llvm-project/mlir/lib/IR/MLIRContext.cpp
MLIR Team 642f3e8847 Add tensor type.
PiperOrigin-RevId: 201830793
2019-03-29 12:24:58 -07:00

309 lines
11 KiB
C++

//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Allocator.h"
using namespace mlir;
using namespace llvm;
namespace {
struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType*> {
// Functions are uniqued based on their inputs and results.
using KeyTy = std::pair<ArrayRef<Type*>, ArrayRef<Type*>>;
using DenseMapInfo<FunctionType*>::getHashValue;
using DenseMapInfo<FunctionType*>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine(hash_combine_range(key.first.begin(), key.first.end()),
hash_combine_range(key.second.begin(),
key.second.end()));
}
static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == KeyTy(rhs->getInputs(), rhs->getResults());
}
};
struct VectorTypeKeyInfo : DenseMapInfo<VectorType*> {
// Vectors are uniqued based on their element type and shape.
using KeyTy = std::pair<Type*, ArrayRef<unsigned>>;
using DenseMapInfo<VectorType*>::getHashValue;
using DenseMapInfo<VectorType*>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine(DenseMapInfo<Type*>::getHashValue(key.first),
hash_combine_range(key.second.begin(),
key.second.end()));
}
static bool isEqual(const KeyTy &lhs, const VectorType *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
}
};
struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType*> {
// Ranked tensors are uniqued based on their element type and shape.
using KeyTy = std::pair<Type*, ArrayRef<int>>;
using DenseMapInfo<RankedTensorType*>::getHashValue;
using DenseMapInfo<RankedTensorType*>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine(DenseMapInfo<Type*>::getHashValue(key.first),
hash_combine_range(key.second.begin(),
key.second.end()));
}
static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
}
};
struct UnrankedTensorTypeKeyInfo : DenseMapInfo<UnrankedTensorType*> {
// Ranked tensors are uniqued based on their element type and shape.
using KeyTy = Type*;
using DenseMapInfo<UnrankedTensorType*>::getHashValue;
using DenseMapInfo<UnrankedTensorType*>::isEqual;
static unsigned getHashValue(KeyTy key) {
return hash_combine(DenseMapInfo<Type*>::getHashValue(key));
}
static bool isEqual(const KeyTy &lhs, const UnrankedTensorType *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == rhs->getElementType();
}
};
} // end anonymous namespace.
namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
/// We put immortal objects into this allocator.
llvm::BumpPtrAllocator allocator;
// Primitive type uniquing.
PrimitiveType *primitives[int(TypeKind::LAST_PRIMITIVE_TYPE)+1] = { nullptr };
/// Function type uniquing.
using FunctionTypeSet = DenseSet<FunctionType*, FunctionTypeKeyInfo>;
FunctionTypeSet functions;
/// Vector type uniquing.
using VectorTypeSet = DenseSet<VectorType*, VectorTypeKeyInfo>;
VectorTypeSet vectors;
/// Ranked tensor type uniquing.
using RankedTensorTypeSet = DenseSet<RankedTensorType*,
RankedTensorTypeKeyInfo>;
RankedTensorTypeSet rankedTensors;
/// Unranked tensor type uniquing.
DenseMap<Type*, UnrankedTensorType*> unrankedTensors;
public:
/// Copy the specified array of elements into memory managed by our bump
/// pointer allocator. This assumes the elements are all PODs.
template<typename T>
ArrayRef<T> copyInto(ArrayRef<T> elements) {
auto result = allocator.Allocate<T>(elements.size());
std::uninitialized_copy(elements.begin(), elements.end(), result);
return ArrayRef<T>(result, elements.size());
}
};
} // end namespace mlir
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
}
MLIRContext::~MLIRContext() {
}
PrimitiveType::PrimitiveType(TypeKind kind, MLIRContext *context)
: Type(kind, context) {
}
PrimitiveType *PrimitiveType::get(TypeKind kind, MLIRContext *context) {
assert(kind <= TypeKind::LAST_PRIMITIVE_TYPE && "Not a primitive type kind");
auto &impl = context->getImpl();
// We normally have these types.
if (impl.primitives[(int)kind])
return impl.primitives[(int)kind];
// On the first use, we allocate them into the bump pointer.
auto *ptr = impl.allocator.Allocate<PrimitiveType>();
// Initialize the memory using placement new.
new(ptr) PrimitiveType(kind, context);
// Cache and return it.
return impl.primitives[(int)kind] = ptr;
}
FunctionType::FunctionType(Type *const *inputsAndResults, unsigned numInputs,
unsigned numResults, MLIRContext *context)
: Type(TypeKind::Function, context, numInputs),
numResults(numResults), inputsAndResults(inputsAndResults) {
}
FunctionType *FunctionType::get(ArrayRef<Type*> inputs, ArrayRef<Type*> results,
MLIRContext *context) {
auto &impl = context->getImpl();
// Look to see if we already have this function type.
FunctionTypeKeyInfo::KeyTy key(inputs, results);
auto existing = impl.functions.insert_as(nullptr, key);
// If we already have it, return that value.
if (!existing.second)
return *existing.first;
// On the first use, we allocate them into the bump pointer.
auto *result = impl.allocator.Allocate<FunctionType>();
// Copy the inputs and results into the bump pointer.
SmallVector<Type*, 16> types;
types.reserve(inputs.size()+results.size());
types.append(inputs.begin(), inputs.end());
types.append(results.begin(), results.end());
auto typesList = impl.copyInto(ArrayRef<Type*>(types));
// Initialize the memory using placement new.
new (result) FunctionType(typesList.data(), inputs.size(), results.size(),
context);
// Cache and return it.
return *existing.first = result;
}
VectorType::VectorType(ArrayRef<unsigned> shape, PrimitiveType *elementType,
MLIRContext *context)
: Type(TypeKind::Vector, context, shape.size()),
shapeElements(shape.data()), elementType(elementType) {
}
VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) {
assert(!shape.empty() && "vector types must have at least one dimension");
assert(isa<PrimitiveType>(elementType) &&
"vectors elements must be primitives");
auto *context = elementType->getContext();
auto &impl = context->getImpl();
// Look to see if we already have this vector type.
VectorTypeKeyInfo::KeyTy key(elementType, shape);
auto existing = impl.vectors.insert_as(nullptr, key);
// If we already have it, return that value.
if (!existing.second)
return *existing.first;
// On the first use, we allocate them into the bump pointer.
auto *result = impl.allocator.Allocate<VectorType>();
// Copy the shape into the bump pointer.
shape = impl.copyInto(shape);
// Initialize the memory using placement new.
new (result) VectorType(shape, cast<PrimitiveType>(elementType), context);
// Cache and return it.
return *existing.first = result;
}
TensorType::TensorType(TypeKind kind, Type *elementType, MLIRContext *context)
: Type(kind, context), elementType(elementType) {
assert((isa<PrimitiveType>(elementType) || isa<VectorType>(elementType)) &&
"tensor elements must be primitives or vectors");
assert(isa<TensorType>(this));
}
RankedTensorType::RankedTensorType(ArrayRef<int> shape, Type *elementType,
MLIRContext *context)
: TensorType(TypeKind::RankedTensor, elementType, context),
shapeElements(shape.data()) {
setSubclassData(shape.size());
}
UnrankedTensorType::UnrankedTensorType(Type *elementType, MLIRContext *context)
: TensorType(TypeKind::UnrankedTensor, elementType, context) {
}
RankedTensorType *RankedTensorType::get(ArrayRef<int> shape,
Type *elementType) {
auto *context = elementType->getContext();
auto &impl = context->getImpl();
// Look to see if we already have this ranked tensor type.
RankedTensorTypeKeyInfo::KeyTy key(elementType, shape);
auto existing = impl.rankedTensors.insert_as(nullptr, key);
// If we already have it, return that value.
if (!existing.second)
return *existing.first;
// On the first use, we allocate them into the bump pointer.
auto *result = impl.allocator.Allocate<RankedTensorType>();
// Copy the shape into the bump pointer.
shape = impl.copyInto(shape);
// Initialize the memory using placement new.
new (result) RankedTensorType(shape, elementType, context);
// Cache and return it.
return *existing.first = result;
}
UnrankedTensorType *UnrankedTensorType::get(Type *elementType) {
auto *context = elementType->getContext();
auto &impl = context->getImpl();
// Look to see if we already have this unranked tensor type.
auto existing = impl.unrankedTensors.insert({elementType, nullptr});
// If we already have it, return that value.
if (!existing.second)
return existing.first->second;
// On the first use, we allocate them into the bump pointer.
auto *result = impl.allocator.Allocate<UnrankedTensorType>();
// Initialize the memory using placement new.
new (result) UnrankedTensorType(elementType, context);
// Cache and return it.
return existing.first->second = result;
}