mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-15 23:46:30 +00:00
3859 lines
156 KiB
C++
3859 lines
156 KiB
C++
//===- AddressSanitizer.cpp - memory error detector -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of AddressSanitizer, an address basic correctness
|
|
// checker.
|
|
// Details of the algorithm:
|
|
// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
|
|
//
|
|
// FIXME: This sanitizer does not yet handle scalable vectors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/StackSafetyAnalysis.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/BinaryFormat/MachO.h"
|
|
#include "llvm/Demangle/Demangle.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Comdat.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/EHPersonalities.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/MC/MCSectionMachO.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
|
|
#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
|
|
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Instrumentation.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <tuple>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "asan"
|
|
|
|
static const uint64_t kDefaultShadowScale = 3;
|
|
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
|
|
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
|
|
static const uint64_t kDynamicShadowSentinel =
|
|
std::numeric_limits<uint64_t>::max();
|
|
static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
|
|
static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
|
|
static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
|
|
static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
|
|
static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
|
|
static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29;
|
|
static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
|
|
static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
|
|
static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
|
|
static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46;
|
|
static const uint64_t kRISCV64_ShadowOffset64 = kDynamicShadowSentinel;
|
|
static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
|
|
static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
|
|
static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47;
|
|
static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
|
|
static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
|
|
static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
|
|
static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
|
|
static const uint64_t kPS_ShadowOffset64 = 1ULL << 40;
|
|
static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
|
|
static const uint64_t kEmscriptenShadowOffset = 0;
|
|
|
|
// The shadow memory space is dynamically allocated.
|
|
static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
|
|
|
|
static const size_t kMinStackMallocSize = 1 << 6; // 64B
|
|
static const size_t kMaxStackMallocSize = 1 << 16; // 64K
|
|
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
|
|
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
|
|
|
|
const char kAsanModuleCtorName[] = "asan.module_ctor";
|
|
const char kAsanModuleDtorName[] = "asan.module_dtor";
|
|
static const uint64_t kAsanCtorAndDtorPriority = 1;
|
|
// On Emscripten, the system needs more than one priorities for constructors.
|
|
static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
|
|
const char kAsanReportErrorTemplate[] = "__asan_report_";
|
|
const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
|
|
const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
|
|
const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
|
|
const char kAsanUnregisterImageGlobalsName[] =
|
|
"__asan_unregister_image_globals";
|
|
const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
|
|
const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
|
|
const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
|
|
const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
|
|
const char kAsanInitName[] = "__asan_init";
|
|
const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
|
|
const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
|
|
const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
|
|
const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
|
|
static const int kMaxAsanStackMallocSizeClass = 10;
|
|
const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
|
|
const char kAsanStackMallocAlwaysNameTemplate[] =
|
|
"__asan_stack_malloc_always_";
|
|
const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
|
|
const char kAsanGenPrefix[] = "___asan_gen_";
|
|
const char kODRGenPrefix[] = "__odr_asan_gen_";
|
|
const char kSanCovGenPrefix[] = "__sancov_gen_";
|
|
const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
|
|
const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
|
|
const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
|
|
|
|
// ASan version script has __asan_* wildcard. Triple underscore prevents a
|
|
// linker (gold) warning about attempting to export a local symbol.
|
|
const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
|
|
|
|
const char kAsanOptionDetectUseAfterReturn[] =
|
|
"__asan_option_detect_stack_use_after_return";
|
|
|
|
const char kAsanShadowMemoryDynamicAddress[] =
|
|
"__asan_shadow_memory_dynamic_address";
|
|
|
|
const char kAsanAllocaPoison[] = "__asan_alloca_poison";
|
|
const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
|
|
|
|
const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
|
|
const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
|
|
const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64";
|
|
const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable";
|
|
|
|
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
|
|
static const size_t kNumberOfAccessSizes = 5;
|
|
|
|
static const uint64_t kAllocaRzSize = 32;
|
|
|
|
// ASanAccessInfo implementation constants.
|
|
constexpr size_t kCompileKernelShift = 0;
|
|
constexpr size_t kCompileKernelMask = 0x1;
|
|
constexpr size_t kAccessSizeIndexShift = 1;
|
|
constexpr size_t kAccessSizeIndexMask = 0xf;
|
|
constexpr size_t kIsWriteShift = 5;
|
|
constexpr size_t kIsWriteMask = 0x1;
|
|
|
|
// Command-line flags.
|
|
|
|
static cl::opt<bool> ClEnableKasan(
|
|
"asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> ClRecover(
|
|
"asan-recover",
|
|
cl::desc("Enable recovery mode (continue-after-error)."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> ClInsertVersionCheck(
|
|
"asan-guard-against-version-mismatch",
|
|
cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
// This flag may need to be replaced with -f[no-]asan-reads.
|
|
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
|
|
cl::desc("instrument read instructions"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClInstrumentWrites(
|
|
"asan-instrument-writes", cl::desc("instrument write instructions"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(true),
|
|
cl::Hidden, cl::desc("Use Stack Safety analysis results"),
|
|
cl::Optional);
|
|
|
|
static cl::opt<bool> ClInstrumentAtomics(
|
|
"asan-instrument-atomics",
|
|
cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
ClInstrumentByval("asan-instrument-byval",
|
|
cl::desc("instrument byval call arguments"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ClAlwaysSlowPath(
|
|
"asan-always-slow-path",
|
|
cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> ClForceDynamicShadow(
|
|
"asan-force-dynamic-shadow",
|
|
cl::desc("Load shadow address into a local variable for each function"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
ClWithIfunc("asan-with-ifunc",
|
|
cl::desc("Access dynamic shadow through an ifunc global on "
|
|
"platforms that support this"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClWithIfuncSuppressRemat(
|
|
"asan-with-ifunc-suppress-remat",
|
|
cl::desc("Suppress rematerialization of dynamic shadow address by passing "
|
|
"it through inline asm in prologue."),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
// This flag limits the number of instructions to be instrumented
|
|
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
|
|
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
|
|
// set it to 10000.
|
|
static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
|
|
"asan-max-ins-per-bb", cl::init(10000),
|
|
cl::desc("maximal number of instructions to instrument in any given BB"),
|
|
cl::Hidden);
|
|
|
|
// This flag may need to be replaced with -f[no]asan-stack.
|
|
static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
|
|
cl::Hidden, cl::init(true));
|
|
static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
|
|
"asan-max-inline-poisoning-size",
|
|
cl::desc(
|
|
"Inline shadow poisoning for blocks up to the given size in bytes."),
|
|
cl::Hidden, cl::init(64));
|
|
|
|
static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
|
|
"asan-use-after-return",
|
|
cl::desc("Sets the mode of detection for stack-use-after-return."),
|
|
cl::values(
|
|
clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
|
|
"Never detect stack use after return."),
|
|
clEnumValN(
|
|
AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
|
|
"Detect stack use after return if "
|
|
"binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
|
|
clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
|
|
"Always detect stack use after return.")),
|
|
cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
|
|
|
|
static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
|
|
cl::desc("Create redzones for byval "
|
|
"arguments (extra copy "
|
|
"required)"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
|
|
cl::desc("Check stack-use-after-scope"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
// This flag may need to be replaced with -f[no]asan-globals.
|
|
static cl::opt<bool> ClGlobals("asan-globals",
|
|
cl::desc("Handle global objects"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ClInitializers("asan-initialization-order",
|
|
cl::desc("Handle C++ initializer order"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClInvalidPointerPairs(
|
|
"asan-detect-invalid-pointer-pair",
|
|
cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> ClInvalidPointerCmp(
|
|
"asan-detect-invalid-pointer-cmp",
|
|
cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> ClInvalidPointerSub(
|
|
"asan-detect-invalid-pointer-sub",
|
|
cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<unsigned> ClRealignStack(
|
|
"asan-realign-stack",
|
|
cl::desc("Realign stack to the value of this flag (power of two)"),
|
|
cl::Hidden, cl::init(32));
|
|
|
|
static cl::opt<int> ClInstrumentationWithCallsThreshold(
|
|
"asan-instrumentation-with-call-threshold",
|
|
cl::desc("If the function being instrumented contains more than "
|
|
"this number of memory accesses, use callbacks instead of "
|
|
"inline checks (-1 means never use callbacks)."),
|
|
cl::Hidden, cl::init(7000));
|
|
|
|
static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
|
|
"asan-memory-access-callback-prefix",
|
|
cl::desc("Prefix for memory access callbacks"), cl::Hidden,
|
|
cl::init("__asan_"));
|
|
|
|
static cl::opt<bool> ClKasanMemIntrinCallbackPrefix(
|
|
"asan-kernel-mem-intrinsic-prefix",
|
|
cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
|
|
cl::desc("instrument dynamic allocas"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClSkipPromotableAllocas(
|
|
"asan-skip-promotable-allocas",
|
|
cl::desc("Do not instrument promotable allocas"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<AsanCtorKind> ClConstructorKind(
|
|
"asan-constructor-kind",
|
|
cl::desc("Sets the ASan constructor kind"),
|
|
cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"),
|
|
clEnumValN(AsanCtorKind::Global, "global",
|
|
"Use global constructors")),
|
|
cl::init(AsanCtorKind::Global), cl::Hidden);
|
|
// These flags allow to change the shadow mapping.
|
|
// The shadow mapping looks like
|
|
// Shadow = (Mem >> scale) + offset
|
|
|
|
static cl::opt<int> ClMappingScale("asan-mapping-scale",
|
|
cl::desc("scale of asan shadow mapping"),
|
|
cl::Hidden, cl::init(0));
|
|
|
|
static cl::opt<uint64_t>
|
|
ClMappingOffset("asan-mapping-offset",
|
|
cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
|
|
cl::Hidden, cl::init(0));
|
|
|
|
// Optimization flags. Not user visible, used mostly for testing
|
|
// and benchmarking the tool.
|
|
|
|
static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks",
|
|
cl::desc("Optimize callbacks"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> ClOptSameTemp(
|
|
"asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
|
|
cl::desc("Don't instrument scalar globals"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClOptStack(
|
|
"asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> ClDynamicAllocaStack(
|
|
"asan-stack-dynamic-alloca",
|
|
cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<uint32_t> ClForceExperiment(
|
|
"asan-force-experiment",
|
|
cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
|
|
cl::init(0));
|
|
|
|
static cl::opt<bool>
|
|
ClUsePrivateAlias("asan-use-private-alias",
|
|
cl::desc("Use private aliases for global variables"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
ClUseOdrIndicator("asan-use-odr-indicator",
|
|
cl::desc("Use odr indicators to improve ODR reporting"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
ClUseGlobalsGC("asan-globals-live-support",
|
|
cl::desc("Use linker features to support dead "
|
|
"code stripping of globals"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
// This is on by default even though there is a bug in gold:
|
|
// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
|
|
static cl::opt<bool>
|
|
ClWithComdat("asan-with-comdat",
|
|
cl::desc("Place ASan constructors in comdat sections"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
|
|
"asan-destructor-kind",
|
|
cl::desc("Sets the ASan destructor kind. The default is to use the value "
|
|
"provided to the pass constructor"),
|
|
cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
|
|
clEnumValN(AsanDtorKind::Global, "global",
|
|
"Use global destructors")),
|
|
cl::init(AsanDtorKind::Invalid), cl::Hidden);
|
|
|
|
// Debug flags.
|
|
|
|
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
|
|
cl::init(0));
|
|
|
|
static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
|
|
cl::Hidden, cl::init(0));
|
|
|
|
static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
|
|
cl::desc("Debug func"));
|
|
|
|
static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
|
|
cl::Hidden, cl::init(-1));
|
|
|
|
static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
|
|
cl::Hidden, cl::init(-1));
|
|
|
|
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
|
|
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
|
|
STATISTIC(NumOptimizedAccessesToGlobalVar,
|
|
"Number of optimized accesses to global vars");
|
|
STATISTIC(NumOptimizedAccessesToStackVar,
|
|
"Number of optimized accesses to stack vars");
|
|
|
|
namespace {
|
|
|
|
/// This struct defines the shadow mapping using the rule:
|
|
/// shadow = (mem >> Scale) ADD-or-OR Offset.
|
|
/// If InGlobal is true, then
|
|
/// extern char __asan_shadow[];
|
|
/// shadow = (mem >> Scale) + &__asan_shadow
|
|
struct ShadowMapping {
|
|
int Scale;
|
|
uint64_t Offset;
|
|
bool OrShadowOffset;
|
|
bool InGlobal;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
|
|
bool IsKasan) {
|
|
bool IsAndroid = TargetTriple.isAndroid();
|
|
bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() ||
|
|
TargetTriple.isDriverKit();
|
|
bool IsMacOS = TargetTriple.isMacOSX();
|
|
bool IsFreeBSD = TargetTriple.isOSFreeBSD();
|
|
bool IsNetBSD = TargetTriple.isOSNetBSD();
|
|
bool IsPS = TargetTriple.isPS();
|
|
bool IsLinux = TargetTriple.isOSLinux();
|
|
bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
|
|
TargetTriple.getArch() == Triple::ppc64le;
|
|
bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
|
|
bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
|
|
bool IsMIPSN32ABI = TargetTriple.isABIN32();
|
|
bool IsMIPS32 = TargetTriple.isMIPS32();
|
|
bool IsMIPS64 = TargetTriple.isMIPS64();
|
|
bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
|
|
bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
|
|
TargetTriple.getArch() == Triple::aarch64_be;
|
|
bool IsLoongArch64 = TargetTriple.isLoongArch64();
|
|
bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
|
|
bool IsWindows = TargetTriple.isOSWindows();
|
|
bool IsFuchsia = TargetTriple.isOSFuchsia();
|
|
bool IsEmscripten = TargetTriple.isOSEmscripten();
|
|
bool IsAMDGPU = TargetTriple.isAMDGPU();
|
|
|
|
ShadowMapping Mapping;
|
|
|
|
Mapping.Scale = kDefaultShadowScale;
|
|
if (ClMappingScale.getNumOccurrences() > 0) {
|
|
Mapping.Scale = ClMappingScale;
|
|
}
|
|
|
|
if (LongSize == 32) {
|
|
if (IsAndroid)
|
|
Mapping.Offset = kDynamicShadowSentinel;
|
|
else if (IsMIPSN32ABI)
|
|
Mapping.Offset = kMIPS_ShadowOffsetN32;
|
|
else if (IsMIPS32)
|
|
Mapping.Offset = kMIPS32_ShadowOffset32;
|
|
else if (IsFreeBSD)
|
|
Mapping.Offset = kFreeBSD_ShadowOffset32;
|
|
else if (IsNetBSD)
|
|
Mapping.Offset = kNetBSD_ShadowOffset32;
|
|
else if (IsIOS)
|
|
Mapping.Offset = kDynamicShadowSentinel;
|
|
else if (IsWindows)
|
|
Mapping.Offset = kWindowsShadowOffset32;
|
|
else if (IsEmscripten)
|
|
Mapping.Offset = kEmscriptenShadowOffset;
|
|
else
|
|
Mapping.Offset = kDefaultShadowOffset32;
|
|
} else { // LongSize == 64
|
|
// Fuchsia is always PIE, which means that the beginning of the address
|
|
// space is always available.
|
|
if (IsFuchsia)
|
|
Mapping.Offset = 0;
|
|
else if (IsPPC64)
|
|
Mapping.Offset = kPPC64_ShadowOffset64;
|
|
else if (IsSystemZ)
|
|
Mapping.Offset = kSystemZ_ShadowOffset64;
|
|
else if (IsFreeBSD && IsAArch64)
|
|
Mapping.Offset = kFreeBSDAArch64_ShadowOffset64;
|
|
else if (IsFreeBSD && !IsMIPS64) {
|
|
if (IsKasan)
|
|
Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
|
|
else
|
|
Mapping.Offset = kFreeBSD_ShadowOffset64;
|
|
} else if (IsNetBSD) {
|
|
if (IsKasan)
|
|
Mapping.Offset = kNetBSDKasan_ShadowOffset64;
|
|
else
|
|
Mapping.Offset = kNetBSD_ShadowOffset64;
|
|
} else if (IsPS)
|
|
Mapping.Offset = kPS_ShadowOffset64;
|
|
else if (IsLinux && IsX86_64) {
|
|
if (IsKasan)
|
|
Mapping.Offset = kLinuxKasan_ShadowOffset64;
|
|
else
|
|
Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
|
|
(kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
|
|
} else if (IsWindows && IsX86_64) {
|
|
Mapping.Offset = kWindowsShadowOffset64;
|
|
} else if (IsMIPS64)
|
|
Mapping.Offset = kMIPS64_ShadowOffset64;
|
|
else if (IsIOS)
|
|
Mapping.Offset = kDynamicShadowSentinel;
|
|
else if (IsMacOS && IsAArch64)
|
|
Mapping.Offset = kDynamicShadowSentinel;
|
|
else if (IsAArch64)
|
|
Mapping.Offset = kAArch64_ShadowOffset64;
|
|
else if (IsLoongArch64)
|
|
Mapping.Offset = kLoongArch64_ShadowOffset64;
|
|
else if (IsRISCV64)
|
|
Mapping.Offset = kRISCV64_ShadowOffset64;
|
|
else if (IsAMDGPU)
|
|
Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
|
|
(kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
|
|
else
|
|
Mapping.Offset = kDefaultShadowOffset64;
|
|
}
|
|
|
|
if (ClForceDynamicShadow) {
|
|
Mapping.Offset = kDynamicShadowSentinel;
|
|
}
|
|
|
|
if (ClMappingOffset.getNumOccurrences() > 0) {
|
|
Mapping.Offset = ClMappingOffset;
|
|
}
|
|
|
|
// OR-ing shadow offset if more efficient (at least on x86) if the offset
|
|
// is a power of two, but on ppc64 and loongarch64 we have to use add since
|
|
// the shadow offset is not necessarily 1/8-th of the address space. On
|
|
// SystemZ, we could OR the constant in a single instruction, but it's more
|
|
// efficient to load it once and use indexed addressing.
|
|
Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS &&
|
|
!IsRISCV64 && !IsLoongArch64 &&
|
|
!(Mapping.Offset & (Mapping.Offset - 1)) &&
|
|
Mapping.Offset != kDynamicShadowSentinel;
|
|
bool IsAndroidWithIfuncSupport =
|
|
IsAndroid && !TargetTriple.isAndroidVersionLT(21);
|
|
Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
|
|
|
|
return Mapping;
|
|
}
|
|
|
|
namespace llvm {
|
|
void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
|
|
bool IsKasan, uint64_t *ShadowBase,
|
|
int *MappingScale, bool *OrShadowOffset) {
|
|
auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
|
|
*ShadowBase = Mapping.Offset;
|
|
*MappingScale = Mapping.Scale;
|
|
*OrShadowOffset = Mapping.OrShadowOffset;
|
|
}
|
|
|
|
void removeASanIncompatibleFnAttributes(Function &F, bool ReadsArgMem) {
|
|
// Sanitizer checks read from shadow, which invalidates memory(argmem: *).
|
|
//
|
|
// This is not only true for sanitized functions, because AttrInfer can
|
|
// infer those attributes on libc functions, which is not true if those
|
|
// are instrumented (Android) or intercepted.
|
|
//
|
|
// We might want to model ASan shadow memory more opaquely to get rid of
|
|
// this problem altogether, by hiding the shadow memory write in an
|
|
// intrinsic, essentially like in the AArch64StackTagging pass. But that's
|
|
// for another day.
|
|
|
|
// The API is weird. `onlyReadsMemory` actually means "does not write", and
|
|
// `onlyWritesMemory` actually means "does not read". So we reconstruct
|
|
// "accesses memory" && "does not read" <=> "writes".
|
|
bool Changed = false;
|
|
if (!F.doesNotAccessMemory()) {
|
|
bool WritesMemory = !F.onlyReadsMemory();
|
|
bool ReadsMemory = !F.onlyWritesMemory();
|
|
if ((WritesMemory && !ReadsMemory) || F.onlyAccessesArgMemory()) {
|
|
F.removeFnAttr(Attribute::Memory);
|
|
Changed = true;
|
|
}
|
|
}
|
|
if (ReadsArgMem) {
|
|
for (Argument &A : F.args()) {
|
|
if (A.hasAttribute(Attribute::WriteOnly)) {
|
|
A.removeAttr(Attribute::WriteOnly);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
if (Changed) {
|
|
// nobuiltin makes sure later passes don't restore assumptions about
|
|
// the function.
|
|
F.addFnAttr(Attribute::NoBuiltin);
|
|
}
|
|
}
|
|
|
|
ASanAccessInfo::ASanAccessInfo(int32_t Packed)
|
|
: Packed(Packed),
|
|
AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask),
|
|
IsWrite((Packed >> kIsWriteShift) & kIsWriteMask),
|
|
CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {}
|
|
|
|
ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel,
|
|
uint8_t AccessSizeIndex)
|
|
: Packed((IsWrite << kIsWriteShift) +
|
|
(CompileKernel << kCompileKernelShift) +
|
|
(AccessSizeIndex << kAccessSizeIndexShift)),
|
|
AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite),
|
|
CompileKernel(CompileKernel) {}
|
|
|
|
} // namespace llvm
|
|
|
|
static uint64_t getRedzoneSizeForScale(int MappingScale) {
|
|
// Redzone used for stack and globals is at least 32 bytes.
|
|
// For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
|
|
return std::max(32U, 1U << MappingScale);
|
|
}
|
|
|
|
static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
|
|
if (TargetTriple.isOSEmscripten()) {
|
|
return kAsanEmscriptenCtorAndDtorPriority;
|
|
} else {
|
|
return kAsanCtorAndDtorPriority;
|
|
}
|
|
}
|
|
|
|
static Twine genName(StringRef suffix) {
|
|
return Twine(kAsanGenPrefix) + suffix;
|
|
}
|
|
|
|
namespace {
|
|
/// Helper RAII class to post-process inserted asan runtime calls during a
|
|
/// pass on a single Function. Upon end of scope, detects and applies the
|
|
/// required funclet OpBundle.
|
|
class RuntimeCallInserter {
|
|
Function *OwnerFn = nullptr;
|
|
bool TrackInsertedCalls = false;
|
|
SmallVector<CallInst *> InsertedCalls;
|
|
|
|
public:
|
|
RuntimeCallInserter(Function &Fn) : OwnerFn(&Fn) {
|
|
if (Fn.hasPersonalityFn()) {
|
|
auto Personality = classifyEHPersonality(Fn.getPersonalityFn());
|
|
if (isScopedEHPersonality(Personality))
|
|
TrackInsertedCalls = true;
|
|
}
|
|
}
|
|
|
|
~RuntimeCallInserter() {
|
|
if (InsertedCalls.empty())
|
|
return;
|
|
assert(TrackInsertedCalls && "Calls were wrongly tracked");
|
|
|
|
DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*OwnerFn);
|
|
for (CallInst *CI : InsertedCalls) {
|
|
BasicBlock *BB = CI->getParent();
|
|
assert(BB && "Instruction doesn't belong to a BasicBlock");
|
|
assert(BB->getParent() == OwnerFn &&
|
|
"Instruction doesn't belong to the expected Function!");
|
|
|
|
ColorVector &Colors = BlockColors[BB];
|
|
// funclet opbundles are only valid in monochromatic BBs.
|
|
// Note that unreachable BBs are seen as colorless by colorEHFunclets()
|
|
// and will be DCE'ed later.
|
|
if (Colors.empty())
|
|
continue;
|
|
if (Colors.size() != 1) {
|
|
OwnerFn->getContext().emitError(
|
|
"Instruction's BasicBlock is not monochromatic");
|
|
continue;
|
|
}
|
|
|
|
BasicBlock *Color = Colors.front();
|
|
BasicBlock::iterator EHPadIt = Color->getFirstNonPHIIt();
|
|
|
|
if (EHPadIt != Color->end() && EHPadIt->isEHPad()) {
|
|
// Replace CI with a clone with an added funclet OperandBundle
|
|
OperandBundleDef OB("funclet", &*EHPadIt);
|
|
auto *NewCall = CallBase::addOperandBundle(CI, LLVMContext::OB_funclet,
|
|
OB, CI->getIterator());
|
|
NewCall->copyMetadata(*CI);
|
|
CI->replaceAllUsesWith(NewCall);
|
|
CI->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
CallInst *createRuntimeCall(IRBuilder<> &IRB, FunctionCallee Callee,
|
|
ArrayRef<Value *> Args = {},
|
|
const Twine &Name = "") {
|
|
assert(IRB.GetInsertBlock()->getParent() == OwnerFn);
|
|
|
|
CallInst *Inst = IRB.CreateCall(Callee, Args, Name, nullptr);
|
|
if (TrackInsertedCalls)
|
|
InsertedCalls.push_back(Inst);
|
|
return Inst;
|
|
}
|
|
};
|
|
|
|
/// AddressSanitizer: instrument the code in module to find memory bugs.
|
|
struct AddressSanitizer {
|
|
AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI,
|
|
int InstrumentationWithCallsThreshold,
|
|
uint32_t MaxInlinePoisoningSize, bool CompileKernel = false,
|
|
bool Recover = false, bool UseAfterScope = false,
|
|
AsanDetectStackUseAfterReturnMode UseAfterReturn =
|
|
AsanDetectStackUseAfterReturnMode::Runtime)
|
|
: M(M),
|
|
CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
|
|
: CompileKernel),
|
|
Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
|
|
UseAfterScope(UseAfterScope || ClUseAfterScope),
|
|
UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
|
|
: UseAfterReturn),
|
|
SSGI(SSGI),
|
|
InstrumentationWithCallsThreshold(
|
|
ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0
|
|
? ClInstrumentationWithCallsThreshold
|
|
: InstrumentationWithCallsThreshold),
|
|
MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0
|
|
? ClMaxInlinePoisoningSize
|
|
: MaxInlinePoisoningSize) {
|
|
C = &(M.getContext());
|
|
DL = &M.getDataLayout();
|
|
LongSize = M.getDataLayout().getPointerSizeInBits();
|
|
IntptrTy = Type::getIntNTy(*C, LongSize);
|
|
PtrTy = PointerType::getUnqual(*C);
|
|
Int32Ty = Type::getInt32Ty(*C);
|
|
TargetTriple = M.getTargetTriple();
|
|
|
|
Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
|
|
|
|
assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
|
|
}
|
|
|
|
TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const {
|
|
return *AI.getAllocationSize(AI.getDataLayout());
|
|
}
|
|
|
|
/// Check if we want (and can) handle this alloca.
|
|
bool isInterestingAlloca(const AllocaInst &AI);
|
|
|
|
bool ignoreAccess(Instruction *Inst, Value *Ptr);
|
|
void getInterestingMemoryOperands(
|
|
Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
|
|
|
|
void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
|
|
InterestingMemoryOperand &O, bool UseCalls,
|
|
const DataLayout &DL, RuntimeCallInserter &RTCI);
|
|
void instrumentPointerComparisonOrSubtraction(Instruction *I,
|
|
RuntimeCallInserter &RTCI);
|
|
void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
|
|
Value *Addr, MaybeAlign Alignment,
|
|
uint32_t TypeStoreSize, bool IsWrite,
|
|
Value *SizeArgument, bool UseCalls, uint32_t Exp,
|
|
RuntimeCallInserter &RTCI);
|
|
Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
|
|
Instruction *InsertBefore, Value *Addr,
|
|
uint32_t TypeStoreSize, bool IsWrite,
|
|
Value *SizeArgument);
|
|
Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond,
|
|
bool Recover);
|
|
void instrumentUnusualSizeOrAlignment(Instruction *I,
|
|
Instruction *InsertBefore, Value *Addr,
|
|
TypeSize TypeStoreSize, bool IsWrite,
|
|
Value *SizeArgument, bool UseCalls,
|
|
uint32_t Exp,
|
|
RuntimeCallInserter &RTCI);
|
|
void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL,
|
|
Type *IntptrTy, Value *Mask, Value *EVL,
|
|
Value *Stride, Instruction *I, Value *Addr,
|
|
MaybeAlign Alignment, unsigned Granularity,
|
|
Type *OpType, bool IsWrite,
|
|
Value *SizeArgument, bool UseCalls,
|
|
uint32_t Exp, RuntimeCallInserter &RTCI);
|
|
Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
|
|
Value *ShadowValue, uint32_t TypeStoreSize);
|
|
Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
|
|
bool IsWrite, size_t AccessSizeIndex,
|
|
Value *SizeArgument, uint32_t Exp,
|
|
RuntimeCallInserter &RTCI);
|
|
void instrumentMemIntrinsic(MemIntrinsic *MI, RuntimeCallInserter &RTCI);
|
|
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
|
|
bool suppressInstrumentationSiteForDebug(int &Instrumented);
|
|
bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
|
|
bool maybeInsertAsanInitAtFunctionEntry(Function &F);
|
|
bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
|
|
void markEscapedLocalAllocas(Function &F);
|
|
|
|
private:
|
|
friend struct FunctionStackPoisoner;
|
|
|
|
void initializeCallbacks(const TargetLibraryInfo *TLI);
|
|
|
|
bool LooksLikeCodeInBug11395(Instruction *I);
|
|
bool GlobalIsLinkerInitialized(GlobalVariable *G);
|
|
bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
|
|
TypeSize TypeStoreSize) const;
|
|
|
|
/// Helper to cleanup per-function state.
|
|
struct FunctionStateRAII {
|
|
AddressSanitizer *Pass;
|
|
|
|
FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
|
|
assert(Pass->ProcessedAllocas.empty() &&
|
|
"last pass forgot to clear cache");
|
|
assert(!Pass->LocalDynamicShadow);
|
|
}
|
|
|
|
~FunctionStateRAII() {
|
|
Pass->LocalDynamicShadow = nullptr;
|
|
Pass->ProcessedAllocas.clear();
|
|
}
|
|
};
|
|
|
|
Module &M;
|
|
LLVMContext *C;
|
|
const DataLayout *DL;
|
|
Triple TargetTriple;
|
|
int LongSize;
|
|
bool CompileKernel;
|
|
bool Recover;
|
|
bool UseAfterScope;
|
|
AsanDetectStackUseAfterReturnMode UseAfterReturn;
|
|
Type *IntptrTy;
|
|
Type *Int32Ty;
|
|
PointerType *PtrTy;
|
|
ShadowMapping Mapping;
|
|
FunctionCallee AsanHandleNoReturnFunc;
|
|
FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
|
|
Constant *AsanShadowGlobal;
|
|
|
|
// These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
|
|
FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
|
|
FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
|
|
|
|
// These arrays is indexed by AccessIsWrite and Experiment.
|
|
FunctionCallee AsanErrorCallbackSized[2][2];
|
|
FunctionCallee AsanMemoryAccessCallbackSized[2][2];
|
|
|
|
FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
|
|
Value *LocalDynamicShadow = nullptr;
|
|
const StackSafetyGlobalInfo *SSGI;
|
|
DenseMap<const AllocaInst *, bool> ProcessedAllocas;
|
|
|
|
FunctionCallee AMDGPUAddressShared;
|
|
FunctionCallee AMDGPUAddressPrivate;
|
|
int InstrumentationWithCallsThreshold;
|
|
uint32_t MaxInlinePoisoningSize;
|
|
};
|
|
|
|
class ModuleAddressSanitizer {
|
|
public:
|
|
ModuleAddressSanitizer(Module &M, bool InsertVersionCheck,
|
|
bool CompileKernel = false, bool Recover = false,
|
|
bool UseGlobalsGC = true, bool UseOdrIndicator = true,
|
|
AsanDtorKind DestructorKind = AsanDtorKind::Global,
|
|
AsanCtorKind ConstructorKind = AsanCtorKind::Global)
|
|
: M(M),
|
|
CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
|
|
: CompileKernel),
|
|
InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0
|
|
? ClInsertVersionCheck
|
|
: InsertVersionCheck),
|
|
Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
|
|
UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
|
|
// Enable aliases as they should have no downside with ODR indicators.
|
|
UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0
|
|
? ClUsePrivateAlias
|
|
: UseOdrIndicator),
|
|
UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0
|
|
? ClUseOdrIndicator
|
|
: UseOdrIndicator),
|
|
// Not a typo: ClWithComdat is almost completely pointless without
|
|
// ClUseGlobalsGC (because then it only works on modules without
|
|
// globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
|
|
// and both suffer from gold PR19002 for which UseGlobalsGC constructor
|
|
// argument is designed as workaround. Therefore, disable both
|
|
// ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
|
|
// do globals-gc.
|
|
UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
|
|
DestructorKind(DestructorKind),
|
|
ConstructorKind(ClConstructorKind.getNumOccurrences() > 0
|
|
? ClConstructorKind
|
|
: ConstructorKind) {
|
|
C = &(M.getContext());
|
|
int LongSize = M.getDataLayout().getPointerSizeInBits();
|
|
IntptrTy = Type::getIntNTy(*C, LongSize);
|
|
PtrTy = PointerType::getUnqual(*C);
|
|
TargetTriple = M.getTargetTriple();
|
|
Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
|
|
|
|
if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
|
|
this->DestructorKind = ClOverrideDestructorKind;
|
|
assert(this->DestructorKind != AsanDtorKind::Invalid);
|
|
}
|
|
|
|
bool instrumentModule();
|
|
|
|
private:
|
|
void initializeCallbacks();
|
|
|
|
void instrumentGlobals(IRBuilder<> &IRB, bool *CtorComdat);
|
|
void InstrumentGlobalsCOFF(IRBuilder<> &IRB,
|
|
ArrayRef<GlobalVariable *> ExtendedGlobals,
|
|
ArrayRef<Constant *> MetadataInitializers);
|
|
void instrumentGlobalsELF(IRBuilder<> &IRB,
|
|
ArrayRef<GlobalVariable *> ExtendedGlobals,
|
|
ArrayRef<Constant *> MetadataInitializers,
|
|
const std::string &UniqueModuleId);
|
|
void InstrumentGlobalsMachO(IRBuilder<> &IRB,
|
|
ArrayRef<GlobalVariable *> ExtendedGlobals,
|
|
ArrayRef<Constant *> MetadataInitializers);
|
|
void
|
|
InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB,
|
|
ArrayRef<GlobalVariable *> ExtendedGlobals,
|
|
ArrayRef<Constant *> MetadataInitializers);
|
|
|
|
GlobalVariable *CreateMetadataGlobal(Constant *Initializer,
|
|
StringRef OriginalName);
|
|
void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
|
|
StringRef InternalSuffix);
|
|
Instruction *CreateAsanModuleDtor();
|
|
|
|
const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
|
|
bool shouldInstrumentGlobal(GlobalVariable *G) const;
|
|
bool ShouldUseMachOGlobalsSection() const;
|
|
StringRef getGlobalMetadataSection() const;
|
|
void poisonOneInitializer(Function &GlobalInit);
|
|
void createInitializerPoisonCalls();
|
|
uint64_t getMinRedzoneSizeForGlobal() const {
|
|
return getRedzoneSizeForScale(Mapping.Scale);
|
|
}
|
|
uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
|
|
int GetAsanVersion() const;
|
|
GlobalVariable *getOrCreateModuleName();
|
|
|
|
Module &M;
|
|
bool CompileKernel;
|
|
bool InsertVersionCheck;
|
|
bool Recover;
|
|
bool UseGlobalsGC;
|
|
bool UsePrivateAlias;
|
|
bool UseOdrIndicator;
|
|
bool UseCtorComdat;
|
|
AsanDtorKind DestructorKind;
|
|
AsanCtorKind ConstructorKind;
|
|
Type *IntptrTy;
|
|
PointerType *PtrTy;
|
|
LLVMContext *C;
|
|
Triple TargetTriple;
|
|
ShadowMapping Mapping;
|
|
FunctionCallee AsanPoisonGlobals;
|
|
FunctionCallee AsanUnpoisonGlobals;
|
|
FunctionCallee AsanRegisterGlobals;
|
|
FunctionCallee AsanUnregisterGlobals;
|
|
FunctionCallee AsanRegisterImageGlobals;
|
|
FunctionCallee AsanUnregisterImageGlobals;
|
|
FunctionCallee AsanRegisterElfGlobals;
|
|
FunctionCallee AsanUnregisterElfGlobals;
|
|
|
|
Function *AsanCtorFunction = nullptr;
|
|
Function *AsanDtorFunction = nullptr;
|
|
GlobalVariable *ModuleName = nullptr;
|
|
};
|
|
|
|
// Stack poisoning does not play well with exception handling.
|
|
// When an exception is thrown, we essentially bypass the code
|
|
// that unpoisones the stack. This is why the run-time library has
|
|
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
|
|
// stack in the interceptor. This however does not work inside the
|
|
// actual function which catches the exception. Most likely because the
|
|
// compiler hoists the load of the shadow value somewhere too high.
|
|
// This causes asan to report a non-existing bug on 453.povray.
|
|
// It sounds like an LLVM bug.
|
|
struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
|
|
Function &F;
|
|
AddressSanitizer &ASan;
|
|
RuntimeCallInserter &RTCI;
|
|
DIBuilder DIB;
|
|
LLVMContext *C;
|
|
Type *IntptrTy;
|
|
Type *IntptrPtrTy;
|
|
ShadowMapping Mapping;
|
|
|
|
SmallVector<AllocaInst *, 16> AllocaVec;
|
|
SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
|
|
SmallVector<Instruction *, 8> RetVec;
|
|
|
|
FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
|
|
AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
|
|
FunctionCallee AsanSetShadowFunc[0x100] = {};
|
|
FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
|
|
FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
|
|
|
|
// Stores a place and arguments of poisoning/unpoisoning call for alloca.
|
|
struct AllocaPoisonCall {
|
|
IntrinsicInst *InsBefore;
|
|
AllocaInst *AI;
|
|
uint64_t Size;
|
|
bool DoPoison;
|
|
};
|
|
SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
|
|
SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
|
|
bool HasUntracedLifetimeIntrinsic = false;
|
|
|
|
SmallVector<AllocaInst *, 1> DynamicAllocaVec;
|
|
SmallVector<IntrinsicInst *, 1> StackRestoreVec;
|
|
AllocaInst *DynamicAllocaLayout = nullptr;
|
|
IntrinsicInst *LocalEscapeCall = nullptr;
|
|
|
|
bool HasInlineAsm = false;
|
|
bool HasReturnsTwiceCall = false;
|
|
bool PoisonStack;
|
|
|
|
FunctionStackPoisoner(Function &F, AddressSanitizer &ASan,
|
|
RuntimeCallInserter &RTCI)
|
|
: F(F), ASan(ASan), RTCI(RTCI),
|
|
DIB(*F.getParent(), /*AllowUnresolved*/ false), C(ASan.C),
|
|
IntptrTy(ASan.IntptrTy),
|
|
IntptrPtrTy(PointerType::get(IntptrTy->getContext(), 0)),
|
|
Mapping(ASan.Mapping),
|
|
PoisonStack(ClStack && !F.getParent()->getTargetTriple().isAMDGPU()) {}
|
|
|
|
bool runOnFunction() {
|
|
if (!PoisonStack)
|
|
return false;
|
|
|
|
if (ClRedzoneByvalArgs)
|
|
copyArgsPassedByValToAllocas();
|
|
|
|
// Collect alloca, ret, lifetime instructions etc.
|
|
for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
|
|
|
|
if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
|
|
|
|
initializeCallbacks(*F.getParent());
|
|
|
|
if (HasUntracedLifetimeIntrinsic) {
|
|
// If there are lifetime intrinsics which couldn't be traced back to an
|
|
// alloca, we may not know exactly when a variable enters scope, and
|
|
// therefore should "fail safe" by not poisoning them.
|
|
StaticAllocaPoisonCallVec.clear();
|
|
DynamicAllocaPoisonCallVec.clear();
|
|
}
|
|
|
|
processDynamicAllocas();
|
|
processStaticAllocas();
|
|
|
|
if (ClDebugStack) {
|
|
LLVM_DEBUG(dbgs() << F);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Arguments marked with the "byval" attribute are implicitly copied without
|
|
// using an alloca instruction. To produce redzones for those arguments, we
|
|
// copy them a second time into memory allocated with an alloca instruction.
|
|
void copyArgsPassedByValToAllocas();
|
|
|
|
// Finds all Alloca instructions and puts
|
|
// poisoned red zones around all of them.
|
|
// Then unpoison everything back before the function returns.
|
|
void processStaticAllocas();
|
|
void processDynamicAllocas();
|
|
|
|
void createDynamicAllocasInitStorage();
|
|
|
|
// ----------------------- Visitors.
|
|
/// Collect all Ret instructions, or the musttail call instruction if it
|
|
/// precedes the return instruction.
|
|
void visitReturnInst(ReturnInst &RI) {
|
|
if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
|
|
RetVec.push_back(CI);
|
|
else
|
|
RetVec.push_back(&RI);
|
|
}
|
|
|
|
/// Collect all Resume instructions.
|
|
void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
|
|
|
|
/// Collect all CatchReturnInst instructions.
|
|
void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
|
|
|
|
void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
|
|
Value *SavedStack) {
|
|
IRBuilder<> IRB(InstBefore);
|
|
Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
|
|
// When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
|
|
// need to adjust extracted SP to compute the address of the most recent
|
|
// alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
|
|
// this purpose.
|
|
if (!isa<ReturnInst>(InstBefore)) {
|
|
Value *DynamicAreaOffset = IRB.CreateIntrinsic(
|
|
Intrinsic::get_dynamic_area_offset, {IntptrTy}, {});
|
|
|
|
DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
|
|
DynamicAreaOffset);
|
|
}
|
|
|
|
RTCI.createRuntimeCall(
|
|
IRB, AsanAllocasUnpoisonFunc,
|
|
{IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
|
|
}
|
|
|
|
// Unpoison dynamic allocas redzones.
|
|
void unpoisonDynamicAllocas() {
|
|
for (Instruction *Ret : RetVec)
|
|
unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
|
|
|
|
for (Instruction *StackRestoreInst : StackRestoreVec)
|
|
unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
|
|
StackRestoreInst->getOperand(0));
|
|
}
|
|
|
|
// Deploy and poison redzones around dynamic alloca call. To do this, we
|
|
// should replace this call with another one with changed parameters and
|
|
// replace all its uses with new address, so
|
|
// addr = alloca type, old_size, align
|
|
// is replaced by
|
|
// new_size = (old_size + additional_size) * sizeof(type)
|
|
// tmp = alloca i8, new_size, max(align, 32)
|
|
// addr = tmp + 32 (first 32 bytes are for the left redzone).
|
|
// Additional_size is added to make new memory allocation contain not only
|
|
// requested memory, but also left, partial and right redzones.
|
|
void handleDynamicAllocaCall(AllocaInst *AI);
|
|
|
|
/// Collect Alloca instructions we want (and can) handle.
|
|
void visitAllocaInst(AllocaInst &AI) {
|
|
// FIXME: Handle scalable vectors instead of ignoring them.
|
|
const Type *AllocaType = AI.getAllocatedType();
|
|
const auto *STy = dyn_cast<StructType>(AllocaType);
|
|
if (!ASan.isInterestingAlloca(AI) || isa<ScalableVectorType>(AllocaType) ||
|
|
(STy && STy->containsHomogeneousScalableVectorTypes())) {
|
|
if (AI.isStaticAlloca()) {
|
|
// Skip over allocas that are present *before* the first instrumented
|
|
// alloca, we don't want to move those around.
|
|
if (AllocaVec.empty())
|
|
return;
|
|
|
|
StaticAllocasToMoveUp.push_back(&AI);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!AI.isStaticAlloca())
|
|
DynamicAllocaVec.push_back(&AI);
|
|
else
|
|
AllocaVec.push_back(&AI);
|
|
}
|
|
|
|
/// Collect lifetime intrinsic calls to check for use-after-scope
|
|
/// errors.
|
|
void visitIntrinsicInst(IntrinsicInst &II) {
|
|
Intrinsic::ID ID = II.getIntrinsicID();
|
|
if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
|
|
if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
|
|
if (!ASan.UseAfterScope)
|
|
return;
|
|
if (!II.isLifetimeStartOrEnd())
|
|
return;
|
|
// Found lifetime intrinsic, add ASan instrumentation if necessary.
|
|
auto *Size = cast<ConstantInt>(II.getArgOperand(0));
|
|
// If size argument is undefined, don't do anything.
|
|
if (Size->isMinusOne()) return;
|
|
// Check that size doesn't saturate uint64_t and can
|
|
// be stored in IntptrTy.
|
|
const uint64_t SizeValue = Size->getValue().getLimitedValue();
|
|
if (SizeValue == ~0ULL ||
|
|
!ConstantInt::isValueValidForType(IntptrTy, SizeValue))
|
|
return;
|
|
// Find alloca instruction that corresponds to llvm.lifetime argument.
|
|
// Currently we can only handle lifetime markers pointing to the
|
|
// beginning of the alloca.
|
|
AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
|
|
if (!AI) {
|
|
HasUntracedLifetimeIntrinsic = true;
|
|
return;
|
|
}
|
|
// We're interested only in allocas we can handle.
|
|
if (!ASan.isInterestingAlloca(*AI))
|
|
return;
|
|
bool DoPoison = (ID == Intrinsic::lifetime_end);
|
|
AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
|
|
if (AI->isStaticAlloca())
|
|
StaticAllocaPoisonCallVec.push_back(APC);
|
|
else if (ClInstrumentDynamicAllocas)
|
|
DynamicAllocaPoisonCallVec.push_back(APC);
|
|
}
|
|
|
|
void visitCallBase(CallBase &CB) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
|
|
HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
|
|
HasReturnsTwiceCall |= CI->canReturnTwice();
|
|
}
|
|
}
|
|
|
|
// ---------------------- Helpers.
|
|
void initializeCallbacks(Module &M);
|
|
|
|
// Copies bytes from ShadowBytes into shadow memory for indexes where
|
|
// ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
|
|
// ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
|
|
void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
|
|
IRBuilder<> &IRB, Value *ShadowBase);
|
|
void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
|
|
size_t Begin, size_t End, IRBuilder<> &IRB,
|
|
Value *ShadowBase);
|
|
void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
|
|
ArrayRef<uint8_t> ShadowBytes, size_t Begin,
|
|
size_t End, IRBuilder<> &IRB, Value *ShadowBase);
|
|
|
|
void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
|
|
|
|
Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
|
|
bool Dynamic);
|
|
PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
|
|
Instruction *ThenTerm, Value *ValueIfFalse);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void AddressSanitizerPass::printPipeline(
|
|
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
|
|
static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline(
|
|
OS, MapClassName2PassName);
|
|
OS << '<';
|
|
if (Options.CompileKernel)
|
|
OS << "kernel;";
|
|
if (Options.UseAfterScope)
|
|
OS << "use-after-scope";
|
|
OS << '>';
|
|
}
|
|
|
|
AddressSanitizerPass::AddressSanitizerPass(
|
|
const AddressSanitizerOptions &Options, bool UseGlobalGC,
|
|
bool UseOdrIndicator, AsanDtorKind DestructorKind,
|
|
AsanCtorKind ConstructorKind)
|
|
: Options(Options), UseGlobalGC(UseGlobalGC),
|
|
UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind),
|
|
ConstructorKind(ConstructorKind) {}
|
|
|
|
PreservedAnalyses AddressSanitizerPass::run(Module &M,
|
|
ModuleAnalysisManager &MAM) {
|
|
// Return early if nosanitize_address module flag is present for the module.
|
|
// This implies that asan pass has already run before.
|
|
if (checkIfAlreadyInstrumented(M, "nosanitize_address"))
|
|
return PreservedAnalyses::all();
|
|
|
|
ModuleAddressSanitizer ModuleSanitizer(
|
|
M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover,
|
|
UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind);
|
|
bool Modified = false;
|
|
auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
const StackSafetyGlobalInfo *const SSGI =
|
|
ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr;
|
|
for (Function &F : M) {
|
|
if (F.empty())
|
|
continue;
|
|
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage)
|
|
continue;
|
|
if (!ClDebugFunc.empty() && ClDebugFunc == F.getName())
|
|
continue;
|
|
if (F.getName().starts_with("__asan_"))
|
|
continue;
|
|
if (F.isPresplitCoroutine())
|
|
continue;
|
|
AddressSanitizer FunctionSanitizer(
|
|
M, SSGI, Options.InstrumentationWithCallsThreshold,
|
|
Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover,
|
|
Options.UseAfterScope, Options.UseAfterReturn);
|
|
const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
|
|
Modified |= FunctionSanitizer.instrumentFunction(F, &TLI);
|
|
}
|
|
Modified |= ModuleSanitizer.instrumentModule();
|
|
if (!Modified)
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA = PreservedAnalyses::none();
|
|
// GlobalsAA is considered stateless and does not get invalidated unless
|
|
// explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
|
|
// make changes that require GlobalsAA to be invalidated.
|
|
PA.abandon<GlobalsAA>();
|
|
return PA;
|
|
}
|
|
|
|
static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) {
|
|
size_t Res = llvm::countr_zero(TypeSize / 8);
|
|
assert(Res < kNumberOfAccessSizes);
|
|
return Res;
|
|
}
|
|
|
|
/// Check if \p G has been created by a trusted compiler pass.
|
|
static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
|
|
// Do not instrument @llvm.global_ctors, @llvm.used, etc.
|
|
if (G->getName().starts_with("llvm.") ||
|
|
// Do not instrument gcov counter arrays.
|
|
G->getName().starts_with("__llvm_gcov_ctr") ||
|
|
// Do not instrument rtti proxy symbols for function sanitizer.
|
|
G->getName().starts_with("__llvm_rtti_proxy"))
|
|
return true;
|
|
|
|
// Do not instrument asan globals.
|
|
if (G->getName().starts_with(kAsanGenPrefix) ||
|
|
G->getName().starts_with(kSanCovGenPrefix) ||
|
|
G->getName().starts_with(kODRGenPrefix))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
|
|
Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
|
|
unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
|
|
if (AddrSpace == 3 || AddrSpace == 5)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
|
|
// Shadow >> scale
|
|
Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
|
|
if (Mapping.Offset == 0) return Shadow;
|
|
// (Shadow >> scale) | offset
|
|
Value *ShadowBase;
|
|
if (LocalDynamicShadow)
|
|
ShadowBase = LocalDynamicShadow;
|
|
else
|
|
ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
|
|
if (Mapping.OrShadowOffset)
|
|
return IRB.CreateOr(Shadow, ShadowBase);
|
|
else
|
|
return IRB.CreateAdd(Shadow, ShadowBase);
|
|
}
|
|
|
|
// Instrument memset/memmove/memcpy
|
|
void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI,
|
|
RuntimeCallInserter &RTCI) {
|
|
InstrumentationIRBuilder IRB(MI);
|
|
if (isa<MemTransferInst>(MI)) {
|
|
RTCI.createRuntimeCall(
|
|
IRB, isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
|
|
{IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy),
|
|
IRB.CreateAddrSpaceCast(MI->getOperand(1), PtrTy),
|
|
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
|
|
} else if (isa<MemSetInst>(MI)) {
|
|
RTCI.createRuntimeCall(
|
|
IRB, AsanMemset,
|
|
{IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy),
|
|
IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
|
|
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
|
|
}
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
/// Check if we want (and can) handle this alloca.
|
|
bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
|
|
auto [It, Inserted] = ProcessedAllocas.try_emplace(&AI);
|
|
|
|
if (!Inserted)
|
|
return It->getSecond();
|
|
|
|
bool IsInteresting =
|
|
(AI.getAllocatedType()->isSized() &&
|
|
// alloca() may be called with 0 size, ignore it.
|
|
((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) &&
|
|
// We are only interested in allocas not promotable to registers.
|
|
// Promotable allocas are common under -O0.
|
|
(!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
|
|
// inalloca allocas are not treated as static, and we don't want
|
|
// dynamic alloca instrumentation for them as well.
|
|
!AI.isUsedWithInAlloca() &&
|
|
// swifterror allocas are register promoted by ISel
|
|
!AI.isSwiftError() &&
|
|
// safe allocas are not interesting
|
|
!(SSGI && SSGI->isSafe(AI)));
|
|
|
|
It->second = IsInteresting;
|
|
return IsInteresting;
|
|
}
|
|
|
|
bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) {
|
|
// Instrument accesses from different address spaces only for AMDGPU.
|
|
Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
|
|
if (PtrTy->getPointerAddressSpace() != 0 &&
|
|
!(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
|
|
return true;
|
|
|
|
// Ignore swifterror addresses.
|
|
// swifterror memory addresses are mem2reg promoted by instruction
|
|
// selection. As such they cannot have regular uses like an instrumentation
|
|
// function and it makes no sense to track them as memory.
|
|
if (Ptr->isSwiftError())
|
|
return true;
|
|
|
|
// Treat memory accesses to promotable allocas as non-interesting since they
|
|
// will not cause memory violations. This greatly speeds up the instrumented
|
|
// executable at -O0.
|
|
if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
|
|
if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
|
|
return true;
|
|
|
|
if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) &&
|
|
findAllocaForValue(Ptr))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void AddressSanitizer::getInterestingMemoryOperands(
|
|
Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
|
|
// Do not instrument the load fetching the dynamic shadow address.
|
|
if (LocalDynamicShadow == I)
|
|
return;
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand()))
|
|
return;
|
|
Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
|
|
LI->getType(), LI->getAlign());
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand()))
|
|
return;
|
|
Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
|
|
SI->getValueOperand()->getType(), SI->getAlign());
|
|
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
|
|
if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand()))
|
|
return;
|
|
Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
|
|
RMW->getValOperand()->getType(), std::nullopt);
|
|
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
|
|
if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand()))
|
|
return;
|
|
Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
|
|
XCHG->getCompareOperand()->getType(),
|
|
std::nullopt);
|
|
} else if (auto CI = dyn_cast<CallInst>(I)) {
|
|
switch (CI->getIntrinsicID()) {
|
|
case Intrinsic::masked_load:
|
|
case Intrinsic::masked_store:
|
|
case Intrinsic::masked_gather:
|
|
case Intrinsic::masked_scatter: {
|
|
bool IsWrite = CI->getType()->isVoidTy();
|
|
// Masked store has an initial operand for the value.
|
|
unsigned OpOffset = IsWrite ? 1 : 0;
|
|
if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
|
|
return;
|
|
|
|
auto BasePtr = CI->getOperand(OpOffset);
|
|
if (ignoreAccess(I, BasePtr))
|
|
return;
|
|
Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
|
|
MaybeAlign Alignment = Align(1);
|
|
// Otherwise no alignment guarantees. We probably got Undef.
|
|
if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
|
|
Alignment = Op->getMaybeAlignValue();
|
|
Value *Mask = CI->getOperand(2 + OpOffset);
|
|
Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
|
|
break;
|
|
}
|
|
case Intrinsic::masked_expandload:
|
|
case Intrinsic::masked_compressstore: {
|
|
bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore;
|
|
unsigned OpOffset = IsWrite ? 1 : 0;
|
|
if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
|
|
return;
|
|
auto BasePtr = CI->getOperand(OpOffset);
|
|
if (ignoreAccess(I, BasePtr))
|
|
return;
|
|
MaybeAlign Alignment = BasePtr->getPointerAlignment(*DL);
|
|
Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
|
|
|
|
IRBuilder IB(I);
|
|
Value *Mask = CI->getOperand(1 + OpOffset);
|
|
// Use the popcount of Mask as the effective vector length.
|
|
Type *ExtTy = VectorType::get(IntptrTy, cast<VectorType>(Ty));
|
|
Value *ExtMask = IB.CreateZExt(Mask, ExtTy);
|
|
Value *EVL = IB.CreateAddReduce(ExtMask);
|
|
Value *TrueMask = ConstantInt::get(Mask->getType(), 1);
|
|
Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, TrueMask,
|
|
EVL);
|
|
break;
|
|
}
|
|
case Intrinsic::vp_load:
|
|
case Intrinsic::vp_store:
|
|
case Intrinsic::experimental_vp_strided_load:
|
|
case Intrinsic::experimental_vp_strided_store: {
|
|
auto *VPI = cast<VPIntrinsic>(CI);
|
|
unsigned IID = CI->getIntrinsicID();
|
|
bool IsWrite = CI->getType()->isVoidTy();
|
|
if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
|
|
return;
|
|
unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
|
|
Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
|
|
MaybeAlign Alignment = VPI->getOperand(PtrOpNo)->getPointerAlignment(*DL);
|
|
Value *Stride = nullptr;
|
|
if (IID == Intrinsic::experimental_vp_strided_store ||
|
|
IID == Intrinsic::experimental_vp_strided_load) {
|
|
Stride = VPI->getOperand(PtrOpNo + 1);
|
|
// Use the pointer alignment as the element alignment if the stride is a
|
|
// mutiple of the pointer alignment. Otherwise, the element alignment
|
|
// should be Align(1).
|
|
unsigned PointerAlign = Alignment.valueOrOne().value();
|
|
if (!isa<ConstantInt>(Stride) ||
|
|
cast<ConstantInt>(Stride)->getZExtValue() % PointerAlign != 0)
|
|
Alignment = Align(1);
|
|
}
|
|
Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
|
|
VPI->getMaskParam(), VPI->getVectorLengthParam(),
|
|
Stride);
|
|
break;
|
|
}
|
|
case Intrinsic::vp_gather:
|
|
case Intrinsic::vp_scatter: {
|
|
auto *VPI = cast<VPIntrinsic>(CI);
|
|
unsigned IID = CI->getIntrinsicID();
|
|
bool IsWrite = IID == Intrinsic::vp_scatter;
|
|
if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
|
|
return;
|
|
unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
|
|
Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
|
|
MaybeAlign Alignment = VPI->getPointerAlignment();
|
|
Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
|
|
VPI->getMaskParam(),
|
|
VPI->getVectorLengthParam());
|
|
break;
|
|
}
|
|
default:
|
|
for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) {
|
|
if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
|
|
ignoreAccess(I, CI->getArgOperand(ArgNo)))
|
|
continue;
|
|
Type *Ty = CI->getParamByValType(ArgNo);
|
|
Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isPointerOperand(Value *V) {
|
|
return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
|
|
}
|
|
|
|
// This is a rough heuristic; it may cause both false positives and
|
|
// false negatives. The proper implementation requires cooperation with
|
|
// the frontend.
|
|
static bool isInterestingPointerComparison(Instruction *I) {
|
|
if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
|
|
if (!Cmp->isRelational())
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
return isPointerOperand(I->getOperand(0)) &&
|
|
isPointerOperand(I->getOperand(1));
|
|
}
|
|
|
|
// This is a rough heuristic; it may cause both false positives and
|
|
// false negatives. The proper implementation requires cooperation with
|
|
// the frontend.
|
|
static bool isInterestingPointerSubtraction(Instruction *I) {
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
|
|
if (BO->getOpcode() != Instruction::Sub)
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
return isPointerOperand(I->getOperand(0)) &&
|
|
isPointerOperand(I->getOperand(1));
|
|
}
|
|
|
|
bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
|
|
// If a global variable does not have dynamic initialization we don't
|
|
// have to instrument it. However, if a global does not have initializer
|
|
// at all, we assume it has dynamic initializer (in other TU).
|
|
if (!G->hasInitializer())
|
|
return false;
|
|
|
|
if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
|
|
Instruction *I, RuntimeCallInserter &RTCI) {
|
|
IRBuilder<> IRB(I);
|
|
FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
|
|
Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
|
|
for (Value *&i : Param) {
|
|
if (i->getType()->isPointerTy())
|
|
i = IRB.CreatePointerCast(i, IntptrTy);
|
|
}
|
|
RTCI.createRuntimeCall(IRB, F, Param);
|
|
}
|
|
|
|
static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
|
|
Instruction *InsertBefore, Value *Addr,
|
|
MaybeAlign Alignment, unsigned Granularity,
|
|
TypeSize TypeStoreSize, bool IsWrite,
|
|
Value *SizeArgument, bool UseCalls,
|
|
uint32_t Exp, RuntimeCallInserter &RTCI) {
|
|
// Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
|
|
// if the data is properly aligned.
|
|
if (!TypeStoreSize.isScalable()) {
|
|
const auto FixedSize = TypeStoreSize.getFixedValue();
|
|
switch (FixedSize) {
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
case 128:
|
|
if (!Alignment || *Alignment >= Granularity ||
|
|
*Alignment >= FixedSize / 8)
|
|
return Pass->instrumentAddress(I, InsertBefore, Addr, Alignment,
|
|
FixedSize, IsWrite, nullptr, UseCalls,
|
|
Exp, RTCI);
|
|
}
|
|
}
|
|
Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize,
|
|
IsWrite, nullptr, UseCalls, Exp, RTCI);
|
|
}
|
|
|
|
void AddressSanitizer::instrumentMaskedLoadOrStore(
|
|
AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask,
|
|
Value *EVL, Value *Stride, Instruction *I, Value *Addr,
|
|
MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite,
|
|
Value *SizeArgument, bool UseCalls, uint32_t Exp,
|
|
RuntimeCallInserter &RTCI) {
|
|
auto *VTy = cast<VectorType>(OpType);
|
|
TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
|
|
auto Zero = ConstantInt::get(IntptrTy, 0);
|
|
|
|
IRBuilder IB(I);
|
|
Instruction *LoopInsertBefore = I;
|
|
if (EVL) {
|
|
// The end argument of SplitBlockAndInsertForLane is assumed bigger
|
|
// than zero, so we should check whether EVL is zero here.
|
|
Type *EVLType = EVL->getType();
|
|
Value *IsEVLZero = IB.CreateICmpNE(EVL, ConstantInt::get(EVLType, 0));
|
|
LoopInsertBefore = SplitBlockAndInsertIfThen(IsEVLZero, I, false);
|
|
IB.SetInsertPoint(LoopInsertBefore);
|
|
// Cast EVL to IntptrTy.
|
|
EVL = IB.CreateZExtOrTrunc(EVL, IntptrTy);
|
|
// To avoid undefined behavior for extracting with out of range index, use
|
|
// the minimum of evl and element count as trip count.
|
|
Value *EC = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
|
|
EVL = IB.CreateBinaryIntrinsic(Intrinsic::umin, EVL, EC);
|
|
} else {
|
|
EVL = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
|
|
}
|
|
|
|
// Cast Stride to IntptrTy.
|
|
if (Stride)
|
|
Stride = IB.CreateZExtOrTrunc(Stride, IntptrTy);
|
|
|
|
SplitBlockAndInsertForEachLane(EVL, LoopInsertBefore->getIterator(),
|
|
[&](IRBuilderBase &IRB, Value *Index) {
|
|
Value *MaskElem = IRB.CreateExtractElement(Mask, Index);
|
|
if (auto *MaskElemC = dyn_cast<ConstantInt>(MaskElem)) {
|
|
if (MaskElemC->isZero())
|
|
// No check
|
|
return;
|
|
// Unconditional check
|
|
} else {
|
|
// Conditional check
|
|
Instruction *ThenTerm = SplitBlockAndInsertIfThen(
|
|
MaskElem, &*IRB.GetInsertPoint(), false);
|
|
IRB.SetInsertPoint(ThenTerm);
|
|
}
|
|
|
|
Value *InstrumentedAddress;
|
|
if (isa<VectorType>(Addr->getType())) {
|
|
assert(
|
|
cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() &&
|
|
"Expected vector of pointer.");
|
|
InstrumentedAddress = IRB.CreateExtractElement(Addr, Index);
|
|
} else if (Stride) {
|
|
Index = IRB.CreateMul(Index, Stride);
|
|
InstrumentedAddress = IRB.CreatePtrAdd(Addr, Index);
|
|
} else {
|
|
InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, Index});
|
|
}
|
|
doInstrumentAddress(Pass, I, &*IRB.GetInsertPoint(), InstrumentedAddress,
|
|
Alignment, Granularity, ElemTypeSize, IsWrite,
|
|
SizeArgument, UseCalls, Exp, RTCI);
|
|
});
|
|
}
|
|
|
|
void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
|
|
InterestingMemoryOperand &O, bool UseCalls,
|
|
const DataLayout &DL,
|
|
RuntimeCallInserter &RTCI) {
|
|
Value *Addr = O.getPtr();
|
|
|
|
// Optimization experiments.
|
|
// The experiments can be used to evaluate potential optimizations that remove
|
|
// instrumentation (assess false negatives). Instead of completely removing
|
|
// some instrumentation, you set Exp to a non-zero value (mask of optimization
|
|
// experiments that want to remove instrumentation of this instruction).
|
|
// If Exp is non-zero, this pass will emit special calls into runtime
|
|
// (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
|
|
// make runtime terminate the program in a special way (with a different
|
|
// exit status). Then you run the new compiler on a buggy corpus, collect
|
|
// the special terminations (ideally, you don't see them at all -- no false
|
|
// negatives) and make the decision on the optimization.
|
|
uint32_t Exp = ClForceExperiment;
|
|
|
|
if (ClOpt && ClOptGlobals) {
|
|
// If initialization order checking is disabled, a simple access to a
|
|
// dynamically initialized global is always valid.
|
|
GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
|
|
if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
|
|
isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
|
|
NumOptimizedAccessesToGlobalVar++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (ClOpt && ClOptStack) {
|
|
// A direct inbounds access to a stack variable is always valid.
|
|
if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
|
|
isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
|
|
NumOptimizedAccessesToStackVar++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (O.IsWrite)
|
|
NumInstrumentedWrites++;
|
|
else
|
|
NumInstrumentedReads++;
|
|
|
|
unsigned Granularity = 1 << Mapping.Scale;
|
|
if (O.MaybeMask) {
|
|
instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.MaybeEVL,
|
|
O.MaybeStride, O.getInsn(), Addr, O.Alignment,
|
|
Granularity, O.OpType, O.IsWrite, nullptr,
|
|
UseCalls, Exp, RTCI);
|
|
} else {
|
|
doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
|
|
Granularity, O.TypeStoreSize, O.IsWrite, nullptr,
|
|
UseCalls, Exp, RTCI);
|
|
}
|
|
}
|
|
|
|
Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
|
|
Value *Addr, bool IsWrite,
|
|
size_t AccessSizeIndex,
|
|
Value *SizeArgument,
|
|
uint32_t Exp,
|
|
RuntimeCallInserter &RTCI) {
|
|
InstrumentationIRBuilder IRB(InsertBefore);
|
|
Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
|
|
CallInst *Call = nullptr;
|
|
if (SizeArgument) {
|
|
if (Exp == 0)
|
|
Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][0],
|
|
{Addr, SizeArgument});
|
|
else
|
|
Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][1],
|
|
{Addr, SizeArgument, ExpVal});
|
|
} else {
|
|
if (Exp == 0)
|
|
Call = RTCI.createRuntimeCall(
|
|
IRB, AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
|
|
else
|
|
Call = RTCI.createRuntimeCall(
|
|
IRB, AsanErrorCallback[IsWrite][1][AccessSizeIndex], {Addr, ExpVal});
|
|
}
|
|
|
|
Call->setCannotMerge();
|
|
return Call;
|
|
}
|
|
|
|
Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
|
|
Value *ShadowValue,
|
|
uint32_t TypeStoreSize) {
|
|
size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
|
|
// Addr & (Granularity - 1)
|
|
Value *LastAccessedByte =
|
|
IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
|
|
// (Addr & (Granularity - 1)) + size - 1
|
|
if (TypeStoreSize / 8 > 1)
|
|
LastAccessedByte = IRB.CreateAdd(
|
|
LastAccessedByte, ConstantInt::get(IntptrTy, TypeStoreSize / 8 - 1));
|
|
// (uint8_t) ((Addr & (Granularity-1)) + size - 1)
|
|
LastAccessedByte =
|
|
IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
|
|
// ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
|
|
return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
|
|
}
|
|
|
|
Instruction *AddressSanitizer::instrumentAMDGPUAddress(
|
|
Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
|
|
uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) {
|
|
// Do not instrument unsupported addrspaces.
|
|
if (isUnsupportedAMDGPUAddrspace(Addr))
|
|
return nullptr;
|
|
Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
|
|
// Follow host instrumentation for global and constant addresses.
|
|
if (PtrTy->getPointerAddressSpace() != 0)
|
|
return InsertBefore;
|
|
// Instrument generic addresses in supported addressspaces.
|
|
IRBuilder<> IRB(InsertBefore);
|
|
Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {Addr});
|
|
Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {Addr});
|
|
Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
|
|
Value *Cmp = IRB.CreateNot(IsSharedOrPrivate);
|
|
Value *AddrSpaceZeroLanding =
|
|
SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
|
|
InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
|
|
return InsertBefore;
|
|
}
|
|
|
|
Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB,
|
|
Value *Cond, bool Recover) {
|
|
Module &M = *IRB.GetInsertBlock()->getModule();
|
|
Value *ReportCond = Cond;
|
|
if (!Recover) {
|
|
auto Ballot = M.getOrInsertFunction(kAMDGPUBallotName, IRB.getInt64Ty(),
|
|
IRB.getInt1Ty());
|
|
ReportCond = IRB.CreateIsNotNull(IRB.CreateCall(Ballot, {Cond}));
|
|
}
|
|
|
|
auto *Trm =
|
|
SplitBlockAndInsertIfThen(ReportCond, &*IRB.GetInsertPoint(), false,
|
|
MDBuilder(*C).createUnlikelyBranchWeights());
|
|
Trm->getParent()->setName("asan.report");
|
|
|
|
if (Recover)
|
|
return Trm;
|
|
|
|
Trm = SplitBlockAndInsertIfThen(Cond, Trm, false);
|
|
IRB.SetInsertPoint(Trm);
|
|
return IRB.CreateCall(
|
|
M.getOrInsertFunction(kAMDGPUUnreachableName, IRB.getVoidTy()), {});
|
|
}
|
|
|
|
void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
|
|
Instruction *InsertBefore, Value *Addr,
|
|
MaybeAlign Alignment,
|
|
uint32_t TypeStoreSize, bool IsWrite,
|
|
Value *SizeArgument, bool UseCalls,
|
|
uint32_t Exp,
|
|
RuntimeCallInserter &RTCI) {
|
|
if (TargetTriple.isAMDGPU()) {
|
|
InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
|
|
TypeStoreSize, IsWrite, SizeArgument);
|
|
if (!InsertBefore)
|
|
return;
|
|
}
|
|
|
|
InstrumentationIRBuilder IRB(InsertBefore);
|
|
size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeStoreSize);
|
|
|
|
if (UseCalls && ClOptimizeCallbacks) {
|
|
const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
|
|
IRB.CreateIntrinsic(Intrinsic::asan_check_memaccess, {},
|
|
{IRB.CreatePointerCast(Addr, PtrTy),
|
|
ConstantInt::get(Int32Ty, AccessInfo.Packed)});
|
|
return;
|
|
}
|
|
|
|
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
|
|
if (UseCalls) {
|
|
if (Exp == 0)
|
|
RTCI.createRuntimeCall(
|
|
IRB, AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], AddrLong);
|
|
else
|
|
RTCI.createRuntimeCall(
|
|
IRB, AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
|
|
{AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
|
|
return;
|
|
}
|
|
|
|
Type *ShadowTy =
|
|
IntegerType::get(*C, std::max(8U, TypeStoreSize >> Mapping.Scale));
|
|
Type *ShadowPtrTy = PointerType::get(*C, 0);
|
|
Value *ShadowPtr = memToShadow(AddrLong, IRB);
|
|
const uint64_t ShadowAlign =
|
|
std::max<uint64_t>(Alignment.valueOrOne().value() >> Mapping.Scale, 1);
|
|
Value *ShadowValue = IRB.CreateAlignedLoad(
|
|
ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy), Align(ShadowAlign));
|
|
|
|
Value *Cmp = IRB.CreateIsNotNull(ShadowValue);
|
|
size_t Granularity = 1ULL << Mapping.Scale;
|
|
Instruction *CrashTerm = nullptr;
|
|
|
|
bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity));
|
|
|
|
if (TargetTriple.isAMDGCN()) {
|
|
if (GenSlowPath) {
|
|
auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
|
|
Cmp = IRB.CreateAnd(Cmp, Cmp2);
|
|
}
|
|
CrashTerm = genAMDGPUReportBlock(IRB, Cmp, Recover);
|
|
} else if (GenSlowPath) {
|
|
// We use branch weights for the slow path check, to indicate that the slow
|
|
// path is rarely taken. This seems to be the case for SPEC benchmarks.
|
|
Instruction *CheckTerm = SplitBlockAndInsertIfThen(
|
|
Cmp, InsertBefore, false, MDBuilder(*C).createUnlikelyBranchWeights());
|
|
assert(cast<BranchInst>(CheckTerm)->isUnconditional());
|
|
BasicBlock *NextBB = CheckTerm->getSuccessor(0);
|
|
IRB.SetInsertPoint(CheckTerm);
|
|
Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
|
|
if (Recover) {
|
|
CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
|
|
} else {
|
|
BasicBlock *CrashBlock =
|
|
BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
|
|
CrashTerm = new UnreachableInst(*C, CrashBlock);
|
|
BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
|
|
ReplaceInstWithInst(CheckTerm, NewTerm);
|
|
}
|
|
} else {
|
|
CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
|
|
}
|
|
|
|
Instruction *Crash = generateCrashCode(
|
|
CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument, Exp, RTCI);
|
|
if (OrigIns->getDebugLoc())
|
|
Crash->setDebugLoc(OrigIns->getDebugLoc());
|
|
}
|
|
|
|
// Instrument unusual size or unusual alignment.
|
|
// We can not do it with a single check, so we do 1-byte check for the first
|
|
// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
|
|
// to report the actual access size.
|
|
void AddressSanitizer::instrumentUnusualSizeOrAlignment(
|
|
Instruction *I, Instruction *InsertBefore, Value *Addr,
|
|
TypeSize TypeStoreSize, bool IsWrite, Value *SizeArgument, bool UseCalls,
|
|
uint32_t Exp, RuntimeCallInserter &RTCI) {
|
|
InstrumentationIRBuilder IRB(InsertBefore);
|
|
Value *NumBits = IRB.CreateTypeSize(IntptrTy, TypeStoreSize);
|
|
Value *Size = IRB.CreateLShr(NumBits, ConstantInt::get(IntptrTy, 3));
|
|
|
|
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
|
|
if (UseCalls) {
|
|
if (Exp == 0)
|
|
RTCI.createRuntimeCall(IRB, AsanMemoryAccessCallbackSized[IsWrite][0],
|
|
{AddrLong, Size});
|
|
else
|
|
RTCI.createRuntimeCall(
|
|
IRB, AsanMemoryAccessCallbackSized[IsWrite][1],
|
|
{AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
|
|
} else {
|
|
Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
|
|
Value *LastByte = IRB.CreateIntToPtr(
|
|
IRB.CreateAdd(AddrLong, SizeMinusOne),
|
|
Addr->getType());
|
|
instrumentAddress(I, InsertBefore, Addr, {}, 8, IsWrite, Size, false, Exp,
|
|
RTCI);
|
|
instrumentAddress(I, InsertBefore, LastByte, {}, 8, IsWrite, Size, false,
|
|
Exp, RTCI);
|
|
}
|
|
}
|
|
|
|
void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit) {
|
|
// Set up the arguments to our poison/unpoison functions.
|
|
IRBuilder<> IRB(&GlobalInit.front(),
|
|
GlobalInit.front().getFirstInsertionPt());
|
|
|
|
// Add a call to poison all external globals before the given function starts.
|
|
Value *ModuleNameAddr =
|
|
ConstantExpr::getPointerCast(getOrCreateModuleName(), IntptrTy);
|
|
IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
|
|
|
|
// Add calls to unpoison all globals before each return instruction.
|
|
for (auto &BB : GlobalInit)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
|
|
CallInst::Create(AsanUnpoisonGlobals, "", RI->getIterator());
|
|
}
|
|
|
|
void ModuleAddressSanitizer::createInitializerPoisonCalls() {
|
|
GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
|
|
if (!GV)
|
|
return;
|
|
|
|
ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
|
|
if (!CA)
|
|
return;
|
|
|
|
for (Use &OP : CA->operands()) {
|
|
if (isa<ConstantAggregateZero>(OP)) continue;
|
|
ConstantStruct *CS = cast<ConstantStruct>(OP);
|
|
|
|
// Must have a function or null ptr.
|
|
if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
|
|
if (F->getName() == kAsanModuleCtorName) continue;
|
|
auto *Priority = cast<ConstantInt>(CS->getOperand(0));
|
|
// Don't instrument CTORs that will run before asan.module_ctor.
|
|
if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
|
|
continue;
|
|
poisonOneInitializer(*F);
|
|
}
|
|
}
|
|
}
|
|
|
|
const GlobalVariable *
|
|
ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
|
|
// In case this function should be expanded to include rules that do not just
|
|
// apply when CompileKernel is true, either guard all existing rules with an
|
|
// 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
|
|
// should also apply to user space.
|
|
assert(CompileKernel && "Only expecting to be called when compiling kernel");
|
|
|
|
const Constant *C = GA.getAliasee();
|
|
|
|
// When compiling the kernel, globals that are aliased by symbols prefixed
|
|
// by "__" are special and cannot be padded with a redzone.
|
|
if (GA.getName().starts_with("__"))
|
|
return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
|
|
Type *Ty = G->getValueType();
|
|
LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
|
|
|
|
if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress)
|
|
return false;
|
|
if (!Ty->isSized()) return false;
|
|
if (!G->hasInitializer()) return false;
|
|
// Globals in address space 1 and 4 are supported for AMDGPU.
|
|
if (G->getAddressSpace() &&
|
|
!(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
|
|
return false;
|
|
if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
|
|
// Two problems with thread-locals:
|
|
// - The address of the main thread's copy can't be computed at link-time.
|
|
// - Need to poison all copies, not just the main thread's one.
|
|
if (G->isThreadLocal()) return false;
|
|
// For now, just ignore this Global if the alignment is large.
|
|
if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false;
|
|
|
|
// For non-COFF targets, only instrument globals known to be defined by this
|
|
// TU.
|
|
// FIXME: We can instrument comdat globals on ELF if we are using the
|
|
// GC-friendly metadata scheme.
|
|
if (!TargetTriple.isOSBinFormatCOFF()) {
|
|
if (!G->hasExactDefinition() || G->hasComdat())
|
|
return false;
|
|
} else {
|
|
// On COFF, don't instrument non-ODR linkages.
|
|
if (G->isInterposable())
|
|
return false;
|
|
// If the global has AvailableExternally linkage, then it is not in this
|
|
// module, which means it does not need to be instrumented.
|
|
if (G->hasAvailableExternallyLinkage())
|
|
return false;
|
|
}
|
|
|
|
// If a comdat is present, it must have a selection kind that implies ODR
|
|
// semantics: no duplicates, any, or exact match.
|
|
if (Comdat *C = G->getComdat()) {
|
|
switch (C->getSelectionKind()) {
|
|
case Comdat::Any:
|
|
case Comdat::ExactMatch:
|
|
case Comdat::NoDeduplicate:
|
|
break;
|
|
case Comdat::Largest:
|
|
case Comdat::SameSize:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (G->hasSection()) {
|
|
// The kernel uses explicit sections for mostly special global variables
|
|
// that we should not instrument. E.g. the kernel may rely on their layout
|
|
// without redzones, or remove them at link time ("discard.*"), etc.
|
|
if (CompileKernel)
|
|
return false;
|
|
|
|
StringRef Section = G->getSection();
|
|
|
|
// Globals from llvm.metadata aren't emitted, do not instrument them.
|
|
if (Section == "llvm.metadata") return false;
|
|
// Do not instrument globals from special LLVM sections.
|
|
if (Section.contains("__llvm") || Section.contains("__LLVM"))
|
|
return false;
|
|
|
|
// Do not instrument function pointers to initialization and termination
|
|
// routines: dynamic linker will not properly handle redzones.
|
|
if (Section.starts_with(".preinit_array") ||
|
|
Section.starts_with(".init_array") ||
|
|
Section.starts_with(".fini_array")) {
|
|
return false;
|
|
}
|
|
|
|
// Do not instrument user-defined sections (with names resembling
|
|
// valid C identifiers)
|
|
if (TargetTriple.isOSBinFormatELF()) {
|
|
if (llvm::all_of(Section,
|
|
[](char c) { return llvm::isAlnum(c) || c == '_'; }))
|
|
return false;
|
|
}
|
|
|
|
// On COFF, if the section name contains '$', it is highly likely that the
|
|
// user is using section sorting to create an array of globals similar to
|
|
// the way initialization callbacks are registered in .init_array and
|
|
// .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
|
|
// to such globals is counterproductive, because the intent is that they
|
|
// will form an array, and out-of-bounds accesses are expected.
|
|
// See https://github.com/google/sanitizers/issues/305
|
|
// and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
|
|
if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
|
|
LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
|
|
<< *G << "\n");
|
|
return false;
|
|
}
|
|
|
|
if (TargetTriple.isOSBinFormatMachO()) {
|
|
StringRef ParsedSegment, ParsedSection;
|
|
unsigned TAA = 0, StubSize = 0;
|
|
bool TAAParsed;
|
|
cantFail(MCSectionMachO::ParseSectionSpecifier(
|
|
Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
|
|
|
|
// Ignore the globals from the __OBJC section. The ObjC runtime assumes
|
|
// those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
|
|
// them.
|
|
if (ParsedSegment == "__OBJC" ||
|
|
(ParsedSegment == "__DATA" && ParsedSection.starts_with("__objc_"))) {
|
|
LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
|
|
return false;
|
|
}
|
|
// See https://github.com/google/sanitizers/issues/32
|
|
// Constant CFString instances are compiled in the following way:
|
|
// -- the string buffer is emitted into
|
|
// __TEXT,__cstring,cstring_literals
|
|
// -- the constant NSConstantString structure referencing that buffer
|
|
// is placed into __DATA,__cfstring
|
|
// Therefore there's no point in placing redzones into __DATA,__cfstring.
|
|
// Moreover, it causes the linker to crash on OS X 10.7
|
|
if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
|
|
LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
|
|
return false;
|
|
}
|
|
// The linker merges the contents of cstring_literals and removes the
|
|
// trailing zeroes.
|
|
if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
|
|
LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CompileKernel) {
|
|
// Globals that prefixed by "__" are special and cannot be padded with a
|
|
// redzone.
|
|
if (G->getName().starts_with("__"))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// On Mach-O platforms, we emit global metadata in a separate section of the
|
|
// binary in order to allow the linker to properly dead strip. This is only
|
|
// supported on recent versions of ld64.
|
|
bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
|
|
if (!TargetTriple.isOSBinFormatMachO())
|
|
return false;
|
|
|
|
if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
|
|
return true;
|
|
if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
|
|
return true;
|
|
if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
|
|
return true;
|
|
if (TargetTriple.isDriverKit())
|
|
return true;
|
|
if (TargetTriple.isXROS())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
|
|
switch (TargetTriple.getObjectFormat()) {
|
|
case Triple::COFF: return ".ASAN$GL";
|
|
case Triple::ELF: return "asan_globals";
|
|
case Triple::MachO: return "__DATA,__asan_globals,regular";
|
|
case Triple::Wasm:
|
|
case Triple::GOFF:
|
|
case Triple::SPIRV:
|
|
case Triple::XCOFF:
|
|
case Triple::DXContainer:
|
|
report_fatal_error(
|
|
"ModuleAddressSanitizer not implemented for object file format");
|
|
case Triple::UnknownObjectFormat:
|
|
break;
|
|
}
|
|
llvm_unreachable("unsupported object format");
|
|
}
|
|
|
|
void ModuleAddressSanitizer::initializeCallbacks() {
|
|
IRBuilder<> IRB(*C);
|
|
|
|
// Declare our poisoning and unpoisoning functions.
|
|
AsanPoisonGlobals =
|
|
M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
|
|
AsanUnpoisonGlobals =
|
|
M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
|
|
|
|
// Declare functions that register/unregister globals.
|
|
AsanRegisterGlobals = M.getOrInsertFunction(
|
|
kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
|
|
AsanUnregisterGlobals = M.getOrInsertFunction(
|
|
kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
|
|
|
|
// Declare the functions that find globals in a shared object and then invoke
|
|
// the (un)register function on them.
|
|
AsanRegisterImageGlobals = M.getOrInsertFunction(
|
|
kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
|
|
AsanUnregisterImageGlobals = M.getOrInsertFunction(
|
|
kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
|
|
|
|
AsanRegisterElfGlobals =
|
|
M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
|
|
IntptrTy, IntptrTy, IntptrTy);
|
|
AsanUnregisterElfGlobals =
|
|
M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
|
|
IntptrTy, IntptrTy, IntptrTy);
|
|
}
|
|
|
|
// Put the metadata and the instrumented global in the same group. This ensures
|
|
// that the metadata is discarded if the instrumented global is discarded.
|
|
void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
|
|
GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
|
|
Module &M = *G->getParent();
|
|
Comdat *C = G->getComdat();
|
|
if (!C) {
|
|
if (!G->hasName()) {
|
|
// If G is unnamed, it must be internal. Give it an artificial name
|
|
// so we can put it in a comdat.
|
|
assert(G->hasLocalLinkage());
|
|
G->setName(genName("anon_global"));
|
|
}
|
|
|
|
if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
|
|
std::string Name = std::string(G->getName());
|
|
Name += InternalSuffix;
|
|
C = M.getOrInsertComdat(Name);
|
|
} else {
|
|
C = M.getOrInsertComdat(G->getName());
|
|
}
|
|
|
|
// Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
|
|
// linkage to internal linkage so that a symbol table entry is emitted. This
|
|
// is necessary in order to create the comdat group.
|
|
if (TargetTriple.isOSBinFormatCOFF()) {
|
|
C->setSelectionKind(Comdat::NoDeduplicate);
|
|
if (G->hasPrivateLinkage())
|
|
G->setLinkage(GlobalValue::InternalLinkage);
|
|
}
|
|
G->setComdat(C);
|
|
}
|
|
|
|
assert(G->hasComdat());
|
|
Metadata->setComdat(G->getComdat());
|
|
}
|
|
|
|
// Create a separate metadata global and put it in the appropriate ASan
|
|
// global registration section.
|
|
GlobalVariable *
|
|
ModuleAddressSanitizer::CreateMetadataGlobal(Constant *Initializer,
|
|
StringRef OriginalName) {
|
|
auto Linkage = TargetTriple.isOSBinFormatMachO()
|
|
? GlobalVariable::InternalLinkage
|
|
: GlobalVariable::PrivateLinkage;
|
|
GlobalVariable *Metadata = new GlobalVariable(
|
|
M, Initializer->getType(), false, Linkage, Initializer,
|
|
Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
|
|
Metadata->setSection(getGlobalMetadataSection());
|
|
// Place metadata in a large section for x86-64 ELF binaries to mitigate
|
|
// relocation pressure.
|
|
setGlobalVariableLargeSection(TargetTriple, *Metadata);
|
|
return Metadata;
|
|
}
|
|
|
|
Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor() {
|
|
AsanDtorFunction = Function::createWithDefaultAttr(
|
|
FunctionType::get(Type::getVoidTy(*C), false),
|
|
GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
|
|
AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
|
|
// Ensure Dtor cannot be discarded, even if in a comdat.
|
|
appendToUsed(M, {AsanDtorFunction});
|
|
BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
|
|
|
|
return ReturnInst::Create(*C, AsanDtorBB);
|
|
}
|
|
|
|
void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
|
|
IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals,
|
|
ArrayRef<Constant *> MetadataInitializers) {
|
|
assert(ExtendedGlobals.size() == MetadataInitializers.size());
|
|
auto &DL = M.getDataLayout();
|
|
|
|
SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
|
|
for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
|
|
Constant *Initializer = MetadataInitializers[i];
|
|
GlobalVariable *G = ExtendedGlobals[i];
|
|
GlobalVariable *Metadata = CreateMetadataGlobal(Initializer, G->getName());
|
|
MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
|
|
Metadata->setMetadata(LLVMContext::MD_associated, MD);
|
|
MetadataGlobals[i] = Metadata;
|
|
|
|
// The MSVC linker always inserts padding when linking incrementally. We
|
|
// cope with that by aligning each struct to its size, which must be a power
|
|
// of two.
|
|
unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
|
|
assert(isPowerOf2_32(SizeOfGlobalStruct) &&
|
|
"global metadata will not be padded appropriately");
|
|
Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
|
|
|
|
SetComdatForGlobalMetadata(G, Metadata, "");
|
|
}
|
|
|
|
// Update llvm.compiler.used, adding the new metadata globals. This is
|
|
// needed so that during LTO these variables stay alive.
|
|
if (!MetadataGlobals.empty())
|
|
appendToCompilerUsed(M, MetadataGlobals);
|
|
}
|
|
|
|
void ModuleAddressSanitizer::instrumentGlobalsELF(
|
|
IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals,
|
|
ArrayRef<Constant *> MetadataInitializers,
|
|
const std::string &UniqueModuleId) {
|
|
assert(ExtendedGlobals.size() == MetadataInitializers.size());
|
|
|
|
// Putting globals in a comdat changes the semantic and potentially cause
|
|
// false negative odr violations at link time. If odr indicators are used, we
|
|
// keep the comdat sections, as link time odr violations will be dectected on
|
|
// the odr indicator symbols.
|
|
bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty();
|
|
|
|
SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
|
|
for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
|
|
GlobalVariable *G = ExtendedGlobals[i];
|
|
GlobalVariable *Metadata =
|
|
CreateMetadataGlobal(MetadataInitializers[i], G->getName());
|
|
MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
|
|
Metadata->setMetadata(LLVMContext::MD_associated, MD);
|
|
MetadataGlobals[i] = Metadata;
|
|
|
|
if (UseComdatForGlobalsGC)
|
|
SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
|
|
}
|
|
|
|
// Update llvm.compiler.used, adding the new metadata globals. This is
|
|
// needed so that during LTO these variables stay alive.
|
|
if (!MetadataGlobals.empty())
|
|
appendToCompilerUsed(M, MetadataGlobals);
|
|
|
|
// RegisteredFlag serves two purposes. First, we can pass it to dladdr()
|
|
// to look up the loaded image that contains it. Second, we can store in it
|
|
// whether registration has already occurred, to prevent duplicate
|
|
// registration.
|
|
//
|
|
// Common linkage ensures that there is only one global per shared library.
|
|
GlobalVariable *RegisteredFlag = new GlobalVariable(
|
|
M, IntptrTy, false, GlobalVariable::CommonLinkage,
|
|
ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
|
|
RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
|
|
|
|
// Create start and stop symbols.
|
|
GlobalVariable *StartELFMetadata = new GlobalVariable(
|
|
M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
|
|
"__start_" + getGlobalMetadataSection());
|
|
StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
|
|
GlobalVariable *StopELFMetadata = new GlobalVariable(
|
|
M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
|
|
"__stop_" + getGlobalMetadataSection());
|
|
StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
|
|
|
|
// Create a call to register the globals with the runtime.
|
|
if (ConstructorKind == AsanCtorKind::Global)
|
|
IRB.CreateCall(AsanRegisterElfGlobals,
|
|
{IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
|
|
IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
|
|
IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
|
|
|
|
// We also need to unregister globals at the end, e.g., when a shared library
|
|
// gets closed.
|
|
if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) {
|
|
IRBuilder<> IrbDtor(CreateAsanModuleDtor());
|
|
IrbDtor.CreateCall(AsanUnregisterElfGlobals,
|
|
{IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
|
|
IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
|
|
IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
|
|
}
|
|
}
|
|
|
|
void ModuleAddressSanitizer::InstrumentGlobalsMachO(
|
|
IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals,
|
|
ArrayRef<Constant *> MetadataInitializers) {
|
|
assert(ExtendedGlobals.size() == MetadataInitializers.size());
|
|
|
|
// On recent Mach-O platforms, use a structure which binds the liveness of
|
|
// the global variable to the metadata struct. Keep the list of "Liveness" GV
|
|
// created to be added to llvm.compiler.used
|
|
StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
|
|
SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
|
|
|
|
for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
|
|
Constant *Initializer = MetadataInitializers[i];
|
|
GlobalVariable *G = ExtendedGlobals[i];
|
|
GlobalVariable *Metadata = CreateMetadataGlobal(Initializer, G->getName());
|
|
|
|
// On recent Mach-O platforms, we emit the global metadata in a way that
|
|
// allows the linker to properly strip dead globals.
|
|
auto LivenessBinder =
|
|
ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
|
|
ConstantExpr::getPointerCast(Metadata, IntptrTy));
|
|
GlobalVariable *Liveness = new GlobalVariable(
|
|
M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
|
|
Twine("__asan_binder_") + G->getName());
|
|
Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
|
|
LivenessGlobals[i] = Liveness;
|
|
}
|
|
|
|
// Update llvm.compiler.used, adding the new liveness globals. This is
|
|
// needed so that during LTO these variables stay alive. The alternative
|
|
// would be to have the linker handling the LTO symbols, but libLTO
|
|
// current API does not expose access to the section for each symbol.
|
|
if (!LivenessGlobals.empty())
|
|
appendToCompilerUsed(M, LivenessGlobals);
|
|
|
|
// RegisteredFlag serves two purposes. First, we can pass it to dladdr()
|
|
// to look up the loaded image that contains it. Second, we can store in it
|
|
// whether registration has already occurred, to prevent duplicate
|
|
// registration.
|
|
//
|
|
// common linkage ensures that there is only one global per shared library.
|
|
GlobalVariable *RegisteredFlag = new GlobalVariable(
|
|
M, IntptrTy, false, GlobalVariable::CommonLinkage,
|
|
ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
|
|
RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
|
|
|
|
if (ConstructorKind == AsanCtorKind::Global)
|
|
IRB.CreateCall(AsanRegisterImageGlobals,
|
|
{IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
|
|
|
|
// We also need to unregister globals at the end, e.g., when a shared library
|
|
// gets closed.
|
|
if (DestructorKind != AsanDtorKind::None) {
|
|
IRBuilder<> IrbDtor(CreateAsanModuleDtor());
|
|
IrbDtor.CreateCall(AsanUnregisterImageGlobals,
|
|
{IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
|
|
}
|
|
}
|
|
|
|
void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
|
|
IRBuilder<> &IRB, ArrayRef<GlobalVariable *> ExtendedGlobals,
|
|
ArrayRef<Constant *> MetadataInitializers) {
|
|
assert(ExtendedGlobals.size() == MetadataInitializers.size());
|
|
unsigned N = ExtendedGlobals.size();
|
|
assert(N > 0);
|
|
|
|
// On platforms that don't have a custom metadata section, we emit an array
|
|
// of global metadata structures.
|
|
ArrayType *ArrayOfGlobalStructTy =
|
|
ArrayType::get(MetadataInitializers[0]->getType(), N);
|
|
auto AllGlobals = new GlobalVariable(
|
|
M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
|
|
ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
|
|
if (Mapping.Scale > 3)
|
|
AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
|
|
|
|
if (ConstructorKind == AsanCtorKind::Global)
|
|
IRB.CreateCall(AsanRegisterGlobals,
|
|
{IRB.CreatePointerCast(AllGlobals, IntptrTy),
|
|
ConstantInt::get(IntptrTy, N)});
|
|
|
|
// We also need to unregister globals at the end, e.g., when a shared library
|
|
// gets closed.
|
|
if (DestructorKind != AsanDtorKind::None) {
|
|
IRBuilder<> IrbDtor(CreateAsanModuleDtor());
|
|
IrbDtor.CreateCall(AsanUnregisterGlobals,
|
|
{IRB.CreatePointerCast(AllGlobals, IntptrTy),
|
|
ConstantInt::get(IntptrTy, N)});
|
|
}
|
|
}
|
|
|
|
// This function replaces all global variables with new variables that have
|
|
// trailing redzones. It also creates a function that poisons
|
|
// redzones and inserts this function into llvm.global_ctors.
|
|
// Sets *CtorComdat to true if the global registration code emitted into the
|
|
// asan constructor is comdat-compatible.
|
|
void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB,
|
|
bool *CtorComdat) {
|
|
// Build set of globals that are aliased by some GA, where
|
|
// getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
|
|
SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
|
|
if (CompileKernel) {
|
|
for (auto &GA : M.aliases()) {
|
|
if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
|
|
AliasedGlobalExclusions.insert(GV);
|
|
}
|
|
}
|
|
|
|
SmallVector<GlobalVariable *, 16> GlobalsToChange;
|
|
for (auto &G : M.globals()) {
|
|
if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
|
|
GlobalsToChange.push_back(&G);
|
|
}
|
|
|
|
size_t n = GlobalsToChange.size();
|
|
auto &DL = M.getDataLayout();
|
|
|
|
// A global is described by a structure
|
|
// size_t beg;
|
|
// size_t size;
|
|
// size_t size_with_redzone;
|
|
// const char *name;
|
|
// const char *module_name;
|
|
// size_t has_dynamic_init;
|
|
// size_t padding_for_windows_msvc_incremental_link;
|
|
// size_t odr_indicator;
|
|
// We initialize an array of such structures and pass it to a run-time call.
|
|
StructType *GlobalStructTy =
|
|
StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
|
|
IntptrTy, IntptrTy, IntptrTy);
|
|
SmallVector<GlobalVariable *, 16> NewGlobals(n);
|
|
SmallVector<Constant *, 16> Initializers(n);
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
GlobalVariable *G = GlobalsToChange[i];
|
|
|
|
GlobalValue::SanitizerMetadata MD;
|
|
if (G->hasSanitizerMetadata())
|
|
MD = G->getSanitizerMetadata();
|
|
|
|
// The runtime library tries demangling symbol names in the descriptor but
|
|
// functionality like __cxa_demangle may be unavailable (e.g.
|
|
// -static-libstdc++). So we demangle the symbol names here.
|
|
std::string NameForGlobal = G->getName().str();
|
|
GlobalVariable *Name =
|
|
createPrivateGlobalForString(M, llvm::demangle(NameForGlobal),
|
|
/*AllowMerging*/ true, genName("global"));
|
|
|
|
Type *Ty = G->getValueType();
|
|
const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
|
|
const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
|
|
Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
|
|
|
|
StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
|
|
Constant *NewInitializer = ConstantStruct::get(
|
|
NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
|
|
|
|
// Create a new global variable with enough space for a redzone.
|
|
GlobalValue::LinkageTypes Linkage = G->getLinkage();
|
|
if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
|
|
Linkage = GlobalValue::InternalLinkage;
|
|
GlobalVariable *NewGlobal = new GlobalVariable(
|
|
M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
|
|
G->getThreadLocalMode(), G->getAddressSpace());
|
|
NewGlobal->copyAttributesFrom(G);
|
|
NewGlobal->setComdat(G->getComdat());
|
|
NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal()));
|
|
// Don't fold globals with redzones. ODR violation detector and redzone
|
|
// poisoning implicitly creates a dependence on the global's address, so it
|
|
// is no longer valid for it to be marked unnamed_addr.
|
|
NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
|
|
|
|
// Move null-terminated C strings to "__asan_cstring" section on Darwin.
|
|
if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
|
|
G->isConstant()) {
|
|
auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
|
|
if (Seq && Seq->isCString())
|
|
NewGlobal->setSection("__TEXT,__asan_cstring,regular");
|
|
}
|
|
|
|
// Transfer the debug info and type metadata. The payload starts at offset
|
|
// zero so we can copy the metadata over as is.
|
|
NewGlobal->copyMetadata(G, 0);
|
|
|
|
Value *Indices2[2];
|
|
Indices2[0] = IRB.getInt32(0);
|
|
Indices2[1] = IRB.getInt32(0);
|
|
|
|
G->replaceAllUsesWith(
|
|
ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
|
|
NewGlobal->takeName(G);
|
|
G->eraseFromParent();
|
|
NewGlobals[i] = NewGlobal;
|
|
|
|
Constant *ODRIndicator = ConstantPointerNull::get(PtrTy);
|
|
GlobalValue *InstrumentedGlobal = NewGlobal;
|
|
|
|
bool CanUsePrivateAliases =
|
|
TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
|
|
TargetTriple.isOSBinFormatWasm();
|
|
if (CanUsePrivateAliases && UsePrivateAlias) {
|
|
// Create local alias for NewGlobal to avoid crash on ODR between
|
|
// instrumented and non-instrumented libraries.
|
|
InstrumentedGlobal =
|
|
GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
|
|
}
|
|
|
|
// ODR should not happen for local linkage.
|
|
if (NewGlobal->hasLocalLinkage()) {
|
|
ODRIndicator =
|
|
ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), PtrTy);
|
|
} else if (UseOdrIndicator) {
|
|
// With local aliases, we need to provide another externally visible
|
|
// symbol __odr_asan_XXX to detect ODR violation.
|
|
auto *ODRIndicatorSym =
|
|
new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
|
|
Constant::getNullValue(IRB.getInt8Ty()),
|
|
kODRGenPrefix + NameForGlobal, nullptr,
|
|
NewGlobal->getThreadLocalMode());
|
|
|
|
// Set meaningful attributes for indicator symbol.
|
|
ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
|
|
ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
|
|
ODRIndicatorSym->setAlignment(Align(1));
|
|
ODRIndicator = ODRIndicatorSym;
|
|
}
|
|
|
|
Constant *Initializer = ConstantStruct::get(
|
|
GlobalStructTy,
|
|
ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
|
|
ConstantInt::get(IntptrTy, SizeInBytes),
|
|
ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
|
|
ConstantExpr::getPointerCast(Name, IntptrTy),
|
|
ConstantExpr::getPointerCast(getOrCreateModuleName(), IntptrTy),
|
|
ConstantInt::get(IntptrTy, MD.IsDynInit),
|
|
Constant::getNullValue(IntptrTy),
|
|
ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
|
|
|
|
LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
|
|
|
|
Initializers[i] = Initializer;
|
|
}
|
|
|
|
// Add instrumented globals to llvm.compiler.used list to avoid LTO from
|
|
// ConstantMerge'ing them.
|
|
SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
|
|
for (size_t i = 0; i < n; i++) {
|
|
GlobalVariable *G = NewGlobals[i];
|
|
if (G->getName().empty()) continue;
|
|
GlobalsToAddToUsedList.push_back(G);
|
|
}
|
|
appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
|
|
|
|
if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) {
|
|
// Use COMDAT and register globals even if n == 0 to ensure that (a) the
|
|
// linkage unit will only have one module constructor, and (b) the register
|
|
// function will be called. The module destructor is not created when n ==
|
|
// 0.
|
|
*CtorComdat = true;
|
|
instrumentGlobalsELF(IRB, NewGlobals, Initializers, getUniqueModuleId(&M));
|
|
} else if (n == 0) {
|
|
// When UseGlobalsGC is false, COMDAT can still be used if n == 0, because
|
|
// all compile units will have identical module constructor/destructor.
|
|
*CtorComdat = TargetTriple.isOSBinFormatELF();
|
|
} else {
|
|
*CtorComdat = false;
|
|
if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
|
|
InstrumentGlobalsCOFF(IRB, NewGlobals, Initializers);
|
|
} else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
|
|
InstrumentGlobalsMachO(IRB, NewGlobals, Initializers);
|
|
} else {
|
|
InstrumentGlobalsWithMetadataArray(IRB, NewGlobals, Initializers);
|
|
}
|
|
}
|
|
|
|
// Create calls for poisoning before initializers run and unpoisoning after.
|
|
if (ClInitializers)
|
|
createInitializerPoisonCalls();
|
|
|
|
LLVM_DEBUG(dbgs() << M);
|
|
}
|
|
|
|
uint64_t
|
|
ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
|
|
constexpr uint64_t kMaxRZ = 1 << 18;
|
|
const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
|
|
|
|
uint64_t RZ = 0;
|
|
if (SizeInBytes <= MinRZ / 2) {
|
|
// Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
|
|
// at least 32 bytes, optimize when SizeInBytes is less than or equal to
|
|
// half of MinRZ.
|
|
RZ = MinRZ - SizeInBytes;
|
|
} else {
|
|
// Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
|
|
RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ);
|
|
|
|
// Round up to multiple of MinRZ.
|
|
if (SizeInBytes % MinRZ)
|
|
RZ += MinRZ - (SizeInBytes % MinRZ);
|
|
}
|
|
|
|
assert((RZ + SizeInBytes) % MinRZ == 0);
|
|
|
|
return RZ;
|
|
}
|
|
|
|
int ModuleAddressSanitizer::GetAsanVersion() const {
|
|
int LongSize = M.getDataLayout().getPointerSizeInBits();
|
|
bool isAndroid = M.getTargetTriple().isAndroid();
|
|
int Version = 8;
|
|
// 32-bit Android is one version ahead because of the switch to dynamic
|
|
// shadow.
|
|
Version += (LongSize == 32 && isAndroid);
|
|
return Version;
|
|
}
|
|
|
|
GlobalVariable *ModuleAddressSanitizer::getOrCreateModuleName() {
|
|
if (!ModuleName) {
|
|
// We shouldn't merge same module names, as this string serves as unique
|
|
// module ID in runtime.
|
|
ModuleName =
|
|
createPrivateGlobalForString(M, M.getModuleIdentifier(),
|
|
/*AllowMerging*/ false, genName("module"));
|
|
}
|
|
return ModuleName;
|
|
}
|
|
|
|
bool ModuleAddressSanitizer::instrumentModule() {
|
|
initializeCallbacks();
|
|
|
|
for (Function &F : M)
|
|
removeASanIncompatibleFnAttributes(F, /*ReadsArgMem=*/false);
|
|
|
|
// Create a module constructor. A destructor is created lazily because not all
|
|
// platforms, and not all modules need it.
|
|
if (ConstructorKind == AsanCtorKind::Global) {
|
|
if (CompileKernel) {
|
|
// The kernel always builds with its own runtime, and therefore does not
|
|
// need the init and version check calls.
|
|
AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
|
|
} else {
|
|
std::string AsanVersion = std::to_string(GetAsanVersion());
|
|
std::string VersionCheckName =
|
|
InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
|
|
std::tie(AsanCtorFunction, std::ignore) =
|
|
createSanitizerCtorAndInitFunctions(
|
|
M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
|
|
/*InitArgs=*/{}, VersionCheckName);
|
|
}
|
|
}
|
|
|
|
bool CtorComdat = true;
|
|
if (ClGlobals) {
|
|
assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None);
|
|
if (AsanCtorFunction) {
|
|
IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
|
|
instrumentGlobals(IRB, &CtorComdat);
|
|
} else {
|
|
IRBuilder<> IRB(*C);
|
|
instrumentGlobals(IRB, &CtorComdat);
|
|
}
|
|
}
|
|
|
|
const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
|
|
|
|
// Put the constructor and destructor in comdat if both
|
|
// (1) global instrumentation is not TU-specific
|
|
// (2) target is ELF.
|
|
if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
|
|
if (AsanCtorFunction) {
|
|
AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
|
|
appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
|
|
}
|
|
if (AsanDtorFunction) {
|
|
AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
|
|
appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
|
|
}
|
|
} else {
|
|
if (AsanCtorFunction)
|
|
appendToGlobalCtors(M, AsanCtorFunction, Priority);
|
|
if (AsanDtorFunction)
|
|
appendToGlobalDtors(M, AsanDtorFunction, Priority);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void AddressSanitizer::initializeCallbacks(const TargetLibraryInfo *TLI) {
|
|
IRBuilder<> IRB(*C);
|
|
// Create __asan_report* callbacks.
|
|
// IsWrite, TypeSize and Exp are encoded in the function name.
|
|
for (int Exp = 0; Exp < 2; Exp++) {
|
|
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
|
|
const std::string TypeStr = AccessIsWrite ? "store" : "load";
|
|
const std::string ExpStr = Exp ? "exp_" : "";
|
|
const std::string EndingStr = Recover ? "_noabort" : "";
|
|
|
|
SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
|
|
SmallVector<Type *, 2> Args1{1, IntptrTy};
|
|
AttributeList AL2;
|
|
AttributeList AL1;
|
|
if (Exp) {
|
|
Type *ExpType = Type::getInt32Ty(*C);
|
|
Args2.push_back(ExpType);
|
|
Args1.push_back(ExpType);
|
|
if (auto AK = TLI->getExtAttrForI32Param(false)) {
|
|
AL2 = AL2.addParamAttribute(*C, 2, AK);
|
|
AL1 = AL1.addParamAttribute(*C, 1, AK);
|
|
}
|
|
}
|
|
AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
|
|
kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
|
|
FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
|
|
|
|
AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
|
|
ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
|
|
FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
|
|
|
|
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
|
|
AccessSizeIndex++) {
|
|
const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
|
|
AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
|
|
M.getOrInsertFunction(
|
|
kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
|
|
FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
|
|
|
|
AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
|
|
M.getOrInsertFunction(
|
|
ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
|
|
FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
|
|
}
|
|
}
|
|
}
|
|
|
|
const std::string MemIntrinCallbackPrefix =
|
|
(CompileKernel && !ClKasanMemIntrinCallbackPrefix)
|
|
? std::string("")
|
|
: ClMemoryAccessCallbackPrefix;
|
|
AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
|
|
PtrTy, PtrTy, PtrTy, IntptrTy);
|
|
AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", PtrTy,
|
|
PtrTy, PtrTy, IntptrTy);
|
|
AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
|
|
TLI->getAttrList(C, {1}, /*Signed=*/false),
|
|
PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy);
|
|
|
|
AsanHandleNoReturnFunc =
|
|
M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
|
|
|
|
AsanPtrCmpFunction =
|
|
M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
|
|
AsanPtrSubFunction =
|
|
M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
|
|
if (Mapping.InGlobal)
|
|
AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
|
|
ArrayType::get(IRB.getInt8Ty(), 0));
|
|
|
|
AMDGPUAddressShared =
|
|
M.getOrInsertFunction(kAMDGPUAddressSharedName, IRB.getInt1Ty(), PtrTy);
|
|
AMDGPUAddressPrivate =
|
|
M.getOrInsertFunction(kAMDGPUAddressPrivateName, IRB.getInt1Ty(), PtrTy);
|
|
}
|
|
|
|
bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
|
|
// For each NSObject descendant having a +load method, this method is invoked
|
|
// by the ObjC runtime before any of the static constructors is called.
|
|
// Therefore we need to instrument such methods with a call to __asan_init
|
|
// at the beginning in order to initialize our runtime before any access to
|
|
// the shadow memory.
|
|
// We cannot just ignore these methods, because they may call other
|
|
// instrumented functions.
|
|
if (F.getName().contains(" load]")) {
|
|
FunctionCallee AsanInitFunction =
|
|
declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
|
|
IRBuilder<> IRB(&F.front(), F.front().begin());
|
|
IRB.CreateCall(AsanInitFunction, {});
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
|
|
// Generate code only when dynamic addressing is needed.
|
|
if (Mapping.Offset != kDynamicShadowSentinel)
|
|
return false;
|
|
|
|
IRBuilder<> IRB(&F.front().front());
|
|
if (Mapping.InGlobal) {
|
|
if (ClWithIfuncSuppressRemat) {
|
|
// An empty inline asm with input reg == output reg.
|
|
// An opaque pointer-to-int cast, basically.
|
|
InlineAsm *Asm = InlineAsm::get(
|
|
FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
|
|
StringRef(""), StringRef("=r,0"),
|
|
/*hasSideEffects=*/false);
|
|
LocalDynamicShadow =
|
|
IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
|
|
} else {
|
|
LocalDynamicShadow =
|
|
IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
|
|
}
|
|
} else {
|
|
Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
|
|
kAsanShadowMemoryDynamicAddress, IntptrTy);
|
|
LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
|
|
// Find the one possible call to llvm.localescape and pre-mark allocas passed
|
|
// to it as uninteresting. This assumes we haven't started processing allocas
|
|
// yet. This check is done up front because iterating the use list in
|
|
// isInterestingAlloca would be algorithmically slower.
|
|
assert(ProcessedAllocas.empty() && "must process localescape before allocas");
|
|
|
|
// Try to get the declaration of llvm.localescape. If it's not in the module,
|
|
// we can exit early.
|
|
if (!F.getParent()->getFunction("llvm.localescape")) return;
|
|
|
|
// Look for a call to llvm.localescape call in the entry block. It can't be in
|
|
// any other block.
|
|
for (Instruction &I : F.getEntryBlock()) {
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
|
|
if (II && II->getIntrinsicID() == Intrinsic::localescape) {
|
|
// We found a call. Mark all the allocas passed in as uninteresting.
|
|
for (Value *Arg : II->args()) {
|
|
AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
|
|
assert(AI && AI->isStaticAlloca() &&
|
|
"non-static alloca arg to localescape");
|
|
ProcessedAllocas[AI] = false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
|
|
bool ShouldInstrument =
|
|
ClDebugMin < 0 || ClDebugMax < 0 ||
|
|
(Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
|
|
Instrumented++;
|
|
return !ShouldInstrument;
|
|
}
|
|
|
|
bool AddressSanitizer::instrumentFunction(Function &F,
|
|
const TargetLibraryInfo *TLI) {
|
|
bool FunctionModified = false;
|
|
|
|
// Do not apply any instrumentation for naked functions.
|
|
if (F.hasFnAttribute(Attribute::Naked))
|
|
return FunctionModified;
|
|
|
|
// If needed, insert __asan_init before checking for SanitizeAddress attr.
|
|
// This function needs to be called even if the function body is not
|
|
// instrumented.
|
|
if (maybeInsertAsanInitAtFunctionEntry(F))
|
|
FunctionModified = true;
|
|
|
|
// Leave if the function doesn't need instrumentation.
|
|
if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
|
|
|
|
if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
|
|
return FunctionModified;
|
|
|
|
LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
|
|
|
|
initializeCallbacks(TLI);
|
|
|
|
FunctionStateRAII CleanupObj(this);
|
|
|
|
RuntimeCallInserter RTCI(F);
|
|
|
|
FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
|
|
|
|
// We can't instrument allocas used with llvm.localescape. Only static allocas
|
|
// can be passed to that intrinsic.
|
|
markEscapedLocalAllocas(F);
|
|
|
|
// We want to instrument every address only once per basic block (unless there
|
|
// are calls between uses).
|
|
SmallPtrSet<Value *, 16> TempsToInstrument;
|
|
SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
|
|
SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
|
|
SmallVector<Instruction *, 8> NoReturnCalls;
|
|
SmallVector<BasicBlock *, 16> AllBlocks;
|
|
SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
|
|
|
|
// Fill the set of memory operations to instrument.
|
|
for (auto &BB : F) {
|
|
AllBlocks.push_back(&BB);
|
|
TempsToInstrument.clear();
|
|
int NumInsnsPerBB = 0;
|
|
for (auto &Inst : BB) {
|
|
if (LooksLikeCodeInBug11395(&Inst)) return false;
|
|
// Skip instructions inserted by another instrumentation.
|
|
if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
|
|
continue;
|
|
SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
|
|
getInterestingMemoryOperands(&Inst, InterestingOperands);
|
|
|
|
if (!InterestingOperands.empty()) {
|
|
for (auto &Operand : InterestingOperands) {
|
|
if (ClOpt && ClOptSameTemp) {
|
|
Value *Ptr = Operand.getPtr();
|
|
// If we have a mask, skip instrumentation if we've already
|
|
// instrumented the full object. But don't add to TempsToInstrument
|
|
// because we might get another load/store with a different mask.
|
|
if (Operand.MaybeMask) {
|
|
if (TempsToInstrument.count(Ptr))
|
|
continue; // We've seen this (whole) temp in the current BB.
|
|
} else {
|
|
if (!TempsToInstrument.insert(Ptr).second)
|
|
continue; // We've seen this temp in the current BB.
|
|
}
|
|
}
|
|
OperandsToInstrument.push_back(Operand);
|
|
NumInsnsPerBB++;
|
|
}
|
|
} else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
|
|
isInterestingPointerComparison(&Inst)) ||
|
|
((ClInvalidPointerPairs || ClInvalidPointerSub) &&
|
|
isInterestingPointerSubtraction(&Inst))) {
|
|
PointerComparisonsOrSubtracts.push_back(&Inst);
|
|
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
|
|
// ok, take it.
|
|
IntrinToInstrument.push_back(MI);
|
|
NumInsnsPerBB++;
|
|
} else {
|
|
if (auto *CB = dyn_cast<CallBase>(&Inst)) {
|
|
// A call inside BB.
|
|
TempsToInstrument.clear();
|
|
if (CB->doesNotReturn())
|
|
NoReturnCalls.push_back(CB);
|
|
}
|
|
if (CallInst *CI = dyn_cast<CallInst>(&Inst))
|
|
maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
|
|
}
|
|
if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
|
|
}
|
|
}
|
|
|
|
bool UseCalls = (InstrumentationWithCallsThreshold >= 0 &&
|
|
OperandsToInstrument.size() + IntrinToInstrument.size() >
|
|
(unsigned)InstrumentationWithCallsThreshold);
|
|
const DataLayout &DL = F.getDataLayout();
|
|
ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext());
|
|
|
|
// Instrument.
|
|
int NumInstrumented = 0;
|
|
for (auto &Operand : OperandsToInstrument) {
|
|
if (!suppressInstrumentationSiteForDebug(NumInstrumented))
|
|
instrumentMop(ObjSizeVis, Operand, UseCalls,
|
|
F.getDataLayout(), RTCI);
|
|
FunctionModified = true;
|
|
}
|
|
for (auto *Inst : IntrinToInstrument) {
|
|
if (!suppressInstrumentationSiteForDebug(NumInstrumented))
|
|
instrumentMemIntrinsic(Inst, RTCI);
|
|
FunctionModified = true;
|
|
}
|
|
|
|
FunctionStackPoisoner FSP(F, *this, RTCI);
|
|
bool ChangedStack = FSP.runOnFunction();
|
|
|
|
// We must unpoison the stack before NoReturn calls (throw, _exit, etc).
|
|
// See e.g. https://github.com/google/sanitizers/issues/37
|
|
for (auto *CI : NoReturnCalls) {
|
|
IRBuilder<> IRB(CI);
|
|
RTCI.createRuntimeCall(IRB, AsanHandleNoReturnFunc, {});
|
|
}
|
|
|
|
for (auto *Inst : PointerComparisonsOrSubtracts) {
|
|
instrumentPointerComparisonOrSubtraction(Inst, RTCI);
|
|
FunctionModified = true;
|
|
}
|
|
|
|
if (ChangedStack || !NoReturnCalls.empty())
|
|
FunctionModified = true;
|
|
|
|
LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
|
|
<< F << "\n");
|
|
|
|
return FunctionModified;
|
|
}
|
|
|
|
// Workaround for bug 11395: we don't want to instrument stack in functions
|
|
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
|
|
// FIXME: remove once the bug 11395 is fixed.
|
|
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
|
|
if (LongSize != 32) return false;
|
|
CallInst *CI = dyn_cast<CallInst>(I);
|
|
if (!CI || !CI->isInlineAsm()) return false;
|
|
if (CI->arg_size() <= 5)
|
|
return false;
|
|
// We have inline assembly with quite a few arguments.
|
|
return true;
|
|
}
|
|
|
|
void FunctionStackPoisoner::initializeCallbacks(Module &M) {
|
|
IRBuilder<> IRB(*C);
|
|
if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
|
|
ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
|
|
const char *MallocNameTemplate =
|
|
ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
|
|
? kAsanStackMallocAlwaysNameTemplate
|
|
: kAsanStackMallocNameTemplate;
|
|
for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
|
|
std::string Suffix = itostr(Index);
|
|
AsanStackMallocFunc[Index] = M.getOrInsertFunction(
|
|
MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
|
|
AsanStackFreeFunc[Index] =
|
|
M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
|
|
IRB.getVoidTy(), IntptrTy, IntptrTy);
|
|
}
|
|
}
|
|
if (ASan.UseAfterScope) {
|
|
AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
|
|
kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
|
|
AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
|
|
kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
|
|
}
|
|
|
|
for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2,
|
|
0xf3, 0xf5, 0xf8}) {
|
|
std::ostringstream Name;
|
|
Name << kAsanSetShadowPrefix;
|
|
Name << std::setw(2) << std::setfill('0') << std::hex << Val;
|
|
AsanSetShadowFunc[Val] =
|
|
M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
|
|
}
|
|
|
|
AsanAllocaPoisonFunc = M.getOrInsertFunction(
|
|
kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
|
|
AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
|
|
kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
|
|
}
|
|
|
|
void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
|
|
ArrayRef<uint8_t> ShadowBytes,
|
|
size_t Begin, size_t End,
|
|
IRBuilder<> &IRB,
|
|
Value *ShadowBase) {
|
|
if (Begin >= End)
|
|
return;
|
|
|
|
const size_t LargestStoreSizeInBytes =
|
|
std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
|
|
|
|
const bool IsLittleEndian = F.getDataLayout().isLittleEndian();
|
|
|
|
// Poison given range in shadow using larges store size with out leading and
|
|
// trailing zeros in ShadowMask. Zeros never change, so they need neither
|
|
// poisoning nor up-poisoning. Still we don't mind if some of them get into a
|
|
// middle of a store.
|
|
for (size_t i = Begin; i < End;) {
|
|
if (!ShadowMask[i]) {
|
|
assert(!ShadowBytes[i]);
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
size_t StoreSizeInBytes = LargestStoreSizeInBytes;
|
|
// Fit store size into the range.
|
|
while (StoreSizeInBytes > End - i)
|
|
StoreSizeInBytes /= 2;
|
|
|
|
// Minimize store size by trimming trailing zeros.
|
|
for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
|
|
while (j <= StoreSizeInBytes / 2)
|
|
StoreSizeInBytes /= 2;
|
|
}
|
|
|
|
uint64_t Val = 0;
|
|
for (size_t j = 0; j < StoreSizeInBytes; j++) {
|
|
if (IsLittleEndian)
|
|
Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
|
|
else
|
|
Val = (Val << 8) | ShadowBytes[i + j];
|
|
}
|
|
|
|
Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
|
|
Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
|
|
IRB.CreateAlignedStore(
|
|
Poison, IRB.CreateIntToPtr(Ptr, PointerType::getUnqual(Poison->getContext())),
|
|
Align(1));
|
|
|
|
i += StoreSizeInBytes;
|
|
}
|
|
}
|
|
|
|
void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
|
|
ArrayRef<uint8_t> ShadowBytes,
|
|
IRBuilder<> &IRB, Value *ShadowBase) {
|
|
copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
|
|
}
|
|
|
|
void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
|
|
ArrayRef<uint8_t> ShadowBytes,
|
|
size_t Begin, size_t End,
|
|
IRBuilder<> &IRB, Value *ShadowBase) {
|
|
assert(ShadowMask.size() == ShadowBytes.size());
|
|
size_t Done = Begin;
|
|
for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
|
|
if (!ShadowMask[i]) {
|
|
assert(!ShadowBytes[i]);
|
|
continue;
|
|
}
|
|
uint8_t Val = ShadowBytes[i];
|
|
if (!AsanSetShadowFunc[Val])
|
|
continue;
|
|
|
|
// Skip same values.
|
|
for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
|
|
}
|
|
|
|
if (j - i >= ASan.MaxInlinePoisoningSize) {
|
|
copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
|
|
RTCI.createRuntimeCall(
|
|
IRB, AsanSetShadowFunc[Val],
|
|
{IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
|
|
ConstantInt::get(IntptrTy, j - i)});
|
|
Done = j;
|
|
}
|
|
}
|
|
|
|
copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
|
|
}
|
|
|
|
// Fake stack allocator (asan_fake_stack.h) has 11 size classes
|
|
// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
|
|
static int StackMallocSizeClass(uint64_t LocalStackSize) {
|
|
assert(LocalStackSize <= kMaxStackMallocSize);
|
|
uint64_t MaxSize = kMinStackMallocSize;
|
|
for (int i = 0;; i++, MaxSize *= 2)
|
|
if (LocalStackSize <= MaxSize) return i;
|
|
llvm_unreachable("impossible LocalStackSize");
|
|
}
|
|
|
|
void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
|
|
Instruction *CopyInsertPoint = &F.front().front();
|
|
if (CopyInsertPoint == ASan.LocalDynamicShadow) {
|
|
// Insert after the dynamic shadow location is determined
|
|
CopyInsertPoint = CopyInsertPoint->getNextNode();
|
|
assert(CopyInsertPoint);
|
|
}
|
|
IRBuilder<> IRB(CopyInsertPoint);
|
|
const DataLayout &DL = F.getDataLayout();
|
|
for (Argument &Arg : F.args()) {
|
|
if (Arg.hasByValAttr()) {
|
|
Type *Ty = Arg.getParamByValType();
|
|
const Align Alignment =
|
|
DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
|
|
|
|
AllocaInst *AI = IRB.CreateAlloca(
|
|
Ty, nullptr,
|
|
(Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
|
|
".byval");
|
|
AI->setAlignment(Alignment);
|
|
Arg.replaceAllUsesWith(AI);
|
|
|
|
uint64_t AllocSize = DL.getTypeAllocSize(Ty);
|
|
IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
|
|
Value *ValueIfTrue,
|
|
Instruction *ThenTerm,
|
|
Value *ValueIfFalse) {
|
|
PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
|
|
BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
|
|
PHI->addIncoming(ValueIfFalse, CondBlock);
|
|
BasicBlock *ThenBlock = ThenTerm->getParent();
|
|
PHI->addIncoming(ValueIfTrue, ThenBlock);
|
|
return PHI;
|
|
}
|
|
|
|
Value *FunctionStackPoisoner::createAllocaForLayout(
|
|
IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
|
|
AllocaInst *Alloca;
|
|
if (Dynamic) {
|
|
Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
|
|
ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
|
|
"MyAlloca");
|
|
} else {
|
|
Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
|
|
nullptr, "MyAlloca");
|
|
assert(Alloca->isStaticAlloca());
|
|
}
|
|
assert((ClRealignStack & (ClRealignStack - 1)) == 0);
|
|
uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack));
|
|
Alloca->setAlignment(Align(FrameAlignment));
|
|
return IRB.CreatePointerCast(Alloca, IntptrTy);
|
|
}
|
|
|
|
void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
|
|
BasicBlock &FirstBB = *F.begin();
|
|
IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
|
|
DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
|
|
IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
|
|
DynamicAllocaLayout->setAlignment(Align(32));
|
|
}
|
|
|
|
void FunctionStackPoisoner::processDynamicAllocas() {
|
|
if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
|
|
assert(DynamicAllocaPoisonCallVec.empty());
|
|
return;
|
|
}
|
|
|
|
// Insert poison calls for lifetime intrinsics for dynamic allocas.
|
|
for (const auto &APC : DynamicAllocaPoisonCallVec) {
|
|
assert(APC.InsBefore);
|
|
assert(APC.AI);
|
|
assert(ASan.isInterestingAlloca(*APC.AI));
|
|
assert(!APC.AI->isStaticAlloca());
|
|
|
|
IRBuilder<> IRB(APC.InsBefore);
|
|
poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
|
|
// Dynamic allocas will be unpoisoned unconditionally below in
|
|
// unpoisonDynamicAllocas.
|
|
// Flag that we need unpoison static allocas.
|
|
}
|
|
|
|
// Handle dynamic allocas.
|
|
createDynamicAllocasInitStorage();
|
|
for (auto &AI : DynamicAllocaVec)
|
|
handleDynamicAllocaCall(AI);
|
|
unpoisonDynamicAllocas();
|
|
}
|
|
|
|
/// Collect instructions in the entry block after \p InsBefore which initialize
|
|
/// permanent storage for a function argument. These instructions must remain in
|
|
/// the entry block so that uninitialized values do not appear in backtraces. An
|
|
/// added benefit is that this conserves spill slots. This does not move stores
|
|
/// before instrumented / "interesting" allocas.
|
|
static void findStoresToUninstrumentedArgAllocas(
|
|
AddressSanitizer &ASan, Instruction &InsBefore,
|
|
SmallVectorImpl<Instruction *> &InitInsts) {
|
|
Instruction *Start = InsBefore.getNextNonDebugInstruction();
|
|
for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
|
|
// Argument initialization looks like:
|
|
// 1) store <Argument>, <Alloca> OR
|
|
// 2) <CastArgument> = cast <Argument> to ...
|
|
// store <CastArgument> to <Alloca>
|
|
// Do not consider any other kind of instruction.
|
|
//
|
|
// Note: This covers all known cases, but may not be exhaustive. An
|
|
// alternative to pattern-matching stores is to DFS over all Argument uses:
|
|
// this might be more general, but is probably much more complicated.
|
|
if (isa<AllocaInst>(It) || isa<CastInst>(It))
|
|
continue;
|
|
if (auto *Store = dyn_cast<StoreInst>(It)) {
|
|
// The store destination must be an alloca that isn't interesting for
|
|
// ASan to instrument. These are moved up before InsBefore, and they're
|
|
// not interesting because allocas for arguments can be mem2reg'd.
|
|
auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
|
|
if (!Alloca || ASan.isInterestingAlloca(*Alloca))
|
|
continue;
|
|
|
|
Value *Val = Store->getValueOperand();
|
|
bool IsDirectArgInit = isa<Argument>(Val);
|
|
bool IsArgInitViaCast =
|
|
isa<CastInst>(Val) &&
|
|
isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
|
|
// Check that the cast appears directly before the store. Otherwise
|
|
// moving the cast before InsBefore may break the IR.
|
|
Val == It->getPrevNonDebugInstruction();
|
|
bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
|
|
if (!IsArgInit)
|
|
continue;
|
|
|
|
if (IsArgInitViaCast)
|
|
InitInsts.push_back(cast<Instruction>(Val));
|
|
InitInsts.push_back(Store);
|
|
continue;
|
|
}
|
|
|
|
// Do not reorder past unknown instructions: argument initialization should
|
|
// only involve casts and stores.
|
|
return;
|
|
}
|
|
}
|
|
|
|
static StringRef getAllocaName(AllocaInst *AI) {
|
|
// Alloca could have been renamed for uniqueness. Its true name will have been
|
|
// recorded as an annotation.
|
|
if (AI->hasMetadata(LLVMContext::MD_annotation)) {
|
|
MDTuple *AllocaAnnotations =
|
|
cast<MDTuple>(AI->getMetadata(LLVMContext::MD_annotation));
|
|
for (auto &Annotation : AllocaAnnotations->operands()) {
|
|
if (!isa<MDTuple>(Annotation))
|
|
continue;
|
|
auto AnnotationTuple = cast<MDTuple>(Annotation);
|
|
for (unsigned Index = 0; Index < AnnotationTuple->getNumOperands();
|
|
Index++) {
|
|
// All annotations are strings
|
|
auto MetadataString =
|
|
cast<MDString>(AnnotationTuple->getOperand(Index));
|
|
if (MetadataString->getString() == "alloca_name_altered")
|
|
return cast<MDString>(AnnotationTuple->getOperand(Index + 1))
|
|
->getString();
|
|
}
|
|
}
|
|
}
|
|
return AI->getName();
|
|
}
|
|
|
|
void FunctionStackPoisoner::processStaticAllocas() {
|
|
if (AllocaVec.empty()) {
|
|
assert(StaticAllocaPoisonCallVec.empty());
|
|
return;
|
|
}
|
|
|
|
int StackMallocIdx = -1;
|
|
DebugLoc EntryDebugLocation;
|
|
if (auto SP = F.getSubprogram())
|
|
EntryDebugLocation =
|
|
DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
|
|
|
|
Instruction *InsBefore = AllocaVec[0];
|
|
IRBuilder<> IRB(InsBefore);
|
|
|
|
// Make sure non-instrumented allocas stay in the entry block. Otherwise,
|
|
// debug info is broken, because only entry-block allocas are treated as
|
|
// regular stack slots.
|
|
auto InsBeforeB = InsBefore->getParent();
|
|
assert(InsBeforeB == &F.getEntryBlock());
|
|
for (auto *AI : StaticAllocasToMoveUp)
|
|
if (AI->getParent() == InsBeforeB)
|
|
AI->moveBefore(InsBefore->getIterator());
|
|
|
|
// Move stores of arguments into entry-block allocas as well. This prevents
|
|
// extra stack slots from being generated (to house the argument values until
|
|
// they can be stored into the allocas). This also prevents uninitialized
|
|
// values from being shown in backtraces.
|
|
SmallVector<Instruction *, 8> ArgInitInsts;
|
|
findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
|
|
for (Instruction *ArgInitInst : ArgInitInsts)
|
|
ArgInitInst->moveBefore(InsBefore->getIterator());
|
|
|
|
// If we have a call to llvm.localescape, keep it in the entry block.
|
|
if (LocalEscapeCall)
|
|
LocalEscapeCall->moveBefore(InsBefore->getIterator());
|
|
|
|
SmallVector<ASanStackVariableDescription, 16> SVD;
|
|
SVD.reserve(AllocaVec.size());
|
|
for (AllocaInst *AI : AllocaVec) {
|
|
StringRef Name = getAllocaName(AI);
|
|
ASanStackVariableDescription D = {Name.data(),
|
|
ASan.getAllocaSizeInBytes(*AI),
|
|
0,
|
|
AI->getAlign().value(),
|
|
AI,
|
|
0,
|
|
0};
|
|
SVD.push_back(D);
|
|
}
|
|
|
|
// Minimal header size (left redzone) is 4 pointers,
|
|
// i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
|
|
uint64_t Granularity = 1ULL << Mapping.Scale;
|
|
uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity);
|
|
const ASanStackFrameLayout &L =
|
|
ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
|
|
|
|
// Build AllocaToSVDMap for ASanStackVariableDescription lookup.
|
|
DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
|
|
for (auto &Desc : SVD)
|
|
AllocaToSVDMap[Desc.AI] = &Desc;
|
|
|
|
// Update SVD with information from lifetime intrinsics.
|
|
for (const auto &APC : StaticAllocaPoisonCallVec) {
|
|
assert(APC.InsBefore);
|
|
assert(APC.AI);
|
|
assert(ASan.isInterestingAlloca(*APC.AI));
|
|
assert(APC.AI->isStaticAlloca());
|
|
|
|
ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
|
|
Desc.LifetimeSize = Desc.Size;
|
|
if (const DILocation *FnLoc = EntryDebugLocation.get()) {
|
|
if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
|
|
if (LifetimeLoc->getFile() == FnLoc->getFile())
|
|
if (unsigned Line = LifetimeLoc->getLine())
|
|
Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto DescriptionString = ComputeASanStackFrameDescription(SVD);
|
|
LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
|
|
uint64_t LocalStackSize = L.FrameSize;
|
|
bool DoStackMalloc =
|
|
ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
|
|
!ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
|
|
bool DoDynamicAlloca = ClDynamicAllocaStack;
|
|
// Don't do dynamic alloca or stack malloc if:
|
|
// 1) There is inline asm: too often it makes assumptions on which registers
|
|
// are available.
|
|
// 2) There is a returns_twice call (typically setjmp), which is
|
|
// optimization-hostile, and doesn't play well with introduced indirect
|
|
// register-relative calculation of local variable addresses.
|
|
DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
|
|
DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
|
|
|
|
Value *StaticAlloca =
|
|
DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
|
|
|
|
Value *FakeStack;
|
|
Value *LocalStackBase;
|
|
Value *LocalStackBaseAlloca;
|
|
uint8_t DIExprFlags = DIExpression::ApplyOffset;
|
|
|
|
if (DoStackMalloc) {
|
|
LocalStackBaseAlloca =
|
|
IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
|
|
if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
|
|
// void *FakeStack = __asan_option_detect_stack_use_after_return
|
|
// ? __asan_stack_malloc_N(LocalStackSize)
|
|
// : nullptr;
|
|
// void *LocalStackBase = (FakeStack) ? FakeStack :
|
|
// alloca(LocalStackSize);
|
|
Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
|
|
kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
|
|
Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
|
|
IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
|
|
Constant::getNullValue(IRB.getInt32Ty()));
|
|
Instruction *Term =
|
|
SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
|
|
IRBuilder<> IRBIf(Term);
|
|
StackMallocIdx = StackMallocSizeClass(LocalStackSize);
|
|
assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
|
|
Value *FakeStackValue =
|
|
RTCI.createRuntimeCall(IRBIf, AsanStackMallocFunc[StackMallocIdx],
|
|
ConstantInt::get(IntptrTy, LocalStackSize));
|
|
IRB.SetInsertPoint(InsBefore);
|
|
FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
|
|
ConstantInt::get(IntptrTy, 0));
|
|
} else {
|
|
// assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
|
|
// void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
|
|
// void *LocalStackBase = (FakeStack) ? FakeStack :
|
|
// alloca(LocalStackSize);
|
|
StackMallocIdx = StackMallocSizeClass(LocalStackSize);
|
|
FakeStack =
|
|
RTCI.createRuntimeCall(IRB, AsanStackMallocFunc[StackMallocIdx],
|
|
ConstantInt::get(IntptrTy, LocalStackSize));
|
|
}
|
|
Value *NoFakeStack =
|
|
IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
|
|
Instruction *Term =
|
|
SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
|
|
IRBuilder<> IRBIf(Term);
|
|
Value *AllocaValue =
|
|
DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
|
|
|
|
IRB.SetInsertPoint(InsBefore);
|
|
LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
|
|
IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
|
|
DIExprFlags |= DIExpression::DerefBefore;
|
|
} else {
|
|
// void *FakeStack = nullptr;
|
|
// void *LocalStackBase = alloca(LocalStackSize);
|
|
FakeStack = ConstantInt::get(IntptrTy, 0);
|
|
LocalStackBase =
|
|
DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
|
|
LocalStackBaseAlloca = LocalStackBase;
|
|
}
|
|
|
|
// It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
|
|
// dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
|
|
// later passes and can result in dropped variable coverage in debug info.
|
|
Value *LocalStackBaseAllocaPtr =
|
|
isa<PtrToIntInst>(LocalStackBaseAlloca)
|
|
? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
|
|
: LocalStackBaseAlloca;
|
|
assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
|
|
"Variable descriptions relative to ASan stack base will be dropped");
|
|
|
|
// Replace Alloca instructions with base+offset.
|
|
for (const auto &Desc : SVD) {
|
|
AllocaInst *AI = Desc.AI;
|
|
replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
|
|
Desc.Offset);
|
|
Value *NewAllocaPtr = IRB.CreateIntToPtr(
|
|
IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
|
|
AI->getType());
|
|
AI->replaceAllUsesWith(NewAllocaPtr);
|
|
}
|
|
|
|
// The left-most redzone has enough space for at least 4 pointers.
|
|
// Write the Magic value to redzone[0].
|
|
Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
|
|
IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
|
|
BasePlus0);
|
|
// Write the frame description constant to redzone[1].
|
|
Value *BasePlus1 = IRB.CreateIntToPtr(
|
|
IRB.CreateAdd(LocalStackBase,
|
|
ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
|
|
IntptrPtrTy);
|
|
GlobalVariable *StackDescriptionGlobal =
|
|
createPrivateGlobalForString(*F.getParent(), DescriptionString,
|
|
/*AllowMerging*/ true, genName("stack"));
|
|
Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
|
|
IRB.CreateStore(Description, BasePlus1);
|
|
// Write the PC to redzone[2].
|
|
Value *BasePlus2 = IRB.CreateIntToPtr(
|
|
IRB.CreateAdd(LocalStackBase,
|
|
ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
|
|
IntptrPtrTy);
|
|
IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
|
|
|
|
const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
|
|
|
|
// Poison the stack red zones at the entry.
|
|
Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
|
|
// As mask we must use most poisoned case: red zones and after scope.
|
|
// As bytes we can use either the same or just red zones only.
|
|
copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
|
|
|
|
if (!StaticAllocaPoisonCallVec.empty()) {
|
|
const auto &ShadowInScope = GetShadowBytes(SVD, L);
|
|
|
|
// Poison static allocas near lifetime intrinsics.
|
|
for (const auto &APC : StaticAllocaPoisonCallVec) {
|
|
const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
|
|
assert(Desc.Offset % L.Granularity == 0);
|
|
size_t Begin = Desc.Offset / L.Granularity;
|
|
size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
|
|
|
|
IRBuilder<> IRB(APC.InsBefore);
|
|
copyToShadow(ShadowAfterScope,
|
|
APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
|
|
IRB, ShadowBase);
|
|
}
|
|
}
|
|
|
|
SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
|
|
SmallVector<uint8_t, 64> ShadowAfterReturn;
|
|
|
|
// (Un)poison the stack before all ret instructions.
|
|
for (Instruction *Ret : RetVec) {
|
|
IRBuilder<> IRBRet(Ret);
|
|
// Mark the current frame as retired.
|
|
IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
|
|
BasePlus0);
|
|
if (DoStackMalloc) {
|
|
assert(StackMallocIdx >= 0);
|
|
// if FakeStack != 0 // LocalStackBase == FakeStack
|
|
// // In use-after-return mode, poison the whole stack frame.
|
|
// if StackMallocIdx <= 4
|
|
// // For small sizes inline the whole thing:
|
|
// memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
|
|
// **SavedFlagPtr(FakeStack) = 0
|
|
// else
|
|
// __asan_stack_free_N(FakeStack, LocalStackSize)
|
|
// else
|
|
// <This is not a fake stack; unpoison the redzones>
|
|
Value *Cmp =
|
|
IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
|
|
Instruction *ThenTerm, *ElseTerm;
|
|
SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
|
|
|
|
IRBuilder<> IRBPoison(ThenTerm);
|
|
if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) {
|
|
int ClassSize = kMinStackMallocSize << StackMallocIdx;
|
|
ShadowAfterReturn.resize(ClassSize / L.Granularity,
|
|
kAsanStackUseAfterReturnMagic);
|
|
copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
|
|
ShadowBase);
|
|
Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
|
|
FakeStack,
|
|
ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
|
|
Value *SavedFlagPtr = IRBPoison.CreateLoad(
|
|
IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
|
|
IRBPoison.CreateStore(
|
|
Constant::getNullValue(IRBPoison.getInt8Ty()),
|
|
IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getPtrTy()));
|
|
} else {
|
|
// For larger frames call __asan_stack_free_*.
|
|
RTCI.createRuntimeCall(
|
|
IRBPoison, AsanStackFreeFunc[StackMallocIdx],
|
|
{FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
|
|
}
|
|
|
|
IRBuilder<> IRBElse(ElseTerm);
|
|
copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
|
|
} else {
|
|
copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
|
|
}
|
|
}
|
|
|
|
// We are done. Remove the old unused alloca instructions.
|
|
for (auto *AI : AllocaVec)
|
|
AI->eraseFromParent();
|
|
}
|
|
|
|
void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
|
|
IRBuilder<> &IRB, bool DoPoison) {
|
|
// For now just insert the call to ASan runtime.
|
|
Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
|
|
Value *SizeArg = ConstantInt::get(IntptrTy, Size);
|
|
RTCI.createRuntimeCall(
|
|
IRB, DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
|
|
{AddrArg, SizeArg});
|
|
}
|
|
|
|
// Handling llvm.lifetime intrinsics for a given %alloca:
|
|
// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
|
|
// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
|
|
// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
|
|
// could be poisoned by previous llvm.lifetime.end instruction, as the
|
|
// variable may go in and out of scope several times, e.g. in loops).
|
|
// (3) if we poisoned at least one %alloca in a function,
|
|
// unpoison the whole stack frame at function exit.
|
|
void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
|
|
IRBuilder<> IRB(AI);
|
|
|
|
const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign());
|
|
const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
|
|
|
|
Value *Zero = Constant::getNullValue(IntptrTy);
|
|
Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
|
|
Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
|
|
|
|
// Since we need to extend alloca with additional memory to locate
|
|
// redzones, and OldSize is number of allocated blocks with
|
|
// ElementSize size, get allocated memory size in bytes by
|
|
// OldSize * ElementSize.
|
|
const unsigned ElementSize =
|
|
F.getDataLayout().getTypeAllocSize(AI->getAllocatedType());
|
|
Value *OldSize =
|
|
IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
|
|
ConstantInt::get(IntptrTy, ElementSize));
|
|
|
|
// PartialSize = OldSize % 32
|
|
Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
|
|
|
|
// Misalign = kAllocaRzSize - PartialSize;
|
|
Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
|
|
|
|
// PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
|
|
Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
|
|
Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
|
|
|
|
// AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
|
|
// Alignment is added to locate left redzone, PartialPadding for possible
|
|
// partial redzone and kAllocaRzSize for right redzone respectively.
|
|
Value *AdditionalChunkSize = IRB.CreateAdd(
|
|
ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize),
|
|
PartialPadding);
|
|
|
|
Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
|
|
|
|
// Insert new alloca with new NewSize and Alignment params.
|
|
AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
|
|
NewAlloca->setAlignment(Alignment);
|
|
|
|
// NewAddress = Address + Alignment
|
|
Value *NewAddress =
|
|
IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
|
|
ConstantInt::get(IntptrTy, Alignment.value()));
|
|
|
|
// Insert __asan_alloca_poison call for new created alloca.
|
|
RTCI.createRuntimeCall(IRB, AsanAllocaPoisonFunc, {NewAddress, OldSize});
|
|
|
|
// Store the last alloca's address to DynamicAllocaLayout. We'll need this
|
|
// for unpoisoning stuff.
|
|
IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
|
|
|
|
Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
|
|
|
|
// Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
|
|
AI->replaceAllUsesWith(NewAddressPtr);
|
|
|
|
// We are done. Erase old alloca from parent.
|
|
AI->eraseFromParent();
|
|
}
|
|
|
|
// isSafeAccess returns true if Addr is always inbounds with respect to its
|
|
// base object. For example, it is a field access or an array access with
|
|
// constant inbounds index.
|
|
bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
|
|
Value *Addr, TypeSize TypeStoreSize) const {
|
|
if (TypeStoreSize.isScalable())
|
|
// TODO: We can use vscale_range to convert a scalable value to an
|
|
// upper bound on the access size.
|
|
return false;
|
|
|
|
SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(Addr);
|
|
if (!SizeOffset.bothKnown())
|
|
return false;
|
|
|
|
uint64_t Size = SizeOffset.Size.getZExtValue();
|
|
int64_t Offset = SizeOffset.Offset.getSExtValue();
|
|
|
|
// Three checks are required to ensure safety:
|
|
// . Offset >= 0 (since the offset is given from the base ptr)
|
|
// . Size >= Offset (unsigned)
|
|
// . Size - Offset >= NeededSize (unsigned)
|
|
return Offset >= 0 && Size >= uint64_t(Offset) &&
|
|
Size - uint64_t(Offset) >= TypeStoreSize / 8;
|
|
}
|