getResults();
}
}];
}
//===----------------------------------------------------------------------===//
// Test Traits
//===----------------------------------------------------------------------===//
def SameOperandElementTypeOp : TEST_Op<"same_operand_element_type",
[SameOperandsElementType]> {
let arguments = (ins AnyType, AnyType);
let results = (outs AnyType);
}
def SameOperandAndResultElementTypeOp : TEST_Op<"same_operand_and_result_element_type",
[SameOperandsAndResultElementType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def SameOperandShapeOp : TEST_Op<"same_operand_shape", [SameOperandsShape]> {
let arguments = (ins Variadic<AnyShaped>);
}
def SameOperandAndResultShapeOp : TEST_Op<"same_operand_and_result_shape",
[SameOperandsAndResultShape]> {
let arguments = (ins Variadic<AnyShaped>);
let results = (outs Variadic<AnyShaped>);
}
def SameOperandAndResultTypeOp : TEST_Op<"same_operand_and_result_type",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def ArgAndResHaveFixedElementTypesOp :
TEST_Op<"arg_and_res_have_fixed_element_types",
[PredOpTrait<"fixed type combination",
And<[ElementTypeIsPred<"x", I32>,
ElementTypeIsPred<"y", F32>]>>,
ElementTypeIs<"res", I16>]> {
let arguments = (ins
AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandsHaveSameElementType : TEST_Op<"operands_have_same_element_type", [
AllElementTypesMatch<["x", "y"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def OperandZeroAndResultHaveSameElementType : TEST_Op<
"operand0_and_result_have_same_element_type",
[AllElementTypesMatch<["x", "res"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
let results = (outs AnyType:$res);
}
def OperandsHaveSameType :
TEST_Op<"operands_have_same_type", [AllTypesMatch<["x", "y"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def OperandZeroAndResultHaveSameType :
TEST_Op<"operand0_and_result_have_same_type",
[AllTypesMatch<["x", "res"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
let results = (outs AnyType:$res);
}
def OperandsHaveSameRank :
TEST_Op<"operands_have_same_rank", [AllRanksMatch<["x", "y"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
}
def OperandZeroAndResultHaveSameRank :
TEST_Op<"operand0_and_result_have_same_rank",
[AllRanksMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandZeroAndResultHaveSameShape :
TEST_Op<"operand0_and_result_have_same_shape",
[AllShapesMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandZeroAndResultHaveSameElementCount :
TEST_Op<"operand0_and_result_have_same_element_count",
[AllElementCountsMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def FourEqualsFive :
TEST_Op<"four_equals_five", [AllMatch<["5", "4"], "4 equals 5">]>;
def OperandRankEqualsResultSize :
TEST_Op<"operand_rank_equals_result_size",
[AllMatch<[Rank<"operand">.result, ElementCount<"result">.result],
"operand rank equals result size">]> {
let arguments = (ins AnyShaped:$operand);
let results = (outs AnyShaped:$result);
}
def IfFirstOperandIsNoneThenSoIsSecond :
TEST_Op<"if_first_operand_is_none_then_so_is_second", [PredOpTrait<
"has either both none type operands or first is not none",
Or<[
And<[TypeIsPred<"x", NoneType>, TypeIsPred<"y", NoneType>]>,
Neg<TypeIsPred<"x", NoneType>>]>>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def BroadcastableOp : TEST_Op<"broadcastable", [ResultsBroadcastableShape]> {
let arguments = (ins Variadic<AnyTensor>);
let results = (outs AnyTensor);
}
// There the "HasParent" trait.
def ParentOp : TEST_Op<"parent">;
def ChildOp : TEST_Op<"child", [HasParent<"ParentOp">]>;
def TerminatorOp : TEST_Op<"finish", [Terminator]>;
def SingleBlockImplicitTerminatorOp : TEST_Op<"SingleBlockImplicitTerminator",
[SingleBlockImplicitTerminator<"TerminatorOp">]> {
let regions = (region SizedRegion<1>:$region);
}
def I32ElementsAttrOp : TEST_Op<"i32ElementsAttr"> {
let arguments = (ins I32ElementsAttr:$attr);
}
def OpWithInferTypeInterfaceOp : TEST_Op<"op_with_infer_type_if", [
DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
}
def InferTensorType : NativeOpTrait<"InferTensorType">;
def OpWithShapedTypeInferTypeInterfaceOp : TEST_Op<"op_with_shaped_type_infer_type_if",
[
// Op implements infer type op interface.
InferTypeOpInterface,
// The op will have methods implementing the ShapedType type infer interface.
DeclareOpInterfaceMethods<InferShapedTypeOpInterface>,
// The op produces tensors and will use the ShapedType type infer interface
// along with knowledge that it is producing Tensors to infer shape.
InferTensorType
]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
let extraClassDeclaration = [{
LogicalResult reifyReturnTypeShapes(OpBuilder &builder,
SmallVectorImpl<Value> &shapes);
}];
}
def IsNotScalar : Constraint<CPred<"$0.getType().getRank() != 0">>;
def UpdateAttr : Pat<(I32ElementsAttrOp $attr),
(I32ElementsAttrOp ConstantAttr<I32ElementsAttr, "0">),
[(IsNotScalar $attr)]>;
def TestBranchOp : TEST_Op<"br",
[DeclareOpInterfaceMethods<BranchOpInterface>, Terminator]> {
let arguments = (ins Variadic<AnyType>:$targetOperands);
let successors = (successor AnySuccessor:$target);
}
def AttrSizedOperandOp : TEST_Op<"attr_sized_operands",
[AttrSizedOperandSegments]> {
let arguments = (ins
Variadic<I32>:$a,
Variadic<I32>:$b,
I32:$c,
Variadic<I32>:$d,
I32ElementsAttr:$operand_segment_sizes
);
}
def AttrSizedResultOp : TEST_Op<"attr_sized_results",
[AttrSizedResultSegments]> {
let arguments = (ins
I32ElementsAttr:$result_segment_sizes
);
let results = (outs
Variadic<I32>:$a,
Variadic<I32>:$b,
I32:$c,
Variadic<I32>:$d
);
}
// This is used to test encoding of a string attribute into an SSA name of a
// pretty printed value name.
def StringAttrPrettyNameOp
: TEST_Op<"string_attr_pretty_name",
[DeclareOpInterfaceMethods<OpAsmOpInterface>]> {
let arguments = (ins StrArrayAttr:$names);
let results = (outs Variadic<I32>:$r);
let printer = [{ return ::print(p, *this); }];
let parser = [{ return ::parse$cppClass(parser, result); }];
}
//===----------------------------------------------------------------------===//
// Test Locations
//===----------------------------------------------------------------------===//
def TestLocationSrcOp : TEST_Op<"loc_src"> {
let arguments = (ins I32:$input);
let results = (outs I32:$output);
}
def TestLocationDstOp : TEST_Op<"loc_dst", [SameOperandsAndResultType]> {
let arguments = (ins I32:$input);
let results = (outs I32:$output);
}
//===----------------------------------------------------------------------===//
// Test Patterns
//===----------------------------------------------------------------------===//
def OpA : TEST_Op<"op_a"> {
let arguments = (ins I32, I32Attr:$attr);
let results = (outs I32);
}
def OpB : TEST_Op<"op_b"> {
let arguments = (ins I32, I32Attr:$attr);
let results = (outs I32);
}
// Test named pattern.
def TestNamedPatternRule : Pat<(OpA $input, $attr), (OpB $input, $attr)>;
// Test with fused location.
def : Pat<(OpA (OpA $input, $attr), $bttr), (OpB $input, $bttr)>;
// Test added benefit.
def OpD : TEST_Op<"op_d">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpE : TEST_Op<"op_e">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpF : TEST_Op<"op_f">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpG : TEST_Op<"op_g">, Arguments<(ins I32)>, Results<(outs I32)>;
// Verify that bumping benefit results in selecting different op.
def : Pat<(OpD $input), (OpE $input)>;
def : Pat<(OpD $input), (OpF $input), [], (addBenefit 10)>;
// Verify that patterns with more source nodes are selected before those with fewer.
def : Pat<(OpG $input), (OpB $input, ConstantAttr<I32Attr, "20">:$attr)>;
def : Pat<(OpG (OpG $input)), (OpB $input, ConstantAttr<I32Attr, "34">:$attr)>;
// Test patterns for zero-result op.
def OpH : TEST_Op<"op_h">, Arguments<(ins I32)>, Results<(outs)>;
def OpI : TEST_Op<"op_i">, Arguments<(ins I32)>, Results<(outs)>;
def : Pat<(OpH $input), (OpI $input)>;
// Test patterns for zero-input op.
def OpJ : TEST_Op<"op_j">, Arguments<(ins)>, Results<(outs I32)>;
def OpK : TEST_Op<"op_k">, Arguments<(ins)>, Results<(outs I32)>;
def : Pat<(OpJ), (OpK)>;
// Test `$_` for ignoring op argument match.
def TestIgnoreArgMatchSrcOp : TEST_Op<"ignore_arg_match_src"> {
let arguments = (ins
AnyType:$a, AnyType:$b, AnyType:$c,
AnyAttr:$d, AnyAttr:$e, AnyAttr:$f);
}
def TestIgnoreArgMatchDstOp : TEST_Op<"ignore_arg_match_dst"> {
let arguments = (ins AnyType:$b, AnyAttr:$f);
}
def : Pat<(TestIgnoreArgMatchSrcOp $_, $b, I32, I64Attr:$_, $_, $f),
(TestIgnoreArgMatchDstOp $b, $f)>;
def OpInterleavedOperandAttribute1 : TEST_Op<"interleaved_operand_attr1"> {
let arguments = (ins
I32:$input1,
I64Attr:$attr1,
I32:$input2,
I64Attr:$attr2
);
}
def OpInterleavedOperandAttribute2 : TEST_Op<"interleaved_operand_attr2"> {
let arguments = (ins
I32:$input1,
I64Attr:$attr1,
I32:$input2,
I64Attr:$attr2
);
}
def ManyArgsOp : TEST_Op<"many_arguments"> {
let arguments = (ins
I32:$input1, I32:$input2, I32:$input3, I32:$input4, I32:$input5,
I32:$input6, I32:$input7, I32:$input8, I32:$input9,
I64Attr:$attr1, I64Attr:$attr2, I64Attr:$attr3, I64Attr:$attr4,
I64Attr:$attr5, I64Attr:$attr6, I64Attr:$attr7, I64Attr:$attr8,
I64Attr:$attr9
);
}
// Test that DRR does not blow up when seeing lots of arguments.
def : Pat<(ManyArgsOp
$input1, $input2, $input3, $input4, $input5,
$input6, $input7, $input8, $input9,
ConstantAttr<I64Attr, "42">,
$attr2, $attr3, $attr4, $attr5, $attr6,
$attr7, $attr8, $attr9),
(ManyArgsOp
$input1, $input2, $input3, $input4, $input5,
$input6, $input7, $input8, $input9,
ConstantAttr<I64Attr, "24">,
$attr2, $attr3, $attr4, $attr5, $attr6,
$attr7, $attr8, $attr9)>;
// Test that we can capture and reference interleaved operands and attributes.
def : Pat<(OpInterleavedOperandAttribute1 $input1, $attr1, $input2, $attr2),
(OpInterleavedOperandAttribute2 $input1, $attr1, $input2, $attr2)>;
// Test NativeCodeCall.
def OpNativeCodeCall1 : TEST_Op<"native_code_call1"> {
let arguments = (ins
I32:$input1, I32:$input2,
BoolAttr:$choice,
I64Attr:$attr1, I64Attr:$attr2
);
let results = (outs I32);
}
def OpNativeCodeCall2 : TEST_Op<"native_code_call2"> {
let arguments = (ins I32:$input, I64ArrayAttr:$attr);
let results = (outs I32);
}
// Native code call to invoke a C++ function
def CreateOperand: NativeCodeCall<"chooseOperand($0, $1, $2)">;
// Native code call to invoke a C++ expression
def CreateArrayAttr: NativeCodeCall<"$_builder.getArrayAttr({$0, $1})">;
// Test that we can use NativeCodeCall to create operand and attribute.
// This pattern chooses between $input1 and $input2 according to $choice and
// it combines $attr1 and $attr2 into an array attribute.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrTrue:$choice, $attr1, $attr2),
(OpNativeCodeCall2 (CreateOperand $input1, $input2, $choice),
(CreateArrayAttr $attr1, $attr2))>;
// Note: the following is just for testing purpose.
// Should use the replaceWithValue directive instead.
def UseOpResult: NativeCodeCall<"$0">;
// Test that we can use NativeCodeCall to create result.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrFalse, $attr1, $attr2),
(UseOpResult $input2)>;
def OpNativeCodeCall3 : TEST_Op<"native_code_call3"> {
let arguments = (ins I32:$input);
let results = (outs I32);
}
// Test that NativeCodeCall is not ignored if it is not used to directly
// replace the matched root op.
def : Pattern<(OpNativeCodeCall3 $input),
[(NativeCodeCall<"createOpI($_builder, $0)"> $input), (OpK)]>;
// Test AllAttrConstraintsOf.
def OpAllAttrConstraint1 : TEST_Op<"all_attr_constraint_of1"> {
let arguments = (ins I64ArrayAttr:$attr);
let results = (outs I32);
}
def OpAllAttrConstraint2 : TEST_Op<"all_attr_constraint_of2"> {
let arguments = (ins I64ArrayAttr:$attr);
let results = (outs I32);
}
def Constraint0 : AttrConstraint<
CPred<"$_self.cast<ArrayAttr>()[0]."
"cast<IntegerAttr>().getInt() == 0">,
"[0] == 0">;
def Constraint1 : AttrConstraint<
CPred<"$_self.cast<ArrayAttr>()[1].cast<IntegerAttr>().getInt() == 1">,
"[1] == 1">;
def : Pat<(OpAllAttrConstraint1
AllAttrConstraintsOf<[Constraint0, Constraint1]>:$attr),
(OpAllAttrConstraint2 $attr)>;
// Op for testing RewritePattern removing op with inner ops.
def TestOpWithRegionPattern : TEST_Op<"op_with_region_pattern"> {
let regions = (region SizedRegion<1>:$region);
let hasCanonicalizer = 1;
}
// Op for testing trivial removal via folding of op with inner ops and no uses.
def TestOpWithRegionFoldNoSideEffect : TEST_Op<
"op_with_region_fold_no_side_effect", [NoSideEffect]> {
let regions = (region SizedRegion<1>:$region);
}
// Op for testing folding of outer op with inner ops.
def TestOpWithRegionFold : TEST_Op<"op_with_region_fold"> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let regions = (region SizedRegion<1>:$region);
let hasFolder = 1;
}
def TestOpWithVariadicResultsAndFolder: TEST_Op<"op_with_variadic_results_and_folder"> {
let arguments = (ins Variadic<I32>:$operands);
let results = (outs Variadic<I32>);
let hasFolder = 1;
}
def TestCommutativeOp : TEST_Op<"op_commutative", [Commutative]> {
let arguments = (ins I32:$op1, I32:$op2, I32:$op3, I32:$op4);
let results = (outs I32);
}
//===----------------------------------------------------------------------===//
// Test Patterns (Symbol Binding)
// Test symbol binding.
def OpSymbolBindingA : TEST_Op<"symbol_binding_a", []> {
let arguments = (ins I32:$operand, I64Attr:$attr);
let results = (outs I32);
}
def OpSymbolBindingB : TEST_Op<"symbol_binding_b", []> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let builders = [
OpBuilder<
"Builder *builder, OperationState &state, Value operand",
[{
state.types.assign({builder->getIntegerType(32)});
state.addOperands({operand});
}]>
];
}
def OpSymbolBindingC : TEST_Op<"symbol_binding_c", []> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let builders = OpSymbolBindingB.builders;
}
def OpSymbolBindingD : TEST_Op<"symbol_binding_d", []> {
let arguments = (ins I32:$input1, I32:$input2, I64Attr:$attr);
let results = (outs I32);
}
def HasOneUse: Constraint<CPred<"$0.hasOneUse()">, "has one use">;
def : Pattern<
// Bind to source pattern op operand/attribute/result
(OpSymbolBindingA:$res_a $operand, $attr), [
// Bind to auxiliary op result
(OpSymbolBindingC:$res_c (OpSymbolBindingB:$res_b $operand)),
// Use bound symbols in resultant ops
(OpSymbolBindingD $res_b, $res_c, $attr)],
// Use bound symbols in additional constraints
[(HasOneUse $res_a)]>;
def OpSymbolBindingNoResult : TEST_Op<"symbol_binding_no_result", []> {
let arguments = (ins I32:$operand);
}
// Test that we can bind to an op without results and reference it later.
def : Pat<(OpSymbolBindingNoResult:$op $operand),
(NativeCodeCall<"handleNoResultOp($_builder, $0)"> $op)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Attributes)
// Test matching against op attributes.
def OpAttrMatch1 : TEST_Op<"match_op_attribute1"> {
let arguments = (ins
I32Attr:$required_attr,
OptionalAttr<I32Attr>:$optional_attr,
DefaultValuedAttr<I32Attr, "42">:$default_valued_attr,
I32Attr:$more_attr
);
let results = (outs I32);
}
def OpAttrMatch2 : TEST_Op<"match_op_attribute2"> {
let arguments = OpAttrMatch1.arguments;
let results = (outs I32);
}
def MoreConstraint : AttrConstraint<
CPred<"$_self.cast<IntegerAttr>().getInt() == 4">, "more constraint">;
def : Pat<(OpAttrMatch1 $required, $optional, $default_valued,
MoreConstraint:$more),
(OpAttrMatch2 $required, $optional, $default_valued, $more)>;
// Test unit attrs.
def OpAttrMatch3 : TEST_Op<"match_op_attribute3"> {
let arguments = (ins UnitAttr:$attr);
let results = (outs I32);
}
def OpAttrMatch4 : TEST_Op<"match_op_attribute4"> {
let arguments = (ins UnitAttr:$attr1, UnitAttr:$attr2);
let results = (outs I32);
}
def : Pat<(OpAttrMatch3 $attr), (OpAttrMatch4 ConstUnitAttr, $attr)>;
// Test with constant attr.
def OpC : TEST_Op<"op_c">, Arguments<(ins I32)>, Results<(outs I32)>;
def : Pat<(OpC $input), (OpB $input, ConstantAttr<I32Attr, "17">:$attr)>;
// Test string enum attribute in rewrites.
def : Pat<(StrEnumAttrOp StrCaseA), (StrEnumAttrOp StrCaseB)>;
// Test integer enum attribute in rewrites.
def : Pat<(I32EnumAttrOp I32Case5), (I32EnumAttrOp I32Case10)>;
def : Pat<(I64EnumAttrOp I64Case5), (I64EnumAttrOp I64Case10)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Multi-result Ops)
def MultiResultOpKind1: I64EnumAttrCase<"kind1", 1>;
def MultiResultOpKind2: I64EnumAttrCase<"kind2", 2>;
def MultiResultOpKind3: I64EnumAttrCase<"kind3", 3>;
def MultiResultOpKind4: I64EnumAttrCase<"kind4", 4>;
def MultiResultOpKind5: I64EnumAttrCase<"kind5", 5>;
def MultiResultOpKind6: I64EnumAttrCase<"kind6", 6>;
def MultiResultOpEnum: I64EnumAttr<
"MultiResultOpEnum", "Multi-result op kinds", [
MultiResultOpKind1, MultiResultOpKind2, MultiResultOpKind3,
MultiResultOpKind4, MultiResultOpKind5, MultiResultOpKind6
]>;
def ThreeResultOp : TEST_Op<"three_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2, F32:$result3);
}
def AnotherThreeResultOp : TEST_Op<"another_three_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2, F32:$result3);
}
def TwoResultOp : TEST_Op<"two_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2);
let builders = [
OpBuilder<
"Builder *builder, OperationState &state, IntegerAttr kind",
[{
auto i32 = builder->getIntegerType(32);
auto f32 = builder->getF32Type();
state.types.assign({i32, f32});
state.addAttribute("kind", kind);
}]>
];
}
def AnotherTwoResultOp : TEST_Op<"another_two_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs F32:$result1, F32:$result2);
}
def OneResultOp1 : TEST_Op<"one_result1"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs F32:$result1);
}
def OneResultOp2 : TEST_Op<"one_result2"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1);
}
def OneResultOp3 : TEST_Op<"one_result3"> {
let arguments = (ins F32);
let results = (outs I32:$result1);
}
// Test using multi-result op as a whole
def : Pat<(ThreeResultOp MultiResultOpKind1),
(AnotherThreeResultOp MultiResultOpKind1)>;
// Test using multi-result op as a whole for partial replacement
def : Pattern<(ThreeResultOp MultiResultOpKind2),
[(TwoResultOp MultiResultOpKind2),
(OneResultOp1 MultiResultOpKind2)]>;
def : Pattern<(ThreeResultOp MultiResultOpKind3),
[(OneResultOp2 MultiResultOpKind3),
(AnotherTwoResultOp MultiResultOpKind3)]>;
// Test using results separately in a multi-result op
def : Pattern<(ThreeResultOp MultiResultOpKind4),
[(TwoResultOp:$res1__0 MultiResultOpKind4),
(OneResultOp1 MultiResultOpKind4),
(TwoResultOp:$res2__1 MultiResultOpKind4)]>;
// Test referencing a single value in the value pack
// This rule only matches TwoResultOp if its second result has no use.
def : Pattern<(TwoResultOp:$res MultiResultOpKind5),
[(OneResultOp2 MultiResultOpKind5),
(OneResultOp1 MultiResultOpKind5)],
[(HasNoUseOf:$res__1)]>;
// Test using auxiliary ops for replacing multi-result op
def : Pattern<
(ThreeResultOp MultiResultOpKind6), [
// Auxiliary op generated to help building the final result but not
// directly used to replace the source op's results.
(TwoResultOp:$interm MultiResultOpKind6),
(OneResultOp3 $interm__1),
(AnotherTwoResultOp MultiResultOpKind6)
]>;
//===----------------------------------------------------------------------===//
// Test Patterns (Variadic Ops)
def OneVResOneVOperandOp1 : TEST_Op<"one_variadic_out_one_variadic_in1"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
}
def OneVResOneVOperandOp2 : TEST_Op<"one_variadic_out_one_variadic_in2"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
}
// Rewrite an op with one variadic operand and one variadic result to
// another similar op.
def : Pat<(OneVResOneVOperandOp1 $inputs), (OneVResOneVOperandOp2 $inputs)>;
def MixedVOperandOp1 : TEST_Op<"mixed_variadic_in1",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
F32:$input2,
Variadic<I32>:$input3
);
}
def MixedVOperandOp2 : TEST_Op<"mixed_variadic_in2",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
F32:$input2,
Variadic<I32>:$input3
);
}
// Rewrite an op with both variadic operands and normal operands.
def : Pat<(MixedVOperandOp1 $input1, $input2, $input3),
(MixedVOperandOp2 $input1, $input2, $input3)>;
def MixedVResultOp1 : TEST_Op<"mixed_variadic_out1", [SameVariadicResultSize]> {
let results = (outs
Variadic<I32>:$output1,
F32:$output2,
Variadic<I32>:$output3
);
}
def MixedVResultOp2 : TEST_Op<"mixed_variadic_out2", [SameVariadicResultSize]> {
let results = (outs
Variadic<I32>:$output1,
F32:$output2,
Variadic<I32>:$output3
);
}
// Rewrite an op with both variadic results and normal results.
// Note that because we are generating the op with a top-level result pattern,
// we are able to deduce the correct result types for the generated op using
// the information from the matched root op.
def : Pat<(MixedVResultOp1), (MixedVResultOp2)>;
def OneI32ResultOp : TEST_Op<"one_i32_out"> {
let results = (outs I32);
}
def MixedVOperandOp3 : TEST_Op<"mixed_variadic_in3",
[SameVariadicOperandSize]> {
let arguments = (ins
I32:$input1,
Variadic<I32>:$input2,
Variadic<I32>:$input3,
I32Attr:$count
);
let results = (outs I32);
}
def MixedVResultOp3 : TEST_Op<"mixed_variadic_out3",
[SameVariadicResultSize]> {
let arguments = (ins I32Attr:$count);
let results = (outs
I32:$output1,
Variadic<I32>:$output2,
Variadic<I32>:$output3
);
// We will use this op in a nested result pattern, where we cannot deduce the
// result type. So need to provide a builder not requiring result types.
let builders = [
OpBuilder<
"Builder *builder, OperationState &state, IntegerAttr count",
[{
auto i32Type = builder->getIntegerType(32);
state.addTypes(i32Type); // $output1
SmallVector<Type, 4> types(count.getInt(), i32Type);
state.addTypes(types); // $output2
state.addTypes(types); // $output3
state.addAttribute("count", count);
}]>
];
}
// Generates an op with variadic results using nested pattern.
def : Pat<(OneI32ResultOp),
(MixedVOperandOp3
(MixedVResultOp3:$results__0 ConstantAttr<I32Attr, "2">),
(replaceWithValue $results__1),
(replaceWithValue $results__2),
ConstantAttr<I32Attr, "2">)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Location)
// Test that we can specify locations for generated ops.
def : Pat<(TestLocationSrcOp:$res1
(TestLocationSrcOp:$res2
(TestLocationSrcOp:$res3 $input))),
(TestLocationDstOp
(TestLocationDstOp
(TestLocationDstOp $input, (location $res1)),
(location "named")),
(location "fused", $res2, $res3))>;
//===----------------------------------------------------------------------===//
// Test Legalization
//===----------------------------------------------------------------------===//
def Test_LegalizerEnum_Success : StrEnumAttrCase<"Success">;
def Test_LegalizerEnum_Failure : StrEnumAttrCase<"Failure">;
def Test_LegalizerEnum : StrEnumAttr<"Success", "Failure",
[Test_LegalizerEnum_Success, Test_LegalizerEnum_Failure]>;
def ILLegalOpA : TEST_Op<"illegal_op_a">, Results<(outs I32)>;
def ILLegalOpB : TEST_Op<"illegal_op_b">, Results<(outs I32)>;
def ILLegalOpC : TEST_Op<"illegal_op_c">, Results<(outs I32)>;
def ILLegalOpD : TEST_Op<"illegal_op_d">, Results<(outs I32)>;
def ILLegalOpE : TEST_Op<"illegal_op_e">, Results<(outs I32)>;
def ILLegalOpF : TEST_Op<"illegal_op_f">, Results<(outs I32)>;
def LegalOpA : TEST_Op<"legal_op_a">,
Arguments<(ins Test_LegalizerEnum:$status)>, Results<(outs I32)>;
def LegalOpB : TEST_Op<"legal_op_b">, Results<(outs I32)>;
// Check that smaller pattern depths are chosen, i.e. prioritize more direct
// mappings.
def : Pat<(ILLegalOpA), (LegalOpA Test_LegalizerEnum_Success)>;
def : Pat<(ILLegalOpA), (ILLegalOpB)>;
def : Pat<(ILLegalOpB), (LegalOpA Test_LegalizerEnum_Failure)>;
// Check that the higher benefit pattern is taken for multiple legalizations
// with the same depth.
def : Pat<(ILLegalOpC), (ILLegalOpD)>;
def : Pat<(ILLegalOpD), (LegalOpA Test_LegalizerEnum_Failure)>;
def : Pat<(ILLegalOpC), (ILLegalOpE), [], (addBenefit 10)>;
def : Pat<(ILLegalOpE), (LegalOpA Test_LegalizerEnum_Success)>;
// Check that patterns use the most up-to-date value when being replaced.
def TestRewriteOp : TEST_Op<"rewrite">,
Arguments<(ins AnyType)>, Results<(outs AnyType)>;
def : Pat<(TestRewriteOp $input), (replaceWithValue $input)>;
// Check that patterns can specify bounded recursion when rewriting.
def TestRecursiveRewriteOp : TEST_Op<"recursive_rewrite"> {
let arguments = (ins I64Attr:$depth);
let assemblyFormat = "$depth attr-dict";
}
//===----------------------------------------------------------------------===//
// Test Type Legalization
//===----------------------------------------------------------------------===//
def TestRegionBuilderOp : TEST_Op<"region_builder">;
def TestReturnOp : TEST_Op<"return", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
def TestCastOp : TEST_Op<"cast">,
Arguments<(ins Variadic<AnyType>)>, Results<(outs AnyType)>;
def TestInvalidOp : TEST_Op<"invalid", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
def TestTypeProducerOp : TEST_Op<"type_producer">,
Results<(outs AnyType)>;
def TestTypeConsumerOp : TEST_Op<"type_consumer">,
Arguments<(ins AnyType)>;
def TestValidOp : TEST_Op<"valid", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
//===----------------------------------------------------------------------===//
// Test parser.
//===----------------------------------------------------------------------===//
def WrappedKeywordOp : TEST_Op<"wrapped_keyword"> {
let arguments = (ins StrAttr:$keyword);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
//===----------------------------------------------------------------------===//
// Test region argument list parsing.
def IsolatedRegionOp : TEST_Op<"isolated_region", [IsolatedFromAbove]> {
let summary = "isolated region operation";
let description = [{
Test op with an isolated region, to test passthrough region arguments. Each
argument is of index type.
}];
let arguments = (ins Index);
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def WrappingRegionOp : TEST_Op<"wrapping_region",
[SingleBlockImplicitTerminator<"TestReturnOp">]> {
let summary = "wrapping region operation";
let description = [{
Test op wrapping another op in a region, to test calling
parseGenericOperation from the custom parser.
}];
let results = (outs Variadic<AnyType>);
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def PolyForOp : TEST_Op<"polyfor">
{
let summary = "polyfor operation";
let description = [{
Test op with multiple region arguments, each argument of index type.
}];
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
}
//===----------------------------------------------------------------------===//
// Test OpAsmInterface.
def AsmInterfaceOp : TEST_Op<"asm_interface_op"> {
let results = (outs AnyType:$first, Variadic<AnyType>:$middle_results,
AnyType);
}
def AsmDialectInterfaceOp : TEST_Op<"asm_dialect_interface_op"> {
let results = (outs AnyType);
}
//===----------------------------------------------------------------------===//
// Test Op Asm Format
//===----------------------------------------------------------------------===//
def FormatLiteralOp : TEST_Op<"format_literal_op"> {
let assemblyFormat = [{
`keyword_$.` `->` `:` `,` `=` `<` `>` `(` `)` `[` `]` attr-dict
}];
}
// Test that we elide attributes that are within the syntax.
def FormatAttrOp : TEST_Op<"format_attr_op"> {
let arguments = (ins I64Attr:$attr);
let assemblyFormat = "$attr attr-dict";
}
// Test that we elide attributes that are within the syntax.
def FormatAttrDictWithKeywordOp : TEST_Op<"format_attr_dict_w_keyword"> {
let arguments = (ins I64Attr:$attr);
let assemblyFormat = "attr-dict-with-keyword";
}
// Test that we don't need to provide types in the format if they are buildable.
def FormatBuildableTypeOp : TEST_Op<"format_buildable_type_op"> {
let arguments = (ins I64:$buildable);
let results = (outs I64:$buildable_res);
let assemblyFormat = "$buildable attr-dict";
}
// Test various mixings of result type formatting.
class FormatResultBase<string suffix, string fmt>
: TEST_Op<"format_result_" # suffix # "_op"> {
let results = (outs I64:$buildable_res, AnyMemRef:$result);
let assemblyFormat = fmt;
}
def FormatResultAOp : FormatResultBase<"a", [{
type($result) attr-dict
}]>;
def FormatResultBOp : FormatResultBase<"b", [{
type(results) attr-dict
}]>;
def FormatResultCOp : FormatResultBase<"c", [{
functional-type($buildable_res, $result) attr-dict
}]>;
// Test various mixings of operand type formatting.
class FormatOperandBase<string suffix, string fmt>
: TEST_Op<"format_operand_" # suffix # "_op"> {
let arguments = (ins I64:$buildable, AnyMemRef:$operand);
let assemblyFormat = fmt;
}
def FormatOperandAOp : FormatOperandBase<"a", [{
operands `:` type(operands) attr-dict
}]>;
def FormatOperandBOp : FormatOperandBase<"b", [{
operands `:` type($operand) attr-dict
}]>;
def FormatOperandCOp : FormatOperandBase<"c", [{
$buildable `,` $operand `:` type(operands) attr-dict
}]>;
def FormatOperandDOp : FormatOperandBase<"d", [{
$buildable `,` $operand `:` type($operand) attr-dict
}]>;
def FormatOperandEOp : FormatOperandBase<"e", [{
$buildable `,` $operand `:` type($buildable) `,` type($operand) attr-dict
}]>;
def FormatSuccessorAOp : TEST_Op<"format_successor_a_op", [Terminator]> {
let successors = (successor VariadicSuccessor<AnySuccessor>:$targets);
let assemblyFormat = "$targets attr-dict";
}
// Test various mixings of optional operand and result type formatting.
class FormatOptionalOperandResultOpBase<string suffix, string fmt>
: TEST_Op<"format_optional_operand_result_" # suffix # "_op",
[AttrSizedOperandSegments]> {
let arguments = (ins Optional<I64>:$optional, Variadic<I64>:$variadic);
let results = (outs Optional<I64>:$optional_res);
let assemblyFormat = fmt;
}
def FormatOptionalOperandResultAOp : FormatOptionalOperandResultOpBase<"a", [{
`(` $optional `:` type($optional) `)` `:` type($optional_res)
(`[` $variadic^ `]`)? attr-dict
}]>;
def FormatOptionalOperandResultBOp : FormatOptionalOperandResultOpBase<"b", [{
(`(` $optional^ `:` type($optional) `)`)? `:` type($optional_res)
(`[` $variadic^ `]`)? attr-dict
}]>;
//===----------------------------------------------------------------------===//
// Test SideEffects
//===----------------------------------------------------------------------===//
def SideEffectOp : TEST_Op<"side_effect_op",
[DeclareOpInterfaceMethods<MemoryEffectsOpInterface>]> {
let results = (outs AnyType:$result);
}
#endif // TEST_OPS