llvm-project/llvm/lib/Support/SuffixTree.cpp
Xuan Zhang d9a00ed366
[MachineOutliner] Leaf Descendants (#90275)
This PR  depends on https://github.com/llvm/llvm-project/pull/90264

In the current implementation, only leaf children of each internal node
in the suffix tree are included as candidates for outlining. But all
leaf descendants are outlining candidates, which we include in the new
implementation. This is enabled on a flag `outliner-leaf-descendants`
which is default to be true.

The reason for _enabling this on a flag_ is because machine outliner is
not the only pass that uses suffix tree.

The reason for _having this default to be true_ is because including all
leaf descendants show consistent size win.
* For Clang/LLD, it shows around 3% reduction in text segment size when
compared to the baseline `-Oz` linker binary.
 * For selected benchmark tests in LLVM test suite 
 
| run (CTMark/) | only leaf children | all leaf descendants | reduction
% |

|------------------|--------------------|----------------------|-------------|
| lencod | 349624 | 348564 | -0.2004% |
| SPASS | 219672 | 218440 | -0.4738% |
| kc | 271956 | 250068 | -0.4506% |
| sqlite3 | 223920 | 222484 | -0.5471% |
| 7zip-benchmark | 405364 | 401244 | -0.3428% |
| bullet | 139820 | 138340 | -0.8315% |
| consumer-typeset | 295684 | 286628 | -1.2295% |
| pairlocalalign | 72236 | 71936 | -0.2164% |
| tramp3d-v4 | 189572 | 183676 | -2.9668% |

This is part of an enhanced version of machine outliner -- see
[RFC](https://discourse.llvm.org/t/rfc-enhanced-machine-outliner-part-1-fulllto-part-2-thinlto-nolto-to-come/78732).
2024-06-18 07:13:05 -07:00

358 lines
13 KiB
C++

//===- llvm/Support/SuffixTree.cpp - Implement Suffix Tree ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Suffix Tree class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/SuffixTree.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/SuffixTreeNode.h"
using namespace llvm;
/// \returns the number of elements in the substring associated with \p N.
static size_t numElementsInSubstring(const SuffixTreeNode *N) {
assert(N && "Got a null node?");
if (auto *Internal = dyn_cast<SuffixTreeInternalNode>(N))
if (Internal->isRoot())
return 0;
return N->getEndIdx() - N->getStartIdx() + 1;
}
SuffixTree::SuffixTree(const ArrayRef<unsigned> &Str,
bool OutlinerLeafDescendants)
: Str(Str), OutlinerLeafDescendants(OutlinerLeafDescendants) {
Root = insertRoot();
Active.Node = Root;
// Keep track of the number of suffixes we have to add of the current
// prefix.
unsigned SuffixesToAdd = 0;
// Construct the suffix tree iteratively on each prefix of the string.
// PfxEndIdx is the end index of the current prefix.
// End is one past the last element in the string.
for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
SuffixesToAdd++;
LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
}
// Set the suffix indices of each leaf.
assert(Root && "Root node can't be nullptr!");
setSuffixIndices();
// Collect all leaf nodes of the suffix tree. And for each internal node,
// record the range of leaf nodes that are descendants of it.
if (OutlinerLeafDescendants)
setLeafNodes();
}
SuffixTreeNode *SuffixTree::insertLeaf(SuffixTreeInternalNode &Parent,
unsigned StartIdx, unsigned Edge) {
assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
auto *N = new (LeafNodeAllocator.Allocate())
SuffixTreeLeafNode(StartIdx, &LeafEndIdx);
Parent.Children[Edge] = N;
return N;
}
SuffixTreeInternalNode *
SuffixTree::insertInternalNode(SuffixTreeInternalNode *Parent,
unsigned StartIdx, unsigned EndIdx,
unsigned Edge) {
assert(StartIdx <= EndIdx && "String can't start after it ends!");
assert(!(!Parent && StartIdx != SuffixTreeNode::EmptyIdx) &&
"Non-root internal nodes must have parents!");
auto *N = new (InternalNodeAllocator.Allocate())
SuffixTreeInternalNode(StartIdx, EndIdx, Root);
if (Parent)
Parent->Children[Edge] = N;
return N;
}
SuffixTreeInternalNode *SuffixTree::insertRoot() {
return insertInternalNode(/*Parent = */ nullptr, SuffixTreeNode::EmptyIdx,
SuffixTreeNode::EmptyIdx, /*Edge = */ 0);
}
void SuffixTree::setSuffixIndices() {
// List of nodes we need to visit along with the current length of the
// string.
SmallVector<std::pair<SuffixTreeNode *, unsigned>> ToVisit;
// Current node being visited.
SuffixTreeNode *CurrNode = Root;
// Sum of the lengths of the nodes down the path to the current one.
unsigned CurrNodeLen = 0;
ToVisit.push_back({CurrNode, CurrNodeLen});
while (!ToVisit.empty()) {
std::tie(CurrNode, CurrNodeLen) = ToVisit.back();
ToVisit.pop_back();
// Length of the current node from the root down to here.
CurrNode->setConcatLen(CurrNodeLen);
if (auto *InternalNode = dyn_cast<SuffixTreeInternalNode>(CurrNode))
for (auto &ChildPair : InternalNode->Children) {
assert(ChildPair.second && "Node had a null child!");
ToVisit.push_back(
{ChildPair.second,
CurrNodeLen + numElementsInSubstring(ChildPair.second)});
}
// No children, so we are at the end of the string.
if (auto *LeafNode = dyn_cast<SuffixTreeLeafNode>(CurrNode))
LeafNode->setSuffixIdx(Str.size() - CurrNodeLen);
}
}
void SuffixTree::setLeafNodes() {
// A stack that keeps track of nodes to visit for post-order DFS traversal.
SmallVector<SuffixTreeNode *> ToVisit;
ToVisit.push_back(Root);
// This keeps track of the index of the next leaf node to be added to
// the LeafNodes vector of the suffix tree.
unsigned LeafCounter = 0;
// This keeps track of nodes whose children have been added to the stack.
// The value is a pair, representing a node's first and last children.
DenseMap<SuffixTreeInternalNode *,
std::pair<SuffixTreeNode *, SuffixTreeNode *>>
ChildrenMap;
// Traverse the tree in post-order.
while (!ToVisit.empty()) {
SuffixTreeNode *CurrNode = ToVisit.pop_back_val();
if (auto *CurrInternalNode = dyn_cast<SuffixTreeInternalNode>(CurrNode)) {
// The current node is an internal node.
auto I = ChildrenMap.find(CurrInternalNode);
if (I == ChildrenMap.end()) {
// This is the first time we visit this node.
// Its children have not been added to the stack yet.
// We add current node back, and add its children to the stack.
// We keep track of the first and last children of the current node.
auto J = CurrInternalNode->Children.begin();
if (J != CurrInternalNode->Children.end()) {
ToVisit.push_back(CurrNode);
SuffixTreeNode *FirstChild = J->second;
SuffixTreeNode *LastChild = nullptr;
for (; J != CurrInternalNode->Children.end(); ++J) {
LastChild = J->second;
ToVisit.push_back(LastChild);
}
ChildrenMap[CurrInternalNode] = {FirstChild, LastChild};
}
} else {
// This is the second time we visit this node.
// All of its children have already been processed.
// Now, we can set its LeftLeafIdx and RightLeafIdx;
auto [FirstChild, LastChild] = I->second;
// Get the first child to use its RightLeafIdx.
// The first child is the first one added to the stack, so it is
// the last one to be processed. Hence, the leaf descendants
// of the first child are assigned the largest index numbers.
CurrNode->setRightLeafIdx(FirstChild->getRightLeafIdx());
// Get the last child to use its LeftLeafIdx.
CurrNode->setLeftLeafIdx(LastChild->getLeftLeafIdx());
assert(CurrNode->getLeftLeafIdx() <= CurrNode->getRightLeafIdx() &&
"LeftLeafIdx should not be larger than RightLeafIdx");
}
} else {
// The current node is a leaf node.
// We can simply set its LeftLeafIdx and RightLeafIdx.
CurrNode->setLeftLeafIdx(LeafCounter);
CurrNode->setRightLeafIdx(LeafCounter);
++LeafCounter;
auto *CurrLeafNode = cast<SuffixTreeLeafNode>(CurrNode);
LeafNodes.push_back(CurrLeafNode);
}
}
}
unsigned SuffixTree::extend(unsigned EndIdx, unsigned SuffixesToAdd) {
SuffixTreeInternalNode *NeedsLink = nullptr;
while (SuffixesToAdd > 0) {
// Are we waiting to add anything other than just the last character?
if (Active.Len == 0) {
// If not, then say the active index is the end index.
Active.Idx = EndIdx;
}
assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
// The first character in the current substring we're looking at.
unsigned FirstChar = Str[Active.Idx];
// Have we inserted anything starting with FirstChar at the current node?
if (Active.Node->Children.count(FirstChar) == 0) {
// If not, then we can just insert a leaf and move to the next step.
insertLeaf(*Active.Node, EndIdx, FirstChar);
// The active node is an internal node, and we visited it, so it must
// need a link if it doesn't have one.
if (NeedsLink) {
NeedsLink->setLink(Active.Node);
NeedsLink = nullptr;
}
} else {
// There's a match with FirstChar, so look for the point in the tree to
// insert a new node.
SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
unsigned SubstringLen = numElementsInSubstring(NextNode);
// Is the current suffix we're trying to insert longer than the size of
// the child we want to move to?
if (Active.Len >= SubstringLen) {
// If yes, then consume the characters we've seen and move to the next
// node.
assert(isa<SuffixTreeInternalNode>(NextNode) &&
"Expected an internal node?");
Active.Idx += SubstringLen;
Active.Len -= SubstringLen;
Active.Node = cast<SuffixTreeInternalNode>(NextNode);
continue;
}
// Otherwise, the suffix we're trying to insert must be contained in the
// next node we want to move to.
unsigned LastChar = Str[EndIdx];
// Is the string we're trying to insert a substring of the next node?
if (Str[NextNode->getStartIdx() + Active.Len] == LastChar) {
// If yes, then we're done for this step. Remember our insertion point
// and move to the next end index. At this point, we have an implicit
// suffix tree.
if (NeedsLink && !Active.Node->isRoot()) {
NeedsLink->setLink(Active.Node);
NeedsLink = nullptr;
}
Active.Len++;
break;
}
// The string we're trying to insert isn't a substring of the next node,
// but matches up to a point. Split the node.
//
// For example, say we ended our search at a node n and we're trying to
// insert ABD. Then we'll create a new node s for AB, reduce n to just
// representing C, and insert a new leaf node l to represent d. This
// allows us to ensure that if n was a leaf, it remains a leaf.
//
// | ABC ---split---> | AB
// n s
// C / \ D
// n l
// The node s from the diagram
SuffixTreeInternalNode *SplitNode = insertInternalNode(
Active.Node, NextNode->getStartIdx(),
NextNode->getStartIdx() + Active.Len - 1, FirstChar);
// Insert the new node representing the new substring into the tree as
// a child of the split node. This is the node l from the diagram.
insertLeaf(*SplitNode, EndIdx, LastChar);
// Make the old node a child of the split node and update its start
// index. This is the node n from the diagram.
NextNode->incrementStartIdx(Active.Len);
SplitNode->Children[Str[NextNode->getStartIdx()]] = NextNode;
// SplitNode is an internal node, update the suffix link.
if (NeedsLink)
NeedsLink->setLink(SplitNode);
NeedsLink = SplitNode;
}
// We've added something new to the tree, so there's one less suffix to
// add.
SuffixesToAdd--;
if (Active.Node->isRoot()) {
if (Active.Len > 0) {
Active.Len--;
Active.Idx = EndIdx - SuffixesToAdd + 1;
}
} else {
// Start the next phase at the next smallest suffix.
Active.Node = Active.Node->getLink();
}
}
return SuffixesToAdd;
}
void SuffixTree::RepeatedSubstringIterator::advance() {
// Clear the current state. If we're at the end of the range, then this
// is the state we want to be in.
RS = RepeatedSubstring();
N = nullptr;
// Each leaf node represents a repeat of a string.
SmallVector<unsigned> RepeatedSubstringStarts;
// Continue visiting nodes until we find one which repeats more than once.
while (!InternalNodesToVisit.empty()) {
RepeatedSubstringStarts.clear();
auto *Curr = InternalNodesToVisit.back();
InternalNodesToVisit.pop_back();
// Keep track of the length of the string associated with the node. If
// it's too short, we'll quit.
unsigned Length = Curr->getConcatLen();
// Iterate over each child, saving internal nodes for visiting.
// Internal nodes represent individual strings, which may repeat.
for (auto &ChildPair : Curr->Children)
// Save all of this node's children for processing.
if (auto *InternalChild =
dyn_cast<SuffixTreeInternalNode>(ChildPair.second))
InternalNodesToVisit.push_back(InternalChild);
// If length of repeated substring is below threshold, then skip it.
if (Length < MinLength)
continue;
// The root never represents a repeated substring. If we're looking at
// that, then skip it.
if (Curr->isRoot())
continue;
// Collect leaf children or leaf descendants by OutlinerLeafDescendants.
if (OutlinerLeafDescendants) {
for (unsigned I = Curr->getLeftLeafIdx(); I <= Curr->getRightLeafIdx();
++I)
RepeatedSubstringStarts.push_back(LeafNodes[I]->getSuffixIdx());
} else {
for (auto &ChildPair : Curr->Children)
if (auto *Leaf = dyn_cast<SuffixTreeLeafNode>(ChildPair.second))
RepeatedSubstringStarts.push_back(Leaf->getSuffixIdx());
}
// Do we have any repeated substrings?
if (RepeatedSubstringStarts.size() < 2)
continue;
// Yes. Update the state to reflect this, and then bail out.
N = Curr;
RS.Length = Length;
for (unsigned StartIdx : RepeatedSubstringStarts)
RS.StartIndices.push_back(StartIdx);
break;
}
// At this point, either NewRS is an empty RepeatedSubstring, or it was
// set in the above loop. Similarly, N is either nullptr, or the node
// associated with NewRS.
}