llvm-project/clang/lib/Parse/ParseOpenACC.cpp
erichkeane 66ef6900f9 [OpenACC] Better recover during clause parsing
Previously we gave up immediately and just escaped.  Instead, skip to
the next close paren and see if we can continue parsing the next clause
instead.
2024-01-30 12:48:16 -08:00

1204 lines
41 KiB
C++

//===--- ParseOpenACC.cpp - OpenACC-specific parsing support --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parsing logic for OpenACC language features.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
using namespace llvm;
namespace {
// An enum that contains the extended 'partial' parsed variants. This type
// should never escape the initial parse functionality, but is useful for
// simplifying the implementation.
enum class OpenACCDirectiveKindEx {
Invalid = static_cast<int>(OpenACCDirectiveKind::Invalid),
// 'enter data' and 'exit data'
Enter,
Exit,
};
// Translate single-token string representations to the OpenACC Directive Kind.
// This doesn't completely comprehend 'Compound Constructs' (as it just
// identifies the first token), and doesn't fully handle 'enter data', 'exit
// data', nor any of the 'atomic' variants, just the first token of each. So
// this should only be used by `ParseOpenACCDirectiveKind`.
OpenACCDirectiveKindEx getOpenACCDirectiveKind(Token Tok) {
if (!Tok.is(tok::identifier))
return OpenACCDirectiveKindEx::Invalid;
OpenACCDirectiveKind DirKind =
llvm::StringSwitch<OpenACCDirectiveKind>(
Tok.getIdentifierInfo()->getName())
.Case("parallel", OpenACCDirectiveKind::Parallel)
.Case("serial", OpenACCDirectiveKind::Serial)
.Case("kernels", OpenACCDirectiveKind::Kernels)
.Case("data", OpenACCDirectiveKind::Data)
.Case("host_data", OpenACCDirectiveKind::HostData)
.Case("loop", OpenACCDirectiveKind::Loop)
.Case("cache", OpenACCDirectiveKind::Cache)
.Case("atomic", OpenACCDirectiveKind::Atomic)
.Case("routine", OpenACCDirectiveKind::Routine)
.Case("declare", OpenACCDirectiveKind::Declare)
.Case("init", OpenACCDirectiveKind::Init)
.Case("shutdown", OpenACCDirectiveKind::Shutdown)
.Case("set", OpenACCDirectiveKind::Shutdown)
.Case("update", OpenACCDirectiveKind::Update)
.Case("wait", OpenACCDirectiveKind::Wait)
.Default(OpenACCDirectiveKind::Invalid);
if (DirKind != OpenACCDirectiveKind::Invalid)
return static_cast<OpenACCDirectiveKindEx>(DirKind);
return llvm::StringSwitch<OpenACCDirectiveKindEx>(
Tok.getIdentifierInfo()->getName())
.Case("enter", OpenACCDirectiveKindEx::Enter)
.Case("exit", OpenACCDirectiveKindEx::Exit)
.Default(OpenACCDirectiveKindEx::Invalid);
}
// Translate single-token string representations to the OpenCC Clause Kind.
OpenACCClauseKind getOpenACCClauseKind(Token Tok) {
// auto is a keyword in some language modes, so make sure we parse it
// correctly.
if (Tok.is(tok::kw_auto))
return OpenACCClauseKind::Auto;
// default is a keyword, so make sure we parse it correctly.
if (Tok.is(tok::kw_default))
return OpenACCClauseKind::Default;
// if is also a keyword, make sure we parse it correctly.
if (Tok.is(tok::kw_if))
return OpenACCClauseKind::If;
if (!Tok.is(tok::identifier))
return OpenACCClauseKind::Invalid;
return llvm::StringSwitch<OpenACCClauseKind>(
Tok.getIdentifierInfo()->getName())
.Case("async", OpenACCClauseKind::Async)
.Case("attach", OpenACCClauseKind::Attach)
.Case("auto", OpenACCClauseKind::Auto)
.Case("bind", OpenACCClauseKind::Bind)
.Case("create", OpenACCClauseKind::Create)
.Case("collapse", OpenACCClauseKind::Collapse)
.Case("copy", OpenACCClauseKind::Copy)
.Case("copyin", OpenACCClauseKind::CopyIn)
.Case("copyout", OpenACCClauseKind::CopyOut)
.Case("default", OpenACCClauseKind::Default)
.Case("default_async", OpenACCClauseKind::DefaultAsync)
.Case("delete", OpenACCClauseKind::Delete)
.Case("detach", OpenACCClauseKind::Detach)
.Case("device", OpenACCClauseKind::Device)
.Case("device_num", OpenACCClauseKind::DeviceNum)
.Case("device_resident", OpenACCClauseKind::DeviceResident)
.Case("device_type", OpenACCClauseKind::DeviceType)
.Case("deviceptr", OpenACCClauseKind::DevicePtr)
.Case("dtype", OpenACCClauseKind::DType)
.Case("finalize", OpenACCClauseKind::Finalize)
.Case("firstprivate", OpenACCClauseKind::FirstPrivate)
.Case("gang", OpenACCClauseKind::Gang)
.Case("host", OpenACCClauseKind::Host)
.Case("if", OpenACCClauseKind::If)
.Case("if_present", OpenACCClauseKind::IfPresent)
.Case("independent", OpenACCClauseKind::Independent)
.Case("link", OpenACCClauseKind::Link)
.Case("no_create", OpenACCClauseKind::NoCreate)
.Case("num_gangs", OpenACCClauseKind::NumGangs)
.Case("num_workers", OpenACCClauseKind::NumWorkers)
.Case("nohost", OpenACCClauseKind::NoHost)
.Case("present", OpenACCClauseKind::Present)
.Case("private", OpenACCClauseKind::Private)
.Case("reduction", OpenACCClauseKind::Reduction)
.Case("self", OpenACCClauseKind::Self)
.Case("seq", OpenACCClauseKind::Seq)
.Case("tile", OpenACCClauseKind::Tile)
.Case("use_device", OpenACCClauseKind::UseDevice)
.Case("vector", OpenACCClauseKind::Vector)
.Case("vector_length", OpenACCClauseKind::VectorLength)
.Case("wait", OpenACCClauseKind::Wait)
.Case("worker", OpenACCClauseKind::Worker)
.Default(OpenACCClauseKind::Invalid);
}
// Since 'atomic' is effectively a compound directive, this will decode the
// second part of the directive.
OpenACCAtomicKind getOpenACCAtomicKind(Token Tok) {
if (!Tok.is(tok::identifier))
return OpenACCAtomicKind::Invalid;
return llvm::StringSwitch<OpenACCAtomicKind>(
Tok.getIdentifierInfo()->getName())
.Case("read", OpenACCAtomicKind::Read)
.Case("write", OpenACCAtomicKind::Write)
.Case("update", OpenACCAtomicKind::Update)
.Case("capture", OpenACCAtomicKind::Capture)
.Default(OpenACCAtomicKind::Invalid);
}
OpenACCDefaultClauseKind getOpenACCDefaultClauseKind(Token Tok) {
if (!Tok.is(tok::identifier))
return OpenACCDefaultClauseKind::Invalid;
return llvm::StringSwitch<OpenACCDefaultClauseKind>(
Tok.getIdentifierInfo()->getName())
.Case("none", OpenACCDefaultClauseKind::None)
.Case("present", OpenACCDefaultClauseKind::Present)
.Default(OpenACCDefaultClauseKind::Invalid);
}
enum class OpenACCSpecialTokenKind {
ReadOnly,
DevNum,
Queues,
Zero,
Force,
Num,
Length,
Dim,
Static,
};
bool isOpenACCSpecialToken(OpenACCSpecialTokenKind Kind, Token Tok) {
if (Tok.is(tok::kw_static) && Kind == OpenACCSpecialTokenKind::Static)
return true;
if (!Tok.is(tok::identifier))
return false;
switch (Kind) {
case OpenACCSpecialTokenKind::ReadOnly:
return Tok.getIdentifierInfo()->isStr("readonly");
case OpenACCSpecialTokenKind::DevNum:
return Tok.getIdentifierInfo()->isStr("devnum");
case OpenACCSpecialTokenKind::Queues:
return Tok.getIdentifierInfo()->isStr("queues");
case OpenACCSpecialTokenKind::Zero:
return Tok.getIdentifierInfo()->isStr("zero");
case OpenACCSpecialTokenKind::Force:
return Tok.getIdentifierInfo()->isStr("force");
case OpenACCSpecialTokenKind::Num:
return Tok.getIdentifierInfo()->isStr("num");
case OpenACCSpecialTokenKind::Length:
return Tok.getIdentifierInfo()->isStr("length");
case OpenACCSpecialTokenKind::Dim:
return Tok.getIdentifierInfo()->isStr("dim");
case OpenACCSpecialTokenKind::Static:
return Tok.getIdentifierInfo()->isStr("static");
}
llvm_unreachable("Unknown 'Kind' Passed");
}
/// Used for cases where we have a token we want to check against an
/// 'identifier-like' token, but don't want to give awkward error messages in
/// cases where it is accidentially a keyword.
bool isTokenIdentifierOrKeyword(Parser &P, Token Tok) {
if (Tok.is(tok::identifier))
return true;
if (!Tok.isAnnotation() && Tok.getIdentifierInfo() &&
Tok.getIdentifierInfo()->isKeyword(P.getLangOpts()))
return true;
return false;
}
/// Parses and consumes an identifer followed immediately by a single colon, and
/// diagnoses if it is not the 'special token' kind that we require. Used when
/// the tag is the only valid value.
/// Return 'true' if the special token was matched, false if no special token,
/// or an invalid special token was found.
template <typename DirOrClauseTy>
bool tryParseAndConsumeSpecialTokenKind(Parser &P, OpenACCSpecialTokenKind Kind,
DirOrClauseTy DirOrClause) {
Token IdentTok = P.getCurToken();
// If this is an identifier-like thing followed by ':', it is one of the
// OpenACC 'special' name tags, so consume it.
if (isTokenIdentifierOrKeyword(P, IdentTok) && P.NextToken().is(tok::colon)) {
P.ConsumeToken();
P.ConsumeToken();
if (!isOpenACCSpecialToken(Kind, IdentTok)) {
P.Diag(IdentTok, diag::err_acc_invalid_tag_kind)
<< IdentTok.getIdentifierInfo() << DirOrClause
<< std::is_same_v<DirOrClauseTy, OpenACCClauseKind>;
return false;
}
return true;
}
return false;
}
bool isOpenACCDirectiveKind(OpenACCDirectiveKind Kind, Token Tok) {
if (!Tok.is(tok::identifier))
return false;
switch (Kind) {
case OpenACCDirectiveKind::Parallel:
return Tok.getIdentifierInfo()->isStr("parallel");
case OpenACCDirectiveKind::Serial:
return Tok.getIdentifierInfo()->isStr("serial");
case OpenACCDirectiveKind::Kernels:
return Tok.getIdentifierInfo()->isStr("kernels");
case OpenACCDirectiveKind::Data:
return Tok.getIdentifierInfo()->isStr("data");
case OpenACCDirectiveKind::HostData:
return Tok.getIdentifierInfo()->isStr("host_data");
case OpenACCDirectiveKind::Loop:
return Tok.getIdentifierInfo()->isStr("loop");
case OpenACCDirectiveKind::Cache:
return Tok.getIdentifierInfo()->isStr("cache");
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
return false;
case OpenACCDirectiveKind::Atomic:
return Tok.getIdentifierInfo()->isStr("atomic");
case OpenACCDirectiveKind::Routine:
return Tok.getIdentifierInfo()->isStr("routine");
case OpenACCDirectiveKind::Declare:
return Tok.getIdentifierInfo()->isStr("declare");
case OpenACCDirectiveKind::Init:
return Tok.getIdentifierInfo()->isStr("init");
case OpenACCDirectiveKind::Shutdown:
return Tok.getIdentifierInfo()->isStr("shutdown");
case OpenACCDirectiveKind::Set:
return Tok.getIdentifierInfo()->isStr("set");
case OpenACCDirectiveKind::Update:
return Tok.getIdentifierInfo()->isStr("update");
case OpenACCDirectiveKind::Wait:
return Tok.getIdentifierInfo()->isStr("wait");
case OpenACCDirectiveKind::Invalid:
return false;
}
llvm_unreachable("Unknown 'Kind' Passed");
}
OpenACCReductionOperator ParseReductionOperator(Parser &P) {
// If there is no colon, treat as if the reduction operator was missing, else
// we probably will not recover from it in the case where an expression starts
// with one of the operator tokens.
if (P.NextToken().isNot(tok::colon)) {
P.Diag(P.getCurToken(), diag::err_acc_expected_reduction_operator);
return OpenACCReductionOperator::Invalid;
}
Token ReductionKindTok = P.getCurToken();
// Consume both the kind and the colon.
P.ConsumeToken();
P.ConsumeToken();
switch (ReductionKindTok.getKind()) {
case tok::plus:
return OpenACCReductionOperator::Addition;
case tok::star:
return OpenACCReductionOperator::Multiplication;
case tok::amp:
return OpenACCReductionOperator::BitwiseAnd;
case tok::pipe:
return OpenACCReductionOperator::BitwiseOr;
case tok::caret:
return OpenACCReductionOperator::BitwiseXOr;
case tok::ampamp:
return OpenACCReductionOperator::And;
case tok::pipepipe:
return OpenACCReductionOperator::Or;
case tok::identifier:
if (ReductionKindTok.getIdentifierInfo()->isStr("max"))
return OpenACCReductionOperator::Max;
if (ReductionKindTok.getIdentifierInfo()->isStr("min"))
return OpenACCReductionOperator::Min;
LLVM_FALLTHROUGH;
default:
P.Diag(ReductionKindTok, diag::err_acc_invalid_reduction_operator);
return OpenACCReductionOperator::Invalid;
}
llvm_unreachable("Reduction op token kind not caught by 'default'?");
}
/// Used for cases where we expect an identifier-like token, but don't want to
/// give awkward error messages in cases where it is accidentially a keyword.
bool expectIdentifierOrKeyword(Parser &P) {
Token Tok = P.getCurToken();
if (isTokenIdentifierOrKeyword(P, Tok))
return false;
P.Diag(P.getCurToken(), diag::err_expected) << tok::identifier;
return true;
}
OpenACCDirectiveKind
ParseOpenACCEnterExitDataDirective(Parser &P, Token FirstTok,
OpenACCDirectiveKindEx ExtDirKind) {
Token SecondTok = P.getCurToken();
if (SecondTok.isAnnotation()) {
P.Diag(FirstTok, diag::err_acc_invalid_directive)
<< 0 << FirstTok.getIdentifierInfo();
return OpenACCDirectiveKind::Invalid;
}
// Consume the second name anyway, this way we can continue on without making
// this oddly look like a clause.
P.ConsumeAnyToken();
if (!isOpenACCDirectiveKind(OpenACCDirectiveKind::Data, SecondTok)) {
if (!SecondTok.is(tok::identifier))
P.Diag(SecondTok, diag::err_expected) << tok::identifier;
else
P.Diag(FirstTok, diag::err_acc_invalid_directive)
<< 1 << FirstTok.getIdentifierInfo()->getName()
<< SecondTok.getIdentifierInfo()->getName();
return OpenACCDirectiveKind::Invalid;
}
return ExtDirKind == OpenACCDirectiveKindEx::Enter
? OpenACCDirectiveKind::EnterData
: OpenACCDirectiveKind::ExitData;
}
OpenACCAtomicKind ParseOpenACCAtomicKind(Parser &P) {
Token AtomicClauseToken = P.getCurToken();
// #pragma acc atomic is equivilent to update:
if (AtomicClauseToken.isAnnotation())
return OpenACCAtomicKind::Update;
OpenACCAtomicKind AtomicKind = getOpenACCAtomicKind(AtomicClauseToken);
// If we don't know what this is, treat it as 'nothing', and treat the rest of
// this as a clause list, which, despite being invalid, is likely what the
// user was trying to do.
if (AtomicKind == OpenACCAtomicKind::Invalid)
return OpenACCAtomicKind::Update;
P.ConsumeToken();
return AtomicKind;
}
// Parse and consume the tokens for OpenACC Directive/Construct kinds.
OpenACCDirectiveKind ParseOpenACCDirectiveKind(Parser &P) {
Token FirstTok = P.getCurToken();
// Just #pragma acc can get us immediately to the end, make sure we don't
// introspect on the spelling before then.
if (FirstTok.isNot(tok::identifier)) {
P.Diag(FirstTok, diag::err_acc_missing_directive);
if (P.getCurToken().isNot(tok::annot_pragma_openacc_end))
P.ConsumeAnyToken();
return OpenACCDirectiveKind::Invalid;
}
P.ConsumeToken();
OpenACCDirectiveKindEx ExDirKind = getOpenACCDirectiveKind(FirstTok);
// OpenACCDirectiveKindEx is meant to be an extended list
// over OpenACCDirectiveKind, so any value below Invalid is one of the
// OpenACCDirectiveKind values. This switch takes care of all of the extra
// parsing required for the Extended values. At the end of this block,
// ExDirKind can be assumed to be a valid OpenACCDirectiveKind, so we can
// immediately cast it and use it as that.
if (ExDirKind >= OpenACCDirectiveKindEx::Invalid) {
switch (ExDirKind) {
case OpenACCDirectiveKindEx::Invalid: {
P.Diag(FirstTok, diag::err_acc_invalid_directive)
<< 0 << FirstTok.getIdentifierInfo();
return OpenACCDirectiveKind::Invalid;
}
case OpenACCDirectiveKindEx::Enter:
case OpenACCDirectiveKindEx::Exit:
return ParseOpenACCEnterExitDataDirective(P, FirstTok, ExDirKind);
}
}
OpenACCDirectiveKind DirKind = static_cast<OpenACCDirectiveKind>(ExDirKind);
// Combined Constructs allows parallel loop, serial loop, or kernels loop. Any
// other attempt at a combined construct will be diagnosed as an invalid
// clause.
Token SecondTok = P.getCurToken();
if (!SecondTok.isAnnotation() &&
isOpenACCDirectiveKind(OpenACCDirectiveKind::Loop, SecondTok)) {
switch (DirKind) {
default:
// Nothing to do except in the below cases, as they should be diagnosed as
// a clause.
break;
case OpenACCDirectiveKind::Parallel:
P.ConsumeToken();
return OpenACCDirectiveKind::ParallelLoop;
case OpenACCDirectiveKind::Serial:
P.ConsumeToken();
return OpenACCDirectiveKind::SerialLoop;
case OpenACCDirectiveKind::Kernels:
P.ConsumeToken();
return OpenACCDirectiveKind::KernelsLoop;
}
}
return DirKind;
}
enum ClauseParensKind {
None,
Optional,
Required
};
ClauseParensKind getClauseParensKind(OpenACCDirectiveKind DirKind,
OpenACCClauseKind Kind) {
switch (Kind) {
case OpenACCClauseKind::Self:
return DirKind == OpenACCDirectiveKind::Update ? ClauseParensKind::Required
: ClauseParensKind::Optional;
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Gang:
case OpenACCClauseKind::Wait:
return ClauseParensKind::Optional;
case OpenACCClauseKind::Default:
case OpenACCClauseKind::If:
case OpenACCClauseKind::Create:
case OpenACCClauseKind::Copy:
case OpenACCClauseKind::CopyIn:
case OpenACCClauseKind::CopyOut:
case OpenACCClauseKind::UseDevice:
case OpenACCClauseKind::NoCreate:
case OpenACCClauseKind::Present:
case OpenACCClauseKind::DevicePtr:
case OpenACCClauseKind::Attach:
case OpenACCClauseKind::Detach:
case OpenACCClauseKind::Private:
case OpenACCClauseKind::FirstPrivate:
case OpenACCClauseKind::Delete:
case OpenACCClauseKind::DeviceResident:
case OpenACCClauseKind::Device:
case OpenACCClauseKind::Link:
case OpenACCClauseKind::Host:
case OpenACCClauseKind::Reduction:
case OpenACCClauseKind::Collapse:
case OpenACCClauseKind::Bind:
case OpenACCClauseKind::VectorLength:
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::DeviceNum:
case OpenACCClauseKind::DefaultAsync:
case OpenACCClauseKind::DeviceType:
case OpenACCClauseKind::DType:
case OpenACCClauseKind::Tile:
return ClauseParensKind::Required;
case OpenACCClauseKind::Auto:
case OpenACCClauseKind::Finalize:
case OpenACCClauseKind::IfPresent:
case OpenACCClauseKind::Independent:
case OpenACCClauseKind::Invalid:
case OpenACCClauseKind::NoHost:
case OpenACCClauseKind::Seq:
return ClauseParensKind::None;
}
llvm_unreachable("Unhandled clause kind");
}
bool ClauseHasOptionalParens(OpenACCDirectiveKind DirKind,
OpenACCClauseKind Kind) {
return getClauseParensKind(DirKind, Kind) == ClauseParensKind::Optional;
}
bool ClauseHasRequiredParens(OpenACCDirectiveKind DirKind,
OpenACCClauseKind Kind) {
return getClauseParensKind(DirKind, Kind) == ClauseParensKind::Required;
}
ExprResult ParseOpenACCConditionalExpr(Parser &P) {
// FIXME: It isn't clear if the spec saying 'condition' means the same as
// it does in an if/while/etc (See ParseCXXCondition), however as it was
// written with Fortran/C in mind, we're going to assume it just means an
// 'expression evaluating to boolean'.
return P.getActions().CorrectDelayedTyposInExpr(P.ParseExpression());
}
// Skip until we see the end of pragma token, but don't consume it. This is us
// just giving up on the rest of the pragma so we can continue executing. We
// have to do this because 'SkipUntil' considers paren balancing, which isn't
// what we want.
void SkipUntilEndOfDirective(Parser &P) {
while (P.getCurToken().isNot(tok::annot_pragma_openacc_end))
P.ConsumeAnyToken();
}
} // namespace
// OpenACC 3.3, section 1.7:
// To simplify the specification and convey appropriate constraint information,
// a pqr-list is a comma-separated list of pdr items. The one exception is a
// clause-list, which is a list of one or more clauses optionally separated by
// commas.
void Parser::ParseOpenACCClauseList(OpenACCDirectiveKind DirKind) {
bool FirstClause = true;
while (getCurToken().isNot(tok::annot_pragma_openacc_end)) {
// Comma is optional in a clause-list.
if (!FirstClause && getCurToken().is(tok::comma))
ConsumeToken();
FirstClause = false;
// Recovering from a bad clause is really difficult, so we just give up on
// error.
if (ParseOpenACCClause(DirKind)) {
SkipUntilEndOfDirective(*this);
return;
}
}
}
ExprResult Parser::ParseOpenACCIntExpr() {
// FIXME: this is required to be an integer expression (or dependent), so we
// should ensure that is the case by passing this to SEMA here.
return getActions().CorrectDelayedTyposInExpr(ParseAssignmentExpression());
}
bool Parser::ParseOpenACCClauseVarList(OpenACCClauseKind Kind) {
// FIXME: Future clauses will require 'special word' parsing, check for one,
// then parse it based on whether it is a clause that requires a 'special
// word'.
(void)Kind;
// If the var parsing fails, skip until the end of the directive as this is
// an expression and gets messy if we try to continue otherwise.
if (ParseOpenACCVar())
return true;
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
ExpectAndConsume(tok::comma);
// If the var parsing fails, skip until the end of the directive as this is
// an expression and gets messy if we try to continue otherwise.
if (ParseOpenACCVar())
return true;
}
return false;
}
/// OpenACC 3.3 Section 2.4:
/// The argument to the device_type clause is a comma-separated list of one or
/// more device architecture name identifiers, or an asterisk.
///
/// The syntax of the device_type clause is
/// device_type( * )
/// device_type( device-type-list )
///
/// The device_type clause may be abbreviated to dtype.
bool Parser::ParseOpenACCDeviceTypeList() {
if (expectIdentifierOrKeyword(*this)) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return false;
}
ConsumeToken();
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
ExpectAndConsume(tok::comma);
if (expectIdentifierOrKeyword(*this)) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return false;
}
ConsumeToken();
}
return false;
}
/// OpenACC 3.3 Section 2.9:
/// size-expr is one of:
// *
// int-expr
// Note that this is specified under 'gang-arg-list', but also applies to 'tile'
// via reference.
bool Parser::ParseOpenACCSizeExpr() {
// FIXME: Ensure these are constant expressions.
// The size-expr ends up being ambiguous when only looking at the current
// token, as it could be a deref of a variable/expression.
if (getCurToken().is(tok::star) &&
NextToken().isOneOf(tok::comma, tok::r_paren,
tok::annot_pragma_openacc_end)) {
ConsumeToken();
return false;
}
return getActions()
.CorrectDelayedTyposInExpr(ParseAssignmentExpression())
.isInvalid();
}
bool Parser::ParseOpenACCSizeExprList() {
if (ParseOpenACCSizeExpr()) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return false;
}
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
ExpectAndConsume(tok::comma);
if (ParseOpenACCSizeExpr()) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return false;
}
}
return false;
}
/// OpenACC 3.3 Section 2.9:
///
/// where gang-arg is one of:
/// [num:]int-expr
/// dim:int-expr
/// static:size-expr
bool Parser::ParseOpenACCGangArg() {
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::Static, getCurToken()) &&
NextToken().is(tok::colon)) {
// 'static' just takes a size-expr, which is an int-expr or an asterisk.
ConsumeToken();
ConsumeToken();
return ParseOpenACCSizeExpr();
}
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::Dim, getCurToken()) &&
NextToken().is(tok::colon)) {
ConsumeToken();
ConsumeToken();
return ParseOpenACCIntExpr().isInvalid();
}
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::Num, getCurToken()) &&
NextToken().is(tok::colon)) {
ConsumeToken();
ConsumeToken();
// Fallthrough to the 'int-expr' handling for when 'num' is omitted.
}
// This is just the 'num' case where 'num' is optional.
return ParseOpenACCIntExpr().isInvalid();
}
bool Parser::ParseOpenACCGangArgList() {
if (ParseOpenACCGangArg()) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return false;
}
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
ExpectAndConsume(tok::comma);
if (ParseOpenACCGangArg()) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return false;
}
}
return false;
}
// The OpenACC Clause List is a comma or space-delimited list of clauses (see
// the comment on ParseOpenACCClauseList). The concept of a 'clause' doesn't
// really have its owner grammar and each individual one has its own definition.
// However, they all are named with a single-identifier (or auto/default!)
// token, followed in some cases by either braces or parens.
bool Parser::ParseOpenACCClause(OpenACCDirectiveKind DirKind) {
// A number of clause names are actually keywords, so accept a keyword that
// can be converted to a name.
if (expectIdentifierOrKeyword(*this))
return true;
OpenACCClauseKind Kind = getOpenACCClauseKind(getCurToken());
if (Kind == OpenACCClauseKind::Invalid)
return Diag(getCurToken(), diag::err_acc_invalid_clause)
<< getCurToken().getIdentifierInfo();
// Consume the clause name.
ConsumeToken();
return ParseOpenACCClauseParams(DirKind, Kind);
}
bool Parser::ParseOpenACCClauseParams(OpenACCDirectiveKind DirKind,
OpenACCClauseKind Kind) {
BalancedDelimiterTracker Parens(*this, tok::l_paren,
tok::annot_pragma_openacc_end);
if (ClauseHasRequiredParens(DirKind, Kind)) {
if (Parens.expectAndConsume()) {
// We are missing a paren, so assume that the person just forgot the
// parameter. Return 'false' so we try to continue on and parse the next
// clause.
SkipUntil(tok::comma, tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return false;
}
switch (Kind) {
case OpenACCClauseKind::Default: {
Token DefKindTok = getCurToken();
if (expectIdentifierOrKeyword(*this))
break;
ConsumeToken();
if (getOpenACCDefaultClauseKind(DefKindTok) ==
OpenACCDefaultClauseKind::Invalid)
Diag(DefKindTok, diag::err_acc_invalid_default_clause_kind);
break;
}
case OpenACCClauseKind::If: {
ExprResult CondExpr = ParseOpenACCConditionalExpr(*this);
// An invalid expression can be just about anything, so just give up on
// this clause list.
if (CondExpr.isInvalid()) {
Parens.skipToEnd();
return false;
}
break;
}
case OpenACCClauseKind::CopyIn:
tryParseAndConsumeSpecialTokenKind(
*this, OpenACCSpecialTokenKind::ReadOnly, Kind);
if (ParseOpenACCClauseVarList(Kind)) {
Parens.skipToEnd();
return false;
}
break;
case OpenACCClauseKind::Create:
case OpenACCClauseKind::CopyOut:
tryParseAndConsumeSpecialTokenKind(*this, OpenACCSpecialTokenKind::Zero,
Kind);
if (ParseOpenACCClauseVarList(Kind)) {
Parens.skipToEnd();
return false;
}
break;
case OpenACCClauseKind::Reduction:
// If we're missing a clause-kind (or it is invalid), see if we can parse
// the var-list anyway.
ParseReductionOperator(*this);
if (ParseOpenACCClauseVarList(Kind)) {
Parens.skipToEnd();
return false;
}
break;
case OpenACCClauseKind::Self:
// The 'self' clause is a var-list instead of a 'condition' in the case of
// the 'update' clause, so we have to handle it here. U se an assert to
// make sure we get the right differentiator.
assert(DirKind == OpenACCDirectiveKind::Update);
LLVM_FALLTHROUGH;
case OpenACCClauseKind::Attach:
case OpenACCClauseKind::Copy:
case OpenACCClauseKind::Delete:
case OpenACCClauseKind::Detach:
case OpenACCClauseKind::Device:
case OpenACCClauseKind::DeviceResident:
case OpenACCClauseKind::DevicePtr:
case OpenACCClauseKind::FirstPrivate:
case OpenACCClauseKind::Host:
case OpenACCClauseKind::Link:
case OpenACCClauseKind::NoCreate:
case OpenACCClauseKind::Present:
case OpenACCClauseKind::Private:
case OpenACCClauseKind::UseDevice:
if (ParseOpenACCClauseVarList(Kind)) {
Parens.skipToEnd();
return false;
}
break;
case OpenACCClauseKind::Collapse: {
tryParseAndConsumeSpecialTokenKind(*this, OpenACCSpecialTokenKind::Force,
Kind);
ExprResult NumLoops =
getActions().CorrectDelayedTyposInExpr(ParseConstantExpression());
if (NumLoops.isInvalid()) {
Parens.skipToEnd();
return false;
}
break;
}
case OpenACCClauseKind::Bind: {
ExprResult BindArg = ParseOpenACCBindClauseArgument();
if (BindArg.isInvalid()) {
Parens.skipToEnd();
return false;
}
break;
}
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::DeviceNum:
case OpenACCClauseKind::DefaultAsync:
case OpenACCClauseKind::VectorLength: {
ExprResult IntExpr = ParseOpenACCIntExpr();
if (IntExpr.isInvalid()) {
Parens.skipToEnd();
return false;
}
break;
}
case OpenACCClauseKind::DType:
case OpenACCClauseKind::DeviceType:
if (getCurToken().is(tok::star)) {
// FIXME: We want to mark that this is an 'everything else' type of
// device_type in Sema.
ConsumeToken();
} else if (ParseOpenACCDeviceTypeList()) {
Parens.skipToEnd();
return false;
}
break;
case OpenACCClauseKind::Tile:
if (ParseOpenACCSizeExprList()) {
Parens.skipToEnd();
return false;
}
break;
default:
llvm_unreachable("Not a required parens type?");
}
return Parens.consumeClose();
} else if (ClauseHasOptionalParens(DirKind, Kind)) {
if (!Parens.consumeOpen()) {
switch (Kind) {
case OpenACCClauseKind::Self: {
assert(DirKind != OpenACCDirectiveKind::Update);
ExprResult CondExpr = ParseOpenACCConditionalExpr(*this);
// An invalid expression can be just about anything, so just give up on
// this clause list.
if (CondExpr.isInvalid()) {
Parens.skipToEnd();
return false;
}
break;
}
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Worker: {
tryParseAndConsumeSpecialTokenKind(*this,
Kind == OpenACCClauseKind::Vector
? OpenACCSpecialTokenKind::Length
: OpenACCSpecialTokenKind::Num,
Kind);
ExprResult IntExpr = ParseOpenACCIntExpr();
if (IntExpr.isInvalid()) {
Parens.skipToEnd();
return false;
}
break;
}
case OpenACCClauseKind::Async: {
ExprResult AsyncArg = ParseOpenACCAsyncArgument();
if (AsyncArg.isInvalid()) {
Parens.skipToEnd();
return false;
}
break;
}
case OpenACCClauseKind::Gang:
if (ParseOpenACCGangArgList()) {
Parens.skipToEnd();
return false;
}
break;
case OpenACCClauseKind::Wait:
if (ParseOpenACCWaitArgument()) {
Parens.skipToEnd();
return false;
}
break;
default:
llvm_unreachable("Not an optional parens type?");
}
Parens.consumeClose();
}
}
return false;
}
/// OpenACC 3.3 section 2.16:
/// In this section and throughout the specification, the term async-argument
/// means a nonnegative scalar integer expression (int for C or C++, integer for
/// Fortran), or one of the special values acc_async_noval or acc_async_sync, as
/// defined in the C header file and the Fortran openacc module. The special
/// values are negative values, so as not to conflict with a user-specified
/// nonnegative async-argument.
ExprResult Parser::ParseOpenACCAsyncArgument() {
return getActions().CorrectDelayedTyposInExpr(ParseAssignmentExpression());
}
/// OpenACC 3.3, section 2.16:
/// In this section and throughout the specification, the term wait-argument
/// means:
/// [ devnum : int-expr : ] [ queues : ] async-argument-list
bool Parser::ParseOpenACCWaitArgument() {
// [devnum : int-expr : ]
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::DevNum, Tok) &&
NextToken().is(tok::colon)) {
// Consume devnum.
ConsumeToken();
// Consume colon.
ConsumeToken();
ExprResult IntExpr = ParseOpenACCIntExpr();
if (IntExpr.isInvalid())
return true;
if (ExpectAndConsume(tok::colon))
return true;
}
// [ queues : ]
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::Queues, Tok) &&
NextToken().is(tok::colon)) {
// Consume queues.
ConsumeToken();
// Consume colon.
ConsumeToken();
}
// OpenACC 3.3, section 2.16:
// the term 'async-argument' means a nonnegative scalar integer expression, or
// one of the special values 'acc_async_noval' or 'acc_async_sync', as defined
// in the C header file and the Fortran opacc module.
bool FirstArg = true;
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
if (!FirstArg) {
if (ExpectAndConsume(tok::comma))
return true;
}
FirstArg = false;
ExprResult CurArg = ParseOpenACCAsyncArgument();
if (CurArg.isInvalid())
return true;
}
return false;
}
ExprResult Parser::ParseOpenACCIDExpression() {
ExprResult Res;
if (getLangOpts().CPlusPlus) {
Res = ParseCXXIdExpression(/*isAddressOfOperand=*/true);
} else {
// There isn't anything quite the same as ParseCXXIdExpression for C, so we
// need to get the identifier, then call into Sema ourselves.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
return ExprError();
}
Token FuncName = getCurToken();
UnqualifiedId Name;
CXXScopeSpec ScopeSpec;
SourceLocation TemplateKWLoc;
Name.setIdentifier(FuncName.getIdentifierInfo(), ConsumeToken());
// Ensure this is a valid identifier. We don't accept causing implicit
// function declarations per the spec, so always claim to not have trailing
// L Paren.
Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
Name, /*HasTrailingLParen=*/false,
/*isAddressOfOperand=*/false);
}
return getActions().CorrectDelayedTyposInExpr(Res);
}
ExprResult Parser::ParseOpenACCBindClauseArgument() {
// OpenACC 3.3 section 2.15:
// The bind clause specifies the name to use when calling the procedure on a
// device other than the host. If the name is specified as an identifier, it
// is called as if that name were specified in the language being compiled. If
// the name is specified as a string, the string is used for the procedure
// name unmodified.
if (getCurToken().is(tok::r_paren)) {
Diag(getCurToken(), diag::err_acc_incorrect_bind_arg);
return ExprError();
}
if (tok::isStringLiteral(getCurToken().getKind()))
return getActions().CorrectDelayedTyposInExpr(ParseStringLiteralExpression(
/*AllowUserDefinedLiteral=*/false, /*Unevaluated=*/true));
return ParseOpenACCIDExpression();
}
/// OpenACC 3.3, section 1.6:
/// In this spec, a 'var' (in italics) is one of the following:
/// - a variable name (a scalar, array, or compisite variable name)
/// - a subarray specification with subscript ranges
/// - an array element
/// - a member of a composite variable
/// - a common block name between slashes (fortran only)
bool Parser::ParseOpenACCVar() {
OpenACCArraySectionRAII ArraySections(*this);
ExprResult Res =
getActions().CorrectDelayedTyposInExpr(ParseAssignmentExpression());
return Res.isInvalid();
}
/// OpenACC 3.3, section 2.10:
/// In C and C++, the syntax of the cache directive is:
///
/// #pragma acc cache ([readonly:]var-list) new-line
void Parser::ParseOpenACCCacheVarList() {
// If this is the end of the line, just return 'false' and count on the close
// paren diagnostic to catch the issue.
if (getCurToken().isAnnotation())
return;
// The VarList is an optional `readonly:` followed by a list of a variable
// specifications. Consume something that looks like a 'tag', and diagnose if
// it isn't 'readonly'.
if (tryParseAndConsumeSpecialTokenKind(*this,
OpenACCSpecialTokenKind::ReadOnly,
OpenACCDirectiveKind::Cache)) {
// FIXME: Record that this is a 'readonly' so that we can use that during
// Sema/AST generation.
}
bool FirstArray = true;
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
if (!FirstArray)
ExpectAndConsume(tok::comma);
FirstArray = false;
// OpenACC 3.3, section 2.10:
// A 'var' in a cache directive must be a single array element or a simple
// subarray. In C and C++, a simple subarray is an array name followed by
// an extended array range specification in brackets, with a start and
// length such as:
//
// arr[lower:length]
//
if (ParseOpenACCVar())
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end, tok::comma,
StopBeforeMatch);
}
}
void Parser::ParseOpenACCDirective() {
OpenACCDirectiveKind DirKind = ParseOpenACCDirectiveKind(*this);
// Once we've parsed the construct/directive name, some have additional
// specifiers that need to be taken care of. Atomic has an 'atomic-clause'
// that needs to be parsed.
if (DirKind == OpenACCDirectiveKind::Atomic)
ParseOpenACCAtomicKind(*this);
// We've successfully parsed the construct/directive name, however a few of
// the constructs have optional parens that contain further details.
BalancedDelimiterTracker T(*this, tok::l_paren,
tok::annot_pragma_openacc_end);
if (!T.consumeOpen()) {
switch (DirKind) {
default:
Diag(T.getOpenLocation(), diag::err_acc_invalid_open_paren);
T.skipToEnd();
break;
case OpenACCDirectiveKind::Routine: {
// Routine has an optional paren-wrapped name of a function in the local
// scope. We parse the name, emitting any diagnostics
ExprResult RoutineName = ParseOpenACCIDExpression();
// If the routine name is invalid, just skip until the closing paren to
// recover more gracefully.
if (RoutineName.isInvalid())
T.skipToEnd();
else
T.consumeClose();
break;
}
case OpenACCDirectiveKind::Cache:
ParseOpenACCCacheVarList();
// The ParseOpenACCCacheVarList function manages to recover from failures,
// so we can always consume the close.
T.consumeClose();
break;
case OpenACCDirectiveKind::Wait:
// OpenACC has an optional paren-wrapped 'wait-argument'.
if (ParseOpenACCWaitArgument())
T.skipToEnd();
else
T.consumeClose();
break;
}
} else if (DirKind == OpenACCDirectiveKind::Cache) {
// Cache's paren var-list is required, so error here if it isn't provided.
// We know that the consumeOpen above left the first non-paren here, so
// diagnose, then continue as if it was completely omitted.
Diag(Tok, diag::err_expected) << tok::l_paren;
}
// Parses the list of clauses, if present.
ParseOpenACCClauseList(DirKind);
Diag(getCurToken(), diag::warn_pragma_acc_unimplemented);
assert(Tok.is(tok::annot_pragma_openacc_end) &&
"Didn't parse all OpenACC Clauses");
ConsumeAnnotationToken();
}
// Parse OpenACC directive on a declaration.
Parser::DeclGroupPtrTy Parser::ParseOpenACCDirectiveDecl() {
assert(Tok.is(tok::annot_pragma_openacc) && "expected OpenACC Start Token");
ParsingOpenACCDirectiveRAII DirScope(*this);
ConsumeAnnotationToken();
ParseOpenACCDirective();
return nullptr;
}
// Parse OpenACC Directive on a Statement.
StmtResult Parser::ParseOpenACCDirectiveStmt() {
assert(Tok.is(tok::annot_pragma_openacc) && "expected OpenACC Start Token");
ParsingOpenACCDirectiveRAII DirScope(*this);
ConsumeAnnotationToken();
ParseOpenACCDirective();
return StmtEmpty();
}