llvm-project/mlir/lib/Transforms/Utils/GreedyPatternRewriteDriver.cpp
Matthias Springer 5cc0f76d34
[mlir][IR] Add rewriter API for moving operations (#78988)
The pattern rewriter documentation states that "*all* IR mutations [...]
are required to be performed via the `PatternRewriter`." This commit
adds two functions that were missing from the rewriter API:
`moveOpBefore` and `moveOpAfter`.

After an operation was moved, the `notifyOperationInserted` callback is
triggered. This allows listeners such as the greedy pattern rewrite
driver to react to IR changes.

This commit narrows the discrepancy between the kind of IR modification
that can be performed and the kind of IR modifications that can be
listened to.
2024-01-25 11:01:28 +01:00

1018 lines
35 KiB
C++

//===- GreedyPatternRewriteDriver.cpp - A greedy rewriter -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements mlir::applyPatternsAndFoldGreedily.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Config/mlir-config.h"
#include "mlir/IR/Action.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Verifier.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Rewrite/PatternApplicator.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#ifdef MLIR_GREEDY_REWRITE_RANDOMIZER_SEED
#include <random>
#endif // MLIR_GREEDY_REWRITE_RANDOMIZER_SEED
using namespace mlir;
#define DEBUG_TYPE "greedy-rewriter"
namespace {
//===----------------------------------------------------------------------===//
// Debugging Infrastructure
//===----------------------------------------------------------------------===//
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
/// A helper struct that performs various "expensive checks" to detect broken
/// rewrite patterns use the rewriter API incorrectly. A rewrite pattern is
/// broken if:
/// * IR does not verify after pattern application / folding.
/// * Pattern returns "failure" but the IR has changed.
/// * Pattern returns "success" but the IR has not changed.
///
/// This struct stores finger prints of ops to determine whether the IR has
/// changed or not.
struct ExpensiveChecks : public RewriterBase::ForwardingListener {
ExpensiveChecks(RewriterBase::Listener *driver, Operation *topLevel)
: RewriterBase::ForwardingListener(driver), topLevel(topLevel) {}
/// Compute finger prints of the given op and its nested ops.
void computeFingerPrints(Operation *topLevel) {
this->topLevel = topLevel;
this->topLevelFingerPrint.emplace(topLevel);
topLevel->walk([&](Operation *op) { fingerprints.try_emplace(op, op); });
}
/// Clear all finger prints.
void clear() {
topLevel = nullptr;
topLevelFingerPrint.reset();
fingerprints.clear();
}
void notifyRewriteSuccess() {
if (!topLevel)
return;
// Make sure that the IR still verifies.
if (failed(verify(topLevel)))
llvm::report_fatal_error("IR failed to verify after pattern application");
// Pattern application success => IR must have changed.
OperationFingerPrint afterFingerPrint(topLevel);
if (*topLevelFingerPrint == afterFingerPrint) {
// Note: Run "mlir-opt -debug" to see which pattern is broken.
llvm::report_fatal_error(
"pattern returned success but IR did not change");
}
for (const auto &it : fingerprints) {
// Skip top-level op, its finger print is never invalidated.
if (it.first == topLevel)
continue;
// Note: Finger print computation may crash when an op was erased
// without notifying the rewriter. (Run with ASAN to see where the op was
// erased; the op was probably erased directly, bypassing the rewriter
// API.) Finger print computation does may not crash if a new op was
// created at the same memory location. (But then the finger print should
// have changed.)
if (it.second != OperationFingerPrint(it.first)) {
// Note: Run "mlir-opt -debug" to see which pattern is broken.
llvm::report_fatal_error("operation finger print changed");
}
}
}
void notifyRewriteFailure() {
if (!topLevel)
return;
// Pattern application failure => IR must not have changed.
OperationFingerPrint afterFingerPrint(topLevel);
if (*topLevelFingerPrint != afterFingerPrint) {
// Note: Run "mlir-opt -debug" to see which pattern is broken.
llvm::report_fatal_error("pattern returned failure but IR did change");
}
}
void notifyFoldingSuccess() {
if (!topLevel)
return;
// Make sure that the IR still verifies.
if (failed(verify(topLevel)))
llvm::report_fatal_error("IR failed to verify after folding");
}
protected:
/// Invalidate the finger print of the given op, i.e., remove it from the map.
void invalidateFingerPrint(Operation *op) {
// Invalidate all finger prints until the top level.
while (op && op != topLevel) {
fingerprints.erase(op);
op = op->getParentOp();
}
}
void notifyOperationInserted(Operation *op, InsertPoint previous) override {
RewriterBase::ForwardingListener::notifyOperationInserted(op, previous);
// Invalidate the finger print of the op that owns the block into which the
// op was inserted into.
invalidateFingerPrint(op->getParentOp());
// Also invalidate the finger print of the op that owns the block from which
// the op was moved from. (Only applicable if the op was moved.)
if (previous.isSet())
invalidateFingerPrint(previous.getBlock()->getParentOp());
}
void notifyOperationModified(Operation *op) override {
RewriterBase::ForwardingListener::notifyOperationModified(op);
invalidateFingerPrint(op);
}
void notifyOperationRemoved(Operation *op) override {
RewriterBase::ForwardingListener::notifyOperationRemoved(op);
op->walk([this](Operation *op) { invalidateFingerPrint(op); });
}
/// Operation finger prints to detect invalid pattern API usage. IR is checked
/// against these finger prints after pattern application to detect cases
/// where IR was modified directly, bypassing the rewriter API.
DenseMap<Operation *, OperationFingerPrint> fingerprints;
/// Top-level operation of the current greedy rewrite.
Operation *topLevel = nullptr;
/// Finger print of the top-level operation.
std::optional<OperationFingerPrint> topLevelFingerPrint;
};
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
#ifndef NDEBUG
static Operation *getDumpRootOp(Operation *op) {
// Dump the parent op so that materialized constants are visible. If the op
// is a top-level op, dump it directly.
if (Operation *parentOp = op->getParentOp())
return parentOp;
return op;
}
static void logSuccessfulFolding(Operation *op) {
llvm::dbgs() << "// *** IR Dump After Successful Folding ***\n";
op->dump();
llvm::dbgs() << "\n\n";
}
#endif // NDEBUG
//===----------------------------------------------------------------------===//
// Worklist
//===----------------------------------------------------------------------===//
/// A LIFO worklist of operations with efficient removal and set semantics.
///
/// This class maintains a vector of operations and a mapping of operations to
/// positions in the vector, so that operations can be removed efficiently at
/// random. When an operation is removed, it is replaced with nullptr. Such
/// nullptr are skipped when pop'ing elements.
class Worklist {
public:
Worklist();
/// Clear the worklist.
void clear();
/// Return whether the worklist is empty.
bool empty() const;
/// Push an operation to the end of the worklist, unless the operation is
/// already on the worklist.
void push(Operation *op);
/// Pop the an operation from the end of the worklist. Only allowed on
/// non-empty worklists.
Operation *pop();
/// Remove an operation from the worklist.
void remove(Operation *op);
/// Reverse the worklist.
void reverse();
protected:
/// The worklist of operations.
std::vector<Operation *> list;
/// A mapping of operations to positions in `list`.
DenseMap<Operation *, unsigned> map;
};
Worklist::Worklist() { list.reserve(64); }
void Worklist::clear() {
list.clear();
map.clear();
}
bool Worklist::empty() const {
// Skip all nullptr.
return !llvm::any_of(list,
[](Operation *op) { return static_cast<bool>(op); });
}
void Worklist::push(Operation *op) {
assert(op && "cannot push nullptr to worklist");
// Check to see if the worklist already contains this op.
if (map.count(op))
return;
map[op] = list.size();
list.push_back(op);
}
Operation *Worklist::pop() {
assert(!empty() && "cannot pop from empty worklist");
// Skip and remove all trailing nullptr.
while (!list.back())
list.pop_back();
Operation *op = list.back();
list.pop_back();
map.erase(op);
// Cleanup: Remove all trailing nullptr.
while (!list.empty() && !list.back())
list.pop_back();
return op;
}
void Worklist::remove(Operation *op) {
assert(op && "cannot remove nullptr from worklist");
auto it = map.find(op);
if (it != map.end()) {
assert(list[it->second] == op && "malformed worklist data structure");
list[it->second] = nullptr;
map.erase(it);
}
}
void Worklist::reverse() {
std::reverse(list.begin(), list.end());
for (size_t i = 0, e = list.size(); i != e; ++i)
map[list[i]] = i;
}
#ifdef MLIR_GREEDY_REWRITE_RANDOMIZER_SEED
/// A worklist that pops elements at a random position. This worklist is for
/// testing/debugging purposes only. It can be used to ensure that lowering
/// pipelines work correctly regardless of the order in which ops are processed
/// by the GreedyPatternRewriteDriver.
class RandomizedWorklist : public Worklist {
public:
RandomizedWorklist() : Worklist() {
generator.seed(MLIR_GREEDY_REWRITE_RANDOMIZER_SEED);
}
/// Pop a random non-empty op from the worklist.
Operation *pop() {
Operation *op = nullptr;
do {
assert(!list.empty() && "cannot pop from empty worklist");
int64_t pos = generator() % list.size();
op = list[pos];
list.erase(list.begin() + pos);
for (int64_t i = pos, e = list.size(); i < e; ++i)
map[list[i]] = i;
map.erase(op);
} while (!op);
return op;
}
private:
std::minstd_rand0 generator;
};
#endif // MLIR_GREEDY_REWRITE_RANDOMIZER_SEED
//===----------------------------------------------------------------------===//
// GreedyPatternRewriteDriver
//===----------------------------------------------------------------------===//
/// This is a worklist-driven driver for the PatternMatcher, which repeatedly
/// applies the locally optimal patterns.
///
/// This abstract class manages the worklist and contains helper methods for
/// rewriting ops on the worklist. Derived classes specify how ops are added
/// to the worklist in the beginning.
class GreedyPatternRewriteDriver : public PatternRewriter,
public RewriterBase::Listener {
protected:
explicit GreedyPatternRewriteDriver(MLIRContext *ctx,
const FrozenRewritePatternSet &patterns,
const GreedyRewriteConfig &config);
/// Add the given operation to the worklist.
void addSingleOpToWorklist(Operation *op);
/// Add the given operation and its ancestors to the worklist.
void addToWorklist(Operation *op);
/// Notify the driver that the specified operation may have been modified
/// in-place. The operation is added to the worklist.
void notifyOperationModified(Operation *op) override;
/// Notify the driver that the specified operation was inserted. Update the
/// worklist as needed: The operation is enqueued depending on scope and
/// strict mode.
void notifyOperationInserted(Operation *op, InsertPoint previous) override;
/// Notify the driver that the specified operation was removed. Update the
/// worklist as needed: The operation and its children are removed from the
/// worklist.
void notifyOperationRemoved(Operation *op) override;
/// Notify the driver that the specified operation was replaced. Update the
/// worklist as needed: New users are added enqueued.
void notifyOperationReplaced(Operation *op, ValueRange replacement) override;
/// Process ops until the worklist is empty or `config.maxNumRewrites` is
/// reached. Return `true` if any IR was changed.
bool processWorklist();
/// The worklist for this transformation keeps track of the operations that
/// need to be (re)visited.
#ifdef MLIR_GREEDY_REWRITE_RANDOMIZER_SEED
RandomizedWorklist worklist;
#else
Worklist worklist;
#endif // MLIR_GREEDY_REWRITE_RANDOMIZER_SEED
/// Configuration information for how to simplify.
const GreedyRewriteConfig config;
/// The list of ops we are restricting our rewrites to. These include the
/// supplied set of ops as well as new ops created while rewriting those ops
/// depending on `strictMode`. This set is not maintained when
/// `config.strictMode` is GreedyRewriteStrictness::AnyOp.
llvm::SmallDenseSet<Operation *, 4> strictModeFilteredOps;
private:
/// Look over the provided operands for any defining operations that should
/// be re-added to the worklist. This function should be called when an
/// operation is modified or removed, as it may trigger further
/// simplifications.
void addOperandsToWorklist(ValueRange operands);
/// Notify the driver that the given block was created.
void notifyBlockCreated(Block *block) override;
/// Notify the driver that the given block is about to be removed.
void notifyBlockRemoved(Block *block) override;
/// For debugging only: Notify the driver of a pattern match failure.
LogicalResult
notifyMatchFailure(Location loc,
function_ref<void(Diagnostic &)> reasonCallback) override;
#ifndef NDEBUG
/// A logger used to emit information during the application process.
llvm::ScopedPrinter logger{llvm::dbgs()};
#endif
/// The low-level pattern applicator.
PatternApplicator matcher;
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
ExpensiveChecks expensiveChecks;
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
};
} // namespace
GreedyPatternRewriteDriver::GreedyPatternRewriteDriver(
MLIRContext *ctx, const FrozenRewritePatternSet &patterns,
const GreedyRewriteConfig &config)
: PatternRewriter(ctx), config(config), matcher(patterns)
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
// clang-format off
, expensiveChecks(
/*driver=*/this,
/*topLevel=*/config.scope ? config.scope->getParentOp() : nullptr)
// clang-format on
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
{
// Apply a simple cost model based solely on pattern benefit.
matcher.applyDefaultCostModel();
// Set up listener.
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
// Send IR notifications to the debug handler. This handler will then forward
// all notifications to this GreedyPatternRewriteDriver.
setListener(&expensiveChecks);
#else
setListener(this);
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
}
bool GreedyPatternRewriteDriver::processWorklist() {
#ifndef NDEBUG
const char *logLineComment =
"//===-------------------------------------------===//\n";
/// A utility function to log a process result for the given reason.
auto logResult = [&](StringRef result, const llvm::Twine &msg = {}) {
logger.unindent();
logger.startLine() << "} -> " << result;
if (!msg.isTriviallyEmpty())
logger.getOStream() << " : " << msg;
logger.getOStream() << "\n";
};
auto logResultWithLine = [&](StringRef result, const llvm::Twine &msg = {}) {
logResult(result, msg);
logger.startLine() << logLineComment;
};
#endif
bool changed = false;
int64_t numRewrites = 0;
while (!worklist.empty() &&
(numRewrites < config.maxNumRewrites ||
config.maxNumRewrites == GreedyRewriteConfig::kNoLimit)) {
auto *op = worklist.pop();
LLVM_DEBUG({
logger.getOStream() << "\n";
logger.startLine() << logLineComment;
logger.startLine() << "Processing operation : '" << op->getName() << "'("
<< op << ") {\n";
logger.indent();
// If the operation has no regions, just print it here.
if (op->getNumRegions() == 0) {
op->print(
logger.startLine(),
OpPrintingFlags().printGenericOpForm().elideLargeElementsAttrs());
logger.getOStream() << "\n\n";
}
});
// If the operation is trivially dead - remove it.
if (isOpTriviallyDead(op)) {
eraseOp(op);
changed = true;
LLVM_DEBUG(logResultWithLine("success", "operation is trivially dead"));
continue;
}
// Try to fold this op. Do not fold constant ops. That would lead to an
// infinite folding loop, as every constant op would be folded to an
// Attribute and then immediately be rematerialized as a constant op, which
// is then put on the worklist.
if (!op->hasTrait<OpTrait::ConstantLike>()) {
SmallVector<OpFoldResult> foldResults;
if (succeeded(op->fold(foldResults))) {
LLVM_DEBUG(logResultWithLine("success", "operation was folded"));
#ifndef NDEBUG
Operation *dumpRootOp = getDumpRootOp(op);
#endif // NDEBUG
if (foldResults.empty()) {
// Op was modified in-place.
notifyOperationModified(op);
changed = true;
LLVM_DEBUG(logSuccessfulFolding(dumpRootOp));
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
expensiveChecks.notifyFoldingSuccess();
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
continue;
}
// Op results can be replaced with `foldResults`.
assert(foldResults.size() == op->getNumResults() &&
"folder produced incorrect number of results");
OpBuilder::InsertionGuard g(*this);
setInsertionPoint(op);
SmallVector<Value> replacements;
bool materializationSucceeded = true;
for (auto [ofr, resultType] :
llvm::zip_equal(foldResults, op->getResultTypes())) {
if (auto value = ofr.dyn_cast<Value>()) {
assert(value.getType() == resultType &&
"folder produced value of incorrect type");
replacements.push_back(value);
continue;
}
// Materialize Attributes as SSA values.
Operation *constOp = op->getDialect()->materializeConstant(
*this, ofr.get<Attribute>(), resultType, op->getLoc());
if (!constOp) {
// If materialization fails, cleanup any operations generated for
// the previous results.
llvm::SmallDenseSet<Operation *> replacementOps;
for (Value replacement : replacements) {
assert(replacement.use_empty() &&
"folder reused existing op for one result but constant "
"materialization failed for another result");
replacementOps.insert(replacement.getDefiningOp());
}
for (Operation *op : replacementOps) {
eraseOp(op);
}
materializationSucceeded = false;
break;
}
assert(constOp->hasTrait<OpTrait::ConstantLike>() &&
"materializeConstant produced op that is not a ConstantLike");
assert(constOp->getResultTypes()[0] == resultType &&
"materializeConstant produced incorrect result type");
replacements.push_back(constOp->getResult(0));
}
if (materializationSucceeded) {
replaceOp(op, replacements);
changed = true;
LLVM_DEBUG(logSuccessfulFolding(dumpRootOp));
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
expensiveChecks.notifyFoldingSuccess();
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
continue;
}
}
}
// Try to match one of the patterns. The rewriter is automatically
// notified of any necessary changes, so there is nothing else to do
// here.
#ifndef NDEBUG
auto canApply = [&](const Pattern &pattern) {
LLVM_DEBUG({
logger.getOStream() << "\n";
logger.startLine() << "* Pattern " << pattern.getDebugName() << " : '"
<< op->getName() << " -> (";
llvm::interleaveComma(pattern.getGeneratedOps(), logger.getOStream());
logger.getOStream() << ")' {\n";
logger.indent();
});
return true;
};
auto onFailure = [&](const Pattern &pattern) {
LLVM_DEBUG(logResult("failure", "pattern failed to match"));
};
auto onSuccess = [&](const Pattern &pattern) {
LLVM_DEBUG(logResult("success", "pattern applied successfully"));
return success();
};
#else
function_ref<bool(const Pattern &)> canApply = {};
function_ref<void(const Pattern &)> onFailure = {};
function_ref<LogicalResult(const Pattern &)> onSuccess = {};
#endif
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
if (config.scope) {
expensiveChecks.computeFingerPrints(config.scope->getParentOp());
}
auto clearFingerprints =
llvm::make_scope_exit([&]() { expensiveChecks.clear(); });
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
LogicalResult matchResult =
matcher.matchAndRewrite(op, *this, canApply, onFailure, onSuccess);
if (succeeded(matchResult)) {
LLVM_DEBUG(logResultWithLine("success", "pattern matched"));
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
expensiveChecks.notifyRewriteSuccess();
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
changed = true;
++numRewrites;
} else {
LLVM_DEBUG(logResultWithLine("failure", "pattern failed to match"));
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
expensiveChecks.notifyRewriteFailure();
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
}
}
return changed;
}
void GreedyPatternRewriteDriver::addToWorklist(Operation *op) {
assert(op && "expected valid op");
// Gather potential ancestors while looking for a "scope" parent region.
SmallVector<Operation *, 8> ancestors;
Region *region = nullptr;
do {
ancestors.push_back(op);
region = op->getParentRegion();
if (config.scope == region) {
// Scope (can be `nullptr`) was reached. Stop traveral and enqueue ops.
for (Operation *op : ancestors)
addSingleOpToWorklist(op);
return;
}
if (region == nullptr)
return;
} while ((op = region->getParentOp()));
}
void GreedyPatternRewriteDriver::addSingleOpToWorklist(Operation *op) {
if (config.strictMode == GreedyRewriteStrictness::AnyOp ||
strictModeFilteredOps.contains(op))
worklist.push(op);
}
void GreedyPatternRewriteDriver::notifyBlockCreated(Block *block) {
if (config.listener)
config.listener->notifyBlockCreated(block);
}
void GreedyPatternRewriteDriver::notifyBlockRemoved(Block *block) {
if (config.listener)
config.listener->notifyBlockRemoved(block);
}
void GreedyPatternRewriteDriver::notifyOperationInserted(Operation *op,
InsertPoint previous) {
LLVM_DEBUG({
logger.startLine() << "** Insert : '" << op->getName() << "'(" << op
<< ")\n";
});
if (config.listener)
config.listener->notifyOperationInserted(op, previous);
if (config.strictMode == GreedyRewriteStrictness::ExistingAndNewOps)
strictModeFilteredOps.insert(op);
addToWorklist(op);
}
void GreedyPatternRewriteDriver::notifyOperationModified(Operation *op) {
LLVM_DEBUG({
logger.startLine() << "** Modified: '" << op->getName() << "'(" << op
<< ")\n";
});
if (config.listener)
config.listener->notifyOperationModified(op);
addToWorklist(op);
}
void GreedyPatternRewriteDriver::addOperandsToWorklist(ValueRange operands) {
for (Value operand : operands) {
// If the use count of this operand is now < 2, we re-add the defining
// operation to the worklist.
// TODO: This is based on the fact that zero use operations
// may be deleted, and that single use values often have more
// canonicalization opportunities.
if (!operand || (!operand.use_empty() && !operand.hasOneUse()))
continue;
if (auto *defOp = operand.getDefiningOp())
addToWorklist(defOp);
}
}
void GreedyPatternRewriteDriver::notifyOperationRemoved(Operation *op) {
LLVM_DEBUG({
logger.startLine() << "** Erase : '" << op->getName() << "'(" << op
<< ")\n";
});
#ifndef NDEBUG
// Only ops that are within the configured scope are added to the worklist of
// the greedy pattern rewriter. Moreover, the parent op of the scope region is
// the part of the IR that is taken into account for the "expensive checks".
// A greedy pattern rewrite is not allowed to erase the parent op of the scope
// region, as that would break the worklist handling and the expensive checks.
if (config.scope && config.scope->getParentOp() == op)
llvm_unreachable(
"scope region must not be erased during greedy pattern rewrite");
#endif // NDEBUG
if (config.listener)
config.listener->notifyOperationRemoved(op);
addOperandsToWorklist(op->getOperands());
worklist.remove(op);
if (config.strictMode != GreedyRewriteStrictness::AnyOp)
strictModeFilteredOps.erase(op);
}
void GreedyPatternRewriteDriver::notifyOperationReplaced(
Operation *op, ValueRange replacement) {
LLVM_DEBUG({
logger.startLine() << "** Replace : '" << op->getName() << "'(" << op
<< ")\n";
});
if (config.listener)
config.listener->notifyOperationReplaced(op, replacement);
}
LogicalResult GreedyPatternRewriteDriver::notifyMatchFailure(
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
LLVM_DEBUG({
Diagnostic diag(loc, DiagnosticSeverity::Remark);
reasonCallback(diag);
logger.startLine() << "** Failure : " << diag.str() << "\n";
});
if (config.listener)
return config.listener->notifyMatchFailure(loc, reasonCallback);
return failure();
}
//===----------------------------------------------------------------------===//
// RegionPatternRewriteDriver
//===----------------------------------------------------------------------===//
namespace {
/// This driver simplfies all ops in a region.
class RegionPatternRewriteDriver : public GreedyPatternRewriteDriver {
public:
explicit RegionPatternRewriteDriver(MLIRContext *ctx,
const FrozenRewritePatternSet &patterns,
const GreedyRewriteConfig &config,
Region &regions);
/// Simplify ops inside `region` and simplify the region itself. Return
/// success if the transformation converged.
LogicalResult simplify(bool *changed) &&;
private:
/// The region that is simplified.
Region &region;
};
} // namespace
RegionPatternRewriteDriver::RegionPatternRewriteDriver(
MLIRContext *ctx, const FrozenRewritePatternSet &patterns,
const GreedyRewriteConfig &config, Region &region)
: GreedyPatternRewriteDriver(ctx, patterns, config), region(region) {
// Populate strict mode ops.
if (config.strictMode != GreedyRewriteStrictness::AnyOp) {
region.walk([&](Operation *op) { strictModeFilteredOps.insert(op); });
}
}
namespace {
class GreedyPatternRewriteIteration
: public tracing::ActionImpl<GreedyPatternRewriteIteration> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(GreedyPatternRewriteIteration)
GreedyPatternRewriteIteration(ArrayRef<IRUnit> units, int64_t iteration)
: tracing::ActionImpl<GreedyPatternRewriteIteration>(units),
iteration(iteration) {}
static constexpr StringLiteral tag = "GreedyPatternRewriteIteration";
void print(raw_ostream &os) const override {
os << "GreedyPatternRewriteIteration(" << iteration << ")";
}
private:
int64_t iteration = 0;
};
} // namespace
LogicalResult RegionPatternRewriteDriver::simplify(bool *changed) && {
bool continueRewrites = false;
int64_t iteration = 0;
MLIRContext *ctx = getContext();
do {
// Check if the iteration limit was reached.
if (++iteration > config.maxIterations &&
config.maxIterations != GreedyRewriteConfig::kNoLimit)
break;
// New iteration: start with an empty worklist.
worklist.clear();
// `OperationFolder` CSE's constant ops (and may move them into parents
// regions to enable more aggressive CSE'ing).
OperationFolder folder(getContext(), this);
auto insertKnownConstant = [&](Operation *op) {
// Check for existing constants when populating the worklist. This avoids
// accidentally reversing the constant order during processing.
Attribute constValue;
if (matchPattern(op, m_Constant(&constValue)))
if (!folder.insertKnownConstant(op, constValue))
return true;
return false;
};
if (!config.useTopDownTraversal) {
// Add operations to the worklist in postorder.
region.walk([&](Operation *op) {
if (!insertKnownConstant(op))
addToWorklist(op);
});
} else {
// Add all nested operations to the worklist in preorder.
region.walk<WalkOrder::PreOrder>([&](Operation *op) {
if (!insertKnownConstant(op)) {
addToWorklist(op);
return WalkResult::advance();
}
return WalkResult::skip();
});
// Reverse the list so our pop-back loop processes them in-order.
worklist.reverse();
}
ctx->executeAction<GreedyPatternRewriteIteration>(
[&] {
continueRewrites = processWorklist();
// After applying patterns, make sure that the CFG of each of the
// regions is kept up to date.
if (config.enableRegionSimplification)
continueRewrites |= succeeded(simplifyRegions(*this, region));
},
{&region}, iteration);
} while (continueRewrites);
if (changed)
*changed = iteration > 1;
// Whether the rewrite converges, i.e. wasn't changed in the last iteration.
return success(!continueRewrites);
}
LogicalResult
mlir::applyPatternsAndFoldGreedily(Region &region,
const FrozenRewritePatternSet &patterns,
GreedyRewriteConfig config, bool *changed) {
// The top-level operation must be known to be isolated from above to
// prevent performing canonicalizations on operations defined at or above
// the region containing 'op'.
assert(region.getParentOp()->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
"patterns can only be applied to operations IsolatedFromAbove");
// Set scope if not specified.
if (!config.scope)
config.scope = &region;
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
if (failed(verify(config.scope->getParentOp())))
llvm::report_fatal_error(
"greedy pattern rewriter input IR failed to verify");
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
// Start the pattern driver.
RegionPatternRewriteDriver driver(region.getContext(), patterns, config,
region);
LogicalResult converged = std::move(driver).simplify(changed);
LLVM_DEBUG(if (failed(converged)) {
llvm::dbgs() << "The pattern rewrite did not converge after scanning "
<< config.maxIterations << " times\n";
});
return converged;
}
//===----------------------------------------------------------------------===//
// MultiOpPatternRewriteDriver
//===----------------------------------------------------------------------===//
namespace {
/// This driver simplfies a list of ops.
class MultiOpPatternRewriteDriver : public GreedyPatternRewriteDriver {
public:
explicit MultiOpPatternRewriteDriver(
MLIRContext *ctx, const FrozenRewritePatternSet &patterns,
const GreedyRewriteConfig &config, ArrayRef<Operation *> ops,
llvm::SmallDenseSet<Operation *, 4> *survivingOps = nullptr);
/// Simplify `ops`. Return `success` if the transformation converged.
LogicalResult simplify(ArrayRef<Operation *> ops, bool *changed = nullptr) &&;
private:
void notifyOperationRemoved(Operation *op) override {
GreedyPatternRewriteDriver::notifyOperationRemoved(op);
if (survivingOps)
survivingOps->erase(op);
}
/// An optional set of ops that survived the rewrite. This set is populated
/// at the beginning of `simplifyLocally` with the inititally provided list
/// of ops.
llvm::SmallDenseSet<Operation *, 4> *const survivingOps = nullptr;
};
} // namespace
MultiOpPatternRewriteDriver::MultiOpPatternRewriteDriver(
MLIRContext *ctx, const FrozenRewritePatternSet &patterns,
const GreedyRewriteConfig &config, ArrayRef<Operation *> ops,
llvm::SmallDenseSet<Operation *, 4> *survivingOps)
: GreedyPatternRewriteDriver(ctx, patterns, config),
survivingOps(survivingOps) {
if (config.strictMode != GreedyRewriteStrictness::AnyOp)
strictModeFilteredOps.insert(ops.begin(), ops.end());
if (survivingOps) {
survivingOps->clear();
survivingOps->insert(ops.begin(), ops.end());
}
}
LogicalResult MultiOpPatternRewriteDriver::simplify(ArrayRef<Operation *> ops,
bool *changed) && {
// Populate the initial worklist.
for (Operation *op : ops)
addSingleOpToWorklist(op);
// Process ops on the worklist.
bool result = processWorklist();
if (changed)
*changed = result;
return success(worklist.empty());
}
/// Find the region that is the closest common ancestor of all given ops.
///
/// Note: This function returns `nullptr` if there is a top-level op among the
/// given list of ops.
static Region *findCommonAncestor(ArrayRef<Operation *> ops) {
assert(!ops.empty() && "expected at least one op");
// Fast path in case there is only one op.
if (ops.size() == 1)
return ops.front()->getParentRegion();
Region *region = ops.front()->getParentRegion();
ops = ops.drop_front();
int sz = ops.size();
llvm::BitVector remainingOps(sz, true);
while (region) {
int pos = -1;
// Iterate over all remaining ops.
while ((pos = remainingOps.find_first_in(pos + 1, sz)) != -1) {
// Is this op contained in `region`?
if (region->findAncestorOpInRegion(*ops[pos]))
remainingOps.reset(pos);
}
if (remainingOps.none())
break;
region = region->getParentRegion();
}
return region;
}
LogicalResult mlir::applyOpPatternsAndFold(
ArrayRef<Operation *> ops, const FrozenRewritePatternSet &patterns,
GreedyRewriteConfig config, bool *changed, bool *allErased) {
if (ops.empty()) {
if (changed)
*changed = false;
if (allErased)
*allErased = true;
return success();
}
// Determine scope of rewrite.
if (!config.scope) {
// Compute scope if none was provided. The scope will remain `nullptr` if
// there is a top-level op among `ops`.
config.scope = findCommonAncestor(ops);
} else {
// If a scope was provided, make sure that all ops are in scope.
#ifndef NDEBUG
bool allOpsInScope = llvm::all_of(ops, [&](Operation *op) {
return static_cast<bool>(config.scope->findAncestorOpInRegion(*op));
});
assert(allOpsInScope && "ops must be within the specified scope");
#endif // NDEBUG
}
#if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
if (config.scope && failed(verify(config.scope->getParentOp())))
llvm::report_fatal_error(
"greedy pattern rewriter input IR failed to verify");
#endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
// Start the pattern driver.
llvm::SmallDenseSet<Operation *, 4> surviving;
MultiOpPatternRewriteDriver driver(ops.front()->getContext(), patterns,
config, ops,
allErased ? &surviving : nullptr);
LogicalResult converged = std::move(driver).simplify(ops, changed);
if (allErased)
*allErased = surviving.empty();
LLVM_DEBUG(if (failed(converged)) {
llvm::dbgs() << "The pattern rewrite did not converge after "
<< config.maxNumRewrites << " rewrites";
});
return converged;
}