llvm-project/lld/ELF/LTO.cpp

424 lines
16 KiB
C++

//===- LTO.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LTO.h"
#include "Config.h"
#include "InputFiles.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/Args.h"
#include "lld/Common/CommonLinkerContext.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Filesystem.h"
#include "lld/Common/Strings.h"
#include "lld/Common/TargetOptionsCommandFlags.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/LTO/Config.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Support/Caching.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cstddef>
#include <memory>
#include <string>
#include <system_error>
#include <vector>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
static std::string getThinLTOOutputFile(Ctx &ctx, StringRef modulePath) {
return lto::getThinLTOOutputFile(modulePath, ctx.arg.thinLTOPrefixReplaceOld,
ctx.arg.thinLTOPrefixReplaceNew);
}
static lto::Config createConfig(Ctx &ctx) {
lto::Config c;
// LLD supports the new relocations and address-significance tables.
c.Options = initTargetOptionsFromCodeGenFlags();
c.Options.EmitAddrsig = true;
for (StringRef C : ctx.arg.mllvmOpts)
c.MllvmArgs.emplace_back(C.str());
// Always emit a section per function/datum with LTO.
c.Options.FunctionSections = true;
c.Options.DataSections = true;
// Check if basic block sections must be used.
// Allowed values for --lto-basic-block-sections are "all",
// "<file name specifying basic block ids>", or none. This is the equivalent
// of -fbasic-block-sections= flag in clang.
if (!ctx.arg.ltoBasicBlockSections.empty()) {
if (ctx.arg.ltoBasicBlockSections == "all") {
c.Options.BBSections = BasicBlockSection::All;
} else if (ctx.arg.ltoBasicBlockSections == "labels") {
c.Options.BBAddrMap = true;
Warn(ctx)
<< "'--lto-basic-block-sections=labels' is deprecated; Please use "
"'--lto-basic-block-address-map' instead";
} else if (ctx.arg.ltoBasicBlockSections == "none") {
c.Options.BBSections = BasicBlockSection::None;
} else {
ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
MemoryBuffer::getFile(ctx.arg.ltoBasicBlockSections.str());
if (!MBOrErr) {
ErrAlways(ctx) << "cannot open " << ctx.arg.ltoBasicBlockSections << ":"
<< MBOrErr.getError().message();
} else {
c.Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
}
c.Options.BBSections = BasicBlockSection::List;
}
}
c.Options.BBAddrMap = ctx.arg.ltoBBAddrMap;
c.Options.UniqueBasicBlockSectionNames =
ctx.arg.ltoUniqueBasicBlockSectionNames;
if (auto relocModel = getRelocModelFromCMModel())
c.RelocModel = *relocModel;
else if (ctx.arg.relocatable)
c.RelocModel = std::nullopt;
else if (ctx.arg.isPic)
c.RelocModel = Reloc::PIC_;
else
c.RelocModel = Reloc::Static;
c.CodeModel = getCodeModelFromCMModel();
c.DisableVerify = ctx.arg.disableVerify;
c.DiagHandler = diagnosticHandler;
c.OptLevel = ctx.arg.ltoo;
c.CPU = getCPUStr();
c.MAttrs = getMAttrs();
c.CGOptLevel = ctx.arg.ltoCgo;
c.PTO.LoopVectorization = c.OptLevel > 1;
c.PTO.SLPVectorization = c.OptLevel > 1;
// Set up a custom pipeline if we've been asked to.
c.OptPipeline = std::string(ctx.arg.ltoNewPmPasses);
c.AAPipeline = std::string(ctx.arg.ltoAAPipeline);
// Set up optimization remarks if we've been asked to.
c.RemarksFilename = std::string(ctx.arg.optRemarksFilename);
c.RemarksPasses = std::string(ctx.arg.optRemarksPasses);
c.RemarksWithHotness = ctx.arg.optRemarksWithHotness;
c.RemarksHotnessThreshold = ctx.arg.optRemarksHotnessThreshold;
c.RemarksFormat = std::string(ctx.arg.optRemarksFormat);
// Set up output file to emit statistics.
c.StatsFile = std::string(ctx.arg.optStatsFilename);
c.SampleProfile = std::string(ctx.arg.ltoSampleProfile);
for (StringRef pluginFn : ctx.arg.passPlugins)
c.PassPlugins.push_back(std::string(pluginFn));
c.DebugPassManager = ctx.arg.ltoDebugPassManager;
c.DwoDir = std::string(ctx.arg.dwoDir);
c.HasWholeProgramVisibility = ctx.arg.ltoWholeProgramVisibility;
c.ValidateAllVtablesHaveTypeInfos =
ctx.arg.ltoValidateAllVtablesHaveTypeInfos;
c.AllVtablesHaveTypeInfos = ctx.ltoAllVtablesHaveTypeInfos;
c.AlwaysEmitRegularLTOObj = !ctx.arg.ltoObjPath.empty();
c.KeepSymbolNameCopies = false;
for (const llvm::StringRef &name : ctx.arg.thinLTOModulesToCompile)
c.ThinLTOModulesToCompile.emplace_back(name);
c.TimeTraceEnabled = ctx.arg.timeTraceEnabled;
c.TimeTraceGranularity = ctx.arg.timeTraceGranularity;
c.CSIRProfile = std::string(ctx.arg.ltoCSProfileFile);
c.RunCSIRInstr = ctx.arg.ltoCSProfileGenerate;
c.PGOWarnMismatch = ctx.arg.ltoPGOWarnMismatch;
if (ctx.arg.emitLLVM) {
c.PreCodeGenModuleHook = [&ctx](size_t task, const Module &m) {
if (std::unique_ptr<raw_fd_ostream> os =
openLTOOutputFile(ctx.arg.outputFile))
WriteBitcodeToFile(m, *os, false);
return false;
};
}
if (ctx.arg.ltoEmitAsm) {
c.CGFileType = CodeGenFileType::AssemblyFile;
c.Options.MCOptions.AsmVerbose = true;
}
if (!ctx.arg.saveTempsArgs.empty())
checkError(ctx.e, c.addSaveTemps(ctx.arg.outputFile.str() + ".",
/*UseInputModulePath*/ true,
ctx.arg.saveTempsArgs));
return c;
}
BitcodeCompiler::BitcodeCompiler(Ctx &ctx) : ctx(ctx) {
// Initialize indexFile.
if (!ctx.arg.thinLTOIndexOnlyArg.empty())
indexFile = openFile(ctx.arg.thinLTOIndexOnlyArg);
// Initialize ltoObj.
lto::ThinBackend backend;
auto onIndexWrite = [&](StringRef s) { thinIndices.erase(s); };
if (ctx.arg.thinLTOIndexOnly) {
backend = lto::createWriteIndexesThinBackend(
llvm::hardware_concurrency(ctx.arg.thinLTOJobs),
std::string(ctx.arg.thinLTOPrefixReplaceOld),
std::string(ctx.arg.thinLTOPrefixReplaceNew),
std::string(ctx.arg.thinLTOPrefixReplaceNativeObject),
ctx.arg.thinLTOEmitImportsFiles, indexFile.get(), onIndexWrite);
} else {
backend = lto::createInProcessThinBackend(
llvm::heavyweight_hardware_concurrency(ctx.arg.thinLTOJobs),
onIndexWrite, ctx.arg.thinLTOEmitIndexFiles,
ctx.arg.thinLTOEmitImportsFiles);
}
constexpr llvm::lto::LTO::LTOKind ltoModes[3] =
{llvm::lto::LTO::LTOKind::LTOK_UnifiedThin,
llvm::lto::LTO::LTOKind::LTOK_UnifiedRegular,
llvm::lto::LTO::LTOKind::LTOK_Default};
ltoObj = std::make_unique<lto::LTO>(createConfig(ctx), backend,
ctx.arg.ltoPartitions,
ltoModes[ctx.arg.ltoKind]);
// Initialize usedStartStop.
if (ctx.bitcodeFiles.empty())
return;
for (Symbol *sym : ctx.symtab->getSymbols()) {
if (sym->isPlaceholder())
continue;
StringRef s = sym->getName();
for (StringRef prefix : {"__start_", "__stop_"})
if (s.starts_with(prefix))
usedStartStop.insert(s.substr(prefix.size()));
}
}
BitcodeCompiler::~BitcodeCompiler() = default;
void BitcodeCompiler::add(BitcodeFile &f) {
lto::InputFile &obj = *f.obj;
bool isExec = !ctx.arg.shared && !ctx.arg.relocatable;
if (ctx.arg.thinLTOEmitIndexFiles)
thinIndices.insert(obj.getName());
ArrayRef<Symbol *> syms = f.getSymbols();
ArrayRef<lto::InputFile::Symbol> objSyms = obj.symbols();
std::vector<lto::SymbolResolution> resols(syms.size());
// Provide a resolution to the LTO API for each symbol.
for (size_t i = 0, e = syms.size(); i != e; ++i) {
Symbol *sym = syms[i];
const lto::InputFile::Symbol &objSym = objSyms[i];
lto::SymbolResolution &r = resols[i];
// Ideally we shouldn't check for SF_Undefined but currently IRObjectFile
// reports two symbols for module ASM defined. Without this check, lld
// flags an undefined in IR with a definition in ASM as prevailing.
// Once IRObjectFile is fixed to report only one symbol this hack can
// be removed.
r.Prevailing = !objSym.isUndefined() && sym->file == &f;
// We ask LTO to preserve following global symbols:
// 1) All symbols when doing relocatable link, so that them can be used
// for doing final link.
// 2) Symbols that are used in regular objects.
// 3) C named sections if we have corresponding __start_/__stop_ symbol.
// 4) Symbols that are defined in bitcode files and used for dynamic
// linking.
// 5) Symbols that will be referenced after linker wrapping is performed.
r.VisibleToRegularObj = ctx.arg.relocatable || sym->isUsedInRegularObj ||
sym->referencedAfterWrap ||
(r.Prevailing && sym->includeInDynsym(ctx)) ||
usedStartStop.count(objSym.getSectionName());
// Identify symbols exported dynamically, and that therefore could be
// referenced by a shared library not visible to the linker.
r.ExportDynamic =
sym->computeBinding(ctx) != STB_LOCAL &&
(ctx.arg.exportDynamic || sym->exportDynamic || sym->inDynamicList);
const auto *dr = dyn_cast<Defined>(sym);
r.FinalDefinitionInLinkageUnit =
(isExec || sym->visibility() != STV_DEFAULT) && dr &&
// Skip absolute symbols from ELF objects, otherwise PC-rel relocations
// will be generated by for them, triggering linker errors.
// Symbol section is always null for bitcode symbols, hence the check
// for isElf(). Skip linker script defined symbols as well: they have
// no File defined.
!(dr->section == nullptr &&
(sym->file->isInternal() || sym->file->isElf()));
if (r.Prevailing)
Undefined(ctx.internalFile, StringRef(), STB_GLOBAL, STV_DEFAULT,
sym->type)
.overwrite(*sym);
// We tell LTO to not apply interprocedural optimization for wrapped
// (with --wrap) symbols because otherwise LTO would inline them while
// their values are still not final.
r.LinkerRedefined = sym->scriptDefined;
}
checkError(ctx.e, ltoObj->add(std::move(f.obj), resols));
}
// If LazyObjFile has not been added to link, emit empty index files.
// This is needed because this is what GNU gold plugin does and we have a
// distributed build system that depends on that behavior.
static void thinLTOCreateEmptyIndexFiles(Ctx &ctx) {
DenseSet<StringRef> linkedBitCodeFiles;
for (BitcodeFile *f : ctx.bitcodeFiles)
linkedBitCodeFiles.insert(f->getName());
for (BitcodeFile *f : ctx.lazyBitcodeFiles) {
if (!f->lazy)
continue;
if (linkedBitCodeFiles.contains(f->getName()))
continue;
std::string path =
replaceThinLTOSuffix(ctx, getThinLTOOutputFile(ctx, f->obj->getName()));
std::unique_ptr<raw_fd_ostream> os = openFile(path + ".thinlto.bc");
if (!os)
continue;
ModuleSummaryIndex m(/*HaveGVs*/ false);
m.setSkipModuleByDistributedBackend();
writeIndexToFile(m, *os);
if (ctx.arg.thinLTOEmitImportsFiles)
openFile(path + ".imports");
}
}
// Merge all the bitcode files we have seen, codegen the result
// and return the resulting ObjectFile(s).
SmallVector<std::unique_ptr<InputFile>, 0> BitcodeCompiler::compile() {
unsigned maxTasks = ltoObj->getMaxTasks();
buf.resize(maxTasks);
files.resize(maxTasks);
filenames.resize(maxTasks);
// The --thinlto-cache-dir option specifies the path to a directory in which
// to cache native object files for ThinLTO incremental builds. If a path was
// specified, configure LTO to use it as the cache directory.
FileCache cache;
if (!ctx.arg.thinLTOCacheDir.empty())
cache = check(localCache("ThinLTO", "Thin", ctx.arg.thinLTOCacheDir,
[&](size_t task, const Twine &moduleName,
std::unique_ptr<MemoryBuffer> mb) {
files[task] = std::move(mb);
filenames[task] = moduleName.str();
}));
if (!ctx.bitcodeFiles.empty())
checkError(ctx.e, ltoObj->run(
[&](size_t task, const Twine &moduleName) {
buf[task].first = moduleName.str();
return std::make_unique<CachedFileStream>(
std::make_unique<raw_svector_ostream>(
buf[task].second));
},
cache));
// Emit empty index files for non-indexed files but not in single-module mode.
if (ctx.arg.thinLTOModulesToCompile.empty()) {
for (StringRef s : thinIndices) {
std::string path = getThinLTOOutputFile(ctx, s);
openFile(path + ".thinlto.bc");
if (ctx.arg.thinLTOEmitImportsFiles)
openFile(path + ".imports");
}
}
if (ctx.arg.thinLTOEmitIndexFiles)
thinLTOCreateEmptyIndexFiles(ctx);
if (ctx.arg.thinLTOIndexOnly) {
if (!ctx.arg.ltoObjPath.empty())
saveBuffer(buf[0].second, ctx.arg.ltoObjPath);
// ThinLTO with index only option is required to generate only the index
// files. After that, we exit from linker and ThinLTO backend runs in a
// distributed environment.
if (indexFile)
indexFile->close();
return {};
}
if (!ctx.arg.thinLTOCacheDir.empty())
pruneCache(ctx.arg.thinLTOCacheDir, ctx.arg.thinLTOCachePolicy, files);
if (!ctx.arg.ltoObjPath.empty()) {
saveBuffer(buf[0].second, ctx.arg.ltoObjPath);
for (unsigned i = 1; i != maxTasks; ++i)
saveBuffer(buf[i].second, ctx.arg.ltoObjPath + Twine(i));
}
bool savePrelink = ctx.arg.saveTempsArgs.contains("prelink");
SmallVector<std::unique_ptr<InputFile>, 0> ret;
const char *ext = ctx.arg.ltoEmitAsm ? ".s" : ".o";
for (unsigned i = 0; i != maxTasks; ++i) {
StringRef bitcodeFilePath;
StringRef objBuf;
if (files[i]) {
// When files[i] is not null, we get the native relocatable file from the
// cache. filenames[i] contains the original BitcodeFile's identifier.
objBuf = files[i]->getBuffer();
bitcodeFilePath = filenames[i];
} else {
// Get the native relocatable file after in-process LTO compilation.
objBuf = buf[i].second;
bitcodeFilePath = buf[i].first;
}
if (objBuf.empty())
continue;
// If the input bitcode file is path/to/x.o and -o specifies a.out, the
// corresponding native relocatable file path will look like:
// path/to/a.out.lto.x.o.
StringRef ltoObjName;
if (bitcodeFilePath == "ld-temp.o") {
ltoObjName =
ctx.saver.save(Twine(ctx.arg.outputFile) + ".lto" +
(i == 0 ? Twine("") : Twine('.') + Twine(i)) + ext);
} else {
StringRef directory = sys::path::parent_path(bitcodeFilePath);
// For an archive member, which has an identifier like "d/a.a(coll.o at
// 8)" (see BitcodeFile::BitcodeFile), use the filename; otherwise, use
// the stem (d/a.o => a).
StringRef baseName = bitcodeFilePath.ends_with(")")
? sys::path::filename(bitcodeFilePath)
: sys::path::stem(bitcodeFilePath);
StringRef outputFileBaseName = sys::path::filename(ctx.arg.outputFile);
SmallString<256> path;
sys::path::append(path, directory,
outputFileBaseName + ".lto." + baseName + ext);
sys::path::remove_dots(path, true);
ltoObjName = ctx.saver.save(path.str());
}
if (savePrelink || ctx.arg.ltoEmitAsm)
saveBuffer(buf[i].second, ltoObjName);
if (!ctx.arg.ltoEmitAsm)
ret.push_back(createObjFile(ctx, MemoryBufferRef(objBuf, ltoObjName)));
}
return ret;
}