mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-25 17:16:04 +00:00
1560 lines
58 KiB
C++
1560 lines
58 KiB
C++
//===- ARM.cpp ------------------------------------------------------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "InputFiles.h"
|
||
#include "OutputSections.h"
|
||
#include "SymbolTable.h"
|
||
#include "Symbols.h"
|
||
#include "SyntheticSections.h"
|
||
#include "Target.h"
|
||
#include "lld/Common/ErrorHandler.h"
|
||
#include "lld/Common/Filesystem.h"
|
||
#include "llvm/BinaryFormat/ELF.h"
|
||
#include "llvm/Support/Endian.h"
|
||
|
||
using namespace llvm;
|
||
using namespace llvm::support::endian;
|
||
using namespace llvm::support;
|
||
using namespace llvm::ELF;
|
||
using namespace lld;
|
||
using namespace lld::elf;
|
||
using namespace llvm::object;
|
||
|
||
namespace {
|
||
class ARM final : public TargetInfo {
|
||
public:
|
||
ARM(Ctx &);
|
||
uint32_t calcEFlags() const override;
|
||
RelExpr getRelExpr(RelType type, const Symbol &s,
|
||
const uint8_t *loc) const override;
|
||
RelType getDynRel(RelType type) const override;
|
||
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
|
||
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
|
||
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
|
||
void writePltHeader(uint8_t *buf) const override;
|
||
void writePlt(uint8_t *buf, const Symbol &sym,
|
||
uint64_t pltEntryAddr) const override;
|
||
void addPltSymbols(InputSection &isec, uint64_t off) const override;
|
||
void addPltHeaderSymbols(InputSection &isd) const override;
|
||
bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
|
||
uint64_t branchAddr, const Symbol &s,
|
||
int64_t a) const override;
|
||
uint32_t getThunkSectionSpacing() const override;
|
||
bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
|
||
void relocate(uint8_t *loc, const Relocation &rel,
|
||
uint64_t val) const override;
|
||
|
||
private:
|
||
void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
|
||
int group, bool check) const;
|
||
};
|
||
enum class CodeState { Data = 0, Thumb = 2, Arm = 4 };
|
||
} // namespace
|
||
|
||
static DenseMap<InputSection *, SmallVector<const Defined *, 0>> sectionMap{};
|
||
|
||
ARM::ARM(Ctx &ctx) : TargetInfo(ctx) {
|
||
copyRel = R_ARM_COPY;
|
||
relativeRel = R_ARM_RELATIVE;
|
||
iRelativeRel = R_ARM_IRELATIVE;
|
||
gotRel = R_ARM_GLOB_DAT;
|
||
pltRel = R_ARM_JUMP_SLOT;
|
||
symbolicRel = R_ARM_ABS32;
|
||
tlsGotRel = R_ARM_TLS_TPOFF32;
|
||
tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
|
||
tlsOffsetRel = R_ARM_TLS_DTPOFF32;
|
||
pltHeaderSize = 32;
|
||
pltEntrySize = 16;
|
||
ipltEntrySize = 16;
|
||
trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
|
||
needsThunks = true;
|
||
defaultMaxPageSize = 65536;
|
||
}
|
||
|
||
uint32_t ARM::calcEFlags() const {
|
||
// The ABIFloatType is used by loaders to detect the floating point calling
|
||
// convention.
|
||
uint32_t abiFloatType = 0;
|
||
|
||
// Set the EF_ARM_BE8 flag in the ELF header, if ELF file is big-endian
|
||
// with BE-8 code.
|
||
uint32_t armBE8 = 0;
|
||
|
||
if (ctx.arg.armVFPArgs == ARMVFPArgKind::Base ||
|
||
ctx.arg.armVFPArgs == ARMVFPArgKind::Default)
|
||
abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
|
||
else if (ctx.arg.armVFPArgs == ARMVFPArgKind::VFP)
|
||
abiFloatType = EF_ARM_ABI_FLOAT_HARD;
|
||
|
||
if (!ctx.arg.isLE && ctx.arg.armBe8)
|
||
armBE8 = EF_ARM_BE8;
|
||
|
||
// We don't currently use any features incompatible with EF_ARM_EABI_VER5,
|
||
// but we don't have any firm guarantees of conformance. Linux AArch64
|
||
// kernels (as of 2016) require an EABI version to be set.
|
||
return EF_ARM_EABI_VER5 | abiFloatType | armBE8;
|
||
}
|
||
|
||
RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
|
||
const uint8_t *loc) const {
|
||
switch (type) {
|
||
case R_ARM_ABS32:
|
||
case R_ARM_MOVW_ABS_NC:
|
||
case R_ARM_MOVT_ABS:
|
||
case R_ARM_THM_MOVW_ABS_NC:
|
||
case R_ARM_THM_MOVT_ABS:
|
||
case R_ARM_THM_ALU_ABS_G0_NC:
|
||
case R_ARM_THM_ALU_ABS_G1_NC:
|
||
case R_ARM_THM_ALU_ABS_G2_NC:
|
||
case R_ARM_THM_ALU_ABS_G3:
|
||
return R_ABS;
|
||
case R_ARM_THM_JUMP8:
|
||
case R_ARM_THM_JUMP11:
|
||
return R_PC;
|
||
case R_ARM_CALL:
|
||
case R_ARM_JUMP24:
|
||
case R_ARM_PC24:
|
||
case R_ARM_PLT32:
|
||
case R_ARM_PREL31:
|
||
case R_ARM_THM_JUMP19:
|
||
case R_ARM_THM_JUMP24:
|
||
case R_ARM_THM_CALL:
|
||
return R_PLT_PC;
|
||
case R_ARM_GOTOFF32:
|
||
// (S + A) - GOT_ORG
|
||
return R_GOTREL;
|
||
case R_ARM_GOT_BREL:
|
||
// GOT(S) + A - GOT_ORG
|
||
return R_GOT_OFF;
|
||
case R_ARM_GOT_PREL:
|
||
case R_ARM_TLS_IE32:
|
||
// GOT(S) + A - P
|
||
return R_GOT_PC;
|
||
case R_ARM_SBREL32:
|
||
return R_ARM_SBREL;
|
||
case R_ARM_TARGET1:
|
||
return ctx.arg.target1Rel ? R_PC : R_ABS;
|
||
case R_ARM_TARGET2:
|
||
if (ctx.arg.target2 == Target2Policy::Rel)
|
||
return R_PC;
|
||
if (ctx.arg.target2 == Target2Policy::Abs)
|
||
return R_ABS;
|
||
return R_GOT_PC;
|
||
case R_ARM_TLS_GD32:
|
||
return R_TLSGD_PC;
|
||
case R_ARM_TLS_LDM32:
|
||
return R_TLSLD_PC;
|
||
case R_ARM_TLS_LDO32:
|
||
return R_DTPREL;
|
||
case R_ARM_BASE_PREL:
|
||
// B(S) + A - P
|
||
// FIXME: currently B(S) assumed to be .got, this may not hold for all
|
||
// platforms.
|
||
return R_GOTONLY_PC;
|
||
case R_ARM_MOVW_PREL_NC:
|
||
case R_ARM_MOVT_PREL:
|
||
case R_ARM_REL32:
|
||
case R_ARM_THM_MOVW_PREL_NC:
|
||
case R_ARM_THM_MOVT_PREL:
|
||
return R_PC;
|
||
case R_ARM_ALU_PC_G0:
|
||
case R_ARM_ALU_PC_G0_NC:
|
||
case R_ARM_ALU_PC_G1:
|
||
case R_ARM_ALU_PC_G1_NC:
|
||
case R_ARM_ALU_PC_G2:
|
||
case R_ARM_LDR_PC_G0:
|
||
case R_ARM_LDR_PC_G1:
|
||
case R_ARM_LDR_PC_G2:
|
||
case R_ARM_LDRS_PC_G0:
|
||
case R_ARM_LDRS_PC_G1:
|
||
case R_ARM_LDRS_PC_G2:
|
||
case R_ARM_THM_ALU_PREL_11_0:
|
||
case R_ARM_THM_PC8:
|
||
case R_ARM_THM_PC12:
|
||
return R_ARM_PCA;
|
||
case R_ARM_MOVW_BREL_NC:
|
||
case R_ARM_MOVW_BREL:
|
||
case R_ARM_MOVT_BREL:
|
||
case R_ARM_THM_MOVW_BREL_NC:
|
||
case R_ARM_THM_MOVW_BREL:
|
||
case R_ARM_THM_MOVT_BREL:
|
||
return R_ARM_SBREL;
|
||
case R_ARM_NONE:
|
||
return R_NONE;
|
||
case R_ARM_TLS_LE32:
|
||
return R_TPREL;
|
||
case R_ARM_V4BX:
|
||
// V4BX is just a marker to indicate there's a "bx rN" instruction at the
|
||
// given address. It can be used to implement a special linker mode which
|
||
// rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
|
||
// not ARMv4 output, we can just ignore it.
|
||
return R_NONE;
|
||
default:
|
||
error(getErrorLoc(ctx, loc) + "unknown relocation (" + Twine(type) +
|
||
") against symbol " + toString(s));
|
||
return R_NONE;
|
||
}
|
||
}
|
||
|
||
RelType ARM::getDynRel(RelType type) const {
|
||
if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !ctx.arg.target1Rel))
|
||
return R_ARM_ABS32;
|
||
return R_ARM_NONE;
|
||
}
|
||
|
||
void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
|
||
write32(ctx, buf, ctx.in.plt->getVA());
|
||
}
|
||
|
||
void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
|
||
// An ARM entry is the address of the ifunc resolver function.
|
||
write32(ctx, buf, s.getVA(ctx));
|
||
}
|
||
|
||
// Long form PLT Header that does not have any restrictions on the displacement
|
||
// of the .plt from the .got.plt.
|
||
static void writePltHeaderLong(Ctx &ctx, uint8_t *buf) {
|
||
write32(ctx, buf + 0, 0xe52de004); // str lr, [sp,#-4]!
|
||
write32(ctx, buf + 4, 0xe59fe004); // ldr lr, L2
|
||
write32(ctx, buf + 8, 0xe08fe00e); // L1: add lr, pc, lr
|
||
write32(ctx, buf + 12, 0xe5bef008); // ldr pc, [lr, #8]
|
||
write32(ctx, buf + 16, 0x00000000); // L2: .word &(.got.plt) - L1 - 8
|
||
write32(ctx, buf + 20, 0xd4d4d4d4); // Pad to 32-byte boundary
|
||
write32(ctx, buf + 24, 0xd4d4d4d4); // Pad to 32-byte boundary
|
||
write32(ctx, buf + 28, 0xd4d4d4d4);
|
||
uint64_t gotPlt = ctx.in.gotPlt->getVA();
|
||
uint64_t l1 = ctx.in.plt->getVA() + 8;
|
||
write32(ctx, buf + 16, gotPlt - l1 - 8);
|
||
}
|
||
|
||
// True if we should use Thumb PLTs, which currently require Thumb2, and are
|
||
// only used if the target does not have the ARM ISA.
|
||
static bool useThumbPLTs(Ctx &ctx) {
|
||
return ctx.arg.armHasThumb2ISA && !ctx.arg.armHasArmISA;
|
||
}
|
||
|
||
// The default PLT header requires the .got.plt to be within 128 Mb of the
|
||
// .plt in the positive direction.
|
||
void ARM::writePltHeader(uint8_t *buf) const {
|
||
if (useThumbPLTs(ctx)) {
|
||
// The instruction sequence for thumb:
|
||
//
|
||
// 0: b500 push {lr}
|
||
// 2: f8df e008 ldr.w lr, [pc, #0x8] @ 0xe <func+0xe>
|
||
// 6: 44fe add lr, pc
|
||
// 8: f85e ff08 ldr pc, [lr, #8]!
|
||
// e: .word .got.plt - .plt - 16
|
||
//
|
||
// At 0x8, we want to jump to .got.plt, the -16 accounts for 8 bytes from
|
||
// `pc` in the add instruction and 8 bytes for the `lr` adjustment.
|
||
//
|
||
uint64_t offset = ctx.in.gotPlt->getVA() - ctx.in.plt->getVA() - 16;
|
||
assert(llvm::isUInt<32>(offset) && "This should always fit into a 32-bit offset");
|
||
write16(ctx, buf + 0, 0xb500);
|
||
// Split into two halves to support endianness correctly.
|
||
write16(ctx, buf + 2, 0xf8df);
|
||
write16(ctx, buf + 4, 0xe008);
|
||
write16(ctx, buf + 6, 0x44fe);
|
||
// Split into two halves to support endianness correctly.
|
||
write16(ctx, buf + 8, 0xf85e);
|
||
write16(ctx, buf + 10, 0xff08);
|
||
write32(ctx, buf + 12, offset);
|
||
|
||
memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
|
||
memcpy(buf + 20, trapInstr.data(), 4);
|
||
memcpy(buf + 24, trapInstr.data(), 4);
|
||
memcpy(buf + 28, trapInstr.data(), 4);
|
||
} else {
|
||
// Use a similar sequence to that in writePlt(), the difference is the
|
||
// calling conventions mean we use lr instead of ip. The PLT entry is
|
||
// responsible for saving lr on the stack, the dynamic loader is responsible
|
||
// for reloading it.
|
||
const uint32_t pltData[] = {
|
||
0xe52de004, // L1: str lr, [sp,#-4]!
|
||
0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
|
||
0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
|
||
0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
|
||
};
|
||
|
||
uint64_t offset = ctx.in.gotPlt->getVA() - ctx.in.plt->getVA() - 4;
|
||
if (!llvm::isUInt<27>(offset)) {
|
||
// We cannot encode the Offset, use the long form.
|
||
writePltHeaderLong(ctx, buf);
|
||
return;
|
||
}
|
||
write32(ctx, buf + 0, pltData[0]);
|
||
write32(ctx, buf + 4, pltData[1] | ((offset >> 20) & 0xff));
|
||
write32(ctx, buf + 8, pltData[2] | ((offset >> 12) & 0xff));
|
||
write32(ctx, buf + 12, pltData[3] | (offset & 0xfff));
|
||
memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
|
||
memcpy(buf + 20, trapInstr.data(), 4);
|
||
memcpy(buf + 24, trapInstr.data(), 4);
|
||
memcpy(buf + 28, trapInstr.data(), 4);
|
||
}
|
||
}
|
||
|
||
void ARM::addPltHeaderSymbols(InputSection &isec) const {
|
||
if (useThumbPLTs(ctx)) {
|
||
addSyntheticLocal(ctx, "$t", STT_NOTYPE, 0, 0, isec);
|
||
addSyntheticLocal(ctx, "$d", STT_NOTYPE, 12, 0, isec);
|
||
} else {
|
||
addSyntheticLocal(ctx, "$a", STT_NOTYPE, 0, 0, isec);
|
||
addSyntheticLocal(ctx, "$d", STT_NOTYPE, 16, 0, isec);
|
||
}
|
||
}
|
||
|
||
// Long form PLT entries that do not have any restrictions on the displacement
|
||
// of the .plt from the .got.plt.
|
||
static void writePltLong(Ctx &ctx, uint8_t *buf, uint64_t gotPltEntryAddr,
|
||
uint64_t pltEntryAddr) {
|
||
write32(ctx, buf + 0, 0xe59fc004); // ldr ip, L2
|
||
write32(ctx, buf + 4, 0xe08cc00f); // L1: add ip, ip, pc
|
||
write32(ctx, buf + 8, 0xe59cf000); // ldr pc, [ip]
|
||
write32(ctx, buf + 12, 0x00000000); // L2: .word Offset(&(.got.plt) - L1 - 8
|
||
uint64_t l1 = pltEntryAddr + 4;
|
||
write32(ctx, buf + 12, gotPltEntryAddr - l1 - 8);
|
||
}
|
||
|
||
// The default PLT entries require the .got.plt to be within 128 Mb of the
|
||
// .plt in the positive direction.
|
||
void ARM::writePlt(uint8_t *buf, const Symbol &sym,
|
||
uint64_t pltEntryAddr) const {
|
||
if (!useThumbPLTs(ctx)) {
|
||
uint64_t offset = sym.getGotPltVA(ctx) - pltEntryAddr - 8;
|
||
|
||
// The PLT entry is similar to the example given in Appendix A of ELF for
|
||
// the Arm Architecture. Instead of using the Group Relocations to find the
|
||
// optimal rotation for the 8-bit immediate used in the add instructions we
|
||
// hard code the most compact rotations for simplicity. This saves a load
|
||
// instruction over the long plt sequences.
|
||
const uint32_t pltData[] = {
|
||
0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.got.plt) - L1 - 8
|
||
0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.got.plt) - L1 - 8
|
||
0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
|
||
};
|
||
if (!llvm::isUInt<27>(offset)) {
|
||
// We cannot encode the Offset, use the long form.
|
||
writePltLong(ctx, buf, sym.getGotPltVA(ctx), pltEntryAddr);
|
||
return;
|
||
}
|
||
write32(ctx, buf + 0, pltData[0] | ((offset >> 20) & 0xff));
|
||
write32(ctx, buf + 4, pltData[1] | ((offset >> 12) & 0xff));
|
||
write32(ctx, buf + 8, pltData[2] | (offset & 0xfff));
|
||
memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
|
||
} else {
|
||
uint64_t offset = sym.getGotPltVA(ctx) - pltEntryAddr - 12;
|
||
assert(llvm::isUInt<32>(offset) && "This should always fit into a 32-bit offset");
|
||
|
||
// A PLT entry will be:
|
||
//
|
||
// movw ip, #<lower 16 bits>
|
||
// movt ip, #<upper 16 bits>
|
||
// add ip, pc
|
||
// L1: ldr.w pc, [ip]
|
||
// b L1
|
||
//
|
||
// where ip = r12 = 0xc
|
||
|
||
// movw ip, #<lower 16 bits>
|
||
write16(ctx, buf + 2, 0x0c00); // use `ip`
|
||
relocateNoSym(buf, R_ARM_THM_MOVW_ABS_NC, offset);
|
||
|
||
// movt ip, #<upper 16 bits>
|
||
write16(ctx, buf + 6, 0x0c00); // use `ip`
|
||
relocateNoSym(buf + 4, R_ARM_THM_MOVT_ABS, offset);
|
||
|
||
write16(ctx, buf + 8, 0x44fc); // add ip, pc
|
||
write16(ctx, buf + 10, 0xf8dc); // ldr.w pc, [ip] (bottom half)
|
||
write16(ctx, buf + 12, 0xf000); // ldr.w pc, [ip] (upper half)
|
||
write16(ctx, buf + 14, 0xe7fc); // Branch to previous instruction
|
||
}
|
||
}
|
||
|
||
void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
|
||
if (useThumbPLTs(ctx)) {
|
||
addSyntheticLocal(ctx, "$t", STT_NOTYPE, off, 0, isec);
|
||
} else {
|
||
addSyntheticLocal(ctx, "$a", STT_NOTYPE, off, 0, isec);
|
||
addSyntheticLocal(ctx, "$d", STT_NOTYPE, off + 12, 0, isec);
|
||
}
|
||
}
|
||
|
||
bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
|
||
uint64_t branchAddr, const Symbol &s,
|
||
int64_t a) const {
|
||
// If s is an undefined weak symbol and does not have a PLT entry then it will
|
||
// be resolved as a branch to the next instruction. If it is hidden, its
|
||
// binding has been converted to local, so we just check isUndefined() here. A
|
||
// undefined non-weak symbol will have been errored.
|
||
if (s.isUndefined() && !s.isInPlt(ctx))
|
||
return false;
|
||
// A state change from ARM to Thumb and vice versa must go through an
|
||
// interworking thunk if the relocation type is not R_ARM_CALL or
|
||
// R_ARM_THM_CALL.
|
||
switch (type) {
|
||
case R_ARM_PC24:
|
||
case R_ARM_PLT32:
|
||
case R_ARM_JUMP24:
|
||
// Source is ARM, all PLT entries are ARM so no interworking required.
|
||
// Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
|
||
assert(!useThumbPLTs(ctx) &&
|
||
"If the source is ARM, we should not need Thumb PLTs");
|
||
if (s.isFunc() && expr == R_PC && (s.getVA(ctx) & 1))
|
||
return true;
|
||
[[fallthrough]];
|
||
case R_ARM_CALL: {
|
||
uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA(ctx) : s.getVA(ctx);
|
||
return !inBranchRange(type, branchAddr, dst + a) ||
|
||
(!ctx.arg.armHasBlx && (s.getVA(ctx) & 1));
|
||
}
|
||
case R_ARM_THM_JUMP19:
|
||
case R_ARM_THM_JUMP24:
|
||
// Source is Thumb, when all PLT entries are ARM interworking is required.
|
||
// Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
|
||
if ((expr == R_PLT_PC && !useThumbPLTs(ctx)) ||
|
||
(s.isFunc() && (s.getVA(ctx) & 1) == 0))
|
||
return true;
|
||
[[fallthrough]];
|
||
case R_ARM_THM_CALL: {
|
||
uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA(ctx) : s.getVA(ctx);
|
||
return !inBranchRange(type, branchAddr, dst + a) ||
|
||
(!ctx.arg.armHasBlx && (s.getVA(ctx) & 1) == 0);
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
uint32_t ARM::getThunkSectionSpacing() const {
|
||
// The placing of pre-created ThunkSections is controlled by the value
|
||
// thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
|
||
// place the ThunkSection such that all branches from the InputSections
|
||
// prior to the ThunkSection can reach a Thunk placed at the end of the
|
||
// ThunkSection. Graphically:
|
||
// | up to thunkSectionSpacing .text input sections |
|
||
// | ThunkSection |
|
||
// | up to thunkSectionSpacing .text input sections |
|
||
// | ThunkSection |
|
||
|
||
// Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
|
||
// is to match the most common expected case of a Thumb 2 encoded BL, BLX or
|
||
// B.W:
|
||
// ARM B, BL, BLX range +/- 32MiB
|
||
// Thumb B.W, BL, BLX range +/- 16MiB
|
||
// Thumb B<cc>.W range +/- 1MiB
|
||
// If a branch cannot reach a pre-created ThunkSection a new one will be
|
||
// created so we can handle the rare cases of a Thumb 2 conditional branch.
|
||
// We intentionally use a lower size for thunkSectionSpacing than the maximum
|
||
// branch range so the end of the ThunkSection is more likely to be within
|
||
// range of the branch instruction that is furthest away. The value we shorten
|
||
// thunkSectionSpacing by is set conservatively to allow us to create 16,384
|
||
// 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
|
||
// one of the Thunks going out of range.
|
||
|
||
// On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
|
||
// range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
|
||
// ARMv6T2) the range is +/- 4MiB.
|
||
|
||
return (ctx.arg.armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
|
||
: 0x400000 - 0x7500;
|
||
}
|
||
|
||
bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
|
||
if ((dst & 0x1) == 0)
|
||
// Destination is ARM, if ARM caller then Src is already 4-byte aligned.
|
||
// If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
|
||
// destination will be 4 byte aligned.
|
||
src &= ~0x3;
|
||
else
|
||
// Bit 0 == 1 denotes Thumb state, it is not part of the range.
|
||
dst &= ~0x1;
|
||
|
||
int64_t offset = dst - src;
|
||
switch (type) {
|
||
case R_ARM_PC24:
|
||
case R_ARM_PLT32:
|
||
case R_ARM_JUMP24:
|
||
case R_ARM_CALL:
|
||
return llvm::isInt<26>(offset);
|
||
case R_ARM_THM_JUMP19:
|
||
return llvm::isInt<21>(offset);
|
||
case R_ARM_THM_JUMP24:
|
||
case R_ARM_THM_CALL:
|
||
return ctx.arg.armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
|
||
: llvm::isInt<23>(offset);
|
||
default:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// Helper to produce message text when LLD detects that a CALL relocation to
|
||
// a non STT_FUNC symbol that may result in incorrect interworking between ARM
|
||
// or Thumb.
|
||
static void stateChangeWarning(Ctx &ctx, uint8_t *loc, RelType relt,
|
||
const Symbol &s) {
|
||
assert(!s.isFunc());
|
||
const ErrorPlace place = getErrorPlace(ctx, loc);
|
||
std::string hint;
|
||
if (!place.srcLoc.empty())
|
||
hint = "; " + place.srcLoc;
|
||
if (s.isSection()) {
|
||
// Section symbols must be defined and in a section. Users cannot change
|
||
// the type. Use the section name as getName() returns an empty string.
|
||
warn(place.loc + "branch and link relocation: " + toString(relt) +
|
||
" to STT_SECTION symbol " + cast<Defined>(s).section->name +
|
||
" ; interworking not performed" + hint);
|
||
} else {
|
||
// Warn with hint on how to alter the symbol type.
|
||
warn(getErrorLoc(ctx, loc) + "branch and link relocation: " +
|
||
toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
|
||
" interworking not performed; consider using directive '.type " +
|
||
s.getName() +
|
||
", %function' to give symbol type STT_FUNC if interworking between "
|
||
"ARM and Thumb is required" +
|
||
hint);
|
||
}
|
||
}
|
||
|
||
// Rotate a 32-bit unsigned value right by a specified amt of bits.
|
||
static uint32_t rotr32(uint32_t val, uint32_t amt) {
|
||
assert(amt < 32 && "Invalid rotate amount");
|
||
return (val >> amt) | (val << ((32 - amt) & 31));
|
||
}
|
||
|
||
static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group,
|
||
uint32_t val) {
|
||
uint32_t rem, lz;
|
||
do {
|
||
lz = llvm::countl_zero(val) & ~1;
|
||
rem = val;
|
||
if (lz == 32) // implies rem == 0
|
||
break;
|
||
val &= 0xffffff >> lz;
|
||
} while (group--);
|
||
return {rem, lz};
|
||
}
|
||
|
||
void ARM::encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
|
||
int group, bool check) const {
|
||
// ADD/SUB (immediate) add = bit23, sub = bit22
|
||
// immediate field carries is a 12-bit modified immediate, made up of a 4-bit
|
||
// even rotate right and an 8-bit immediate.
|
||
uint32_t opcode = 0x00800000;
|
||
if (val >> 63) {
|
||
opcode = 0x00400000;
|
||
val = -val;
|
||
}
|
||
uint32_t imm, lz;
|
||
std::tie(imm, lz) = getRemAndLZForGroup(group, val);
|
||
uint32_t rot = 0;
|
||
if (lz < 24) {
|
||
imm = rotr32(imm, 24 - lz);
|
||
rot = (lz + 8) << 7;
|
||
}
|
||
if (check && imm > 0xff)
|
||
error(getErrorLoc(ctx, loc) + "unencodeable immediate " + Twine(val).str() +
|
||
" for relocation " + toString(rel.type));
|
||
write32(ctx, loc,
|
||
(read32(ctx, loc) & 0xff3ff000) | opcode | rot | (imm & 0xff));
|
||
}
|
||
|
||
static void encodeLdrGroup(Ctx &ctx, uint8_t *loc, const Relocation &rel,
|
||
uint64_t val, int group) {
|
||
// R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
|
||
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
|
||
// bottom bit to recover S + A - P.
|
||
if (rel.sym->isFunc())
|
||
val &= ~0x1;
|
||
// LDR (literal) u = bit23
|
||
uint32_t opcode = 0x00800000;
|
||
if (val >> 63) {
|
||
opcode = 0x0;
|
||
val = -val;
|
||
}
|
||
uint32_t imm = getRemAndLZForGroup(group, val).first;
|
||
checkUInt(ctx, loc, imm, 12, rel);
|
||
write32(ctx, loc, (read32(ctx, loc) & 0xff7ff000) | opcode | imm);
|
||
}
|
||
|
||
static void encodeLdrsGroup(Ctx &ctx, uint8_t *loc, const Relocation &rel,
|
||
uint64_t val, int group) {
|
||
// R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
|
||
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
|
||
// bottom bit to recover S + A - P.
|
||
if (rel.sym->isFunc())
|
||
val &= ~0x1;
|
||
// LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23
|
||
uint32_t opcode = 0x00800000;
|
||
if (val >> 63) {
|
||
opcode = 0x0;
|
||
val = -val;
|
||
}
|
||
uint32_t imm = getRemAndLZForGroup(group, val).first;
|
||
checkUInt(ctx, loc, imm, 8, rel);
|
||
write32(ctx, loc,
|
||
(read32(ctx, loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) |
|
||
(imm & 0xf));
|
||
}
|
||
|
||
void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
|
||
switch (rel.type) {
|
||
case R_ARM_ABS32:
|
||
case R_ARM_BASE_PREL:
|
||
case R_ARM_GOTOFF32:
|
||
case R_ARM_GOT_BREL:
|
||
case R_ARM_GOT_PREL:
|
||
case R_ARM_REL32:
|
||
case R_ARM_RELATIVE:
|
||
case R_ARM_SBREL32:
|
||
case R_ARM_TARGET1:
|
||
case R_ARM_TARGET2:
|
||
case R_ARM_TLS_GD32:
|
||
case R_ARM_TLS_IE32:
|
||
case R_ARM_TLS_LDM32:
|
||
case R_ARM_TLS_LDO32:
|
||
case R_ARM_TLS_LE32:
|
||
case R_ARM_TLS_TPOFF32:
|
||
case R_ARM_TLS_DTPOFF32:
|
||
write32(ctx, loc, val);
|
||
break;
|
||
case R_ARM_PREL31:
|
||
checkInt(ctx, loc, val, 31, rel);
|
||
write32(ctx, loc, (read32(ctx, loc) & 0x80000000) | (val & ~0x80000000));
|
||
break;
|
||
case R_ARM_CALL: {
|
||
// R_ARM_CALL is used for BL and BLX instructions, for symbols of type
|
||
// STT_FUNC we choose whether to write a BL or BLX depending on the
|
||
// value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
|
||
// not of type STT_FUNC then we must preserve the original instruction.
|
||
assert(rel.sym); // R_ARM_CALL is always reached via relocate().
|
||
bool bit0Thumb = val & 1;
|
||
bool isBlx = (read32(ctx, loc) & 0xfe000000) == 0xfa000000;
|
||
// lld 10.0 and before always used bit0Thumb when deciding to write a BLX
|
||
// even when type not STT_FUNC.
|
||
if (!rel.sym->isFunc() && isBlx != bit0Thumb)
|
||
stateChangeWarning(ctx, loc, rel.type, *rel.sym);
|
||
if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
|
||
// The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
|
||
checkInt(ctx, loc, val, 26, rel);
|
||
write32(ctx, loc,
|
||
0xfa000000 | // opcode
|
||
((val & 2) << 23) | // H
|
||
((val >> 2) & 0x00ffffff)); // imm24
|
||
break;
|
||
}
|
||
// BLX (always unconditional) instruction to an ARM Target, select an
|
||
// unconditional BL.
|
||
write32(ctx, loc, 0xeb000000 | (read32(ctx, loc) & 0x00ffffff));
|
||
// fall through as BL encoding is shared with B
|
||
}
|
||
[[fallthrough]];
|
||
case R_ARM_JUMP24:
|
||
case R_ARM_PC24:
|
||
case R_ARM_PLT32:
|
||
checkInt(ctx, loc, val, 26, rel);
|
||
write32(ctx, loc,
|
||
(read32(ctx, loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
|
||
break;
|
||
case R_ARM_THM_JUMP8:
|
||
// We do a 9 bit check because val is right-shifted by 1 bit.
|
||
checkInt(ctx, loc, val, 9, rel);
|
||
write16(ctx, loc, (read32(ctx, loc) & 0xff00) | ((val >> 1) & 0x00ff));
|
||
break;
|
||
case R_ARM_THM_JUMP11:
|
||
// We do a 12 bit check because val is right-shifted by 1 bit.
|
||
checkInt(ctx, loc, val, 12, rel);
|
||
write16(ctx, loc, (read32(ctx, loc) & 0xf800) | ((val >> 1) & 0x07ff));
|
||
break;
|
||
case R_ARM_THM_JUMP19:
|
||
// Encoding T3: Val = S:J2:J1:imm6:imm11:0
|
||
checkInt(ctx, loc, val, 21, rel);
|
||
write16(ctx, loc,
|
||
(read16(ctx, loc) & 0xfbc0) | // opcode cond
|
||
((val >> 10) & 0x0400) | // S
|
||
((val >> 12) & 0x003f)); // imm6
|
||
write16(ctx, loc + 2,
|
||
0x8000 | // opcode
|
||
((val >> 8) & 0x0800) | // J2
|
||
((val >> 5) & 0x2000) | // J1
|
||
((val >> 1) & 0x07ff)); // imm11
|
||
break;
|
||
case R_ARM_THM_CALL: {
|
||
// R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
|
||
// STT_FUNC we choose whether to write a BL or BLX depending on the
|
||
// value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
|
||
// not of type STT_FUNC then we must preserve the original instruction.
|
||
// PLT entries are always ARM state so we know we need to interwork.
|
||
assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
|
||
bool bit0Thumb = val & 1;
|
||
bool useThumb = bit0Thumb || useThumbPLTs(ctx);
|
||
bool isBlx = (read16(ctx, loc + 2) & 0x1000) == 0;
|
||
// lld 10.0 and before always used bit0Thumb when deciding to write a BLX
|
||
// even when type not STT_FUNC.
|
||
if (!rel.sym->isFunc() && !rel.sym->isInPlt(ctx) && isBlx == useThumb)
|
||
stateChangeWarning(ctx, loc, rel.type, *rel.sym);
|
||
if ((rel.sym->isFunc() || rel.sym->isInPlt(ctx)) ? !useThumb : isBlx) {
|
||
// We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
|
||
// the BLX instruction may only be two byte aligned. This must be done
|
||
// before overflow check.
|
||
val = alignTo(val, 4);
|
||
write16(ctx, loc + 2, read16(ctx, loc + 2) & ~0x1000);
|
||
} else {
|
||
write16(ctx, loc + 2, (read16(ctx, loc + 2) & ~0x1000) | 1 << 12);
|
||
}
|
||
if (!ctx.arg.armJ1J2BranchEncoding) {
|
||
// Older Arm architectures do not support R_ARM_THM_JUMP24 and have
|
||
// different encoding rules and range due to J1 and J2 always being 1.
|
||
checkInt(ctx, loc, val, 23, rel);
|
||
write16(ctx, loc,
|
||
0xf000 | // opcode
|
||
((val >> 12) & 0x07ff)); // imm11
|
||
write16(ctx, loc + 2,
|
||
(read16(ctx, loc + 2) & 0xd000) | // opcode
|
||
0x2800 | // J1 == J2 == 1
|
||
((val >> 1) & 0x07ff)); // imm11
|
||
break;
|
||
}
|
||
}
|
||
// Fall through as rest of encoding is the same as B.W
|
||
[[fallthrough]];
|
||
case R_ARM_THM_JUMP24:
|
||
// Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
|
||
checkInt(ctx, loc, val, 25, rel);
|
||
write16(ctx, loc,
|
||
0xf000 | // opcode
|
||
((val >> 14) & 0x0400) | // S
|
||
((val >> 12) & 0x03ff)); // imm10
|
||
write16(ctx, loc + 2,
|
||
(read16(ctx, loc + 2) & 0xd000) | // opcode
|
||
(((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
|
||
(((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
|
||
((val >> 1) & 0x07ff)); // imm11
|
||
break;
|
||
case R_ARM_MOVW_ABS_NC:
|
||
case R_ARM_MOVW_PREL_NC:
|
||
case R_ARM_MOVW_BREL_NC:
|
||
write32(ctx, loc,
|
||
(read32(ctx, loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
|
||
(val & 0x0fff));
|
||
break;
|
||
case R_ARM_MOVT_ABS:
|
||
case R_ARM_MOVT_PREL:
|
||
case R_ARM_MOVT_BREL:
|
||
write32(ctx, loc,
|
||
(read32(ctx, loc) & ~0x000f0fff) | (((val >> 16) & 0xf000) << 4) |
|
||
((val >> 16) & 0xfff));
|
||
break;
|
||
case R_ARM_THM_MOVT_ABS:
|
||
case R_ARM_THM_MOVT_PREL:
|
||
case R_ARM_THM_MOVT_BREL:
|
||
// Encoding T1: A = imm4:i:imm3:imm8
|
||
|
||
write16(ctx, loc,
|
||
0xf2c0 | // opcode
|
||
((val >> 17) & 0x0400) | // i
|
||
((val >> 28) & 0x000f)); // imm4
|
||
|
||
write16(ctx, loc + 2,
|
||
(read16(ctx, loc + 2) & 0x8f00) | // opcode
|
||
((val >> 12) & 0x7000) | // imm3
|
||
((val >> 16) & 0x00ff)); // imm8
|
||
break;
|
||
case R_ARM_THM_MOVW_ABS_NC:
|
||
case R_ARM_THM_MOVW_PREL_NC:
|
||
case R_ARM_THM_MOVW_BREL_NC:
|
||
// Encoding T3: A = imm4:i:imm3:imm8
|
||
write16(ctx, loc,
|
||
0xf240 | // opcode
|
||
((val >> 1) & 0x0400) | // i
|
||
((val >> 12) & 0x000f)); // imm4
|
||
write16(ctx, loc + 2,
|
||
(read16(ctx, loc + 2) & 0x8f00) | // opcode
|
||
((val << 4) & 0x7000) | // imm3
|
||
(val & 0x00ff)); // imm8
|
||
break;
|
||
case R_ARM_THM_ALU_ABS_G3:
|
||
write16(ctx, loc, (read16(ctx, loc) & ~0x00ff) | ((val >> 24) & 0x00ff));
|
||
break;
|
||
case R_ARM_THM_ALU_ABS_G2_NC:
|
||
write16(ctx, loc, (read16(ctx, loc) & ~0x00ff) | ((val >> 16) & 0x00ff));
|
||
break;
|
||
case R_ARM_THM_ALU_ABS_G1_NC:
|
||
write16(ctx, loc, (read16(ctx, loc) & ~0x00ff) | ((val >> 8) & 0x00ff));
|
||
break;
|
||
case R_ARM_THM_ALU_ABS_G0_NC:
|
||
write16(ctx, loc, (read16(ctx, loc) & ~0x00ff) | (val & 0x00ff));
|
||
break;
|
||
case R_ARM_ALU_PC_G0:
|
||
encodeAluGroup(loc, rel, val, 0, true);
|
||
break;
|
||
case R_ARM_ALU_PC_G0_NC:
|
||
encodeAluGroup(loc, rel, val, 0, false);
|
||
break;
|
||
case R_ARM_ALU_PC_G1:
|
||
encodeAluGroup(loc, rel, val, 1, true);
|
||
break;
|
||
case R_ARM_ALU_PC_G1_NC:
|
||
encodeAluGroup(loc, rel, val, 1, false);
|
||
break;
|
||
case R_ARM_ALU_PC_G2:
|
||
encodeAluGroup(loc, rel, val, 2, true);
|
||
break;
|
||
case R_ARM_LDR_PC_G0:
|
||
encodeLdrGroup(ctx, loc, rel, val, 0);
|
||
break;
|
||
case R_ARM_LDR_PC_G1:
|
||
encodeLdrGroup(ctx, loc, rel, val, 1);
|
||
break;
|
||
case R_ARM_LDR_PC_G2:
|
||
encodeLdrGroup(ctx, loc, rel, val, 2);
|
||
break;
|
||
case R_ARM_LDRS_PC_G0:
|
||
encodeLdrsGroup(ctx, loc, rel, val, 0);
|
||
break;
|
||
case R_ARM_LDRS_PC_G1:
|
||
encodeLdrsGroup(ctx, loc, rel, val, 1);
|
||
break;
|
||
case R_ARM_LDRS_PC_G2:
|
||
encodeLdrsGroup(ctx, loc, rel, val, 2);
|
||
break;
|
||
case R_ARM_THM_ALU_PREL_11_0: {
|
||
// ADR encoding T2 (sub), T3 (add) i:imm3:imm8
|
||
int64_t imm = val;
|
||
uint16_t sub = 0;
|
||
if (imm < 0) {
|
||
imm = -imm;
|
||
sub = 0x00a0;
|
||
}
|
||
checkUInt(ctx, loc, imm, 12, rel);
|
||
write16(ctx, loc, (read16(ctx, loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
|
||
write16(ctx, loc + 2,
|
||
(read16(ctx, loc + 2) & 0x8f00) | (imm & 0x700) << 4 |
|
||
(imm & 0xff));
|
||
break;
|
||
}
|
||
case R_ARM_THM_PC8:
|
||
// ADR and LDR literal encoding T1 positive offset only imm8:00
|
||
// R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
|
||
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
|
||
// bottom bit to recover S + A - Pa.
|
||
if (rel.sym->isFunc())
|
||
val &= ~0x1;
|
||
checkUInt(ctx, loc, val, 10, rel);
|
||
checkAlignment(ctx, loc, val, 4, rel);
|
||
write16(ctx, loc, (read16(ctx, loc) & 0xff00) | (val & 0x3fc) >> 2);
|
||
break;
|
||
case R_ARM_THM_PC12: {
|
||
// LDR (literal) encoding T2, add = (U == '1') imm12
|
||
// imm12 is unsigned
|
||
// R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
|
||
// function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
|
||
// bottom bit to recover S + A - Pa.
|
||
if (rel.sym->isFunc())
|
||
val &= ~0x1;
|
||
int64_t imm12 = val;
|
||
uint16_t u = 0x0080;
|
||
if (imm12 < 0) {
|
||
imm12 = -imm12;
|
||
u = 0;
|
||
}
|
||
checkUInt(ctx, loc, imm12, 12, rel);
|
||
write16(ctx, loc, read16(ctx, loc) | u);
|
||
write16(ctx, loc + 2, (read16(ctx, loc + 2) & 0xf000) | imm12);
|
||
break;
|
||
}
|
||
default:
|
||
llvm_unreachable("unknown relocation");
|
||
}
|
||
}
|
||
|
||
int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
|
||
switch (type) {
|
||
default:
|
||
internalLinkerError(getErrorLoc(ctx, buf),
|
||
"cannot read addend for relocation " + toString(type));
|
||
return 0;
|
||
case R_ARM_ABS32:
|
||
case R_ARM_BASE_PREL:
|
||
case R_ARM_GLOB_DAT:
|
||
case R_ARM_GOTOFF32:
|
||
case R_ARM_GOT_BREL:
|
||
case R_ARM_GOT_PREL:
|
||
case R_ARM_IRELATIVE:
|
||
case R_ARM_REL32:
|
||
case R_ARM_RELATIVE:
|
||
case R_ARM_SBREL32:
|
||
case R_ARM_TARGET1:
|
||
case R_ARM_TARGET2:
|
||
case R_ARM_TLS_DTPMOD32:
|
||
case R_ARM_TLS_DTPOFF32:
|
||
case R_ARM_TLS_GD32:
|
||
case R_ARM_TLS_IE32:
|
||
case R_ARM_TLS_LDM32:
|
||
case R_ARM_TLS_LE32:
|
||
case R_ARM_TLS_LDO32:
|
||
case R_ARM_TLS_TPOFF32:
|
||
return SignExtend64<32>(read32(ctx, buf));
|
||
case R_ARM_PREL31:
|
||
return SignExtend64<31>(read32(ctx, buf));
|
||
case R_ARM_CALL:
|
||
case R_ARM_JUMP24:
|
||
case R_ARM_PC24:
|
||
case R_ARM_PLT32:
|
||
return SignExtend64<26>(read32(ctx, buf) << 2);
|
||
case R_ARM_THM_JUMP8:
|
||
return SignExtend64<9>(read16(ctx, buf) << 1);
|
||
case R_ARM_THM_JUMP11:
|
||
return SignExtend64<12>(read16(ctx, buf) << 1);
|
||
case R_ARM_THM_JUMP19: {
|
||
// Encoding T3: A = S:J2:J1:imm10:imm6:0
|
||
uint16_t hi = read16(ctx, buf);
|
||
uint16_t lo = read16(ctx, buf + 2);
|
||
return SignExtend64<20>(((hi & 0x0400) << 10) | // S
|
||
((lo & 0x0800) << 8) | // J2
|
||
((lo & 0x2000) << 5) | // J1
|
||
((hi & 0x003f) << 12) | // imm6
|
||
((lo & 0x07ff) << 1)); // imm11:0
|
||
}
|
||
case R_ARM_THM_CALL:
|
||
if (!ctx.arg.armJ1J2BranchEncoding) {
|
||
// Older Arm architectures do not support R_ARM_THM_JUMP24 and have
|
||
// different encoding rules and range due to J1 and J2 always being 1.
|
||
uint16_t hi = read16(ctx, buf);
|
||
uint16_t lo = read16(ctx, buf + 2);
|
||
return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
|
||
((lo & 0x7ff) << 1)); // imm11:0
|
||
break;
|
||
}
|
||
[[fallthrough]];
|
||
case R_ARM_THM_JUMP24: {
|
||
// Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
|
||
// I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
|
||
uint16_t hi = read16(ctx, buf);
|
||
uint16_t lo = read16(ctx, buf + 2);
|
||
return SignExtend64<24>(((hi & 0x0400) << 14) | // S
|
||
(~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
|
||
(~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
|
||
((hi & 0x003ff) << 12) | // imm0
|
||
((lo & 0x007ff) << 1)); // imm11:0
|
||
}
|
||
// ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
|
||
// MOVT is in the range -32768 <= A < 32768
|
||
case R_ARM_MOVW_ABS_NC:
|
||
case R_ARM_MOVT_ABS:
|
||
case R_ARM_MOVW_PREL_NC:
|
||
case R_ARM_MOVT_PREL:
|
||
case R_ARM_MOVW_BREL_NC:
|
||
case R_ARM_MOVT_BREL: {
|
||
uint64_t val = read32(ctx, buf) & 0x000f0fff;
|
||
return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
|
||
}
|
||
case R_ARM_THM_MOVW_ABS_NC:
|
||
case R_ARM_THM_MOVT_ABS:
|
||
case R_ARM_THM_MOVW_PREL_NC:
|
||
case R_ARM_THM_MOVT_PREL:
|
||
case R_ARM_THM_MOVW_BREL_NC:
|
||
case R_ARM_THM_MOVT_BREL: {
|
||
// Encoding T3: A = imm4:i:imm3:imm8
|
||
uint16_t hi = read16(ctx, buf);
|
||
uint16_t lo = read16(ctx, buf + 2);
|
||
return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
|
||
((hi & 0x0400) << 1) | // i
|
||
((lo & 0x7000) >> 4) | // imm3
|
||
(lo & 0x00ff)); // imm8
|
||
}
|
||
case R_ARM_THM_ALU_ABS_G0_NC:
|
||
case R_ARM_THM_ALU_ABS_G1_NC:
|
||
case R_ARM_THM_ALU_ABS_G2_NC:
|
||
case R_ARM_THM_ALU_ABS_G3:
|
||
return read16(ctx, buf) & 0xff;
|
||
case R_ARM_ALU_PC_G0:
|
||
case R_ARM_ALU_PC_G0_NC:
|
||
case R_ARM_ALU_PC_G1:
|
||
case R_ARM_ALU_PC_G1_NC:
|
||
case R_ARM_ALU_PC_G2: {
|
||
// 12-bit immediate is a modified immediate made up of a 4-bit even
|
||
// right rotation and 8-bit constant. After the rotation the value
|
||
// is zero-extended. When bit 23 is set the instruction is an add, when
|
||
// bit 22 is set it is a sub.
|
||
uint32_t instr = read32(ctx, buf);
|
||
uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
|
||
return (instr & 0x00400000) ? -val : val;
|
||
}
|
||
case R_ARM_LDR_PC_G0:
|
||
case R_ARM_LDR_PC_G1:
|
||
case R_ARM_LDR_PC_G2: {
|
||
// ADR (literal) add = bit23, sub = bit22
|
||
// LDR (literal) u = bit23 unsigned imm12
|
||
bool u = read32(ctx, buf) & 0x00800000;
|
||
uint32_t imm12 = read32(ctx, buf) & 0xfff;
|
||
return u ? imm12 : -imm12;
|
||
}
|
||
case R_ARM_LDRS_PC_G0:
|
||
case R_ARM_LDRS_PC_G1:
|
||
case R_ARM_LDRS_PC_G2: {
|
||
// LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8
|
||
uint32_t opcode = read32(ctx, buf);
|
||
bool u = opcode & 0x00800000;
|
||
uint32_t imm4l = opcode & 0xf;
|
||
uint32_t imm4h = (opcode & 0xf00) >> 4;
|
||
return u ? (imm4h | imm4l) : -(imm4h | imm4l);
|
||
}
|
||
case R_ARM_THM_ALU_PREL_11_0: {
|
||
// Thumb2 ADR, which is an alias for a sub or add instruction with an
|
||
// unsigned immediate.
|
||
// ADR encoding T2 (sub), T3 (add) i:imm3:imm8
|
||
uint16_t hi = read16(ctx, buf);
|
||
uint16_t lo = read16(ctx, buf + 2);
|
||
uint64_t imm = (hi & 0x0400) << 1 | // i
|
||
(lo & 0x7000) >> 4 | // imm3
|
||
(lo & 0x00ff); // imm8
|
||
// For sub, addend is negative, add is positive.
|
||
return (hi & 0x00f0) ? -imm : imm;
|
||
}
|
||
case R_ARM_THM_PC8:
|
||
// ADR and LDR (literal) encoding T1
|
||
// From ELF for the ARM Architecture the initial signed addend is formed
|
||
// from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
|
||
// this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
|
||
return ((((read16(ctx, buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
|
||
case R_ARM_THM_PC12: {
|
||
// LDR (literal) encoding T2, add = (U == '1') imm12
|
||
bool u = read16(ctx, buf) & 0x0080;
|
||
uint64_t imm12 = read16(ctx, buf + 2) & 0x0fff;
|
||
return u ? imm12 : -imm12;
|
||
}
|
||
case R_ARM_NONE:
|
||
case R_ARM_V4BX:
|
||
case R_ARM_JUMP_SLOT:
|
||
// These relocations are defined as not having an implicit addend.
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static bool isArmMapSymbol(const Symbol *b) {
|
||
return b->getName() == "$a" || b->getName().starts_with("$a.");
|
||
}
|
||
|
||
static bool isThumbMapSymbol(const Symbol *s) {
|
||
return s->getName() == "$t" || s->getName().starts_with("$t.");
|
||
}
|
||
|
||
static bool isDataMapSymbol(const Symbol *b) {
|
||
return b->getName() == "$d" || b->getName().starts_with("$d.");
|
||
}
|
||
|
||
void elf::sortArmMappingSymbols() {
|
||
// For each input section make sure the mapping symbols are sorted in
|
||
// ascending order.
|
||
for (auto &kv : sectionMap) {
|
||
SmallVector<const Defined *, 0> &mapSyms = kv.second;
|
||
llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
|
||
return a->value < b->value;
|
||
});
|
||
}
|
||
}
|
||
|
||
void elf::addArmInputSectionMappingSymbols(Ctx &ctx) {
|
||
// Collect mapping symbols for every executable input sections.
|
||
// The linker generated mapping symbols for all the synthetic
|
||
// sections are adding into the sectionmap through the function
|
||
// addArmSyntheitcSectionMappingSymbol.
|
||
for (ELFFileBase *file : ctx.objectFiles) {
|
||
for (Symbol *sym : file->getLocalSymbols()) {
|
||
auto *def = dyn_cast<Defined>(sym);
|
||
if (!def)
|
||
continue;
|
||
if (!isArmMapSymbol(def) && !isDataMapSymbol(def) &&
|
||
!isThumbMapSymbol(def))
|
||
continue;
|
||
if (auto *sec = cast_if_present<InputSection>(def->section))
|
||
if (sec->flags & SHF_EXECINSTR)
|
||
sectionMap[sec].push_back(def);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Synthetic sections are not backed by an ELF file where we can access the
|
||
// symbol table, instead mapping symbols added to synthetic sections are stored
|
||
// in the synthetic symbol table. Due to the presence of strip (--strip-all),
|
||
// we can not rely on the synthetic symbol table retaining the mapping symbols.
|
||
// Instead we record the mapping symbols locally.
|
||
void elf::addArmSyntheticSectionMappingSymbol(Defined *sym) {
|
||
if (!isArmMapSymbol(sym) && !isDataMapSymbol(sym) && !isThumbMapSymbol(sym))
|
||
return;
|
||
if (auto *sec = cast_if_present<InputSection>(sym->section))
|
||
if (sec->flags & SHF_EXECINSTR)
|
||
sectionMap[sec].push_back(sym);
|
||
}
|
||
|
||
static void toLittleEndianInstructions(uint8_t *buf, uint64_t start,
|
||
uint64_t end, uint64_t width) {
|
||
CodeState curState = static_cast<CodeState>(width);
|
||
if (curState == CodeState::Arm)
|
||
for (uint64_t i = start; i < end; i += width)
|
||
write32le(buf + i, read32be(buf + i));
|
||
|
||
if (curState == CodeState::Thumb)
|
||
for (uint64_t i = start; i < end; i += width)
|
||
write16le(buf + i, read16be(buf + i));
|
||
}
|
||
|
||
// Arm BE8 big endian format requires instructions to be little endian, with
|
||
// the initial contents big-endian. Convert the big-endian instructions to
|
||
// little endian leaving literal data untouched. We use mapping symbols to
|
||
// identify half open intervals of Arm code [$a, non $a) and Thumb code
|
||
// [$t, non $t) and convert these to little endian a word or half word at a
|
||
// time respectively.
|
||
void elf::convertArmInstructionstoBE8(InputSection *sec, uint8_t *buf) {
|
||
auto it = sectionMap.find(sec);
|
||
if (it == sectionMap.end())
|
||
return;
|
||
|
||
SmallVector<const Defined *, 0> &mapSyms = it->second;
|
||
|
||
if (mapSyms.empty())
|
||
return;
|
||
|
||
CodeState curState = CodeState::Data;
|
||
uint64_t start = 0, width = 0, size = sec->getSize();
|
||
for (auto &msym : mapSyms) {
|
||
CodeState newState = CodeState::Data;
|
||
if (isThumbMapSymbol(msym))
|
||
newState = CodeState::Thumb;
|
||
else if (isArmMapSymbol(msym))
|
||
newState = CodeState::Arm;
|
||
|
||
if (newState == curState)
|
||
continue;
|
||
|
||
if (curState != CodeState::Data) {
|
||
width = static_cast<uint64_t>(curState);
|
||
toLittleEndianInstructions(buf, start, msym->value, width);
|
||
}
|
||
start = msym->value;
|
||
curState = newState;
|
||
}
|
||
|
||
// Passed last mapping symbol, may need to reverse
|
||
// up to end of section.
|
||
if (curState != CodeState::Data) {
|
||
width = static_cast<uint64_t>(curState);
|
||
toLittleEndianInstructions(buf, start, size, width);
|
||
}
|
||
}
|
||
|
||
// The Arm Cortex-M Security Extensions (CMSE) splits a system into two parts;
|
||
// the non-secure and secure states with the secure state inaccessible from the
|
||
// non-secure state, apart from an area of memory in secure state called the
|
||
// secure gateway which is accessible from non-secure state. The secure gateway
|
||
// contains one or more entry points which must start with a landing pad
|
||
// instruction SG. Arm recommends that the secure gateway consists only of
|
||
// secure gateway veneers, which are made up of a SG instruction followed by a
|
||
// branch to the destination in secure state. Full details can be found in Arm
|
||
// v8-M Security Extensions Requirements on Development Tools.
|
||
//
|
||
// The CMSE model of software development requires the non-secure and secure
|
||
// states to be developed as two separate programs. The non-secure developer is
|
||
// provided with an import library defining symbols describing the entry points
|
||
// in the secure gateway. No additional linker support is required for the
|
||
// non-secure state.
|
||
//
|
||
// Development of the secure state requires linker support to manage the secure
|
||
// gateway veneers. The management consists of:
|
||
// - Creation of new secure gateway veneers based on symbol conventions.
|
||
// - Checking the address of existing secure gateway veneers.
|
||
// - Warning when existing secure gateway veneers removed.
|
||
//
|
||
// The secure gateway veneers are created in an import library, which is just an
|
||
// ELF object with a symbol table. The import library is controlled by two
|
||
// command line options:
|
||
// --in-implib (specify an input import library from a previous revision of the
|
||
// program).
|
||
// --out-implib (specify an output import library to be created by the linker).
|
||
//
|
||
// The input import library is used to manage consistency of the secure entry
|
||
// points. The output import library is for new and updated secure entry points.
|
||
//
|
||
// The symbol convention that identifies secure entry functions is the prefix
|
||
// __acle_se_ for a symbol called name the linker is expected to create a secure
|
||
// gateway veneer if symbols __acle_se_name and name have the same address.
|
||
// After creating a secure gateway veneer the symbol name labels the secure
|
||
// gateway veneer and the __acle_se_name labels the function definition.
|
||
//
|
||
// The LLD implementation:
|
||
// - Reads an existing import library with importCmseSymbols().
|
||
// - Determines which new secure gateway veneers to create and redirects calls
|
||
// within the secure state to the __acle_se_ prefixed symbol with
|
||
// processArmCmseSymbols().
|
||
// - Models the SG veneers as a synthetic section.
|
||
|
||
// Initialize symbols. symbols is a parallel array to the corresponding ELF
|
||
// symbol table.
|
||
template <class ELFT> void ObjFile<ELFT>::importCmseSymbols() {
|
||
ArrayRef<Elf_Sym> eSyms = getELFSyms<ELFT>();
|
||
// Error for local symbols. The symbol at index 0 is LOCAL. So skip it.
|
||
for (size_t i = 1, end = firstGlobal; i != end; ++i) {
|
||
errorOrWarn("CMSE symbol '" + CHECK(eSyms[i].getName(stringTable), this) +
|
||
"' in import library '" + toString(this) + "' is not global");
|
||
}
|
||
|
||
for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
|
||
const Elf_Sym &eSym = eSyms[i];
|
||
Defined *sym = reinterpret_cast<Defined *>(make<SymbolUnion>());
|
||
|
||
// Initialize symbol fields.
|
||
memset(static_cast<void *>(sym), 0, sizeof(Symbol));
|
||
sym->setName(CHECK(eSyms[i].getName(stringTable), this));
|
||
sym->value = eSym.st_value;
|
||
sym->size = eSym.st_size;
|
||
sym->type = eSym.getType();
|
||
sym->binding = eSym.getBinding();
|
||
sym->stOther = eSym.st_other;
|
||
|
||
if (eSym.st_shndx != SHN_ABS) {
|
||
error("CMSE symbol '" + sym->getName() + "' in import library '" +
|
||
toString(this) + "' is not absolute");
|
||
continue;
|
||
}
|
||
|
||
if (!(eSym.st_value & 1) || (eSym.getType() != STT_FUNC)) {
|
||
error("CMSE symbol '" + sym->getName() + "' in import library '" +
|
||
toString(this) + "' is not a Thumb function definition");
|
||
continue;
|
||
}
|
||
|
||
if (ctx.symtab->cmseImportLib.count(sym->getName())) {
|
||
error("CMSE symbol '" + sym->getName() +
|
||
"' is multiply defined in import library '" + toString(this) + "'");
|
||
continue;
|
||
}
|
||
|
||
if (eSym.st_size != ACLESESYM_SIZE) {
|
||
warn("CMSE symbol '" + sym->getName() + "' in import library '" +
|
||
toString(this) + "' does not have correct size of " +
|
||
Twine(ACLESESYM_SIZE) + " bytes");
|
||
}
|
||
|
||
ctx.symtab->cmseImportLib[sym->getName()] = sym;
|
||
}
|
||
}
|
||
|
||
// Check symbol attributes of the acleSeSym, sym pair.
|
||
// Both symbols should be global/weak Thumb code symbol definitions.
|
||
static std::string checkCmseSymAttributes(Symbol *acleSeSym, Symbol *sym) {
|
||
auto check = [](Symbol *s, StringRef type) -> std::optional<std::string> {
|
||
auto d = dyn_cast_or_null<Defined>(s);
|
||
if (!(d && d->isFunc() && (d->value & 1)))
|
||
return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
|
||
s->getName() + "' is not a Thumb function definition")
|
||
.str();
|
||
if (!d->section)
|
||
return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
|
||
s->getName() + "' cannot be an absolute symbol")
|
||
.str();
|
||
return std::nullopt;
|
||
};
|
||
for (auto [sym, type] :
|
||
{std::make_pair(acleSeSym, "special"), std::make_pair(sym, "entry")})
|
||
if (auto err = check(sym, type))
|
||
return *err;
|
||
return "";
|
||
}
|
||
|
||
// Look for [__acle_se_<sym>, <sym>] pairs, as specified in the Cortex-M
|
||
// Security Extensions specification.
|
||
// 1) <sym> : A standard function name.
|
||
// 2) __acle_se_<sym> : A special symbol that prefixes the standard function
|
||
// name with __acle_se_.
|
||
// Both these symbols are Thumb function symbols with external linkage.
|
||
// <sym> may be redefined in .gnu.sgstubs.
|
||
void elf::processArmCmseSymbols(Ctx &ctx) {
|
||
if (!ctx.arg.cmseImplib)
|
||
return;
|
||
// Only symbols with external linkage end up in ctx.symtab, so no need to do
|
||
// linkage checks. Only check symbol type.
|
||
for (Symbol *acleSeSym : ctx.symtab->getSymbols()) {
|
||
if (!acleSeSym->getName().starts_with(ACLESESYM_PREFIX))
|
||
continue;
|
||
// If input object build attributes do not support CMSE, error and disable
|
||
// further scanning for <sym>, __acle_se_<sym> pairs.
|
||
if (!ctx.arg.armCMSESupport) {
|
||
error("CMSE is only supported by ARMv8-M architecture or later");
|
||
ctx.arg.cmseImplib = false;
|
||
break;
|
||
}
|
||
|
||
// Try to find the associated symbol definition.
|
||
// Symbol must have external linkage.
|
||
StringRef name = acleSeSym->getName().substr(std::strlen(ACLESESYM_PREFIX));
|
||
Symbol *sym = ctx.symtab->find(name);
|
||
if (!sym) {
|
||
error(toString(acleSeSym->file) + ": cmse special symbol '" +
|
||
acleSeSym->getName() +
|
||
"' detected, but no associated entry function definition '" + name +
|
||
"' with external linkage found");
|
||
continue;
|
||
}
|
||
|
||
std::string errMsg = checkCmseSymAttributes(acleSeSym, sym);
|
||
if (!errMsg.empty()) {
|
||
error(errMsg);
|
||
continue;
|
||
}
|
||
|
||
// <sym> may be redefined later in the link in .gnu.sgstubs
|
||
ctx.symtab->cmseSymMap[name] = {acleSeSym, sym};
|
||
}
|
||
|
||
// If this is an Arm CMSE secure app, replace references to entry symbol <sym>
|
||
// with its corresponding special symbol __acle_se_<sym>.
|
||
parallelForEach(ctx.objectFiles, [&](InputFile *file) {
|
||
MutableArrayRef<Symbol *> syms = file->getMutableSymbols();
|
||
for (size_t i = 0, e = syms.size(); i != e; ++i) {
|
||
StringRef symName = syms[i]->getName();
|
||
if (ctx.symtab->cmseSymMap.count(symName))
|
||
syms[i] = ctx.symtab->cmseSymMap[symName].acleSeSym;
|
||
}
|
||
});
|
||
}
|
||
|
||
class elf::ArmCmseSGVeneer {
|
||
public:
|
||
ArmCmseSGVeneer(Symbol *sym, Symbol *acleSeSym,
|
||
std::optional<uint64_t> addr = std::nullopt)
|
||
: sym(sym), acleSeSym(acleSeSym), entAddr{addr} {}
|
||
static const size_t size{ACLESESYM_SIZE};
|
||
const std::optional<uint64_t> getAddr() const { return entAddr; };
|
||
|
||
Symbol *sym;
|
||
Symbol *acleSeSym;
|
||
uint64_t offset = 0;
|
||
|
||
private:
|
||
const std::optional<uint64_t> entAddr;
|
||
};
|
||
|
||
ArmCmseSGSection::ArmCmseSGSection(Ctx &ctx)
|
||
: SyntheticSection(ctx, llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR,
|
||
llvm::ELF::SHT_PROGBITS,
|
||
/*alignment=*/32, ".gnu.sgstubs") {
|
||
entsize = ACLESESYM_SIZE;
|
||
// The range of addresses used in the CMSE import library should be fixed.
|
||
for (auto &[_, sym] : ctx.symtab->cmseImportLib) {
|
||
if (impLibMaxAddr <= sym->value)
|
||
impLibMaxAddr = sym->value + sym->size;
|
||
}
|
||
if (ctx.symtab->cmseSymMap.empty())
|
||
return;
|
||
addMappingSymbol();
|
||
for (auto &[_, entryFunc] : ctx.symtab->cmseSymMap)
|
||
addSGVeneer(cast<Defined>(entryFunc.acleSeSym),
|
||
cast<Defined>(entryFunc.sym));
|
||
for (auto &[_, sym] : ctx.symtab->cmseImportLib) {
|
||
if (!ctx.symtab->inCMSEOutImpLib.count(sym->getName()))
|
||
warn("entry function '" + sym->getName() +
|
||
"' from CMSE import library is not present in secure application");
|
||
}
|
||
|
||
if (!ctx.symtab->cmseImportLib.empty() && ctx.arg.cmseOutputLib.empty()) {
|
||
for (auto &[_, entryFunc] : ctx.symtab->cmseSymMap) {
|
||
Symbol *sym = entryFunc.sym;
|
||
if (!ctx.symtab->inCMSEOutImpLib.count(sym->getName()))
|
||
warn("new entry function '" + sym->getName() +
|
||
"' introduced but no output import library specified");
|
||
}
|
||
}
|
||
}
|
||
|
||
void ArmCmseSGSection::addSGVeneer(Symbol *acleSeSym, Symbol *sym) {
|
||
entries.emplace_back(acleSeSym, sym);
|
||
if (ctx.symtab->cmseImportLib.count(sym->getName()))
|
||
ctx.symtab->inCMSEOutImpLib[sym->getName()] = true;
|
||
// Symbol addresses different, nothing to do.
|
||
if (acleSeSym->file != sym->file ||
|
||
cast<Defined>(*acleSeSym).value != cast<Defined>(*sym).value)
|
||
return;
|
||
// Only secure symbols with values equal to that of it's non-secure
|
||
// counterpart needs to be in the .gnu.sgstubs section.
|
||
ArmCmseSGVeneer *ss = nullptr;
|
||
if (ctx.symtab->cmseImportLib.count(sym->getName())) {
|
||
Defined *impSym = ctx.symtab->cmseImportLib[sym->getName()];
|
||
ss = make<ArmCmseSGVeneer>(sym, acleSeSym, impSym->value);
|
||
} else {
|
||
ss = make<ArmCmseSGVeneer>(sym, acleSeSym);
|
||
++newEntries;
|
||
}
|
||
sgVeneers.emplace_back(ss);
|
||
}
|
||
|
||
void ArmCmseSGSection::writeTo(uint8_t *buf) {
|
||
for (ArmCmseSGVeneer *s : sgVeneers) {
|
||
uint8_t *p = buf + s->offset;
|
||
write16(ctx, p + 0, 0xe97f); // SG
|
||
write16(ctx, p + 2, 0xe97f);
|
||
write16(ctx, p + 4, 0xf000); // B.W S
|
||
write16(ctx, p + 6, 0xb000);
|
||
ctx.target->relocateNoSym(p + 4, R_ARM_THM_JUMP24,
|
||
s->acleSeSym->getVA(ctx) -
|
||
(getVA() + s->offset + s->size));
|
||
}
|
||
}
|
||
|
||
void ArmCmseSGSection::addMappingSymbol() {
|
||
addSyntheticLocal(ctx, "$t", STT_NOTYPE, /*off=*/0, /*size=*/0, *this);
|
||
}
|
||
|
||
size_t ArmCmseSGSection::getSize() const {
|
||
if (sgVeneers.empty())
|
||
return (impLibMaxAddr ? impLibMaxAddr - getVA() : 0) + newEntries * entsize;
|
||
|
||
return entries.size() * entsize;
|
||
}
|
||
|
||
void ArmCmseSGSection::finalizeContents() {
|
||
if (sgVeneers.empty())
|
||
return;
|
||
|
||
auto it =
|
||
std::stable_partition(sgVeneers.begin(), sgVeneers.end(),
|
||
[](auto *i) { return i->getAddr().has_value(); });
|
||
std::sort(sgVeneers.begin(), it, [](auto *a, auto *b) {
|
||
return a->getAddr().value() < b->getAddr().value();
|
||
});
|
||
// This is the partition of the veneers with fixed addresses.
|
||
uint64_t addr = (*sgVeneers.begin())->getAddr().has_value()
|
||
? (*sgVeneers.begin())->getAddr().value()
|
||
: getVA();
|
||
// Check if the start address of '.gnu.sgstubs' correspond to the
|
||
// linker-synthesized veneer with the lowest address.
|
||
if ((getVA() & ~1) != (addr & ~1)) {
|
||
error("start address of '.gnu.sgstubs' is different from previous link");
|
||
return;
|
||
}
|
||
|
||
for (size_t i = 0; i < sgVeneers.size(); ++i) {
|
||
ArmCmseSGVeneer *s = sgVeneers[i];
|
||
s->offset = i * s->size;
|
||
Defined(ctx, file, StringRef(), s->sym->binding, s->sym->stOther,
|
||
s->sym->type, s->offset | 1, s->size, this)
|
||
.overwrite(*s->sym);
|
||
}
|
||
}
|
||
|
||
// Write the CMSE import library to disk.
|
||
// The CMSE import library is a relocatable object with only a symbol table.
|
||
// The symbols are copies of the (absolute) symbols of the secure gateways
|
||
// in the executable output by this link.
|
||
// See Arm® v8-M Security Extensions: Requirements on Development Tools
|
||
// https://developer.arm.com/documentation/ecm0359818/latest
|
||
template <typename ELFT> void elf::writeARMCmseImportLib(Ctx &ctx) {
|
||
StringTableSection *shstrtab =
|
||
make<StringTableSection>(ctx, ".shstrtab", /*dynamic=*/false);
|
||
StringTableSection *strtab =
|
||
make<StringTableSection>(ctx, ".strtab", /*dynamic=*/false);
|
||
SymbolTableBaseSection *impSymTab =
|
||
make<SymbolTableSection<ELFT>>(ctx, *strtab);
|
||
|
||
SmallVector<std::pair<OutputSection *, SyntheticSection *>, 0> osIsPairs;
|
||
osIsPairs.emplace_back(make<OutputSection>(ctx, strtab->name, 0, 0), strtab);
|
||
osIsPairs.emplace_back(make<OutputSection>(ctx, impSymTab->name, 0, 0),
|
||
impSymTab);
|
||
osIsPairs.emplace_back(make<OutputSection>(ctx, shstrtab->name, 0, 0),
|
||
shstrtab);
|
||
|
||
llvm::sort(ctx.symtab->cmseSymMap, [&](const auto &a, const auto &b) {
|
||
return a.second.sym->getVA(ctx) < b.second.sym->getVA(ctx);
|
||
});
|
||
// Copy the secure gateway entry symbols to the import library symbol table.
|
||
for (auto &p : ctx.symtab->cmseSymMap) {
|
||
Defined *d = cast<Defined>(p.second.sym);
|
||
impSymTab->addSymbol(makeDefined(
|
||
ctx, ctx.internalFile, d->getName(), d->computeBinding(ctx),
|
||
/*stOther=*/0, STT_FUNC, d->getVA(ctx), d->getSize(), nullptr));
|
||
}
|
||
|
||
size_t idx = 0;
|
||
uint64_t off = sizeof(typename ELFT::Ehdr);
|
||
for (auto &[osec, isec] : osIsPairs) {
|
||
osec->sectionIndex = ++idx;
|
||
osec->recordSection(isec);
|
||
osec->finalizeInputSections();
|
||
osec->shName = shstrtab->addString(osec->name);
|
||
osec->size = isec->getSize();
|
||
isec->finalizeContents();
|
||
osec->offset = alignToPowerOf2(off, osec->addralign);
|
||
off = osec->offset + osec->size;
|
||
}
|
||
|
||
const uint64_t sectionHeaderOff = alignToPowerOf2(off, ctx.arg.wordsize);
|
||
const auto shnum = osIsPairs.size() + 1;
|
||
const uint64_t fileSize =
|
||
sectionHeaderOff + shnum * sizeof(typename ELFT::Shdr);
|
||
const unsigned flags =
|
||
ctx.arg.mmapOutputFile ? 0 : (unsigned)FileOutputBuffer::F_no_mmap;
|
||
unlinkAsync(ctx.arg.cmseOutputLib);
|
||
Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
|
||
FileOutputBuffer::create(ctx.arg.cmseOutputLib, fileSize, flags);
|
||
if (!bufferOrErr) {
|
||
error("failed to open " + ctx.arg.cmseOutputLib + ": " +
|
||
llvm::toString(bufferOrErr.takeError()));
|
||
return;
|
||
}
|
||
|
||
// Write the ELF Header
|
||
std::unique_ptr<FileOutputBuffer> &buffer = *bufferOrErr;
|
||
uint8_t *const buf = buffer->getBufferStart();
|
||
memcpy(buf, "\177ELF", 4);
|
||
auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
|
||
eHdr->e_type = ET_REL;
|
||
eHdr->e_entry = 0;
|
||
eHdr->e_shoff = sectionHeaderOff;
|
||
eHdr->e_ident[EI_CLASS] = ELFCLASS32;
|
||
eHdr->e_ident[EI_DATA] = ctx.arg.isLE ? ELFDATA2LSB : ELFDATA2MSB;
|
||
eHdr->e_ident[EI_VERSION] = EV_CURRENT;
|
||
eHdr->e_ident[EI_OSABI] = ctx.arg.osabi;
|
||
eHdr->e_ident[EI_ABIVERSION] = 0;
|
||
eHdr->e_machine = EM_ARM;
|
||
eHdr->e_version = EV_CURRENT;
|
||
eHdr->e_flags = ctx.arg.eflags;
|
||
eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
|
||
eHdr->e_phnum = 0;
|
||
eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
|
||
eHdr->e_phoff = 0;
|
||
eHdr->e_phentsize = 0;
|
||
eHdr->e_shnum = shnum;
|
||
eHdr->e_shstrndx = shstrtab->getParent()->sectionIndex;
|
||
|
||
// Write the section header table.
|
||
auto *sHdrs = reinterpret_cast<typename ELFT::Shdr *>(buf + eHdr->e_shoff);
|
||
for (auto &[osec, _] : osIsPairs)
|
||
osec->template writeHeaderTo<ELFT>(++sHdrs);
|
||
|
||
// Write section contents to a mmap'ed file.
|
||
{
|
||
parallel::TaskGroup tg;
|
||
for (auto &[osec, _] : osIsPairs)
|
||
osec->template writeTo<ELFT>(ctx, buf + osec->offset, tg);
|
||
}
|
||
|
||
if (auto e = buffer->commit())
|
||
Fatal(ctx) << "failed to write output '" << buffer->getPath()
|
||
<< "': " << std::move(e);
|
||
}
|
||
|
||
void elf::setARMTargetInfo(Ctx &ctx) { ctx.target.reset(new ARM(ctx)); }
|
||
|
||
template void elf::writeARMCmseImportLib<ELF32LE>(Ctx &);
|
||
template void elf::writeARMCmseImportLib<ELF32BE>(Ctx &);
|
||
template void elf::writeARMCmseImportLib<ELF64LE>(Ctx &);
|
||
template void elf::writeARMCmseImportLib<ELF64BE>(Ctx &);
|
||
|
||
template void ObjFile<ELF32LE>::importCmseSymbols();
|
||
template void ObjFile<ELF32BE>::importCmseSymbols();
|
||
template void ObjFile<ELF64LE>::importCmseSymbols();
|
||
template void ObjFile<ELF64BE>::importCmseSymbols();
|