mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-25 09:46:06 +00:00
156 lines
5.1 KiB
C++
156 lines
5.1 KiB
C++
//===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// This file implements support for optimizing divisions by a constant
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/DivisionByConstantInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// Calculate the magic numbers required to implement a signed integer division
|
|
/// by a constant as a sequence of multiplies, adds and shifts. Requires that
|
|
/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
|
|
/// Warren, Jr., Chapter 10.
|
|
SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
|
|
assert(!D.isZero() && "Precondition violation.");
|
|
|
|
// We'd be endlessly stuck in the loop.
|
|
assert(D.getBitWidth() >= 3 && "Does not work at smaller bitwidths.");
|
|
|
|
APInt Delta;
|
|
APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
|
|
struct SignedDivisionByConstantInfo Retval;
|
|
|
|
APInt AD = D.abs();
|
|
APInt T = SignedMin + (D.lshr(D.getBitWidth() - 1));
|
|
APInt ANC = T - 1 - T.urem(AD); // absolute value of NC
|
|
unsigned P = D.getBitWidth() - 1; // initialize P
|
|
APInt Q1, R1, Q2, R2;
|
|
// initialize Q1 = 2P/abs(NC); R1 = rem(2P,abs(NC))
|
|
APInt::udivrem(SignedMin, ANC, Q1, R1);
|
|
// initialize Q2 = 2P/abs(D); R2 = rem(2P,abs(D))
|
|
APInt::udivrem(SignedMin, AD, Q2, R2);
|
|
do {
|
|
P = P + 1;
|
|
Q1 <<= 1; // update Q1 = 2P/abs(NC)
|
|
R1 <<= 1; // update R1 = rem(2P/abs(NC))
|
|
if (R1.uge(ANC)) { // must be unsigned comparison
|
|
++Q1;
|
|
R1 -= ANC;
|
|
}
|
|
Q2 <<= 1; // update Q2 = 2P/abs(D)
|
|
R2 <<= 1; // update R2 = rem(2P/abs(D))
|
|
if (R2.uge(AD)) { // must be unsigned comparison
|
|
++Q2;
|
|
R2 -= AD;
|
|
}
|
|
// Delta = AD - R2
|
|
Delta = AD;
|
|
Delta -= R2;
|
|
} while (Q1.ult(Delta) || (Q1 == Delta && R1.isZero()));
|
|
|
|
Retval.Magic = std::move(Q2);
|
|
++Retval.Magic;
|
|
if (D.isNegative())
|
|
Retval.Magic.negate(); // resulting magic number
|
|
Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
|
|
return Retval;
|
|
}
|
|
|
|
/// Calculate the magic numbers required to implement an unsigned integer
|
|
/// division by a constant as a sequence of multiplies, adds and shifts.
|
|
/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
|
|
/// S. Warren, Jr., chapter 10.
|
|
/// LeadingZeros can be used to simplify the calculation if the upper bits
|
|
/// of the divided value are known zero.
|
|
UnsignedDivisionByConstantInfo
|
|
UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros,
|
|
bool AllowEvenDivisorOptimization) {
|
|
assert(!D.isZero() && !D.isOne() && "Precondition violation.");
|
|
assert(D.getBitWidth() > 1 && "Does not work at smaller bitwidths.");
|
|
|
|
APInt Delta;
|
|
struct UnsignedDivisionByConstantInfo Retval;
|
|
Retval.IsAdd = false; // initialize "add" indicator
|
|
APInt AllOnes =
|
|
APInt::getLowBitsSet(D.getBitWidth(), D.getBitWidth() - LeadingZeros);
|
|
APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
|
|
APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
|
|
|
|
// Calculate NC, the largest dividend such that NC.urem(D) == D-1.
|
|
APInt NC = AllOnes - (AllOnes + 1 - D).urem(D);
|
|
assert(NC.urem(D) == D - 1 && "Unexpected NC value");
|
|
unsigned P = D.getBitWidth() - 1; // initialize P
|
|
APInt Q1, R1, Q2, R2;
|
|
// initialize Q1 = 2P/NC; R1 = rem(2P,NC)
|
|
APInt::udivrem(SignedMin, NC, Q1, R1);
|
|
// initialize Q2 = (2P-1)/D; R2 = rem((2P-1),D)
|
|
APInt::udivrem(SignedMax, D, Q2, R2);
|
|
do {
|
|
P = P + 1;
|
|
if (R1.uge(NC - R1)) {
|
|
// update Q1
|
|
Q1 <<= 1;
|
|
++Q1;
|
|
// update R1
|
|
R1 <<= 1;
|
|
R1 -= NC;
|
|
} else {
|
|
Q1 <<= 1; // update Q1
|
|
R1 <<= 1; // update R1
|
|
}
|
|
if ((R2 + 1).uge(D - R2)) {
|
|
if (Q2.uge(SignedMax))
|
|
Retval.IsAdd = true;
|
|
// update Q2
|
|
Q2 <<= 1;
|
|
++Q2;
|
|
// update R2
|
|
R2 <<= 1;
|
|
++R2;
|
|
R2 -= D;
|
|
} else {
|
|
if (Q2.uge(SignedMin))
|
|
Retval.IsAdd = true;
|
|
// update Q2
|
|
Q2 <<= 1;
|
|
// update R2
|
|
R2 <<= 1;
|
|
++R2;
|
|
}
|
|
// Delta = D - 1 - R2
|
|
Delta = D;
|
|
--Delta;
|
|
Delta -= R2;
|
|
} while (P < D.getBitWidth() * 2 &&
|
|
(Q1.ult(Delta) || (Q1 == Delta && R1.isZero())));
|
|
|
|
if (Retval.IsAdd && !D[0] && AllowEvenDivisorOptimization) {
|
|
unsigned PreShift = D.countr_zero();
|
|
APInt ShiftedD = D.lshr(PreShift);
|
|
Retval =
|
|
UnsignedDivisionByConstantInfo::get(ShiftedD, LeadingZeros + PreShift);
|
|
assert(Retval.IsAdd == 0 && Retval.PreShift == 0);
|
|
Retval.PreShift = PreShift;
|
|
return Retval;
|
|
}
|
|
|
|
Retval.Magic = std::move(Q2); // resulting magic number
|
|
++Retval.Magic;
|
|
Retval.PostShift = P - D.getBitWidth(); // resulting shift
|
|
// Reduce shift amount for IsAdd.
|
|
if (Retval.IsAdd) {
|
|
assert(Retval.PostShift > 0 && "Unexpected shift");
|
|
Retval.PostShift -= 1;
|
|
}
|
|
Retval.PreShift = 0;
|
|
return Retval;
|
|
}
|