llvm-project/clang/lib/Analysis/GRExprEngine.cpp
Ted Kremenek 5ca90a244f This is a big patch, but the functionality change is small and the rest of the patch consists of deltas due to API changes.
This patch overhauls the "memory region" abstraction that was prototyped (but never really used) as part of the Store.h.  This patch adds MemRegion.h and MemRegion.cpp, which defines the class MemRegion and its subclasses.  This classes serve to define an abstract representation of memory, with regions being layered on other regions to to capture the relationships between fields and variables, variables and the address space they are allocated in, and so on.  

The main motivation of this patch is that key parts of the analyzer assumed that all value bindings were to VarDecls.  In the future this won't be the case, and this patch removes lval::DeclVal and replaces it with lval::MemRegionVal.  Now all pieces of the analyzer must reason about abstract memory blocks instead of just variables.

There should be no functionality change from this patch, but it opens the door for significant improvements to the analyzer such as field-sensitivity and object-sensitivity, both which were on hold until the memory abstraction got generalized.

The memory region abstraction also allows type-information to literally be affixed to a memory region.  This will allow the some now redundant logic to be removed from the retain/release checker.

llvm-svn: 57042
2008-10-04 05:50:14 +00:00

2433 lines
72 KiB
C++

//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a meta-engine for path-sensitive dataflow analysis that
// is built on GREngine, but provides the boilerplate to execute transfer
// functions and build the ExplodedGraph at the expression level.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "clang/Analysis/PathSensitive/BugReporter.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/ImmutableList.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#include <sstream>
#endif
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
using llvm::APSInt;
//===----------------------------------------------------------------------===//
// Engine construction and deletion.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN MappedBatchAuditor : public GRSimpleAPICheck {
typedef llvm::ImmutableList<GRSimpleAPICheck*> Checks;
typedef llvm::DenseMap<void*,Checks> MapTy;
MapTy M;
Checks::Factory F;
public:
MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) : F(Alloc) {}
virtual ~MappedBatchAuditor() {
llvm::DenseSet<GRSimpleAPICheck*> AlreadyVisited;
for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI)
for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){
GRSimpleAPICheck* check = *I;
if (AlreadyVisited.count(check))
continue;
AlreadyVisited.insert(check);
delete check;
}
}
void AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) {
assert (A && "Check cannot be null.");
void* key = reinterpret_cast<void*>((uintptr_t) C);
MapTy::iterator I = M.find(key);
M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second);
}
virtual void EmitWarnings(BugReporter& BR) {
llvm::DenseSet<GRSimpleAPICheck*> AlreadyVisited;
for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI)
for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){
GRSimpleAPICheck* check = *I;
if (AlreadyVisited.count(check))
continue;
check->EmitWarnings(BR);
}
}
virtual bool Audit(NodeTy* N, GRStateManager& VMgr) {
Stmt* S = cast<PostStmt>(N->getLocation()).getStmt();
void* key = reinterpret_cast<void*>((uintptr_t) S->getStmtClass());
MapTy::iterator MI = M.find(key);
if (MI == M.end())
return false;
bool isSink = false;
for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I)
isSink |= (*I)->Audit(N, VMgr);
return isSink;
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Engine construction and deletion.
//===----------------------------------------------------------------------===//
static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
IdentifierInfo* II = &Ctx.Idents.get(name);
return Ctx.Selectors.getSelector(0, &II);
}
GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx,
LiveVariables& L)
: CoreEngine(cfg, CD, Ctx, *this),
G(CoreEngine.getGraph()),
Liveness(L),
Builder(NULL),
StateMgr(G.getContext(), CreateBasicStoreManager,
CreateBasicConstraintManager, G.getAllocator(), G.getCFG(), L),
SymMgr(StateMgr.getSymbolManager()),
CurrentStmt(NULL),
NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL),
RaiseSel(GetNullarySelector("raise", G.getContext())) {}
GRExprEngine::~GRExprEngine() {
for (BugTypeSet::iterator I = BugTypes.begin(), E = BugTypes.end(); I!=E; ++I)
delete *I;
delete [] NSExceptionInstanceRaiseSelectors;
}
//===----------------------------------------------------------------------===//
// Utility methods.
//===----------------------------------------------------------------------===//
// SaveAndRestore - A utility class that uses RIIA to save and restore
// the value of a variable.
template<typename T>
struct VISIBILITY_HIDDEN SaveAndRestore {
SaveAndRestore(T& x) : X(x), old_value(x) {}
~SaveAndRestore() { X = old_value; }
T get() { return old_value; }
T& X;
T old_value;
};
// SaveOr - Similar to SaveAndRestore. Operates only on bools; the old
// value of a variable is saved, and during the dstor the old value is
// or'ed with the new value.
struct VISIBILITY_HIDDEN SaveOr {
SaveOr(bool& x) : X(x), old_value(x) { x = false; }
~SaveOr() { X |= old_value; }
bool& X;
bool old_value;
};
void GRExprEngine::EmitWarnings(BugReporterData& BRData) {
for (bug_type_iterator I = bug_types_begin(), E = bug_types_end(); I!=E; ++I){
GRBugReporter BR(BRData, *this);
(*I)->EmitWarnings(BR);
}
if (BatchAuditor) {
GRBugReporter BR(BRData, *this);
BatchAuditor->EmitWarnings(BR);
}
}
void GRExprEngine::setTransferFunctions(GRTransferFuncs* tf) {
StateMgr.TF = tf;
tf->RegisterChecks(*this);
tf->RegisterPrinters(getStateManager().Printers);
}
void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) {
if (!BatchAuditor)
BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator()));
((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C);
}
const GRState* GRExprEngine::getInitialState() {
return StateMgr.getInitialState();
}
//===----------------------------------------------------------------------===//
// Top-level transfer function logic (Dispatcher).
//===----------------------------------------------------------------------===//
void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) {
Builder = &builder;
EntryNode = builder.getLastNode();
// FIXME: Consolidate.
CurrentStmt = S;
StateMgr.CurrentStmt = S;
// Set up our simple checks.
if (BatchAuditor)
Builder->setAuditor(BatchAuditor.get());
// Create the cleaned state.
CleanedState = StateMgr.RemoveDeadBindings(EntryNode->getState(), CurrentStmt,
Liveness, DeadSymbols);
// Process any special transfer function for dead symbols.
NodeSet Tmp;
if (DeadSymbols.empty())
Tmp.Add(EntryNode);
else {
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
SaveOr OldHasGen(Builder->HasGeneratedNode);
SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols);
Builder->PurgingDeadSymbols = true;
getTF().EvalDeadSymbols(Tmp, *this, *Builder, EntryNode, S,
CleanedState, DeadSymbols);
if (!Builder->BuildSinks && !Builder->HasGeneratedNode)
Tmp.Add(EntryNode);
}
bool HasAutoGenerated = false;
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
NodeSet Dst;
// Set the cleaned state.
Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I));
// Visit the statement.
Visit(S, *I, Dst);
// Do we need to auto-generate a node? We only need to do this to generate
// a node with a "cleaned" state; GRCoreEngine will actually handle
// auto-transitions for other cases.
if (Dst.size() == 1 && *Dst.begin() == EntryNode
&& !Builder->HasGeneratedNode && !HasAutoGenerated) {
HasAutoGenerated = true;
builder.generateNode(S, GetState(EntryNode), *I);
}
}
// NULL out these variables to cleanup.
CleanedState = NULL;
EntryNode = NULL;
// FIXME: Consolidate.
StateMgr.CurrentStmt = 0;
CurrentStmt = 0;
Builder = NULL;
}
void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) {
// FIXME: add metadata to the CFG so that we can disable
// this check when we KNOW that there is no block-level subexpression.
// The motivation is that this check requires a hashtable lookup.
if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
Dst.Add(Pred);
return;
}
switch (S->getStmtClass()) {
default:
// Cases we intentionally have "default" handle:
// AddrLabelExpr, IntegerLiteral, CharacterLiteral
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
break;
case Stmt::ArraySubscriptExprClass:
VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst, false);
break;
case Stmt::AsmStmtClass:
VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst);
break;
case Stmt::BinaryOperatorClass: {
BinaryOperator* B = cast<BinaryOperator>(S);
if (B->isLogicalOp()) {
VisitLogicalExpr(B, Pred, Dst);
break;
}
else if (B->getOpcode() == BinaryOperator::Comma) {
const GRState* St = GetState(Pred);
MakeNode(Dst, B, Pred, SetRVal(St, B, GetRVal(St, B->getRHS())));
break;
}
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
}
case Stmt::CallExprClass: {
CallExpr* C = cast<CallExpr>(S);
VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst);
break;
}
// FIXME: ChooseExpr is really a constant. We need to fix
// the CFG do not model them as explicit control-flow.
case Stmt::ChooseExprClass: { // __builtin_choose_expr
ChooseExpr* C = cast<ChooseExpr>(S);
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::CompoundAssignOperatorClass:
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
case Stmt::ConditionalOperatorClass: { // '?' operator
ConditionalOperator* C = cast<ConditionalOperator>(S);
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::DeclRefExprClass:
VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst, false);
break;
case Stmt::DeclStmtClass:
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
break;
case Stmt::ImplicitCastExprClass:
case Stmt::ExplicitCastExprClass: {
CastExpr* C = cast<CastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::MemberExprClass: {
VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst, false);
break;
}
case Stmt::ObjCMessageExprClass: {
VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst);
break;
}
case Stmt::ParenExprClass:
Visit(cast<ParenExpr>(S)->getSubExpr()->IgnoreParens(), Pred, Dst);
break;
case Stmt::ReturnStmtClass:
VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
break;
case Stmt::SizeOfAlignOfTypeExprClass:
VisitSizeOfAlignOfTypeExpr(cast<SizeOfAlignOfTypeExpr>(S), Pred, Dst);
break;
case Stmt::StmtExprClass: {
StmtExpr* SE = cast<StmtExpr>(S);
const GRState* St = GetState(Pred);
// FIXME: Not certain if we can have empty StmtExprs. If so, we should
// probably just remove these from the CFG.
assert (!SE->getSubStmt()->body_empty());
if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin()))
MakeNode(Dst, SE, Pred, SetRVal(St, SE, GetRVal(St, LastExpr)));
else
Dst.Add(Pred);
break;
}
case Stmt::UnaryOperatorClass:
VisitUnaryOperator(cast<UnaryOperator>(S), Pred, Dst, false);
break;
}
}
void GRExprEngine::VisitLVal(Expr* Ex, NodeTy* Pred, NodeSet& Dst) {
Ex = Ex->IgnoreParens();
if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) {
Dst.Add(Pred);
return;
}
switch (Ex->getStmtClass()) {
default:
Visit(Ex, Pred, Dst);
return;
case Stmt::ArraySubscriptExprClass:
VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(Ex), Pred, Dst, true);
return;
case Stmt::DeclRefExprClass:
VisitDeclRefExpr(cast<DeclRefExpr>(Ex), Pred, Dst, true);
return;
case Stmt::UnaryOperatorClass:
VisitUnaryOperator(cast<UnaryOperator>(Ex), Pred, Dst, true);
return;
case Stmt::MemberExprClass:
VisitMemberExpr(cast<MemberExpr>(Ex), Pred, Dst, true);
return;
}
}
//===----------------------------------------------------------------------===//
// Block entrance. (Update counters).
//===----------------------------------------------------------------------===//
bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, const GRState*,
GRBlockCounter BC) {
return BC.getNumVisited(B->getBlockID()) < 3;
}
//===----------------------------------------------------------------------===//
// Branch processing.
//===----------------------------------------------------------------------===//
const GRState* GRExprEngine::MarkBranch(const GRState* St,
Stmt* Terminator,
bool branchTaken) {
switch (Terminator->getStmtClass()) {
default:
return St;
case Stmt::BinaryOperatorClass: { // '&&' and '||'
BinaryOperator* B = cast<BinaryOperator>(Terminator);
BinaryOperator::Opcode Op = B->getOpcode();
assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr);
// For &&, if we take the true branch, then the value of the whole
// expression is that of the RHS expression.
//
// For ||, if we take the false branch, then the value of the whole
// expression is that of the RHS expression.
Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) ||
(Op == BinaryOperator::LOr && !branchTaken)
? B->getRHS() : B->getLHS();
return SetBlkExprRVal(St, B, UndefinedVal(Ex));
}
case Stmt::ConditionalOperatorClass: { // ?:
ConditionalOperator* C = cast<ConditionalOperator>(Terminator);
// For ?, if branchTaken == true then the value is either the LHS or
// the condition itself. (GNU extension).
Expr* Ex;
if (branchTaken)
Ex = C->getLHS() ? C->getLHS() : C->getCond();
else
Ex = C->getRHS();
return SetBlkExprRVal(St, C, UndefinedVal(Ex));
}
case Stmt::ChooseExprClass: { // ?:
ChooseExpr* C = cast<ChooseExpr>(Terminator);
Expr* Ex = branchTaken ? C->getLHS() : C->getRHS();
return SetBlkExprRVal(St, C, UndefinedVal(Ex));
}
}
}
void GRExprEngine::ProcessBranch(Expr* Condition, Stmt* Term,
BranchNodeBuilder& builder) {
// Remove old bindings for subexpressions.
const GRState* PrevState =
StateMgr.RemoveSubExprBindings(builder.getState());
// Check for NULL conditions; e.g. "for(;;)"
if (!Condition) {
builder.markInfeasible(false);
return;
}
RVal V = GetRVal(PrevState, Condition);
switch (V.getBaseKind()) {
default:
break;
case RVal::UnknownKind:
builder.generateNode(MarkBranch(PrevState, Term, true), true);
builder.generateNode(MarkBranch(PrevState, Term, false), false);
return;
case RVal::UndefinedKind: {
NodeTy* N = builder.generateNode(PrevState, true);
if (N) {
N->markAsSink();
UndefBranches.insert(N);
}
builder.markInfeasible(false);
return;
}
}
// Process the true branch.
bool isFeasible = false;
const GRState* St = Assume(PrevState, V, true, isFeasible);
if (isFeasible)
builder.generateNode(MarkBranch(St, Term, true), true);
else
builder.markInfeasible(true);
// Process the false branch.
isFeasible = false;
St = Assume(PrevState, V, false, isFeasible);
if (isFeasible)
builder.generateNode(MarkBranch(St, Term, false), false);
else
builder.markInfeasible(false);
}
/// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a computed goto jump.
void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) {
const GRState* St = builder.getState();
RVal V = GetRVal(St, builder.getTarget());
// Three possibilities:
//
// (1) We know the computed label.
// (2) The label is NULL (or some other constant), or Undefined.
// (3) We have no clue about the label. Dispatch to all targets.
//
typedef IndirectGotoNodeBuilder::iterator iterator;
if (isa<lval::GotoLabel>(V)) {
LabelStmt* L = cast<lval::GotoLabel>(V).getLabel();
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) {
if (I.getLabel() == L) {
builder.generateNode(I, St);
return;
}
}
assert (false && "No block with label.");
return;
}
if (isa<lval::ConcreteInt>(V) || isa<UndefinedVal>(V)) {
// Dispatch to the first target and mark it as a sink.
NodeTy* N = builder.generateNode(builder.begin(), St, true);
UndefBranches.insert(N);
return;
}
// This is really a catch-all. We don't support symbolics yet.
assert (V.isUnknown());
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
builder.generateNode(I, St);
}
void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R,
NodeTy* Pred, NodeSet& Dst) {
assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex));
const GRState* St = GetState(Pred);
RVal X = GetBlkExprRVal(St, Ex);
assert (X.isUndef());
Expr* SE = (Expr*) cast<UndefinedVal>(X).getData();
assert (SE);
X = GetBlkExprRVal(St, SE);
// Make sure that we invalidate the previous binding.
MakeNode(Dst, Ex, Pred, StateMgr.SetRVal(St, Ex, X, true, true));
}
/// ProcessSwitch - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a switch statement.
void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) {
typedef SwitchNodeBuilder::iterator iterator;
const GRState* St = builder.getState();
Expr* CondE = builder.getCondition();
RVal CondV = GetRVal(St, CondE);
if (CondV.isUndef()) {
NodeTy* N = builder.generateDefaultCaseNode(St, true);
UndefBranches.insert(N);
return;
}
const GRState* DefaultSt = St;
// While most of this can be assumed (such as the signedness), having it
// just computed makes sure everything makes the same assumptions end-to-end.
unsigned bits = getContext().getTypeSize(CondE->getType());
APSInt V1(bits, false);
APSInt V2 = V1;
bool DefaultFeasible = false;
for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) {
CaseStmt* Case = cast<CaseStmt>(I.getCase());
// Evaluate the case.
if (!Case->getLHS()->isIntegerConstantExpr(V1, getContext(), 0, true)) {
assert (false && "Case condition must evaluate to an integer constant.");
return;
}
// Get the RHS of the case, if it exists.
if (Expr* E = Case->getRHS()) {
if (!E->isIntegerConstantExpr(V2, getContext(), 0, true)) {
assert (false &&
"Case condition (RHS) must evaluate to an integer constant.");
return ;
}
assert (V1 <= V2);
}
else
V2 = V1;
// FIXME: Eventually we should replace the logic below with a range
// comparison, rather than concretize the values within the range.
// This should be easy once we have "ranges" for NonLVals.
do {
nonlval::ConcreteInt CaseVal(getBasicVals().getValue(V1));
RVal Res = EvalBinOp(BinaryOperator::EQ, CondV, CaseVal);
// Now "assume" that the case matches.
bool isFeasible = false;
const GRState* StNew = Assume(St, Res, true, isFeasible);
if (isFeasible) {
builder.generateCaseStmtNode(I, StNew);
// If CondV evaluates to a constant, then we know that this
// is the *only* case that we can take, so stop evaluating the
// others.
if (isa<nonlval::ConcreteInt>(CondV))
return;
}
// Now "assume" that the case doesn't match. Add this state
// to the default state (if it is feasible).
isFeasible = false;
StNew = Assume(DefaultSt, Res, false, isFeasible);
if (isFeasible) {
DefaultFeasible = true;
DefaultSt = StNew;
}
// Concretize the next value in the range.
if (V1 == V2)
break;
++V1;
assert (V1 <= V2);
} while (true);
}
// If we reach here, than we know that the default branch is
// possible.
if (DefaultFeasible) builder.generateDefaultCaseNode(DefaultSt);
}
//===----------------------------------------------------------------------===//
// Transfer functions: logical operations ('&&', '||').
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred,
NodeSet& Dst) {
assert (B->getOpcode() == BinaryOperator::LAnd ||
B->getOpcode() == BinaryOperator::LOr);
assert (B == CurrentStmt && getCFG().isBlkExpr(B));
const GRState* St = GetState(Pred);
RVal X = GetBlkExprRVal(St, B);
assert (X.isUndef());
Expr* Ex = (Expr*) cast<UndefinedVal>(X).getData();
assert (Ex);
if (Ex == B->getRHS()) {
X = GetBlkExprRVal(St, Ex);
// Handle undefined values.
if (X.isUndef()) {
MakeNode(Dst, B, Pred, SetBlkExprRVal(St, B, X));
return;
}
// We took the RHS. Because the value of the '&&' or '||' expression must
// evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
// or 1. Alternatively, we could take a lazy approach, and calculate this
// value later when necessary. We don't have the machinery in place for
// this right now, and since most logical expressions are used for branches,
// the payoff is not likely to be large. Instead, we do eager evaluation.
bool isFeasible = false;
const GRState* NewState = Assume(St, X, true, isFeasible);
if (isFeasible)
MakeNode(Dst, B, Pred,
SetBlkExprRVal(NewState, B, MakeConstantVal(1U, B)));
isFeasible = false;
NewState = Assume(St, X, false, isFeasible);
if (isFeasible)
MakeNode(Dst, B, Pred,
SetBlkExprRVal(NewState, B, MakeConstantVal(0U, B)));
}
else {
// We took the LHS expression. Depending on whether we are '&&' or
// '||' we know what the value of the expression is via properties of
// the short-circuiting.
X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B);
MakeNode(Dst, B, Pred, SetBlkExprRVal(St, B, X));
}
}
//===----------------------------------------------------------------------===//
// Transfer functions: Loads and stores.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* D, NodeTy* Pred, NodeSet& Dst,
bool asLVal) {
const GRState* St = GetState(Pred);
RVal X = RVal::MakeVal(getStateManager(), D);
if (asLVal)
MakeNode(Dst, D, Pred, SetRVal(St, D, cast<LVal>(X)));
else {
RVal V = isa<lval::MemRegionVal>(X) ? GetRVal(St, cast<LVal>(X)) : X;
MakeNode(Dst, D, Pred, SetRVal(St, D, V));
}
}
/// VisitArraySubscriptExpr - Transfer function for array accesses
void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, NodeTy* Pred,
NodeSet& Dst, bool asLVal) {
Expr* Base = A->getBase()->IgnoreParens();
Expr* Idx = A->getIdx()->IgnoreParens();
// Always visit the base as an LVal expression. This computes the
// abstract address of the base object.
NodeSet Tmp;
if (LVal::IsLValType(Base->getType())) // Base always is an LVal.
Visit(Base, Pred, Tmp);
else
VisitLVal(Base, Pred, Tmp);
for (NodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) {
// Evaluate the index.
NodeSet Tmp2;
Visit(Idx, *I1, Tmp2);
for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2!=E2; ++I2) {
const GRState* St = GetState(*I2);
RVal BaseV = GetRVal(St, Base);
RVal IdxV = GetRVal(St, Idx);
// If IdxV is 0, return just BaseV.
bool useBase = false;
if (nonlval::ConcreteInt* IdxInt = dyn_cast<nonlval::ConcreteInt>(&IdxV))
useBase = IdxInt->getValue() == 0;
RVal V = useBase ? BaseV : lval::ArrayOffset::Make(getBasicVals(), BaseV,IdxV);
if (asLVal)
MakeNode(Dst, A, *I2, SetRVal(St, A, V));
else
EvalLoad(Dst, A, *I2, St, V);
}
}
}
/// VisitMemberExpr - Transfer function for member expressions.
void GRExprEngine::VisitMemberExpr(MemberExpr* M, NodeTy* Pred,
NodeSet& Dst, bool asLVal) {
Expr* Base = M->getBase()->IgnoreParens();
// Always visit the base as an LVal expression. This computes the
// abstract address of the base object.
NodeSet Tmp;
if (asLVal) {
if (LVal::IsLValType(Base->getType())) // Base always is an LVal.
Visit(Base, Pred, Tmp);
else
VisitLVal(Base, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* St = GetState(*I);
RVal BaseV = GetRVal(St, Base);
RVal V = lval::FieldOffset::Make(getBasicVals(), GetRVal(St, Base),
M->getMemberDecl());
MakeNode(Dst, M, *I, SetRVal(St, M, V));
}
return;
}
// Evaluate the base. Can be an LVal or NonLVal (depends on whether
// or not isArrow() is true).
Visit(Base, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* St = GetState(*I);
RVal BaseV = GetRVal(St, Base);
if (LVal::IsLValType(Base->getType())) {
assert (M->isArrow());
RVal V = lval::FieldOffset::Make(getBasicVals(), GetRVal(St, Base),
M->getMemberDecl());
EvalLoad(Dst, M, *I, St, V);
}
else {
assert (!M->isArrow());
if (BaseV.isUnknownOrUndef()) {
MakeNode(Dst, M, *I, SetRVal(St, M, BaseV));
continue;
}
// FIXME: Implement nonlval objects representing struct temporaries.
assert (isa<NonLVal>(BaseV));
MakeNode(Dst, M, *I, SetRVal(St, M, UnknownVal()));
}
}
}
void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, NodeTy* Pred,
const GRState* St, RVal location, RVal Val) {
assert (Builder && "GRStmtNodeBuilder must be defined.");
// Evaluate the location (checks for bad dereferences).
St = EvalLocation(Ex, Pred, St, location);
if (!St)
return;
// Proceed with the store.
unsigned size = Dst.size();
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind);
SaveOr OldHasGen(Builder->HasGeneratedNode);
assert (!location.isUndef());
Builder->PointKind = ProgramPoint::PostStoreKind;
getTF().EvalStore(Dst, *this, *Builder, Ex, Pred, St, location, Val);
// Handle the case where no nodes where generated. Auto-generate that
// contains the updated state if we aren't generating sinks.
if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
getTF().GRTransferFuncs::EvalStore(Dst, *this, *Builder, Ex, Pred, St,
location, Val);
}
void GRExprEngine::EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred,
const GRState* St, RVal location,
bool CheckOnly) {
// Evaluate the location (checks for bad dereferences).
St = EvalLocation(Ex, Pred, St, location, true);
if (!St)
return;
// Proceed with the load.
ProgramPoint::Kind K = ProgramPoint::PostLoadKind;
// FIXME: Currently symbolic analysis "generates" new symbols
// for the contents of values. We need a better approach.
// FIXME: The "CheckOnly" option exists only because Array and Field
// loads aren't fully implemented. Eventually this option will go away.
if (CheckOnly)
MakeNode(Dst, Ex, Pred, St, K);
else if (location.isUnknown()) {
// This is important. We must nuke the old binding.
MakeNode(Dst, Ex, Pred, SetRVal(St, Ex, UnknownVal()), K);
}
else
MakeNode(Dst, Ex, Pred, SetRVal(St, Ex, GetRVal(St, cast<LVal>(location),
Ex->getType())), K);
}
void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, Expr* StoreE, NodeTy* Pred,
const GRState* St, RVal location, RVal Val) {
NodeSet TmpDst;
EvalStore(TmpDst, StoreE, Pred, St, location, Val);
for (NodeSet::iterator I=TmpDst.begin(), E=TmpDst.end(); I!=E; ++I)
MakeNode(Dst, Ex, *I, (*I)->getState());
}
const GRState* GRExprEngine::EvalLocation(Expr* Ex, NodeTy* Pred,
const GRState* St,
RVal location, bool isLoad) {
// Check for loads/stores from/to undefined values.
if (location.isUndef()) {
ProgramPoint::Kind K =
isLoad ? ProgramPoint::PostLoadKind : ProgramPoint::PostStmtKind;
if (NodeTy* Succ = Builder->generateNode(Ex, St, Pred, K)) {
Succ->markAsSink();
UndefDeref.insert(Succ);
}
return NULL;
}
// Check for loads/stores from/to unknown locations. Treat as No-Ops.
if (location.isUnknown())
return St;
// During a load, one of two possible situations arise:
// (1) A crash, because the location (pointer) was NULL.
// (2) The location (pointer) is not NULL, and the dereference works.
//
// We add these assumptions.
LVal LV = cast<LVal>(location);
// "Assume" that the pointer is not NULL.
bool isFeasibleNotNull = false;
const GRState* StNotNull = Assume(St, LV, true, isFeasibleNotNull);
// "Assume" that the pointer is NULL.
bool isFeasibleNull = false;
GRStateRef StNull = GRStateRef(Assume(St, LV, false, isFeasibleNull),
getStateManager());
if (isFeasibleNull) {
// Use the Generic Data Map to mark in the state what lval was null.
const RVal* PersistentLV = getBasicVals().getPersistentRVal(LV);
StNull = StNull.set<GRState::NullDerefTag>(PersistentLV);
// We don't use "MakeNode" here because the node will be a sink
// and we have no intention of processing it later.
ProgramPoint::Kind K =
isLoad ? ProgramPoint::PostLoadKind : ProgramPoint::PostStmtKind;
NodeTy* NullNode = Builder->generateNode(Ex, StNull, Pred, K);
if (NullNode) {
NullNode->markAsSink();
if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode);
else ExplicitNullDeref.insert(NullNode);
}
}
return isFeasibleNotNull ? StNotNull : NULL;
}
//===----------------------------------------------------------------------===//
// Transfer function: Function calls.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred,
CallExpr::arg_iterator AI,
CallExpr::arg_iterator AE,
NodeSet& Dst) {
// Process the arguments.
if (AI != AE) {
NodeSet DstTmp;
Visit(*AI, Pred, DstTmp);
++AI;
for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI)
VisitCall(CE, *DI, AI, AE, Dst);
return;
}
// If we reach here we have processed all of the arguments. Evaluate
// the callee expression.
NodeSet DstTmp;
Expr* Callee = CE->getCallee()->IgnoreParens();
VisitLVal(Callee, Pred, DstTmp);
// Finally, evaluate the function call.
for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) {
const GRState* St = GetState(*DI);
RVal L = GetRVal(St, Callee);
// FIXME: Add support for symbolic function calls (calls involving
// function pointer values that are symbolic).
// Check for undefined control-flow or calls to NULL.
if (L.isUndef() || isa<lval::ConcreteInt>(L)) {
NodeTy* N = Builder->generateNode(CE, St, *DI);
if (N) {
N->markAsSink();
BadCalls.insert(N);
}
continue;
}
// Check for the "noreturn" attribute.
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
if (isa<lval::FuncVal>(L)) {
FunctionDecl* FD = cast<lval::FuncVal>(L).getDecl();
if (FD->getAttr<NoReturnAttr>())
Builder->BuildSinks = true;
else {
// HACK: Some functions are not marked noreturn, and don't return.
// Here are a few hardwired ones. If this takes too long, we can
// potentially cache these results.
const char* s = FD->getIdentifier()->getName();
unsigned n = strlen(s);
switch (n) {
default:
break;
case 4:
if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true;
break;
case 5:
if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true;
break;
case 6:
if (!memcmp(s, "Assert", 6)) {
Builder->BuildSinks = true;
break;
}
// FIXME: This is just a wrapper around throwing an exception.
// Eventually inter-procedural analysis should handle this easily.
if (!memcmp(s, "ziperr", 6)) Builder->BuildSinks = true;
break;
case 7:
if (!memcmp(s, "assfail", 7)) Builder->BuildSinks = true;
break;
case 8:
if (!memcmp(s ,"db_error", 8)) Builder->BuildSinks = true;
break;
case 12:
if (!memcmp(s, "__assert_rtn", 12)) Builder->BuildSinks = true;
break;
case 13:
if (!memcmp(s, "__assert_fail", 13)) Builder->BuildSinks = true;
break;
case 14:
if (!memcmp(s, "dtrace_assfail", 14)) Builder->BuildSinks = true;
break;
case 26:
if (!memcmp(s, "_XCAssertionFailureHandler", 26) ||
!memcmp(s, "_DTAssertionFailureHandler", 26))
Builder->BuildSinks = true;
break;
}
}
}
// Evaluate the call.
if (isa<lval::FuncVal>(L)) {
IdentifierInfo* Info = cast<lval::FuncVal>(L).getDecl()->getIdentifier();
if (unsigned id = Info->getBuiltinID())
switch (id) {
case Builtin::BI__builtin_expect: {
// For __builtin_expect, just return the value of the subexpression.
assert (CE->arg_begin() != CE->arg_end());
RVal X = GetRVal(St, *(CE->arg_begin()));
MakeNode(Dst, CE, *DI, SetRVal(St, CE, X));
continue;
}
default:
break;
}
}
// Check any arguments passed-by-value against being undefined.
bool badArg = false;
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I) {
if (GetRVal(GetState(*DI), *I).isUndef()) {
NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI);
if (N) {
N->markAsSink();
UndefArgs[N] = *I;
}
badArg = true;
break;
}
}
if (badArg)
continue;
// Dispatch to the plug-in transfer function.
unsigned size = Dst.size();
SaveOr OldHasGen(Builder->HasGeneratedNode);
EvalCall(Dst, CE, L, *DI);
// Handle the case where no nodes where generated. Auto-generate that
// contains the updated state if we aren't generating sinks.
if (!Builder->BuildSinks && Dst.size() == size &&
!Builder->HasGeneratedNode)
MakeNode(Dst, CE, *DI, St);
}
}
//===----------------------------------------------------------------------===//
// Transfer function: Objective-C message expressions.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred,
NodeSet& Dst){
VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(),
Pred, Dst);
}
void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME,
ObjCMessageExpr::arg_iterator AI,
ObjCMessageExpr::arg_iterator AE,
NodeTy* Pred, NodeSet& Dst) {
if (AI == AE) {
// Process the receiver.
if (Expr* Receiver = ME->getReceiver()) {
NodeSet Tmp;
Visit(Receiver, Pred, Tmp);
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitObjCMessageExprDispatchHelper(ME, *NI, Dst);
return;
}
VisitObjCMessageExprDispatchHelper(ME, Pred, Dst);
return;
}
NodeSet Tmp;
Visit(*AI, Pred, Tmp);
++AI;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst);
}
void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME,
NodeTy* Pred,
NodeSet& Dst) {
// FIXME: More logic for the processing the method call.
const GRState* St = GetState(Pred);
bool RaisesException = false;
if (Expr* Receiver = ME->getReceiver()) {
RVal L = GetRVal(St, Receiver);
// Check for undefined control-flow or calls to NULL.
if (L.isUndef()) {
NodeTy* N = Builder->generateNode(ME, St, Pred);
if (N) {
N->markAsSink();
UndefReceivers.insert(N);
}
return;
}
// Check if the "raise" message was sent.
if (ME->getSelector() == RaiseSel)
RaisesException = true;
}
else {
IdentifierInfo* ClsName = ME->getClassName();
Selector S = ME->getSelector();
// Check for special instance methods.
if (!NSExceptionII) {
ASTContext& Ctx = getContext();
NSExceptionII = &Ctx.Idents.get("NSException");
}
if (ClsName == NSExceptionII) {
enum { NUM_RAISE_SELECTORS = 2 };
// Lazily create a cache of the selectors.
if (!NSExceptionInstanceRaiseSelectors) {
ASTContext& Ctx = getContext();
NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS];
llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II;
unsigned idx = 0;
// raise:format:
II.push_back(&Ctx.Idents.get("raise"));
II.push_back(&Ctx.Idents.get("format"));
NSExceptionInstanceRaiseSelectors[idx++] =
Ctx.Selectors.getSelector(II.size(), &II[0]);
// raise:format::arguments:
II.push_back(&Ctx.Idents.get("arguments"));
NSExceptionInstanceRaiseSelectors[idx++] =
Ctx.Selectors.getSelector(II.size(), &II[0]);
}
for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i)
if (S == NSExceptionInstanceRaiseSelectors[i]) {
RaisesException = true; break;
}
}
}
// Check for any arguments that are uninitialized/undefined.
for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end();
I != E; ++I) {
if (GetRVal(St, *I).isUndef()) {
// Generate an error node for passing an uninitialized/undefined value
// as an argument to a message expression. This node is a sink.
NodeTy* N = Builder->generateNode(ME, St, Pred);
if (N) {
N->markAsSink();
MsgExprUndefArgs[N] = *I;
}
return;
}
}
// Check if we raise an exception. For now treat these as sinks. Eventually
// we will want to handle exceptions properly.
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
if (RaisesException)
Builder->BuildSinks = true;
// Dispatch to plug-in transfer function.
unsigned size = Dst.size();
SaveOr OldHasGen(Builder->HasGeneratedNode);
EvalObjCMessageExpr(Dst, ME, Pred);
// Handle the case where no nodes where generated. Auto-generate that
// contains the updated state if we aren't generating sinks.
if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
MakeNode(Dst, ME, Pred, St);
}
//===----------------------------------------------------------------------===//
// Transfer functions: Miscellaneous statements.
//===----------------------------------------------------------------------===//
void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){
NodeSet S1;
QualType T = CastE->getType();
if (T->isReferenceType())
VisitLVal(Ex, Pred, S1);
else
Visit(Ex, Pred, S1);
// Check for casting to "void".
if (T->isVoidType()) {
for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1)
Dst.Add(*I1);
return;
}
// FIXME: The rest of this should probably just go into EvalCall, and
// let the transfer function object be responsible for constructing
// nodes.
QualType ExTy = Ex->getType();
for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) {
NodeTy* N = *I1;
const GRState* St = GetState(N);
RVal V = GetRVal(St, Ex);
// Unknown?
if (V.isUnknown()) {
Dst.Add(N);
continue;
}
// Undefined?
if (V.isUndef()) {
MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
continue;
}
// For const casts, just propagate the value.
ASTContext& C = getContext();
if (C.getCanonicalType(T).getUnqualifiedType() ==
C.getCanonicalType(ExTy).getUnqualifiedType()) {
MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
continue;
}
// Check for casts from pointers to integers.
if (T->isIntegerType() && LVal::IsLValType(ExTy)) {
unsigned bits = getContext().getTypeSize(ExTy);
// FIXME: Determine if the number of bits of the target type is
// equal or exceeds the number of bits to store the pointer value.
// If not, flag an error.
V = nonlval::LValAsInteger::Make(getBasicVals(), cast<LVal>(V), bits);
MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
continue;
}
// Check for casts from integers to pointers.
if (LVal::IsLValType(T) && ExTy->isIntegerType())
if (nonlval::LValAsInteger *LV = dyn_cast<nonlval::LValAsInteger>(&V)) {
// Just unpackage the lval and return it.
V = LV->getLVal();
MakeNode(Dst, CastE, N, SetRVal(St, CastE, V));
continue;
}
// All other cases.
MakeNode(Dst, CastE, N, SetRVal(St, CastE, EvalCast(V, CastE->getType())));
}
}
void GRExprEngine::VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst) {
// The CFG has one DeclStmt per Decl, so we don't need to walk the
// Decl chain.
ScopedDecl* D = DS->getDecl();
if (!D || !isa<VarDecl>(D))
return;
const VarDecl* VD = dyn_cast<VarDecl>(D);
// FIXME: Add support for local arrays.
if (VD->getType()->isArrayType()) {
return;
}
Expr* Ex = const_cast<Expr*>(VD->getInit());
// FIXME: static variables may have an initializer, but the second
// time a function is called those values may not be current.
NodeSet Tmp;
if (Ex)
Visit(Ex, Pred, Tmp);
if (Tmp.empty())
Tmp.Add(Pred);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* St = GetState(*I);
St = StateMgr.AddDecl(St, VD, Ex, Builder->getCurrentBlockCount());
MakeNode(Dst, DS, *I, St);
}
}
/// VisitSizeOfAlignOfTypeExpr - Transfer function for sizeof(type).
void GRExprEngine::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr* Ex,
NodeTy* Pred,
NodeSet& Dst) {
QualType T = Ex->getArgumentType();
uint64_t amt;
if (Ex->isSizeOf()) {
// FIXME: Add support for VLAs.
if (!T.getTypePtr()->isConstantSizeType())
return;
// Some code tries to take the sizeof an ObjCInterfaceType, relying that
// the compiler has laid out its representation. Just report Unknown
// for these.
if (T->isObjCInterfaceType())
return;
amt = 1; // Handle sizeof(void)
if (T != getContext().VoidTy)
amt = getContext().getTypeSize(T) / 8;
}
else // Get alignment of the type.
amt = getContext().getTypeAlign(T) / 8;
MakeNode(Dst, Ex, Pred,
SetRVal(GetState(Pred), Ex,
NonLVal::MakeVal(getBasicVals(), amt, Ex->getType())));
}
void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred,
NodeSet& Dst, bool asLVal) {
switch (U->getOpcode()) {
default:
break;
case UnaryOperator::Deref: {
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* St = GetState(*I);
RVal location = GetRVal(St, Ex);
if (asLVal)
MakeNode(Dst, U, *I, SetRVal(St, U, location));
else
EvalLoad(Dst, U, *I, St, location);
}
return;
}
case UnaryOperator::Real: {
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
// FIXME: We don't have complex RValues yet.
if (Ex->getType()->isAnyComplexType()) {
// Just report "Unknown."
Dst.Add(*I);
continue;
}
// For all other types, UnaryOperator::Real is an identity operation.
assert (U->getType() == Ex->getType());
const GRState* St = GetState(*I);
MakeNode(Dst, U, *I, SetRVal(St, U, GetRVal(St, Ex)));
}
return;
}
case UnaryOperator::Imag: {
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
// FIXME: We don't have complex RValues yet.
if (Ex->getType()->isAnyComplexType()) {
// Just report "Unknown."
Dst.Add(*I);
continue;
}
// For all other types, UnaryOperator::Float returns 0.
assert (Ex->getType()->isIntegerType());
const GRState* St = GetState(*I);
RVal X = NonLVal::MakeVal(getBasicVals(), 0, Ex->getType());
MakeNode(Dst, U, *I, SetRVal(St, U, X));
}
return;
}
// FIXME: Just report "Unknown" for OffsetOf.
case UnaryOperator::OffsetOf:
Dst.Add(Pred);
return;
case UnaryOperator::Plus: assert (!asLVal); // FALL-THROUGH.
case UnaryOperator::Extension: {
// Unary "+" is a no-op, similar to a parentheses. We still have places
// where it may be a block-level expression, so we need to
// generate an extra node that just propagates the value of the
// subexpression.
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* St = GetState(*I);
MakeNode(Dst, U, *I, SetRVal(St, U, GetRVal(St, Ex)));
}
return;
}
case UnaryOperator::AddrOf: {
assert (!asLVal);
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
VisitLVal(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* St = GetState(*I);
RVal V = GetRVal(St, Ex);
St = SetRVal(St, U, V);
MakeNode(Dst, U, *I, St);
}
return;
}
case UnaryOperator::LNot:
case UnaryOperator::Minus:
case UnaryOperator::Not: {
assert (!asLVal);
Expr* Ex = U->getSubExpr()->IgnoreParens();
NodeSet Tmp;
Visit(Ex, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
const GRState* St = GetState(*I);
// Get the value of the subexpression.
RVal V = GetRVal(St, Ex);
// Perform promotions.
// FIXME: This is the right thing to do, but it currently breaks
// a bunch of tests.
// V = EvalCast(V, U->getType());
if (V.isUnknownOrUndef()) {
MakeNode(Dst, U, *I, SetRVal(St, U, V));
continue;
}
switch (U->getOpcode()) {
default:
assert(false && "Invalid Opcode.");
break;
case UnaryOperator::Not:
// FIXME: Do we need to handle promotions?
St = SetRVal(St, U, EvalComplement(cast<NonLVal>(V)));
break;
case UnaryOperator::Minus:
// FIXME: Do we need to handle promotions?
St = SetRVal(St, U, EvalMinus(U, cast<NonLVal>(V)));
break;
case UnaryOperator::LNot:
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
//
// Note: technically we do "E == 0", but this is the same in the
// transfer functions as "0 == E".
if (isa<LVal>(V)) {
lval::ConcreteInt X(getBasicVals().getZeroWithPtrWidth());
RVal Result = EvalBinOp(BinaryOperator::EQ, cast<LVal>(V), X);
St = SetRVal(St, U, Result);
}
else {
nonlval::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
#if 0
RVal Result = EvalBinOp(BinaryOperator::EQ, cast<NonLVal>(V), X);
St = SetRVal(St, U, Result);
#else
EvalBinOp(Dst, U, BinaryOperator::EQ, cast<NonLVal>(V), X, *I);
continue;
#endif
}
break;
}
MakeNode(Dst, U, *I, St);
}
return;
}
case UnaryOperator::SizeOf: {
QualType T = U->getSubExpr()->getType();
// FIXME: Add support for VLAs.
if (!T.getTypePtr()->isConstantSizeType())
return;
uint64_t size = getContext().getTypeSize(T) / 8;
const GRState* St = GetState(Pred);
St = SetRVal(St, U, NonLVal::MakeVal(getBasicVals(), size, U->getType()));
MakeNode(Dst, U, Pred, St);
return;
}
}
// Handle ++ and -- (both pre- and post-increment).
assert (U->isIncrementDecrementOp());
NodeSet Tmp;
Expr* Ex = U->getSubExpr()->IgnoreParens();
VisitLVal(Ex, Pred, Tmp);
for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
const GRState* St = GetState(*I);
RVal V1 = GetRVal(St, Ex);
// Perform a load.
NodeSet Tmp2;
EvalLoad(Tmp2, Ex, *I, St, V1);
for (NodeSet::iterator I2 = Tmp2.begin(), E2 = Tmp2.end(); I2!=E2; ++I2) {
St = GetState(*I2);
RVal V2 = GetRVal(St, Ex);
// Propagate unknown and undefined values.
if (V2.isUnknownOrUndef()) {
MakeNode(Dst, U, *I2, SetRVal(St, U, V2));
continue;
}
// Handle all other values.
BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add
: BinaryOperator::Sub;
RVal Result = EvalBinOp(Op, V2, MakeConstantVal(1U, U));
St = SetRVal(St, U, U->isPostfix() ? V2 : Result);
// Perform the store.
EvalStore(Dst, U, *I2, St, V1, Result);
}
}
}
void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) {
VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst);
}
void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A,
AsmStmt::outputs_iterator I,
AsmStmt::outputs_iterator E,
NodeTy* Pred, NodeSet& Dst) {
if (I == E) {
VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst);
return;
}
NodeSet Tmp;
VisitLVal(*I, Pred, Tmp);
++I;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst);
}
void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A,
AsmStmt::inputs_iterator I,
AsmStmt::inputs_iterator E,
NodeTy* Pred, NodeSet& Dst) {
if (I == E) {
// We have processed both the inputs and the outputs. All of the outputs
// should evaluate to LVals. Nuke all of their values.
// FIXME: Some day in the future it would be nice to allow a "plug-in"
// which interprets the inline asm and stores proper results in the
// outputs.
const GRState* St = GetState(Pred);
for (AsmStmt::outputs_iterator OI = A->begin_outputs(),
OE = A->end_outputs(); OI != OE; ++OI) {
RVal X = GetRVal(St, *OI);
assert (!isa<NonLVal>(X)); // Should be an Lval, or unknown, undef.
if (isa<LVal>(X))
St = SetRVal(St, cast<LVal>(X), UnknownVal());
}
MakeNode(Dst, A, Pred, St);
return;
}
NodeSet Tmp;
Visit(*I, Pred, Tmp);
++I;
for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI)
VisitAsmStmtHelperInputs(A, I, E, *NI, Dst);
}
void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) {
assert (Builder && "GRStmtNodeBuilder must be defined.");
unsigned size = Dst.size();
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
SaveOr OldHasGen(Builder->HasGeneratedNode);
getTF().EvalReturn(Dst, *this, *Builder, S, Pred);
// Handle the case where no nodes where generated.
if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode)
MakeNode(Dst, S, Pred, GetState(Pred));
}
void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) {
Expr* R = S->getRetValue();
if (!R) {
EvalReturn(Dst, S, Pred);
return;
}
NodeSet DstRet;
QualType T = R->getType();
if (T->isPointerLikeType()) {
// Check if any of the return values return the address of a stack variable.
NodeSet Tmp;
Visit(R, Pred, Tmp);
for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
RVal X = GetRVal((*I)->getState(), R);
if (isa<lval::MemRegionVal>(X)) {
// Determine if the value is on the stack.
const MemRegion* R = cast<lval::MemRegionVal>(&X)->getRegion();
if (R && getStateManager().hasStackStorage(R)) {
// Create a special node representing the v
NodeTy* RetStackNode = Builder->generateNode(S, GetState(*I), *I);
if (RetStackNode) {
RetStackNode->markAsSink();
RetsStackAddr.insert(RetStackNode);
}
continue;
}
}
DstRet.Add(*I);
}
}
else
Visit(R, Pred, DstRet);
for (NodeSet::iterator I=DstRet.begin(), E=DstRet.end(); I!=E; ++I)
EvalReturn(Dst, S, *I);
}
//===----------------------------------------------------------------------===//
// Transfer functions: Binary operators.
//===----------------------------------------------------------------------===//
bool GRExprEngine::CheckDivideZero(Expr* Ex, const GRState* St,
NodeTy* Pred, RVal Denom) {
// Divide by undefined? (potentially zero)
if (Denom.isUndef()) {
NodeTy* DivUndef = Builder->generateNode(Ex, St, Pred);
if (DivUndef) {
DivUndef->markAsSink();
ExplicitBadDivides.insert(DivUndef);
}
return true;
}
// Check for divide/remainder-by-zero.
// First, "assume" that the denominator is 0 or undefined.
bool isFeasibleZero = false;
const GRState* ZeroSt = Assume(St, Denom, false, isFeasibleZero);
// Second, "assume" that the denominator cannot be 0.
bool isFeasibleNotZero = false;
St = Assume(St, Denom, true, isFeasibleNotZero);
// Create the node for the divide-by-zero (if it occurred).
if (isFeasibleZero)
if (NodeTy* DivZeroNode = Builder->generateNode(Ex, ZeroSt, Pred)) {
DivZeroNode->markAsSink();
if (isFeasibleNotZero)
ImplicitBadDivides.insert(DivZeroNode);
else
ExplicitBadDivides.insert(DivZeroNode);
}
return !isFeasibleNotZero;
}
void GRExprEngine::VisitBinaryOperator(BinaryOperator* B,
GRExprEngine::NodeTy* Pred,
GRExprEngine::NodeSet& Dst) {
NodeSet Tmp1;
Expr* LHS = B->getLHS()->IgnoreParens();
Expr* RHS = B->getRHS()->IgnoreParens();
if (B->isAssignmentOp())
VisitLVal(LHS, Pred, Tmp1);
else
Visit(LHS, Pred, Tmp1);
for (NodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1 != E1; ++I1) {
RVal LeftV = GetRVal((*I1)->getState(), LHS);
// Process the RHS.
NodeSet Tmp2;
Visit(RHS, *I1, Tmp2);
// With both the LHS and RHS evaluated, process the operation itself.
for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2 != E2; ++I2) {
const GRState* St = GetState(*I2);
RVal RightV = GetRVal(St, RHS);
BinaryOperator::Opcode Op = B->getOpcode();
switch (Op) {
case BinaryOperator::Assign: {
// EXPERIMENTAL: "Conjured" symbols.
if (RightV.isUnknown()) {
unsigned Count = Builder->getCurrentBlockCount();
SymbolID Sym = SymMgr.getConjuredSymbol(B->getRHS(), Count);
RightV = LVal::IsLValType(B->getRHS()->getType())
? cast<RVal>(lval::SymbolVal(Sym))
: cast<RVal>(nonlval::SymbolVal(Sym));
}
// Simulate the effects of a "store": bind the value of the RHS
// to the L-Value represented by the LHS.
EvalStore(Dst, B, LHS, *I2, SetRVal(St, B, RightV), LeftV, RightV);
continue;
}
case BinaryOperator::Div:
case BinaryOperator::Rem:
// Special checking for integer denominators.
if (RHS->getType()->isIntegerType()
&& CheckDivideZero(B, St, *I2, RightV))
continue;
// FALL-THROUGH.
default: {
if (B->isAssignmentOp())
break;
// Process non-assignements except commas or short-circuited
// logical expressions (LAnd and LOr).
RVal Result = EvalBinOp(Op, LeftV, RightV);
if (Result.isUnknown()) {
Dst.Add(*I2);
continue;
}
if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) {
// The operands were *not* undefined, but the result is undefined.
// This is a special node that should be flagged as an error.
if (NodeTy* UndefNode = Builder->generateNode(B, St, *I2)) {
UndefNode->markAsSink();
UndefResults.insert(UndefNode);
}
continue;
}
// Otherwise, create a new node.
MakeNode(Dst, B, *I2, SetRVal(St, B, Result));
continue;
}
}
assert (B->isCompoundAssignmentOp());
if (Op >= BinaryOperator::AndAssign)
((int&) Op) -= (BinaryOperator::AndAssign - BinaryOperator::And);
else
((int&) Op) -= BinaryOperator::MulAssign;
// Perform a load (the LHS). This performs the checks for
// null dereferences, and so on.
NodeSet Tmp3;
RVal location = GetRVal(St, LHS);
EvalLoad(Tmp3, LHS, *I2, St, location);
for (NodeSet::iterator I3=Tmp3.begin(), E3=Tmp3.end(); I3!=E3; ++I3) {
St = GetState(*I3);
RVal V = GetRVal(St, LHS);
// Propagate undefined values (left-side).
if (V.isUndef()) {
EvalStore(Dst, B, LHS, *I3, SetRVal(St, B, V), location, V);
continue;
}
// Propagate unknown values (left and right-side).
if (RightV.isUnknown() || V.isUnknown()) {
EvalStore(Dst, B, LHS, *I3, SetRVal(St, B, UnknownVal()), location,
UnknownVal());
continue;
}
// At this point:
//
// The LHS is not Undef/Unknown.
// The RHS is not Unknown.
// Get the computation type.
QualType CTy = cast<CompoundAssignOperator>(B)->getComputationType();
// Perform promotions.
V = EvalCast(V, CTy);
RightV = EvalCast(RightV, CTy);
// Evaluate operands and promote to result type.
if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem)
&& RHS->getType()->isIntegerType()) {
if (CheckDivideZero(B, St, *I3, RightV))
continue;
}
else if (RightV.isUndef()) {
// Propagate undefined values (right-side).
EvalStore(Dst, B, LHS, *I3, SetRVal(St, B, RightV), location, RightV);
continue;
}
// Compute the result of the operation.
RVal Result = EvalCast(EvalBinOp(Op, V, RightV), B->getType());
if (Result.isUndef()) {
// The operands were not undefined, but the result is undefined.
if (NodeTy* UndefNode = Builder->generateNode(B, St, *I3)) {
UndefNode->markAsSink();
UndefResults.insert(UndefNode);
}
continue;
}
EvalStore(Dst, B, LHS, *I3, SetRVal(St, B, Result), location, Result);
}
}
}
}
//===----------------------------------------------------------------------===//
// Transfer-function Helpers.
//===----------------------------------------------------------------------===//
void GRExprEngine::EvalBinOp(ExplodedNodeSet<GRState>& Dst, Expr* Ex,
BinaryOperator::Opcode Op,
NonLVal L, NonLVal R,
ExplodedNode<GRState>* Pred) {
GRStateSet OStates;
EvalBinOp(OStates, GetState(Pred), Ex, Op, L, R);
for (GRStateSet::iterator I=OStates.begin(), E=OStates.end(); I!=E; ++I)
MakeNode(Dst, Ex, Pred, *I);
}
void GRExprEngine::EvalBinOp(GRStateSet& OStates, const GRState* St,
Expr* Ex, BinaryOperator::Opcode Op,
NonLVal L, NonLVal R) {
GRStateSet::AutoPopulate AP(OStates, St);
if (R.isValid()) getTF().EvalBinOpNN(OStates, StateMgr, St, Ex, Op, L, R);
}
//===----------------------------------------------------------------------===//
// Visualization.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static GRExprEngine* GraphPrintCheckerState;
static SourceManager* GraphPrintSourceManager;
namespace llvm {
template<>
struct VISIBILITY_HIDDEN DOTGraphTraits<GRExprEngine::NodeTy*> :
public DefaultDOTGraphTraits {
static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) {
if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
GraphPrintCheckerState->isExplicitNullDeref(N) ||
GraphPrintCheckerState->isUndefDeref(N) ||
GraphPrintCheckerState->isUndefStore(N) ||
GraphPrintCheckerState->isUndefControlFlow(N) ||
GraphPrintCheckerState->isExplicitBadDivide(N) ||
GraphPrintCheckerState->isImplicitBadDivide(N) ||
GraphPrintCheckerState->isUndefResult(N) ||
GraphPrintCheckerState->isBadCall(N) ||
GraphPrintCheckerState->isUndefArg(N))
return "color=\"red\",style=\"filled\"";
if (GraphPrintCheckerState->isNoReturnCall(N))
return "color=\"blue\",style=\"filled\"";
return "";
}
static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) {
std::ostringstream Out;
// Program Location.
ProgramPoint Loc = N->getLocation();
switch (Loc.getKind()) {
case ProgramPoint::BlockEntranceKind:
Out << "Block Entrance: B"
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
break;
case ProgramPoint::BlockExitKind:
assert (false);
break;
case ProgramPoint::PostLoadKind:
case ProgramPoint::PostPurgeDeadSymbolsKind:
case ProgramPoint::PostStmtKind: {
const PostStmt& L = cast<PostStmt>(Loc);
Stmt* S = L.getStmt();
SourceLocation SLoc = S->getLocStart();
Out << S->getStmtClassName() << ' ' << (void*) S << ' ';
llvm::raw_os_ostream OutS(Out);
S->printPretty(OutS);
OutS.flush();
if (SLoc.isFileID()) {
Out << "\\lline="
<< GraphPrintSourceManager->getLineNumber(SLoc) << " col="
<< GraphPrintSourceManager->getColumnNumber(SLoc) << "\\l";
}
if (GraphPrintCheckerState->isImplicitNullDeref(N))
Out << "\\|Implicit-Null Dereference.\\l";
else if (GraphPrintCheckerState->isExplicitNullDeref(N))
Out << "\\|Explicit-Null Dereference.\\l";
else if (GraphPrintCheckerState->isUndefDeref(N))
Out << "\\|Dereference of undefialied value.\\l";
else if (GraphPrintCheckerState->isUndefStore(N))
Out << "\\|Store to Undefined LVal.";
else if (GraphPrintCheckerState->isExplicitBadDivide(N))
Out << "\\|Explicit divide-by zero or undefined value.";
else if (GraphPrintCheckerState->isImplicitBadDivide(N))
Out << "\\|Implicit divide-by zero or undefined value.";
else if (GraphPrintCheckerState->isUndefResult(N))
Out << "\\|Result of operation is undefined.";
else if (GraphPrintCheckerState->isNoReturnCall(N))
Out << "\\|Call to function marked \"noreturn\".";
else if (GraphPrintCheckerState->isBadCall(N))
Out << "\\|Call to NULL/Undefined.";
else if (GraphPrintCheckerState->isUndefArg(N))
Out << "\\|Argument in call is undefined";
break;
}
default: {
const BlockEdge& E = cast<BlockEdge>(Loc);
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
<< E.getDst()->getBlockID() << ')';
if (Stmt* T = E.getSrc()->getTerminator()) {
SourceLocation SLoc = T->getLocStart();
Out << "\\|Terminator: ";
llvm::raw_os_ostream OutS(Out);
E.getSrc()->printTerminator(OutS);
OutS.flush();
if (SLoc.isFileID()) {
Out << "\\lline="
<< GraphPrintSourceManager->getLineNumber(SLoc) << " col="
<< GraphPrintSourceManager->getColumnNumber(SLoc);
}
if (isa<SwitchStmt>(T)) {
Stmt* Label = E.getDst()->getLabel();
if (Label) {
if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
Out << "\\lcase ";
llvm::raw_os_ostream OutS(Out);
C->getLHS()->printPretty(OutS);
OutS.flush();
if (Stmt* RHS = C->getRHS()) {
Out << " .. ";
RHS->printPretty(OutS);
OutS.flush();
}
Out << ":";
}
else {
assert (isa<DefaultStmt>(Label));
Out << "\\ldefault:";
}
}
else
Out << "\\l(implicit) default:";
}
else if (isa<IndirectGotoStmt>(T)) {
// FIXME
}
else {
Out << "\\lCondition: ";
if (*E.getSrc()->succ_begin() == E.getDst())
Out << "true";
else
Out << "false";
}
Out << "\\l";
}
if (GraphPrintCheckerState->isUndefControlFlow(N)) {
Out << "\\|Control-flow based on\\lUndefined value.\\l";
}
}
}
Out << "\\|StateID: " << (void*) N->getState() << "\\|";
GRStateRef state(N->getState(), GraphPrintCheckerState->getStateManager());
state.printDOT(Out);
Out << "\\l";
return Out.str();
}
};
} // end llvm namespace
#endif
#ifndef NDEBUG
template <typename ITERATOR>
GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; }
template <>
GRExprEngine::NodeTy*
GetGraphNode<llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator>
(llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator I) {
return I->first;
}
template <typename ITERATOR>
static void AddSources(std::vector<GRExprEngine::NodeTy*>& Sources,
ITERATOR I, ITERATOR E) {
llvm::SmallSet<ProgramPoint,10> CachedSources;
for ( ; I != E; ++I ) {
GRExprEngine::NodeTy* N = GetGraphNode(I);
ProgramPoint P = N->getLocation();
if (CachedSources.count(P))
continue;
CachedSources.insert(P);
Sources.push_back(N);
}
}
#endif
void GRExprEngine::ViewGraph(bool trim) {
#ifndef NDEBUG
if (trim) {
std::vector<NodeTy*> Src;
// Fixme: Migrate over to the new way of adding nodes.
AddSources(Src, null_derefs_begin(), null_derefs_end());
AddSources(Src, undef_derefs_begin(), undef_derefs_end());
AddSources(Src, explicit_bad_divides_begin(), explicit_bad_divides_end());
AddSources(Src, undef_results_begin(), undef_results_end());
AddSources(Src, bad_calls_begin(), bad_calls_end());
AddSources(Src, undef_arg_begin(), undef_arg_end());
AddSources(Src, undef_branches_begin(), undef_branches_end());
// The new way.
for (BugTypeSet::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
(*I)->GetErrorNodes(Src);
ViewGraph(&Src[0], &Src[0]+Src.size());
}
else {
GraphPrintCheckerState = this;
GraphPrintSourceManager = &getContext().getSourceManager();
llvm::ViewGraph(*G.roots_begin(), "GRExprEngine");
GraphPrintCheckerState = NULL;
GraphPrintSourceManager = NULL;
}
#endif
}
void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) {
#ifndef NDEBUG
GraphPrintCheckerState = this;
GraphPrintSourceManager = &getContext().getSourceManager();
GRExprEngine::GraphTy* TrimmedG = G.Trim(Beg, End);
if (!TrimmedG)
llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n";
else {
llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine");
delete TrimmedG;
}
GraphPrintCheckerState = NULL;
GraphPrintSourceManager = NULL;
#endif
}