Michael Maitland 66b5f16b2f
[RISCV] Do not check PostRAScheduler in enablePostRAScheduler (#92781)
On RISC-V, there are a few ways to control whether the
PostMachineScheduler is enabled. If `-enable-post-misched` is passed or
passed with a value of true, then the PostMachineScheduler is enabled.
If it is passed with a value of false then the PostMachineScheduler is
disabled. If the option is not passed at all, then
`RISCVSubtarget::enablePostRAMachineScheduler` decides whether the pass
should be enabled or not. `TargetSubtargetInfo::enablePostRAScheduler`
and `TargetSubtargetInfo::enablePostRAMachineScheduler` who check the
SchedModel value are not called by RISC-V backend.

`RISCVSubtarget::enablePostRAMachineScheduler` currently checks if the
active scheduler model sets `PostRAScheduler`. If it is set to true by
the scheduler model, then the pass is enabled. If it is not set to true
by the scheduler model, then the value of `UsePostRAScheduler` subtarget
feature is used.

I argue that the RISC-V backend should not use `PostRAScheduler` field
of the scheduler model to control whether the PostMachineScheduler is
enabled for the following reasons:

1. No other targets use this value to control whether
PostMachineScheduler is enabled. They only use it to check whether the
legacy PostRASchedulerList scheduler is enabled.

2. We can add the `UsePostRAScheduler` feature to the processor
definition in RISCVProcessors.td to tie a processor to whether the pass
should be enabled by default. This makes the feature and the sched model
field redundant.

3. Since these options are redundant, we should prefer the feature,
since we can set `+` and `-` on the feature, but the value of the
scheduler cannot be controlled on the command line.

4. Keeping both options allows us to set the feature and the scheduler
model value to conflicting values. Although the scheduler model value
will win out, it feels awkward to allow it.
2024-05-24 14:31:14 -04:00
2024-05-19 15:01:47 -07:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.
Readme 5 GiB
Languages
LLVM 39.9%
C++ 32.5%
C 13.5%
Assembly 9.4%
MLIR 1.4%
Other 2.8%