llvm-project/clang/lib/Sema/SemaOpenACC.cpp
erichkeane 6119340e0b [OpenACC] Audit/add tests to ensure we enforce appertainment correctly
I apparently missed a few other clauses as well when doing my initial
implementation, so this adds tests for all, and fixes up the few that
had problems.

This is something that I'll do better to keep an eye on, though
shouldn't be necessary once the rest of the clauses are implemented and
we can remove the 'default' case.
2024-05-31 12:38:33 -07:00

1388 lines
54 KiB
C++

//===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenACC constructs and
/// clauses.
///
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaOpenACC.h"
#include "clang/AST/StmtOpenACC.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
using namespace clang;
namespace {
bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K,
SourceLocation StartLoc, bool IsStmt) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
// Nothing to do here, both invalid and unimplemented don't really need to
// do anything.
break;
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
if (!IsStmt)
return S.Diag(StartLoc, diag::err_acc_construct_appertainment) << K;
break;
}
return false;
}
bool doesClauseApplyToDirective(OpenACCDirectiveKind DirectiveKind,
OpenACCClauseKind ClauseKind) {
switch (ClauseKind) {
// FIXME: For each clause as we implement them, we can add the
// 'legalization' list here.
case OpenACCClauseKind::Default:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Data:
return true;
default:
return false;
}
case OpenACCClauseKind::If:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Self:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::VectorLength:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::FirstPrivate:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Private:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::NoCreate:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Present:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Copy:
case OpenACCClauseKind::PCopy:
case OpenACCClauseKind::PresentOrCopy:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::CopyIn:
case OpenACCClauseKind::PCopyIn:
case OpenACCClauseKind::PresentOrCopyIn:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::CopyOut:
case OpenACCClauseKind::PCopyOut:
case OpenACCClauseKind::PresentOrCopyOut:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Create:
case OpenACCClauseKind::PCreate:
case OpenACCClauseKind::PresentOrCreate:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Attach:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::DevicePtr:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Async:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Wait:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::Reduction:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
case OpenACCClauseKind::DeviceType:
case OpenACCClauseKind::DType:
switch (DirectiveKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Routine:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
return true;
default:
return false;
}
default:
// Do nothing so we can go to the 'unimplemented' diagnostic instead.
return true;
}
llvm_unreachable("Invalid clause kind");
}
bool checkAlreadyHasClauseOfKind(
SemaOpenACC &S, ArrayRef<const OpenACCClause *> ExistingClauses,
SemaOpenACC::OpenACCParsedClause &Clause) {
const auto *Itr = llvm::find_if(ExistingClauses, [&](const OpenACCClause *C) {
return C->getClauseKind() == Clause.getClauseKind();
});
if (Itr != ExistingClauses.end()) {
S.Diag(Clause.getBeginLoc(), diag::err_acc_duplicate_clause_disallowed)
<< Clause.getDirectiveKind() << Clause.getClauseKind();
S.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
return true;
}
return false;
}
/// Implement check from OpenACC3.3: section 2.5.4:
/// Only the async, wait, num_gangs, num_workers, and vector_length clauses may
/// follow a device_type clause.
bool checkValidAfterDeviceType(
SemaOpenACC &S, const OpenACCDeviceTypeClause &DeviceTypeClause,
const SemaOpenACC::OpenACCParsedClause &NewClause) {
// This is only a requirement on compute constructs so far, so this is fine
// otherwise.
if (!isOpenACCComputeDirectiveKind(NewClause.getDirectiveKind()))
return false;
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::VectorLength:
case OpenACCClauseKind::DType:
case OpenACCClauseKind::DeviceType:
return false;
default:
S.Diag(NewClause.getBeginLoc(), diag::err_acc_clause_after_device_type)
<< NewClause.getClauseKind() << DeviceTypeClause.getClauseKind();
S.Diag(DeviceTypeClause.getBeginLoc(), diag::note_acc_previous_clause_here);
return true;
}
}
} // namespace
SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {}
OpenACCClause *
SemaOpenACC::ActOnClause(ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCParsedClause &Clause) {
if (Clause.getClauseKind() == OpenACCClauseKind::Invalid)
return nullptr;
// Diagnose that we don't support this clause on this directive.
if (!doesClauseApplyToDirective(Clause.getDirectiveKind(),
Clause.getClauseKind())) {
Diag(Clause.getBeginLoc(), diag::err_acc_clause_appertainment)
<< Clause.getDirectiveKind() << Clause.getClauseKind();
return nullptr;
}
if (const auto *DevTypeClause =
llvm::find_if(ExistingClauses,
[&](const OpenACCClause *C) {
return isa<OpenACCDeviceTypeClause>(C);
});
DevTypeClause != ExistingClauses.end()) {
if (checkValidAfterDeviceType(
*this, *cast<OpenACCDeviceTypeClause>(*DevTypeClause), Clause))
return nullptr;
}
switch (Clause.getClauseKind()) {
case OpenACCClauseKind::Default: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// Don't add an invalid clause to the AST.
if (Clause.getDefaultClauseKind() == OpenACCDefaultClauseKind::Invalid)
return nullptr;
// OpenACC 3.3, Section 2.5.4:
// At most one 'default' clause may appear, and it must have a value of
// either 'none' or 'present'.
// Second half of the sentence is diagnosed during parsing.
if (checkAlreadyHasClauseOfKind(*this, ExistingClauses, Clause))
return nullptr;
return OpenACCDefaultClause::Create(
getASTContext(), Clause.getDefaultClauseKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getEndLoc());
}
case OpenACCClauseKind::If: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(*this, ExistingClauses, Clause))
return nullptr;
// The parser has ensured that we have a proper condition expr, so there
// isn't really much to do here.
// If the 'if' clause is true, it makes the 'self' clause have no effect,
// diagnose that here.
// TODO OpenACC: When we add these two to other constructs, we might not
// want to warn on this (for example, 'update').
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCSelfClause>);
if (Itr != ExistingClauses.end()) {
Diag(Clause.getBeginLoc(), diag::warn_acc_if_self_conflict);
Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
}
return OpenACCIfClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getConditionExpr(), Clause.getEndLoc());
}
case OpenACCClauseKind::Self: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// TODO OpenACC: When we implement this for 'update', this takes a
// 'var-list' instead of a condition expression, so semantics/handling has
// to happen differently here.
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(*this, ExistingClauses, Clause))
return nullptr;
// If the 'if' clause is true, it makes the 'self' clause have no effect,
// diagnose that here.
// TODO OpenACC: When we add these two to other constructs, we might not
// want to warn on this (for example, 'update').
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCIfClause>);
if (Itr != ExistingClauses.end()) {
Diag(Clause.getBeginLoc(), diag::warn_acc_if_self_conflict);
Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here);
}
return OpenACCSelfClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getConditionExpr(), Clause.getEndLoc());
}
case OpenACCClauseKind::NumGangs: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(*this, ExistingClauses, Clause))
return nullptr;
if (Clause.getIntExprs().empty())
Diag(Clause.getBeginLoc(), diag::err_acc_num_gangs_num_args)
<< /*NoArgs=*/0;
unsigned MaxArgs =
(Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop)
? 3
: 1;
if (Clause.getIntExprs().size() > MaxArgs)
Diag(Clause.getBeginLoc(), diag::err_acc_num_gangs_num_args)
<< /*NoArgs=*/1 << Clause.getDirectiveKind() << MaxArgs
<< Clause.getIntExprs().size();
// OpenACC 3.3 Section 2.5.4:
// A reduction clause may not appear on a parallel construct with a
// num_gangs clause that has more than one argument.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel &&
Clause.getIntExprs().size() > 1) {
auto *Parallel =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (Parallel != ExistingClauses.end()) {
Diag(Clause.getBeginLoc(), diag::err_acc_reduction_num_gangs_conflict)
<< Clause.getIntExprs().size();
Diag((*Parallel)->getBeginLoc(), diag::note_acc_previous_clause_here);
return nullptr;
}
}
// Create the AST node for the clause even if the number of expressions is
// incorrect.
return OpenACCNumGangsClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getIntExprs(), Clause.getEndLoc());
break;
}
case OpenACCClauseKind::NumWorkers: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(*this, ExistingClauses, Clause))
return nullptr;
assert(Clause.getIntExprs().size() == 1 &&
"Invalid number of expressions for NumWorkers");
return OpenACCNumWorkersClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getIntExprs()[0], Clause.getEndLoc());
}
case OpenACCClauseKind::VectorLength: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(*this, ExistingClauses, Clause))
return nullptr;
assert(Clause.getIntExprs().size() == 1 &&
"Invalid number of expressions for VectorLength");
return OpenACCVectorLengthClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getIntExprs()[0], Clause.getEndLoc());
}
case OpenACCClauseKind::Async: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// There is no prose in the standard that says duplicates aren't allowed,
// but this diagnostic is present in other compilers, as well as makes
// sense.
if (checkAlreadyHasClauseOfKind(*this, ExistingClauses, Clause))
return nullptr;
assert(Clause.getNumIntExprs() < 2 &&
"Invalid number of expressions for Async");
return OpenACCAsyncClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr,
Clause.getEndLoc());
}
case OpenACCClauseKind::Private: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCPrivateClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
case OpenACCClauseKind::FirstPrivate: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCFirstPrivateClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
case OpenACCClauseKind::NoCreate: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCNoCreateClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
case OpenACCClauseKind::Present: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCPresentClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
case OpenACCClauseKind::PresentOrCopy:
case OpenACCClauseKind::PCopy:
Diag(Clause.getBeginLoc(), diag::warn_acc_deprecated_alias_name)
<< Clause.getClauseKind() << OpenACCClauseKind::Copy;
LLVM_FALLTHROUGH;
case OpenACCClauseKind::Copy: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCCopyClause::Create(
getASTContext(), Clause.getClauseKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(), Clause.getEndLoc());
}
case OpenACCClauseKind::PresentOrCopyIn:
case OpenACCClauseKind::PCopyIn:
Diag(Clause.getBeginLoc(), diag::warn_acc_deprecated_alias_name)
<< Clause.getClauseKind() << OpenACCClauseKind::CopyIn;
LLVM_FALLTHROUGH;
case OpenACCClauseKind::CopyIn: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCCopyInClause::Create(
getASTContext(), Clause.getClauseKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.isReadOnly(), Clause.getVarList(),
Clause.getEndLoc());
}
case OpenACCClauseKind::PresentOrCopyOut:
case OpenACCClauseKind::PCopyOut:
Diag(Clause.getBeginLoc(), diag::warn_acc_deprecated_alias_name)
<< Clause.getClauseKind() << OpenACCClauseKind::CopyOut;
LLVM_FALLTHROUGH;
case OpenACCClauseKind::CopyOut: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCCopyOutClause::Create(
getASTContext(), Clause.getClauseKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.isZero(), Clause.getVarList(),
Clause.getEndLoc());
}
case OpenACCClauseKind::PresentOrCreate:
case OpenACCClauseKind::PCreate:
Diag(Clause.getBeginLoc(), diag::warn_acc_deprecated_alias_name)
<< Clause.getClauseKind() << OpenACCClauseKind::Create;
LLVM_FALLTHROUGH;
case OpenACCClauseKind::Create: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCCreateClause::Create(getASTContext(), Clause.getClauseKind(),
Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.isZero(),
Clause.getVarList(), Clause.getEndLoc());
}
case OpenACCClauseKind::Attach: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// ActOnVar ensured that everything is a valid variable reference, but we
// still have to make sure it is a pointer type.
llvm::SmallVector<Expr *> VarList{Clause.getVarList().begin(),
Clause.getVarList().end()};
VarList.erase(std::remove_if(VarList.begin(), VarList.end(), [&](Expr *E) {
return CheckVarIsPointerType(OpenACCClauseKind::Attach, E);
}), VarList.end());
Clause.setVarListDetails(VarList,
/*IsReadOnly=*/false, /*IsZero=*/false);
return OpenACCAttachClause::Create(getASTContext(), Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
case OpenACCClauseKind::DevicePtr: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// ActOnVar ensured that everything is a valid variable reference, but we
// still have to make sure it is a pointer type.
llvm::SmallVector<Expr *> VarList{Clause.getVarList().begin(),
Clause.getVarList().end()};
VarList.erase(std::remove_if(VarList.begin(), VarList.end(), [&](Expr *E) {
return CheckVarIsPointerType(OpenACCClauseKind::DevicePtr, E);
}), VarList.end());
Clause.setVarListDetails(VarList,
/*IsReadOnly=*/false, /*IsZero=*/false);
return OpenACCDevicePtrClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
case OpenACCClauseKind::Wait: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
return OpenACCWaitClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getDevNumExpr(), Clause.getQueuesLoc(), Clause.getQueueIdExprs(),
Clause.getEndLoc());
}
case OpenACCClauseKind::DType:
case OpenACCClauseKind::DeviceType: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// TODO OpenACC: Once we get enough of the CodeGen implemented that we have
// a source for the list of valid architectures, we need to warn on unknown
// identifiers here.
return OpenACCDeviceTypeClause::Create(
getASTContext(), Clause.getClauseKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getDeviceTypeArchitectures(),
Clause.getEndLoc());
}
case OpenACCClauseKind::Reduction: {
// Restrictions only properly implemented on 'compute' constructs, and
// 'compute' constructs are the only construct that can do anything with
// this yet, so skip/treat as unimplemented in this case.
if (!isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()))
break;
// OpenACC 3.3 Section 2.5.4:
// A reduction clause may not appear on a parallel construct with a
// num_gangs clause that has more than one argument.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel) {
auto NumGangsClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCNumGangsClause>);
for (auto *NGC : NumGangsClauses) {
unsigned NumExprs =
cast<OpenACCNumGangsClause>(NGC)->getIntExprs().size();
if (NumExprs > 1) {
Diag(Clause.getBeginLoc(), diag::err_acc_reduction_num_gangs_conflict)
<< NumExprs;
Diag(NGC->getBeginLoc(), diag::note_acc_previous_clause_here);
return nullptr;
}
}
}
SmallVector<Expr *> ValidVars;
for (Expr *Var : Clause.getVarList()) {
ExprResult Res = CheckReductionVar(Var);
if (Res.isUsable())
ValidVars.push_back(Res.get());
}
return OpenACCReductionClause::Create(
getASTContext(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getReductionOp(), ValidVars, Clause.getEndLoc());
}
default:
break;
}
Diag(Clause.getBeginLoc(), diag::warn_acc_clause_unimplemented)
<< Clause.getClauseKind();
return nullptr;
}
/// OpenACC 3.3 section 2.5.15:
/// At a mininmum, the supported data types include ... the numerical data types
/// in C, C++, and Fortran.
///
/// If the reduction var is a composite variable, each
/// member of the composite variable must be a supported datatype for the
/// reduction operation.
ExprResult SemaOpenACC::CheckReductionVar(Expr *VarExpr) {
VarExpr = VarExpr->IgnoreParenCasts();
auto TypeIsValid = [](QualType Ty) {
return Ty->isDependentType() || Ty->isScalarType();
};
if (isa<ArraySectionExpr>(VarExpr)) {
Expr *ASExpr = VarExpr;
QualType BaseTy = ArraySectionExpr::getBaseOriginalType(ASExpr);
QualType EltTy = getASTContext().getBaseElementType(BaseTy);
if (!TypeIsValid(EltTy)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_type)
<< EltTy << /*Sub array base type*/ 1;
return ExprError();
}
} else if (auto *RD = VarExpr->getType()->getAsRecordDecl()) {
if (!RD->isStruct() && !RD->isClass()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*not class or struct*/ 0 << VarExpr->getType();
return ExprError();
}
if (!RD->isCompleteDefinition()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*incomplete*/ 1 << VarExpr->getType();
return ExprError();
}
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
CXXRD && !CXXRD->isAggregate()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*aggregate*/ 2 << VarExpr->getType();
return ExprError();
}
for (FieldDecl *FD : RD->fields()) {
if (!TypeIsValid(FD->getType())) {
Diag(VarExpr->getExprLoc(),
diag::err_acc_reduction_composite_member_type);
Diag(FD->getLocation(), diag::note_acc_reduction_composite_member_loc);
return ExprError();
}
}
} else if (!TypeIsValid(VarExpr->getType())) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_type)
<< VarExpr->getType() << /*Sub array base type*/ 0;
return ExprError();
}
return VarExpr;
}
void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K,
SourceLocation DirLoc) {
switch (K) {
case OpenACCDirectiveKind::Invalid:
// Nothing to do here, an invalid kind has nothing we can check here. We
// want to continue parsing clauses as far as we can, so we will just
// ensure that we can still work and don't check any construct-specific
// rules anywhere.
break;
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
// Nothing to do here, there is no real legalization that needs to happen
// here as these constructs do not take any arguments.
break;
default:
Diag(DirLoc, diag::warn_acc_construct_unimplemented) << K;
break;
}
}
ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK,
OpenACCClauseKind CK, SourceLocation Loc,
Expr *IntExpr) {
assert(((DK != OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK != OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid)) &&
"Only one of directive or clause kind should be provided");
class IntExprConverter : public Sema::ICEConvertDiagnoser {
OpenACCDirectiveKind DirectiveKind;
OpenACCClauseKind ClauseKind;
Expr *IntExpr;
// gets the index into the diagnostics so we can use this for clauses,
// directives, and sub array.s
unsigned getDiagKind() const {
if (ClauseKind != OpenACCClauseKind::Invalid)
return 0;
if (DirectiveKind != OpenACCDirectiveKind::Invalid)
return 1;
return 2;
}
public:
IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *IntExpr)
: ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false,
/*Suppress=*/false,
/*SuppressConversion=*/true),
DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {}
bool match(QualType T) override {
// OpenACC spec just calls this 'integer expression' as having an
// 'integer type', so fall back on C99's 'integer type'.
return T->isIntegerType();
}
SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_requires_integer)
<< getDiagKind() << ClauseKind << DirectiveKind << T;
}
SemaBase::SemaDiagnosticBuilder
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_incomplete_class_type)
<< T << IntExpr->getSourceRange();
}
SemaBase::SemaDiagnosticBuilder
diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
return S.Diag(Loc, diag::err_acc_int_expr_explicit_conversion)
<< T << ConvTy;
}
SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S,
CXXConversionDecl *Conv,
QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_multiple_conversions) << T;
}
SemaBase::SemaDiagnosticBuilder
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseConversion(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
llvm_unreachable("conversion functions are permitted");
}
} IntExprDiagnoser(DK, CK, IntExpr);
ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion(
Loc, IntExpr, IntExprDiagnoser);
if (IntExprResult.isInvalid())
return ExprError();
IntExpr = IntExprResult.get();
if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType())
return ExprError();
// TODO OpenACC: Do we want to perform usual unary conversions here? When
// doing codegen we might find that is necessary, but skip it for now.
return IntExpr;
}
bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind,
Expr *VarExpr) {
// We already know that VarExpr is a proper reference to a variable, so we
// should be able to just take the type of the expression to get the type of
// the referenced variable.
// We've already seen an error, don't diagnose anything else.
if (!VarExpr || VarExpr->containsErrors())
return false;
if (isa<ArraySectionExpr>(VarExpr->IgnoreParenImpCasts()) ||
VarExpr->hasPlaceholderType(BuiltinType::ArraySection)) {
Diag(VarExpr->getExprLoc(), diag::err_array_section_use) << /*OpenACC=*/0;
Diag(VarExpr->getExprLoc(), diag::note_acc_expected_pointer_var);
return true;
}
QualType Ty = VarExpr->getType();
Ty = Ty.getNonReferenceType().getUnqualifiedType();
// Nothing we can do if this is a dependent type.
if (Ty->isDependentType())
return false;
if (!Ty->isPointerType())
return Diag(VarExpr->getExprLoc(), diag::err_acc_var_not_pointer_type)
<< ClauseKind << Ty;
return false;
}
ExprResult SemaOpenACC::ActOnVar(OpenACCClauseKind CK, Expr *VarExpr) {
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
// Sub-arrays/subscript-exprs are fine as long as the base is a
// VarExpr/MemberExpr. So strip all of those off.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return VarExpr;
}
// If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a
// reduction clause must be a scalar variable name, an aggregate variable
// name, an array element, or a subarray.
// A MemberExpr that references a Field is valid.
if (CK != OpenACCClauseKind::Reduction) {
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl()))
return VarExpr;
}
}
// Referring to 'this' is always OK.
if (isa<CXXThisExpr>(CurVarExpr))
return VarExpr;
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr>(CurVarExpr) ||
(CK != OpenACCClauseKind::Reduction &&
isa<CXXDependentScopeMemberExpr>(CurVarExpr)))
return VarExpr;
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref)
<< (CK != OpenACCClauseKind::Reduction);
return ExprError();
}
ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc,
Expr *LowerBound,
SourceLocation ColonLoc,
Expr *Length,
SourceLocation RBLoc) {
ASTContext &Context = getASTContext();
// Handle placeholders.
if (Base->hasPlaceholderType() &&
!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(LowerBound);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
LowerBound = Result.get();
}
if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Length);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
Length = Result.get();
}
// Check the 'base' value, it must be an array or pointer type, and not to/of
// a function type.
QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base);
QualType ResultTy;
if (!Base->isTypeDependent()) {
if (OriginalBaseTy->isAnyPointerType()) {
ResultTy = OriginalBaseTy->getPointeeType();
} else if (OriginalBaseTy->isArrayType()) {
ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType();
} else {
return ExprError(
Diag(Base->getExprLoc(), diag::err_acc_typecheck_subarray_value)
<< Base->getSourceRange());
}
if (ResultTy->isFunctionType()) {
Diag(Base->getExprLoc(), diag::err_acc_subarray_function_type)
<< ResultTy << Base->getSourceRange();
return ExprError();
}
if (SemaRef.RequireCompleteType(Base->getExprLoc(), ResultTy,
diag::err_acc_subarray_incomplete_type,
Base))
return ExprError();
if (!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
}
auto GetRecovery = [&](Expr *E, QualType Ty) {
ExprResult Recovery =
SemaRef.CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), E, Ty);
return Recovery.isUsable() ? Recovery.get() : nullptr;
};
// Ensure both of the expressions are int-exprs.
if (LowerBound && !LowerBound->isTypeDependent()) {
ExprResult LBRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
LowerBound->getExprLoc(), LowerBound);
if (LBRes.isUsable())
LBRes = SemaRef.DefaultLvalueConversion(LBRes.get());
LowerBound =
LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy);
}
if (Length && !Length->isTypeDependent()) {
ExprResult LenRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
Length->getExprLoc(), Length);
if (LenRes.isUsable())
LenRes = SemaRef.DefaultLvalueConversion(LenRes.get());
Length =
LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy);
}
// Length is required if the base type is not an array of known bounds.
if (!Length && (OriginalBaseTy.isNull() ||
(!OriginalBaseTy->isDependentType() &&
!OriginalBaseTy->isConstantArrayType() &&
!OriginalBaseTy->isDependentSizedArrayType()))) {
bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType();
Diag(ColonLoc, diag::err_acc_subarray_no_length) << IsArray;
// Fill in a dummy 'length' so that when we instantiate this we don't
// double-diagnose here.
ExprResult Recovery = SemaRef.CreateRecoveryExpr(
ColonLoc, SourceLocation(), ArrayRef<Expr *>{std::nullopt},
Context.IntTy);
Length = Recovery.isUsable() ? Recovery.get() : nullptr;
}
// Check the values of each of the arguments, they cannot be negative(we
// assume), and if the array bound is known, must be within range. As we do
// so, do our best to continue with evaluation, we can set the
// value/expression to nullptr/nullopt if they are invalid, and treat them as
// not present for the rest of evaluation.
// We don't have to check for dependence, because the dependent size is
// represented as a different AST node.
std::optional<llvm::APSInt> BaseSize;
if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) {
const auto *ArrayTy = Context.getAsConstantArrayType(OriginalBaseTy);
BaseSize = ArrayTy->getSize();
}
auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> {
if (!E || E->isInstantiationDependent())
return std::nullopt;
Expr::EvalResult Res;
if (!E->EvaluateAsInt(Res, Context))
return std::nullopt;
return Res.Val.getInt();
};
std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound);
std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length);
// Check lower bound for negative or out of range.
if (LowerBoundValue.has_value()) {
if (LowerBoundValue->isNegative()) {
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_negative)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LowerBoundValue, *BaseSize) >= 0) {
// Lower bound (start index) must be less than the size of the array.
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
}
}
// Check length for negative or out of range.
if (LengthValue.has_value()) {
if (LengthValue->isNegative()) {
Diag(Length->getExprLoc(), diag::err_acc_subarray_negative)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LengthValue, *BaseSize) > 0) {
// Length must be lessthan or EQUAL to the size of the array.
Diag(Length->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
}
// Adding two APSInts requires matching sign, so extract that here.
auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt {
if (LHS.isSigned() == RHS.isSigned())
return LHS + RHS;
unsigned Width = std::max(LHS.getBitWidth(), RHS.getBitWidth()) + 1;
return llvm::APSInt(LHS.sext(Width) + RHS.sext(Width), /*Signed=*/true);
};
// If we know all 3 values, we can diagnose that the total value would be out
// of range.
if (BaseSize.has_value() && LowerBoundValue.has_value() &&
LengthValue.has_value() &&
llvm::APSInt::compareValues(AddAPSInt(*LowerBoundValue, *LengthValue),
*BaseSize) > 0) {
Diag(Base->getExprLoc(),
diag::err_acc_subarray_base_plus_length_out_of_range)
<< toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
// If any part of the expression is dependent, return a dependent sub-array.
QualType ArrayExprTy = Context.ArraySectionTy;
if (Base->isTypeDependent() ||
(LowerBound && LowerBound->isInstantiationDependent()) ||
(Length && Length->isInstantiationDependent()))
ArrayExprTy = Context.DependentTy;
return new (Context)
ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue,
OK_Ordinary, ColonLoc, RBLoc);
}
bool SemaOpenACC::ActOnStartStmtDirective(OpenACCDirectiveKind K,
SourceLocation StartLoc) {
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/true);
}
StmtResult SemaOpenACC::ActOnEndStmtDirective(OpenACCDirectiveKind K,
SourceLocation StartLoc,
SourceLocation DirLoc,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses,
StmtResult AssocStmt) {
switch (K) {
default:
return StmtEmpty();
case OpenACCDirectiveKind::Invalid:
return StmtError();
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
// TODO OpenACC: Add clauses to the construct here.
return OpenACCComputeConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
llvm_unreachable("Unhandled case in directive handling?");
}
StmtResult SemaOpenACC::ActOnAssociatedStmt(OpenACCDirectiveKind K,
StmtResult AssocStmt) {
switch (K) {
default:
llvm_unreachable("Unimplemented associated statement application");
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
// There really isn't any checking here that could happen. As long as we
// have a statement to associate, this should be fine.
// OpenACC 3.3 Section 6:
// Structured Block: in C or C++, an executable statement, possibly
// compound, with a single entry at the top and a single exit at the
// bottom.
// FIXME: Should we reject DeclStmt's here? The standard isn't clear, and
// an interpretation of it is to allow this and treat the initializer as
// the 'structured block'.
return AssocStmt;
}
llvm_unreachable("Invalid associated statement application");
}
bool SemaOpenACC::ActOnStartDeclDirective(OpenACCDirectiveKind K,
SourceLocation StartLoc) {
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/false);
}
DeclGroupRef SemaOpenACC::ActOnEndDeclDirective() { return DeclGroupRef{}; }