mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-17 22:26:39 +00:00

Tracks the registers that explicit and hidden arguments are preloaded to with new code object metadata. IR arguments may be split across multiple parts by isel, and SGPR tuple alignment means that an argument may be spread across multiple registers. To support this, some of the utilities for hidden kernel arguments are moved to `AMDGPUArgumentUsageInfo.h`. Additional bookkeeping is also needed for tracking purposes.
796 lines
28 KiB
C++
796 lines
28 KiB
C++
//===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/MIRParser/MIParser.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include <cassert>
|
|
#include <optional>
|
|
#include <vector>
|
|
|
|
enum { MAX_LANES = 64 };
|
|
|
|
using namespace llvm;
|
|
|
|
const GCNTargetMachine &getTM(const GCNSubtarget *STI) {
|
|
const SITargetLowering *TLI = STI->getTargetLowering();
|
|
return static_cast<const GCNTargetMachine &>(TLI->getTargetMachine());
|
|
}
|
|
|
|
SIMachineFunctionInfo::SIMachineFunctionInfo(const Function &F,
|
|
const GCNSubtarget *STI)
|
|
: AMDGPUMachineFunction(F, *STI), Mode(F, *STI), GWSResourcePSV(getTM(STI)),
|
|
UserSGPRInfo(F, *STI), WorkGroupIDX(false), WorkGroupIDY(false),
|
|
WorkGroupIDZ(false), WorkGroupInfo(false), LDSKernelId(false),
|
|
PrivateSegmentWaveByteOffset(false), WorkItemIDX(false),
|
|
WorkItemIDY(false), WorkItemIDZ(false), ImplicitArgPtr(false),
|
|
GITPtrHigh(0xffffffff), HighBitsOf32BitAddress(0) {
|
|
const GCNSubtarget &ST = *static_cast<const GCNSubtarget *>(STI);
|
|
FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F);
|
|
WavesPerEU = ST.getWavesPerEU(F);
|
|
MaxNumWorkGroups = ST.getMaxNumWorkGroups(F);
|
|
assert(MaxNumWorkGroups.size() == 3);
|
|
|
|
Occupancy = ST.computeOccupancy(F, getLDSSize()).second;
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
|
|
VRegFlags.reserve(1024);
|
|
|
|
const bool IsKernel = CC == CallingConv::AMDGPU_KERNEL ||
|
|
CC == CallingConv::SPIR_KERNEL;
|
|
|
|
if (IsKernel) {
|
|
WorkGroupIDX = true;
|
|
WorkItemIDX = true;
|
|
} else if (CC == CallingConv::AMDGPU_PS) {
|
|
PSInputAddr = AMDGPU::getInitialPSInputAddr(F);
|
|
}
|
|
|
|
MayNeedAGPRs = ST.hasMAIInsts();
|
|
if (ST.hasGFX90AInsts() &&
|
|
ST.getMaxNumVGPRs(F) <= AMDGPU::VGPR_32RegClass.getNumRegs() &&
|
|
!mayUseAGPRs(F))
|
|
MayNeedAGPRs = false; // We will select all MAI with VGPR operands.
|
|
|
|
if (AMDGPU::isChainCC(CC)) {
|
|
// Chain functions don't receive an SP from their caller, but are free to
|
|
// set one up. For now, we can use s32 to match what amdgpu_gfx functions
|
|
// would use if called, but this can be revisited.
|
|
// FIXME: Only reserve this if we actually need it.
|
|
StackPtrOffsetReg = AMDGPU::SGPR32;
|
|
|
|
ScratchRSrcReg = AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51;
|
|
|
|
ArgInfo.PrivateSegmentBuffer =
|
|
ArgDescriptor::createRegister(ScratchRSrcReg);
|
|
|
|
ImplicitArgPtr = false;
|
|
} else if (!isEntryFunction()) {
|
|
if (CC != CallingConv::AMDGPU_Gfx)
|
|
ArgInfo = AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
|
|
|
|
FrameOffsetReg = AMDGPU::SGPR33;
|
|
StackPtrOffsetReg = AMDGPU::SGPR32;
|
|
|
|
if (!ST.enableFlatScratch()) {
|
|
// Non-entry functions have no special inputs for now, other registers
|
|
// required for scratch access.
|
|
ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
|
|
|
|
ArgInfo.PrivateSegmentBuffer =
|
|
ArgDescriptor::createRegister(ScratchRSrcReg);
|
|
}
|
|
|
|
if (!F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
|
|
ImplicitArgPtr = true;
|
|
} else {
|
|
ImplicitArgPtr = false;
|
|
MaxKernArgAlign =
|
|
std::max(ST.getAlignmentForImplicitArgPtr(), MaxKernArgAlign);
|
|
}
|
|
|
|
if (!AMDGPU::isGraphics(CC) ||
|
|
((CC == CallingConv::AMDGPU_CS || CC == CallingConv::AMDGPU_Gfx) &&
|
|
ST.hasArchitectedSGPRs())) {
|
|
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workgroup-id-x"))
|
|
WorkGroupIDX = true;
|
|
|
|
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-y"))
|
|
WorkGroupIDY = true;
|
|
|
|
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-z"))
|
|
WorkGroupIDZ = true;
|
|
}
|
|
|
|
if (!AMDGPU::isGraphics(CC)) {
|
|
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workitem-id-x"))
|
|
WorkItemIDX = true;
|
|
|
|
if (!F.hasFnAttribute("amdgpu-no-workitem-id-y") &&
|
|
ST.getMaxWorkitemID(F, 1) != 0)
|
|
WorkItemIDY = true;
|
|
|
|
if (!F.hasFnAttribute("amdgpu-no-workitem-id-z") &&
|
|
ST.getMaxWorkitemID(F, 2) != 0)
|
|
WorkItemIDZ = true;
|
|
|
|
if (!IsKernel && !F.hasFnAttribute("amdgpu-no-lds-kernel-id"))
|
|
LDSKernelId = true;
|
|
}
|
|
|
|
if (isEntryFunction()) {
|
|
// X, XY, and XYZ are the only supported combinations, so make sure Y is
|
|
// enabled if Z is.
|
|
if (WorkItemIDZ)
|
|
WorkItemIDY = true;
|
|
|
|
if (!ST.flatScratchIsArchitected()) {
|
|
PrivateSegmentWaveByteOffset = true;
|
|
|
|
// HS and GS always have the scratch wave offset in SGPR5 on GFX9.
|
|
if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 &&
|
|
(CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS))
|
|
ArgInfo.PrivateSegmentWaveByteOffset =
|
|
ArgDescriptor::createRegister(AMDGPU::SGPR5);
|
|
}
|
|
}
|
|
|
|
Attribute A = F.getFnAttribute("amdgpu-git-ptr-high");
|
|
StringRef S = A.getValueAsString();
|
|
if (!S.empty())
|
|
S.consumeInteger(0, GITPtrHigh);
|
|
|
|
A = F.getFnAttribute("amdgpu-32bit-address-high-bits");
|
|
S = A.getValueAsString();
|
|
if (!S.empty())
|
|
S.consumeInteger(0, HighBitsOf32BitAddress);
|
|
|
|
MaxMemoryClusterDWords = F.getFnAttributeAsParsedInteger(
|
|
"amdgpu-max-memory-cluster-dwords", DefaultMemoryClusterDWordsLimit);
|
|
|
|
// On GFX908, in order to guarantee copying between AGPRs, we need a scratch
|
|
// VGPR available at all times. For now, reserve highest available VGPR. After
|
|
// RA, shift it to the lowest available unused VGPR if the one exist.
|
|
if (ST.hasMAIInsts() && !ST.hasGFX90AInsts()) {
|
|
VGPRForAGPRCopy =
|
|
AMDGPU::VGPR_32RegClass.getRegister(ST.getMaxNumVGPRs(F) - 1);
|
|
}
|
|
}
|
|
|
|
MachineFunctionInfo *SIMachineFunctionInfo::clone(
|
|
BumpPtrAllocator &Allocator, MachineFunction &DestMF,
|
|
const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
|
|
const {
|
|
return DestMF.cloneInfo<SIMachineFunctionInfo>(*this);
|
|
}
|
|
|
|
void SIMachineFunctionInfo::limitOccupancy(const MachineFunction &MF) {
|
|
limitOccupancy(getMaxWavesPerEU());
|
|
const GCNSubtarget& ST = MF.getSubtarget<GCNSubtarget>();
|
|
limitOccupancy(ST.getOccupancyWithWorkGroupSizes(MF).second);
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addPrivateSegmentBuffer(
|
|
const SIRegisterInfo &TRI) {
|
|
ArgInfo.PrivateSegmentBuffer =
|
|
ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SGPR_128RegClass));
|
|
NumUserSGPRs += 4;
|
|
return ArgInfo.PrivateSegmentBuffer.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.DispatchPtr.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.QueuePtr.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.KernargSegmentPtr
|
|
= ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.KernargSegmentPtr.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) {
|
|
ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.DispatchID.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) {
|
|
ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.FlatScratchInit.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addPrivateSegmentSize(const SIRegisterInfo &TRI) {
|
|
ArgInfo.PrivateSegmentSize = ArgDescriptor::createRegister(getNextUserSGPR());
|
|
NumUserSGPRs += 1;
|
|
return ArgInfo.PrivateSegmentSize.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.ImplicitBufferPtr.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addLDSKernelId() {
|
|
ArgInfo.LDSKernelId = ArgDescriptor::createRegister(getNextUserSGPR());
|
|
NumUserSGPRs += 1;
|
|
return ArgInfo.LDSKernelId.getRegister();
|
|
}
|
|
|
|
SmallVectorImpl<MCRegister> *SIMachineFunctionInfo::addPreloadedKernArg(
|
|
const SIRegisterInfo &TRI, const TargetRegisterClass *RC,
|
|
unsigned AllocSizeDWord, unsigned PartIdx, unsigned ArgIdx,
|
|
unsigned PaddingSGPRs) {
|
|
auto [It, Inserted] = ArgInfo.PreloadKernArgs.try_emplace(PartIdx);
|
|
assert(Inserted && "Preload kernel argument allocated twice.");
|
|
KernArgPreload::KernArgPreloadDescriptor &PreloadDesc = It->second;
|
|
PreloadDesc.PartIdx = PartIdx;
|
|
PreloadDesc.OrigArgIdx = ArgIdx;
|
|
|
|
NumUserSGPRs += PaddingSGPRs;
|
|
// If the available register tuples are aligned with the kernarg to be
|
|
// preloaded use that register, otherwise we need to use a set of SGPRs and
|
|
// merge them.
|
|
if (!ArgInfo.FirstKernArgPreloadReg)
|
|
ArgInfo.FirstKernArgPreloadReg = getNextUserSGPR();
|
|
Register PreloadReg =
|
|
TRI.getMatchingSuperReg(getNextUserSGPR(), AMDGPU::sub0, RC);
|
|
auto &Regs = PreloadDesc.Regs;
|
|
if (PreloadReg &&
|
|
(RC == &AMDGPU::SReg_32RegClass || RC == &AMDGPU::SReg_64RegClass)) {
|
|
Regs.push_back(PreloadReg);
|
|
NumUserSGPRs += AllocSizeDWord;
|
|
} else {
|
|
Regs.reserve(AllocSizeDWord);
|
|
for (unsigned I = 0; I < AllocSizeDWord; ++I) {
|
|
Regs.push_back(getNextUserSGPR());
|
|
NumUserSGPRs++;
|
|
}
|
|
}
|
|
|
|
// Track the actual number of SGPRs that HW will preload to.
|
|
UserSGPRInfo.allocKernargPreloadSGPRs(AllocSizeDWord + PaddingSGPRs);
|
|
return &Regs;
|
|
}
|
|
|
|
void SIMachineFunctionInfo::allocateWWMSpill(MachineFunction &MF, Register VGPR,
|
|
uint64_t Size, Align Alignment) {
|
|
// Skip if it is an entry function or the register is already added.
|
|
if (isEntryFunction() || WWMSpills.count(VGPR))
|
|
return;
|
|
|
|
// Skip if this is a function with the amdgpu_cs_chain or
|
|
// amdgpu_cs_chain_preserve calling convention and this is a scratch register.
|
|
// We never need to allocate a spill for these because we don't even need to
|
|
// restore the inactive lanes for them (they're scratchier than the usual
|
|
// scratch registers). We only need to do this if we have calls to
|
|
// llvm.amdgcn.cs.chain (otherwise there's no one to save them for, since
|
|
// chain functions do not return) and the function did not contain a call to
|
|
// llvm.amdgcn.init.whole.wave (since in that case there are no inactive lanes
|
|
// when entering the function).
|
|
if (isChainFunction() &&
|
|
(SIRegisterInfo::isChainScratchRegister(VGPR) ||
|
|
!MF.getFrameInfo().hasTailCall() || hasInitWholeWave()))
|
|
return;
|
|
|
|
WWMSpills.insert(std::make_pair(
|
|
VGPR, MF.getFrameInfo().CreateSpillStackObject(Size, Alignment)));
|
|
}
|
|
|
|
// Separate out the callee-saved and scratch registers.
|
|
void SIMachineFunctionInfo::splitWWMSpillRegisters(
|
|
MachineFunction &MF,
|
|
SmallVectorImpl<std::pair<Register, int>> &CalleeSavedRegs,
|
|
SmallVectorImpl<std::pair<Register, int>> &ScratchRegs) const {
|
|
const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
|
|
for (auto &Reg : WWMSpills) {
|
|
if (isCalleeSavedReg(CSRegs, Reg.first))
|
|
CalleeSavedRegs.push_back(Reg);
|
|
else
|
|
ScratchRegs.push_back(Reg);
|
|
}
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::isCalleeSavedReg(const MCPhysReg *CSRegs,
|
|
MCPhysReg Reg) const {
|
|
for (unsigned I = 0; CSRegs[I]; ++I) {
|
|
if (CSRegs[I] == Reg)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void SIMachineFunctionInfo::shiftWwmVGPRsToLowestRange(
|
|
MachineFunction &MF, SmallVectorImpl<Register> &WWMVGPRs,
|
|
BitVector &SavedVGPRs) {
|
|
const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (unsigned I = 0, E = WWMVGPRs.size(); I < E; ++I) {
|
|
Register Reg = WWMVGPRs[I];
|
|
Register NewReg =
|
|
TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF);
|
|
if (!NewReg || NewReg >= Reg)
|
|
break;
|
|
|
|
MRI.replaceRegWith(Reg, NewReg);
|
|
|
|
// Update various tables with the new VGPR.
|
|
WWMVGPRs[I] = NewReg;
|
|
WWMReservedRegs.remove(Reg);
|
|
WWMReservedRegs.insert(NewReg);
|
|
MRI.reserveReg(NewReg, TRI);
|
|
|
|
// Replace the register in SpillPhysVGPRs. This is needed to look for free
|
|
// lanes while spilling special SGPRs like FP, BP, etc. during PEI.
|
|
auto *RegItr = std::find(SpillPhysVGPRs.begin(), SpillPhysVGPRs.end(), Reg);
|
|
if (RegItr != SpillPhysVGPRs.end()) {
|
|
unsigned Idx = std::distance(SpillPhysVGPRs.begin(), RegItr);
|
|
SpillPhysVGPRs[Idx] = NewReg;
|
|
}
|
|
|
|
// The generic `determineCalleeSaves` might have set the old register if it
|
|
// is in the CSR range.
|
|
SavedVGPRs.reset(Reg);
|
|
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
MBB.removeLiveIn(Reg);
|
|
MBB.sortUniqueLiveIns();
|
|
}
|
|
|
|
Reg = NewReg;
|
|
}
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::allocateVirtualVGPRForSGPRSpills(
|
|
MachineFunction &MF, int FI, unsigned LaneIndex) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register LaneVGPR;
|
|
if (!LaneIndex) {
|
|
LaneVGPR = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
SpillVGPRs.push_back(LaneVGPR);
|
|
} else {
|
|
LaneVGPR = SpillVGPRs.back();
|
|
}
|
|
|
|
SGPRSpillsToVirtualVGPRLanes[FI].emplace_back(LaneVGPR, LaneIndex);
|
|
return true;
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::allocatePhysicalVGPRForSGPRSpills(
|
|
MachineFunction &MF, int FI, unsigned LaneIndex, bool IsPrologEpilog) {
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register LaneVGPR;
|
|
if (!LaneIndex) {
|
|
// Find the highest available register if called before RA to ensure the
|
|
// lowest registers are available for allocation. The LaneVGPR, in that
|
|
// case, will be shifted back to the lowest range after VGPR allocation.
|
|
LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF,
|
|
!IsPrologEpilog);
|
|
if (LaneVGPR == AMDGPU::NoRegister) {
|
|
// We have no VGPRs left for spilling SGPRs. Reset because we will not
|
|
// partially spill the SGPR to VGPRs.
|
|
SGPRSpillsToPhysicalVGPRLanes.erase(FI);
|
|
return false;
|
|
}
|
|
|
|
if (IsPrologEpilog)
|
|
allocateWWMSpill(MF, LaneVGPR);
|
|
|
|
reserveWWMRegister(LaneVGPR);
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
MBB.addLiveIn(LaneVGPR);
|
|
MBB.sortUniqueLiveIns();
|
|
}
|
|
SpillPhysVGPRs.push_back(LaneVGPR);
|
|
} else {
|
|
LaneVGPR = SpillPhysVGPRs.back();
|
|
}
|
|
|
|
SGPRSpillsToPhysicalVGPRLanes[FI].emplace_back(LaneVGPR, LaneIndex);
|
|
return true;
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::allocateSGPRSpillToVGPRLane(
|
|
MachineFunction &MF, int FI, bool SpillToPhysVGPRLane,
|
|
bool IsPrologEpilog) {
|
|
std::vector<SIRegisterInfo::SpilledReg> &SpillLanes =
|
|
SpillToPhysVGPRLane ? SGPRSpillsToPhysicalVGPRLanes[FI]
|
|
: SGPRSpillsToVirtualVGPRLanes[FI];
|
|
|
|
// This has already been allocated.
|
|
if (!SpillLanes.empty())
|
|
return true;
|
|
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
unsigned WaveSize = ST.getWavefrontSize();
|
|
|
|
unsigned Size = FrameInfo.getObjectSize(FI);
|
|
unsigned NumLanes = Size / 4;
|
|
|
|
if (NumLanes > WaveSize)
|
|
return false;
|
|
|
|
assert(Size >= 4 && "invalid sgpr spill size");
|
|
assert(ST.getRegisterInfo()->spillSGPRToVGPR() &&
|
|
"not spilling SGPRs to VGPRs");
|
|
|
|
unsigned &NumSpillLanes = SpillToPhysVGPRLane ? NumPhysicalVGPRSpillLanes
|
|
: NumVirtualVGPRSpillLanes;
|
|
|
|
for (unsigned I = 0; I < NumLanes; ++I, ++NumSpillLanes) {
|
|
unsigned LaneIndex = (NumSpillLanes % WaveSize);
|
|
|
|
bool Allocated = SpillToPhysVGPRLane
|
|
? allocatePhysicalVGPRForSGPRSpills(MF, FI, LaneIndex,
|
|
IsPrologEpilog)
|
|
: allocateVirtualVGPRForSGPRSpills(MF, FI, LaneIndex);
|
|
if (!Allocated) {
|
|
NumSpillLanes -= I;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Reserve AGPRs or VGPRs to support spilling for FrameIndex \p FI.
|
|
/// Either AGPR is spilled to VGPR to vice versa.
|
|
/// Returns true if a \p FI can be eliminated completely.
|
|
bool SIMachineFunctionInfo::allocateVGPRSpillToAGPR(MachineFunction &MF,
|
|
int FI,
|
|
bool isAGPRtoVGPR) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
|
|
assert(ST.hasMAIInsts() && FrameInfo.isSpillSlotObjectIndex(FI));
|
|
|
|
auto &Spill = VGPRToAGPRSpills[FI];
|
|
|
|
// This has already been allocated.
|
|
if (!Spill.Lanes.empty())
|
|
return Spill.FullyAllocated;
|
|
|
|
unsigned Size = FrameInfo.getObjectSize(FI);
|
|
unsigned NumLanes = Size / 4;
|
|
Spill.Lanes.resize(NumLanes, AMDGPU::NoRegister);
|
|
|
|
const TargetRegisterClass &RC =
|
|
isAGPRtoVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::AGPR_32RegClass;
|
|
auto Regs = RC.getRegisters();
|
|
|
|
auto &SpillRegs = isAGPRtoVGPR ? SpillAGPR : SpillVGPR;
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
Spill.FullyAllocated = true;
|
|
|
|
// FIXME: Move allocation logic out of MachineFunctionInfo and initialize
|
|
// once.
|
|
BitVector OtherUsedRegs;
|
|
OtherUsedRegs.resize(TRI->getNumRegs());
|
|
|
|
const uint32_t *CSRMask =
|
|
TRI->getCallPreservedMask(MF, MF.getFunction().getCallingConv());
|
|
if (CSRMask)
|
|
OtherUsedRegs.setBitsInMask(CSRMask);
|
|
|
|
// TODO: Should include register tuples, but doesn't matter with current
|
|
// usage.
|
|
for (MCPhysReg Reg : SpillAGPR)
|
|
OtherUsedRegs.set(Reg);
|
|
for (MCPhysReg Reg : SpillVGPR)
|
|
OtherUsedRegs.set(Reg);
|
|
|
|
SmallVectorImpl<MCPhysReg>::const_iterator NextSpillReg = Regs.begin();
|
|
for (int I = NumLanes - 1; I >= 0; --I) {
|
|
NextSpillReg = std::find_if(
|
|
NextSpillReg, Regs.end(), [&MRI, &OtherUsedRegs](MCPhysReg Reg) {
|
|
return MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg) &&
|
|
!OtherUsedRegs[Reg];
|
|
});
|
|
|
|
if (NextSpillReg == Regs.end()) { // Registers exhausted
|
|
Spill.FullyAllocated = false;
|
|
break;
|
|
}
|
|
|
|
OtherUsedRegs.set(*NextSpillReg);
|
|
SpillRegs.push_back(*NextSpillReg);
|
|
MRI.reserveReg(*NextSpillReg, TRI);
|
|
Spill.Lanes[I] = *NextSpillReg++;
|
|
}
|
|
|
|
return Spill.FullyAllocated;
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::removeDeadFrameIndices(
|
|
MachineFrameInfo &MFI, bool ResetSGPRSpillStackIDs) {
|
|
// Remove dead frame indices from function frame, however keep FP & BP since
|
|
// spills for them haven't been inserted yet. And also make sure to remove the
|
|
// frame indices from `SGPRSpillsToVirtualVGPRLanes` data structure,
|
|
// otherwise, it could result in an unexpected side effect and bug, in case of
|
|
// any re-mapping of freed frame indices by later pass(es) like "stack slot
|
|
// coloring".
|
|
for (auto &R : make_early_inc_range(SGPRSpillsToVirtualVGPRLanes)) {
|
|
MFI.RemoveStackObject(R.first);
|
|
SGPRSpillsToVirtualVGPRLanes.erase(R.first);
|
|
}
|
|
|
|
// Remove the dead frame indices of CSR SGPRs which are spilled to physical
|
|
// VGPR lanes during SILowerSGPRSpills pass.
|
|
if (!ResetSGPRSpillStackIDs) {
|
|
for (auto &R : make_early_inc_range(SGPRSpillsToPhysicalVGPRLanes)) {
|
|
MFI.RemoveStackObject(R.first);
|
|
SGPRSpillsToPhysicalVGPRLanes.erase(R.first);
|
|
}
|
|
}
|
|
bool HaveSGPRToMemory = false;
|
|
|
|
if (ResetSGPRSpillStackIDs) {
|
|
// All other SGPRs must be allocated on the default stack, so reset the
|
|
// stack ID.
|
|
for (int I = MFI.getObjectIndexBegin(), E = MFI.getObjectIndexEnd(); I != E;
|
|
++I) {
|
|
if (!checkIndexInPrologEpilogSGPRSpills(I)) {
|
|
if (MFI.getStackID(I) == TargetStackID::SGPRSpill) {
|
|
MFI.setStackID(I, TargetStackID::Default);
|
|
HaveSGPRToMemory = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &R : VGPRToAGPRSpills) {
|
|
if (R.second.IsDead)
|
|
MFI.RemoveStackObject(R.first);
|
|
}
|
|
|
|
return HaveSGPRToMemory;
|
|
}
|
|
|
|
int SIMachineFunctionInfo::getScavengeFI(MachineFrameInfo &MFI,
|
|
const SIRegisterInfo &TRI) {
|
|
if (ScavengeFI)
|
|
return *ScavengeFI;
|
|
|
|
ScavengeFI =
|
|
MFI.CreateStackObject(TRI.getSpillSize(AMDGPU::SGPR_32RegClass),
|
|
TRI.getSpillAlign(AMDGPU::SGPR_32RegClass), false);
|
|
return *ScavengeFI;
|
|
}
|
|
|
|
MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const {
|
|
assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs");
|
|
return AMDGPU::SGPR0 + NumUserSGPRs;
|
|
}
|
|
|
|
MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const {
|
|
return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs;
|
|
}
|
|
|
|
void SIMachineFunctionInfo::MRI_NoteNewVirtualRegister(Register Reg) {
|
|
VRegFlags.grow(Reg);
|
|
}
|
|
|
|
void SIMachineFunctionInfo::MRI_NoteCloneVirtualRegister(Register NewReg,
|
|
Register SrcReg) {
|
|
VRegFlags.grow(NewReg);
|
|
VRegFlags[NewReg] = VRegFlags[SrcReg];
|
|
}
|
|
|
|
Register
|
|
SIMachineFunctionInfo::getGITPtrLoReg(const MachineFunction &MF) const {
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
if (!ST.isAmdPalOS())
|
|
return Register();
|
|
Register GitPtrLo = AMDGPU::SGPR0; // Low GIT address passed in
|
|
if (ST.hasMergedShaders()) {
|
|
switch (MF.getFunction().getCallingConv()) {
|
|
case CallingConv::AMDGPU_HS:
|
|
case CallingConv::AMDGPU_GS:
|
|
// Low GIT address is passed in s8 rather than s0 for an LS+HS or
|
|
// ES+GS merged shader on gfx9+.
|
|
GitPtrLo = AMDGPU::SGPR8;
|
|
return GitPtrLo;
|
|
default:
|
|
return GitPtrLo;
|
|
}
|
|
}
|
|
return GitPtrLo;
|
|
}
|
|
|
|
static yaml::StringValue regToString(Register Reg,
|
|
const TargetRegisterInfo &TRI) {
|
|
yaml::StringValue Dest;
|
|
{
|
|
raw_string_ostream OS(Dest.Value);
|
|
OS << printReg(Reg, &TRI);
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static std::optional<yaml::SIArgumentInfo>
|
|
convertArgumentInfo(const AMDGPUFunctionArgInfo &ArgInfo,
|
|
const TargetRegisterInfo &TRI) {
|
|
yaml::SIArgumentInfo AI;
|
|
|
|
auto convertArg = [&](std::optional<yaml::SIArgument> &A,
|
|
const ArgDescriptor &Arg) {
|
|
if (!Arg)
|
|
return false;
|
|
|
|
// Create a register or stack argument.
|
|
yaml::SIArgument SA = yaml::SIArgument::createArgument(Arg.isRegister());
|
|
if (Arg.isRegister()) {
|
|
raw_string_ostream OS(SA.RegisterName.Value);
|
|
OS << printReg(Arg.getRegister(), &TRI);
|
|
} else
|
|
SA.StackOffset = Arg.getStackOffset();
|
|
// Check and update the optional mask.
|
|
if (Arg.isMasked())
|
|
SA.Mask = Arg.getMask();
|
|
|
|
A = SA;
|
|
return true;
|
|
};
|
|
|
|
// TODO: Need to serialize kernarg preloads.
|
|
bool Any = false;
|
|
Any |= convertArg(AI.PrivateSegmentBuffer, ArgInfo.PrivateSegmentBuffer);
|
|
Any |= convertArg(AI.DispatchPtr, ArgInfo.DispatchPtr);
|
|
Any |= convertArg(AI.QueuePtr, ArgInfo.QueuePtr);
|
|
Any |= convertArg(AI.KernargSegmentPtr, ArgInfo.KernargSegmentPtr);
|
|
Any |= convertArg(AI.DispatchID, ArgInfo.DispatchID);
|
|
Any |= convertArg(AI.FlatScratchInit, ArgInfo.FlatScratchInit);
|
|
Any |= convertArg(AI.LDSKernelId, ArgInfo.LDSKernelId);
|
|
Any |= convertArg(AI.PrivateSegmentSize, ArgInfo.PrivateSegmentSize);
|
|
Any |= convertArg(AI.WorkGroupIDX, ArgInfo.WorkGroupIDX);
|
|
Any |= convertArg(AI.WorkGroupIDY, ArgInfo.WorkGroupIDY);
|
|
Any |= convertArg(AI.WorkGroupIDZ, ArgInfo.WorkGroupIDZ);
|
|
Any |= convertArg(AI.WorkGroupInfo, ArgInfo.WorkGroupInfo);
|
|
Any |= convertArg(AI.PrivateSegmentWaveByteOffset,
|
|
ArgInfo.PrivateSegmentWaveByteOffset);
|
|
Any |= convertArg(AI.ImplicitArgPtr, ArgInfo.ImplicitArgPtr);
|
|
Any |= convertArg(AI.ImplicitBufferPtr, ArgInfo.ImplicitBufferPtr);
|
|
Any |= convertArg(AI.WorkItemIDX, ArgInfo.WorkItemIDX);
|
|
Any |= convertArg(AI.WorkItemIDY, ArgInfo.WorkItemIDY);
|
|
Any |= convertArg(AI.WorkItemIDZ, ArgInfo.WorkItemIDZ);
|
|
|
|
if (Any)
|
|
return AI;
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
yaml::SIMachineFunctionInfo::SIMachineFunctionInfo(
|
|
const llvm::SIMachineFunctionInfo &MFI, const TargetRegisterInfo &TRI,
|
|
const llvm::MachineFunction &MF)
|
|
: ExplicitKernArgSize(MFI.getExplicitKernArgSize()),
|
|
MaxKernArgAlign(MFI.getMaxKernArgAlign()), LDSSize(MFI.getLDSSize()),
|
|
GDSSize(MFI.getGDSSize()), DynLDSAlign(MFI.getDynLDSAlign()),
|
|
IsEntryFunction(MFI.isEntryFunction()),
|
|
NoSignedZerosFPMath(MFI.hasNoSignedZerosFPMath()),
|
|
MemoryBound(MFI.isMemoryBound()), WaveLimiter(MFI.needsWaveLimiter()),
|
|
HasSpilledSGPRs(MFI.hasSpilledSGPRs()),
|
|
HasSpilledVGPRs(MFI.hasSpilledVGPRs()),
|
|
HighBitsOf32BitAddress(MFI.get32BitAddressHighBits()),
|
|
Occupancy(MFI.getOccupancy()),
|
|
ScratchRSrcReg(regToString(MFI.getScratchRSrcReg(), TRI)),
|
|
FrameOffsetReg(regToString(MFI.getFrameOffsetReg(), TRI)),
|
|
StackPtrOffsetReg(regToString(MFI.getStackPtrOffsetReg(), TRI)),
|
|
BytesInStackArgArea(MFI.getBytesInStackArgArea()),
|
|
ReturnsVoid(MFI.returnsVoid()),
|
|
ArgInfo(convertArgumentInfo(MFI.getArgInfo(), TRI)),
|
|
PSInputAddr(MFI.getPSInputAddr()), PSInputEnable(MFI.getPSInputEnable()),
|
|
MaxMemoryClusterDWords(MFI.getMaxMemoryClusterDWords()),
|
|
Mode(MFI.getMode()), HasInitWholeWave(MFI.hasInitWholeWave()),
|
|
ScratchReservedForDynamicVGPRs(MFI.getScratchReservedForDynamicVGPRs()) {
|
|
for (Register Reg : MFI.getSGPRSpillPhysVGPRs())
|
|
SpillPhysVGPRS.push_back(regToString(Reg, TRI));
|
|
|
|
for (Register Reg : MFI.getWWMReservedRegs())
|
|
WWMReservedRegs.push_back(regToString(Reg, TRI));
|
|
|
|
if (MFI.getLongBranchReservedReg())
|
|
LongBranchReservedReg = regToString(MFI.getLongBranchReservedReg(), TRI);
|
|
if (MFI.getVGPRForAGPRCopy())
|
|
VGPRForAGPRCopy = regToString(MFI.getVGPRForAGPRCopy(), TRI);
|
|
|
|
if (MFI.getSGPRForEXECCopy())
|
|
SGPRForEXECCopy = regToString(MFI.getSGPRForEXECCopy(), TRI);
|
|
|
|
auto SFI = MFI.getOptionalScavengeFI();
|
|
if (SFI)
|
|
ScavengeFI = yaml::FrameIndex(*SFI, MF.getFrameInfo());
|
|
}
|
|
|
|
void yaml::SIMachineFunctionInfo::mappingImpl(yaml::IO &YamlIO) {
|
|
MappingTraits<SIMachineFunctionInfo>::mapping(YamlIO, *this);
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::initializeBaseYamlFields(
|
|
const yaml::SIMachineFunctionInfo &YamlMFI, const MachineFunction &MF,
|
|
PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) {
|
|
ExplicitKernArgSize = YamlMFI.ExplicitKernArgSize;
|
|
MaxKernArgAlign = YamlMFI.MaxKernArgAlign;
|
|
LDSSize = YamlMFI.LDSSize;
|
|
GDSSize = YamlMFI.GDSSize;
|
|
DynLDSAlign = YamlMFI.DynLDSAlign;
|
|
PSInputAddr = YamlMFI.PSInputAddr;
|
|
PSInputEnable = YamlMFI.PSInputEnable;
|
|
MaxMemoryClusterDWords = YamlMFI.MaxMemoryClusterDWords;
|
|
HighBitsOf32BitAddress = YamlMFI.HighBitsOf32BitAddress;
|
|
Occupancy = YamlMFI.Occupancy;
|
|
IsEntryFunction = YamlMFI.IsEntryFunction;
|
|
NoSignedZerosFPMath = YamlMFI.NoSignedZerosFPMath;
|
|
MemoryBound = YamlMFI.MemoryBound;
|
|
WaveLimiter = YamlMFI.WaveLimiter;
|
|
HasSpilledSGPRs = YamlMFI.HasSpilledSGPRs;
|
|
HasSpilledVGPRs = YamlMFI.HasSpilledVGPRs;
|
|
BytesInStackArgArea = YamlMFI.BytesInStackArgArea;
|
|
ReturnsVoid = YamlMFI.ReturnsVoid;
|
|
|
|
if (YamlMFI.ScavengeFI) {
|
|
auto FIOrErr = YamlMFI.ScavengeFI->getFI(MF.getFrameInfo());
|
|
if (!FIOrErr) {
|
|
// Create a diagnostic for a the frame index.
|
|
const MemoryBuffer &Buffer =
|
|
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
|
|
|
|
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1,
|
|
SourceMgr::DK_Error, toString(FIOrErr.takeError()),
|
|
"", {}, {});
|
|
SourceRange = YamlMFI.ScavengeFI->SourceRange;
|
|
return true;
|
|
}
|
|
ScavengeFI = *FIOrErr;
|
|
} else {
|
|
ScavengeFI = std::nullopt;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::mayUseAGPRs(const Function &F) const {
|
|
auto [MinNumAGPR, MaxNumAGPR] =
|
|
AMDGPU::getIntegerPairAttribute(F, "amdgpu-agpr-alloc", {~0u, ~0u},
|
|
/*OnlyFirstRequired=*/true);
|
|
return MinNumAGPR != 0u;
|
|
}
|