mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-04 17:56:05 +00:00

In the Microsoft ABI, the vftable is laid out as if all methods in every overload set were declared in reverse order of declaration at the point of declaration of the first overload in the set. Previously we only considered virtual methods in an overload set, but MSVC includes non-virtual methods for ordering purposes. Fixes PR18902. llvm-svn: 201722
3630 lines
133 KiB
C++
3630 lines
133 KiB
C++
//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code dealing with generation of the layout of virtual tables.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/VTableBuilder.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cstdio>
|
|
|
|
using namespace clang;
|
|
|
|
#define DUMP_OVERRIDERS 0
|
|
|
|
namespace {
|
|
|
|
/// BaseOffset - Represents an offset from a derived class to a direct or
|
|
/// indirect base class.
|
|
struct BaseOffset {
|
|
/// DerivedClass - The derived class.
|
|
const CXXRecordDecl *DerivedClass;
|
|
|
|
/// VirtualBase - If the path from the derived class to the base class
|
|
/// involves virtual base classes, this holds the declaration of the last
|
|
/// virtual base in this path (i.e. closest to the base class).
|
|
const CXXRecordDecl *VirtualBase;
|
|
|
|
/// NonVirtualOffset - The offset from the derived class to the base class.
|
|
/// (Or the offset from the virtual base class to the base class, if the
|
|
/// path from the derived class to the base class involves a virtual base
|
|
/// class.
|
|
CharUnits NonVirtualOffset;
|
|
|
|
BaseOffset() : DerivedClass(0), VirtualBase(0),
|
|
NonVirtualOffset(CharUnits::Zero()) { }
|
|
BaseOffset(const CXXRecordDecl *DerivedClass,
|
|
const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
|
|
: DerivedClass(DerivedClass), VirtualBase(VirtualBase),
|
|
NonVirtualOffset(NonVirtualOffset) { }
|
|
|
|
bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
|
|
};
|
|
|
|
/// FinalOverriders - Contains the final overrider member functions for all
|
|
/// member functions in the base subobjects of a class.
|
|
class FinalOverriders {
|
|
public:
|
|
/// OverriderInfo - Information about a final overrider.
|
|
struct OverriderInfo {
|
|
/// Method - The method decl of the overrider.
|
|
const CXXMethodDecl *Method;
|
|
|
|
/// Offset - the base offset of the overrider's parent in the layout class.
|
|
CharUnits Offset;
|
|
|
|
OverriderInfo() : Method(0), Offset(CharUnits::Zero()) { }
|
|
};
|
|
|
|
private:
|
|
/// MostDerivedClass - The most derived class for which the final overriders
|
|
/// are stored.
|
|
const CXXRecordDecl *MostDerivedClass;
|
|
|
|
/// MostDerivedClassOffset - If we're building final overriders for a
|
|
/// construction vtable, this holds the offset from the layout class to the
|
|
/// most derived class.
|
|
const CharUnits MostDerivedClassOffset;
|
|
|
|
/// LayoutClass - The class we're using for layout information. Will be
|
|
/// different than the most derived class if the final overriders are for a
|
|
/// construction vtable.
|
|
const CXXRecordDecl *LayoutClass;
|
|
|
|
ASTContext &Context;
|
|
|
|
/// MostDerivedClassLayout - the AST record layout of the most derived class.
|
|
const ASTRecordLayout &MostDerivedClassLayout;
|
|
|
|
/// MethodBaseOffsetPairTy - Uniquely identifies a member function
|
|
/// in a base subobject.
|
|
typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
|
|
|
|
typedef llvm::DenseMap<MethodBaseOffsetPairTy,
|
|
OverriderInfo> OverridersMapTy;
|
|
|
|
/// OverridersMap - The final overriders for all virtual member functions of
|
|
/// all the base subobjects of the most derived class.
|
|
OverridersMapTy OverridersMap;
|
|
|
|
/// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
|
|
/// as a record decl and a subobject number) and its offsets in the most
|
|
/// derived class as well as the layout class.
|
|
typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
|
|
CharUnits> SubobjectOffsetMapTy;
|
|
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
|
|
|
|
/// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
|
|
/// given base.
|
|
void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
|
|
CharUnits OffsetInLayoutClass,
|
|
SubobjectOffsetMapTy &SubobjectOffsets,
|
|
SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
|
|
SubobjectCountMapTy &SubobjectCounts);
|
|
|
|
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
|
|
|
|
/// dump - dump the final overriders for a base subobject, and all its direct
|
|
/// and indirect base subobjects.
|
|
void dump(raw_ostream &Out, BaseSubobject Base,
|
|
VisitedVirtualBasesSetTy& VisitedVirtualBases);
|
|
|
|
public:
|
|
FinalOverriders(const CXXRecordDecl *MostDerivedClass,
|
|
CharUnits MostDerivedClassOffset,
|
|
const CXXRecordDecl *LayoutClass);
|
|
|
|
/// getOverrider - Get the final overrider for the given method declaration in
|
|
/// the subobject with the given base offset.
|
|
OverriderInfo getOverrider(const CXXMethodDecl *MD,
|
|
CharUnits BaseOffset) const {
|
|
assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
|
|
"Did not find overrider!");
|
|
|
|
return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
|
|
}
|
|
|
|
/// dump - dump the final overriders.
|
|
void dump() {
|
|
VisitedVirtualBasesSetTy VisitedVirtualBases;
|
|
dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
|
|
VisitedVirtualBases);
|
|
}
|
|
|
|
};
|
|
|
|
FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
|
|
CharUnits MostDerivedClassOffset,
|
|
const CXXRecordDecl *LayoutClass)
|
|
: MostDerivedClass(MostDerivedClass),
|
|
MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
|
|
Context(MostDerivedClass->getASTContext()),
|
|
MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
|
|
|
|
// Compute base offsets.
|
|
SubobjectOffsetMapTy SubobjectOffsets;
|
|
SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
|
|
SubobjectCountMapTy SubobjectCounts;
|
|
ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
|
|
/*IsVirtual=*/false,
|
|
MostDerivedClassOffset,
|
|
SubobjectOffsets, SubobjectLayoutClassOffsets,
|
|
SubobjectCounts);
|
|
|
|
// Get the final overriders.
|
|
CXXFinalOverriderMap FinalOverriders;
|
|
MostDerivedClass->getFinalOverriders(FinalOverriders);
|
|
|
|
for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
|
|
E = FinalOverriders.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
const OverridingMethods& Methods = I->second;
|
|
|
|
for (OverridingMethods::const_iterator I = Methods.begin(),
|
|
E = Methods.end(); I != E; ++I) {
|
|
unsigned SubobjectNumber = I->first;
|
|
assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
|
|
SubobjectNumber)) &&
|
|
"Did not find subobject offset!");
|
|
|
|
CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
|
|
SubobjectNumber)];
|
|
|
|
assert(I->second.size() == 1 && "Final overrider is not unique!");
|
|
const UniqueVirtualMethod &Method = I->second.front();
|
|
|
|
const CXXRecordDecl *OverriderRD = Method.Method->getParent();
|
|
assert(SubobjectLayoutClassOffsets.count(
|
|
std::make_pair(OverriderRD, Method.Subobject))
|
|
&& "Did not find subobject offset!");
|
|
CharUnits OverriderOffset =
|
|
SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
|
|
Method.Subobject)];
|
|
|
|
OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
|
|
assert(!Overrider.Method && "Overrider should not exist yet!");
|
|
|
|
Overrider.Offset = OverriderOffset;
|
|
Overrider.Method = Method.Method;
|
|
}
|
|
}
|
|
|
|
#if DUMP_OVERRIDERS
|
|
// And dump them (for now).
|
|
dump();
|
|
#endif
|
|
}
|
|
|
|
static BaseOffset ComputeBaseOffset(ASTContext &Context,
|
|
const CXXRecordDecl *DerivedRD,
|
|
const CXXBasePath &Path) {
|
|
CharUnits NonVirtualOffset = CharUnits::Zero();
|
|
|
|
unsigned NonVirtualStart = 0;
|
|
const CXXRecordDecl *VirtualBase = 0;
|
|
|
|
// First, look for the virtual base class.
|
|
for (int I = Path.size(), E = 0; I != E; --I) {
|
|
const CXXBasePathElement &Element = Path[I - 1];
|
|
|
|
if (Element.Base->isVirtual()) {
|
|
NonVirtualStart = I;
|
|
QualType VBaseType = Element.Base->getType();
|
|
VirtualBase = VBaseType->getAsCXXRecordDecl();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Now compute the non-virtual offset.
|
|
for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
|
|
const CXXBasePathElement &Element = Path[I];
|
|
|
|
// Check the base class offset.
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
|
|
|
|
const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
|
|
|
|
NonVirtualOffset += Layout.getBaseClassOffset(Base);
|
|
}
|
|
|
|
// FIXME: This should probably use CharUnits or something. Maybe we should
|
|
// even change the base offsets in ASTRecordLayout to be specified in
|
|
// CharUnits.
|
|
return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
|
|
|
|
}
|
|
|
|
static BaseOffset ComputeBaseOffset(ASTContext &Context,
|
|
const CXXRecordDecl *BaseRD,
|
|
const CXXRecordDecl *DerivedRD) {
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/false,
|
|
/*RecordPaths=*/true, /*DetectVirtual=*/false);
|
|
|
|
if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
|
|
llvm_unreachable("Class must be derived from the passed in base class!");
|
|
|
|
return ComputeBaseOffset(Context, DerivedRD, Paths.front());
|
|
}
|
|
|
|
static BaseOffset
|
|
ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
|
|
const CXXMethodDecl *DerivedMD,
|
|
const CXXMethodDecl *BaseMD) {
|
|
const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
|
|
const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
|
|
|
|
// Canonicalize the return types.
|
|
CanQualType CanDerivedReturnType =
|
|
Context.getCanonicalType(DerivedFT->getReturnType());
|
|
CanQualType CanBaseReturnType =
|
|
Context.getCanonicalType(BaseFT->getReturnType());
|
|
|
|
assert(CanDerivedReturnType->getTypeClass() ==
|
|
CanBaseReturnType->getTypeClass() &&
|
|
"Types must have same type class!");
|
|
|
|
if (CanDerivedReturnType == CanBaseReturnType) {
|
|
// No adjustment needed.
|
|
return BaseOffset();
|
|
}
|
|
|
|
if (isa<ReferenceType>(CanDerivedReturnType)) {
|
|
CanDerivedReturnType =
|
|
CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
|
|
CanBaseReturnType =
|
|
CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
|
|
} else if (isa<PointerType>(CanDerivedReturnType)) {
|
|
CanDerivedReturnType =
|
|
CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
|
|
CanBaseReturnType =
|
|
CanBaseReturnType->getAs<PointerType>()->getPointeeType();
|
|
} else {
|
|
llvm_unreachable("Unexpected return type!");
|
|
}
|
|
|
|
// We need to compare unqualified types here; consider
|
|
// const T *Base::foo();
|
|
// T *Derived::foo();
|
|
if (CanDerivedReturnType.getUnqualifiedType() ==
|
|
CanBaseReturnType.getUnqualifiedType()) {
|
|
// No adjustment needed.
|
|
return BaseOffset();
|
|
}
|
|
|
|
const CXXRecordDecl *DerivedRD =
|
|
cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
|
|
|
|
const CXXRecordDecl *BaseRD =
|
|
cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
|
|
|
|
return ComputeBaseOffset(Context, BaseRD, DerivedRD);
|
|
}
|
|
|
|
void
|
|
FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
|
|
CharUnits OffsetInLayoutClass,
|
|
SubobjectOffsetMapTy &SubobjectOffsets,
|
|
SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
|
|
SubobjectCountMapTy &SubobjectCounts) {
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
|
|
unsigned SubobjectNumber = 0;
|
|
if (!IsVirtual)
|
|
SubobjectNumber = ++SubobjectCounts[RD];
|
|
|
|
// Set up the subobject to offset mapping.
|
|
assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
|
|
&& "Subobject offset already exists!");
|
|
assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
|
|
&& "Subobject offset already exists!");
|
|
|
|
SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
|
|
SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
|
|
OffsetInLayoutClass;
|
|
|
|
// Traverse our bases.
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits BaseOffset;
|
|
CharUnits BaseOffsetInLayoutClass;
|
|
if (I->isVirtual()) {
|
|
// Check if we've visited this virtual base before.
|
|
if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
|
|
continue;
|
|
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
|
|
BaseOffsetInLayoutClass =
|
|
LayoutClassLayout.getVBaseClassOffset(BaseDecl);
|
|
} else {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
|
|
|
|
BaseOffset = Base.getBaseOffset() + Offset;
|
|
BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
|
|
}
|
|
|
|
ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
|
|
I->isVirtual(), BaseOffsetInLayoutClass,
|
|
SubobjectOffsets, SubobjectLayoutClassOffsets,
|
|
SubobjectCounts);
|
|
}
|
|
}
|
|
|
|
void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
|
|
VisitedVirtualBasesSetTy &VisitedVirtualBases) {
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
// Ignore bases that don't have any virtual member functions.
|
|
if (!BaseDecl->isPolymorphic())
|
|
continue;
|
|
|
|
CharUnits BaseOffset;
|
|
if (I->isVirtual()) {
|
|
if (!VisitedVirtualBases.insert(BaseDecl)) {
|
|
// We've visited this base before.
|
|
continue;
|
|
}
|
|
|
|
BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
|
|
} else {
|
|
BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
|
|
}
|
|
|
|
dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
|
|
}
|
|
|
|
Out << "Final overriders for (";
|
|
RD->printQualifiedName(Out);
|
|
Out << ", ";
|
|
Out << Base.getBaseOffset().getQuantity() << ")\n";
|
|
|
|
// Now dump the overriders for this base subobject.
|
|
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
|
|
E = RD->method_end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = *I;
|
|
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
|
|
OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
|
|
|
|
Out << " ";
|
|
MD->printQualifiedName(Out);
|
|
Out << " - (";
|
|
Overrider.Method->printQualifiedName(Out);
|
|
Out << ", " << Overrider.Offset.getQuantity() << ')';
|
|
|
|
BaseOffset Offset;
|
|
if (!Overrider.Method->isPure())
|
|
Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
|
|
|
|
if (!Offset.isEmpty()) {
|
|
Out << " [ret-adj: ";
|
|
if (Offset.VirtualBase) {
|
|
Offset.VirtualBase->printQualifiedName(Out);
|
|
Out << " vbase, ";
|
|
}
|
|
|
|
Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
|
|
}
|
|
|
|
Out << "\n";
|
|
}
|
|
}
|
|
|
|
/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
|
|
struct VCallOffsetMap {
|
|
|
|
typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
|
|
|
|
/// Offsets - Keeps track of methods and their offsets.
|
|
// FIXME: This should be a real map and not a vector.
|
|
SmallVector<MethodAndOffsetPairTy, 16> Offsets;
|
|
|
|
/// MethodsCanShareVCallOffset - Returns whether two virtual member functions
|
|
/// can share the same vcall offset.
|
|
static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
|
|
const CXXMethodDecl *RHS);
|
|
|
|
public:
|
|
/// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
|
|
/// add was successful, or false if there was already a member function with
|
|
/// the same signature in the map.
|
|
bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
|
|
|
|
/// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
|
|
/// vtable address point) for the given virtual member function.
|
|
CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
|
|
|
|
// empty - Return whether the offset map is empty or not.
|
|
bool empty() const { return Offsets.empty(); }
|
|
};
|
|
|
|
static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
|
|
const CXXMethodDecl *RHS) {
|
|
const FunctionProtoType *LT =
|
|
cast<FunctionProtoType>(LHS->getType().getCanonicalType());
|
|
const FunctionProtoType *RT =
|
|
cast<FunctionProtoType>(RHS->getType().getCanonicalType());
|
|
|
|
// Fast-path matches in the canonical types.
|
|
if (LT == RT) return true;
|
|
|
|
// Force the signatures to match. We can't rely on the overrides
|
|
// list here because there isn't necessarily an inheritance
|
|
// relationship between the two methods.
|
|
if (LT->getTypeQuals() != RT->getTypeQuals() ||
|
|
LT->getNumParams() != RT->getNumParams())
|
|
return false;
|
|
for (unsigned I = 0, E = LT->getNumParams(); I != E; ++I)
|
|
if (LT->getParamType(I) != RT->getParamType(I))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
|
|
const CXXMethodDecl *RHS) {
|
|
assert(LHS->isVirtual() && "LHS must be virtual!");
|
|
assert(RHS->isVirtual() && "LHS must be virtual!");
|
|
|
|
// A destructor can share a vcall offset with another destructor.
|
|
if (isa<CXXDestructorDecl>(LHS))
|
|
return isa<CXXDestructorDecl>(RHS);
|
|
|
|
// FIXME: We need to check more things here.
|
|
|
|
// The methods must have the same name.
|
|
DeclarationName LHSName = LHS->getDeclName();
|
|
DeclarationName RHSName = RHS->getDeclName();
|
|
if (LHSName != RHSName)
|
|
return false;
|
|
|
|
// And the same signatures.
|
|
return HasSameVirtualSignature(LHS, RHS);
|
|
}
|
|
|
|
bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
|
|
CharUnits OffsetOffset) {
|
|
// Check if we can reuse an offset.
|
|
for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
|
|
if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
|
|
return false;
|
|
}
|
|
|
|
// Add the offset.
|
|
Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
|
|
return true;
|
|
}
|
|
|
|
CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
|
|
// Look for an offset.
|
|
for (unsigned I = 0, E = Offsets.size(); I != E; ++I) {
|
|
if (MethodsCanShareVCallOffset(Offsets[I].first, MD))
|
|
return Offsets[I].second;
|
|
}
|
|
|
|
llvm_unreachable("Should always find a vcall offset offset!");
|
|
}
|
|
|
|
/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
|
|
class VCallAndVBaseOffsetBuilder {
|
|
public:
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
|
|
VBaseOffsetOffsetsMapTy;
|
|
|
|
private:
|
|
/// MostDerivedClass - The most derived class for which we're building vcall
|
|
/// and vbase offsets.
|
|
const CXXRecordDecl *MostDerivedClass;
|
|
|
|
/// LayoutClass - The class we're using for layout information. Will be
|
|
/// different than the most derived class if we're building a construction
|
|
/// vtable.
|
|
const CXXRecordDecl *LayoutClass;
|
|
|
|
/// Context - The ASTContext which we will use for layout information.
|
|
ASTContext &Context;
|
|
|
|
/// Components - vcall and vbase offset components
|
|
typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
|
|
VTableComponentVectorTy Components;
|
|
|
|
/// VisitedVirtualBases - Visited virtual bases.
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
|
|
|
|
/// VCallOffsets - Keeps track of vcall offsets.
|
|
VCallOffsetMap VCallOffsets;
|
|
|
|
|
|
/// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
|
|
/// relative to the address point.
|
|
VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
|
|
|
|
/// FinalOverriders - The final overriders of the most derived class.
|
|
/// (Can be null when we're not building a vtable of the most derived class).
|
|
const FinalOverriders *Overriders;
|
|
|
|
/// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
|
|
/// given base subobject.
|
|
void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
|
|
CharUnits RealBaseOffset);
|
|
|
|
/// AddVCallOffsets - Add vcall offsets for the given base subobject.
|
|
void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
|
|
|
|
/// AddVBaseOffsets - Add vbase offsets for the given class.
|
|
void AddVBaseOffsets(const CXXRecordDecl *Base,
|
|
CharUnits OffsetInLayoutClass);
|
|
|
|
/// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
|
|
/// chars, relative to the vtable address point.
|
|
CharUnits getCurrentOffsetOffset() const;
|
|
|
|
public:
|
|
VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
|
|
const CXXRecordDecl *LayoutClass,
|
|
const FinalOverriders *Overriders,
|
|
BaseSubobject Base, bool BaseIsVirtual,
|
|
CharUnits OffsetInLayoutClass)
|
|
: MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
|
|
Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
|
|
|
|
// Add vcall and vbase offsets.
|
|
AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
|
|
}
|
|
|
|
/// Methods for iterating over the components.
|
|
typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
|
|
const_iterator components_begin() const { return Components.rbegin(); }
|
|
const_iterator components_end() const { return Components.rend(); }
|
|
|
|
const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
|
|
const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
|
|
return VBaseOffsetOffsets;
|
|
}
|
|
};
|
|
|
|
void
|
|
VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
|
|
bool BaseIsVirtual,
|
|
CharUnits RealBaseOffset) {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
|
|
|
|
// Itanium C++ ABI 2.5.2:
|
|
// ..in classes sharing a virtual table with a primary base class, the vcall
|
|
// and vbase offsets added by the derived class all come before the vcall
|
|
// and vbase offsets required by the base class, so that the latter may be
|
|
// laid out as required by the base class without regard to additions from
|
|
// the derived class(es).
|
|
|
|
// (Since we're emitting the vcall and vbase offsets in reverse order, we'll
|
|
// emit them for the primary base first).
|
|
if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
|
|
bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
|
|
|
|
CharUnits PrimaryBaseOffset;
|
|
|
|
// Get the base offset of the primary base.
|
|
if (PrimaryBaseIsVirtual) {
|
|
assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary vbase should have a zero offset!");
|
|
|
|
const ASTRecordLayout &MostDerivedClassLayout =
|
|
Context.getASTRecordLayout(MostDerivedClass);
|
|
|
|
PrimaryBaseOffset =
|
|
MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
|
|
} else {
|
|
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary base should have a zero offset!");
|
|
|
|
PrimaryBaseOffset = Base.getBaseOffset();
|
|
}
|
|
|
|
AddVCallAndVBaseOffsets(
|
|
BaseSubobject(PrimaryBase,PrimaryBaseOffset),
|
|
PrimaryBaseIsVirtual, RealBaseOffset);
|
|
}
|
|
|
|
AddVBaseOffsets(Base.getBase(), RealBaseOffset);
|
|
|
|
// We only want to add vcall offsets for virtual bases.
|
|
if (BaseIsVirtual)
|
|
AddVCallOffsets(Base, RealBaseOffset);
|
|
}
|
|
|
|
CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
|
|
// OffsetIndex is the index of this vcall or vbase offset, relative to the
|
|
// vtable address point. (We subtract 3 to account for the information just
|
|
// above the address point, the RTTI info, the offset to top, and the
|
|
// vcall offset itself).
|
|
int64_t OffsetIndex = -(int64_t)(3 + Components.size());
|
|
|
|
CharUnits PointerWidth =
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
|
|
CharUnits OffsetOffset = PointerWidth * OffsetIndex;
|
|
return OffsetOffset;
|
|
}
|
|
|
|
void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
|
|
CharUnits VBaseOffset) {
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
|
|
// Handle the primary base first.
|
|
// We only want to add vcall offsets if the base is non-virtual; a virtual
|
|
// primary base will have its vcall and vbase offsets emitted already.
|
|
if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
|
|
// Get the base offset of the primary base.
|
|
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary base should have a zero offset!");
|
|
|
|
AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
|
|
VBaseOffset);
|
|
}
|
|
|
|
// Add the vcall offsets.
|
|
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
|
|
E = RD->method_end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = *I;
|
|
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
|
|
CharUnits OffsetOffset = getCurrentOffsetOffset();
|
|
|
|
// Don't add a vcall offset if we already have one for this member function
|
|
// signature.
|
|
if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
|
|
continue;
|
|
|
|
CharUnits Offset = CharUnits::Zero();
|
|
|
|
if (Overriders) {
|
|
// Get the final overrider.
|
|
FinalOverriders::OverriderInfo Overrider =
|
|
Overriders->getOverrider(MD, Base.getBaseOffset());
|
|
|
|
/// The vcall offset is the offset from the virtual base to the object
|
|
/// where the function was overridden.
|
|
Offset = Overrider.Offset - VBaseOffset;
|
|
}
|
|
|
|
Components.push_back(
|
|
VTableComponent::MakeVCallOffset(Offset));
|
|
}
|
|
|
|
// And iterate over all non-virtual bases (ignoring the primary base).
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
|
|
if (I->isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
if (BaseDecl == PrimaryBase)
|
|
continue;
|
|
|
|
// Get the base offset of this base.
|
|
CharUnits BaseOffset = Base.getBaseOffset() +
|
|
Layout.getBaseClassOffset(BaseDecl);
|
|
|
|
AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
|
|
VBaseOffset);
|
|
}
|
|
}
|
|
|
|
void
|
|
VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
|
|
CharUnits OffsetInLayoutClass) {
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
// Add vbase offsets.
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
// Check if this is a virtual base that we haven't visited before.
|
|
if (I->isVirtual() && VisitedVirtualBases.insert(BaseDecl)) {
|
|
CharUnits Offset =
|
|
LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
|
|
|
|
// Add the vbase offset offset.
|
|
assert(!VBaseOffsetOffsets.count(BaseDecl) &&
|
|
"vbase offset offset already exists!");
|
|
|
|
CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
|
|
VBaseOffsetOffsets.insert(
|
|
std::make_pair(BaseDecl, VBaseOffsetOffset));
|
|
|
|
Components.push_back(
|
|
VTableComponent::MakeVBaseOffset(Offset));
|
|
}
|
|
|
|
// Check the base class looking for more vbase offsets.
|
|
AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
|
|
}
|
|
}
|
|
|
|
/// ItaniumVTableBuilder - Class for building vtable layout information.
|
|
class ItaniumVTableBuilder {
|
|
public:
|
|
/// PrimaryBasesSetVectorTy - A set vector of direct and indirect
|
|
/// primary bases.
|
|
typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
|
|
PrimaryBasesSetVectorTy;
|
|
|
|
typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
|
|
VBaseOffsetOffsetsMapTy;
|
|
|
|
typedef llvm::DenseMap<BaseSubobject, uint64_t>
|
|
AddressPointsMapTy;
|
|
|
|
typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
|
|
|
|
private:
|
|
/// VTables - Global vtable information.
|
|
ItaniumVTableContext &VTables;
|
|
|
|
/// MostDerivedClass - The most derived class for which we're building this
|
|
/// vtable.
|
|
const CXXRecordDecl *MostDerivedClass;
|
|
|
|
/// MostDerivedClassOffset - If we're building a construction vtable, this
|
|
/// holds the offset from the layout class to the most derived class.
|
|
const CharUnits MostDerivedClassOffset;
|
|
|
|
/// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
|
|
/// base. (This only makes sense when building a construction vtable).
|
|
bool MostDerivedClassIsVirtual;
|
|
|
|
/// LayoutClass - The class we're using for layout information. Will be
|
|
/// different than the most derived class if we're building a construction
|
|
/// vtable.
|
|
const CXXRecordDecl *LayoutClass;
|
|
|
|
/// Context - The ASTContext which we will use for layout information.
|
|
ASTContext &Context;
|
|
|
|
/// FinalOverriders - The final overriders of the most derived class.
|
|
const FinalOverriders Overriders;
|
|
|
|
/// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
|
|
/// bases in this vtable.
|
|
llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
|
|
|
|
/// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
|
|
/// the most derived class.
|
|
VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
|
|
|
|
/// Components - The components of the vtable being built.
|
|
SmallVector<VTableComponent, 64> Components;
|
|
|
|
/// AddressPoints - Address points for the vtable being built.
|
|
AddressPointsMapTy AddressPoints;
|
|
|
|
/// MethodInfo - Contains information about a method in a vtable.
|
|
/// (Used for computing 'this' pointer adjustment thunks.
|
|
struct MethodInfo {
|
|
/// BaseOffset - The base offset of this method.
|
|
const CharUnits BaseOffset;
|
|
|
|
/// BaseOffsetInLayoutClass - The base offset in the layout class of this
|
|
/// method.
|
|
const CharUnits BaseOffsetInLayoutClass;
|
|
|
|
/// VTableIndex - The index in the vtable that this method has.
|
|
/// (For destructors, this is the index of the complete destructor).
|
|
const uint64_t VTableIndex;
|
|
|
|
MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
|
|
uint64_t VTableIndex)
|
|
: BaseOffset(BaseOffset),
|
|
BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
|
|
VTableIndex(VTableIndex) { }
|
|
|
|
MethodInfo()
|
|
: BaseOffset(CharUnits::Zero()),
|
|
BaseOffsetInLayoutClass(CharUnits::Zero()),
|
|
VTableIndex(0) { }
|
|
};
|
|
|
|
typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
|
|
|
|
/// MethodInfoMap - The information for all methods in the vtable we're
|
|
/// currently building.
|
|
MethodInfoMapTy MethodInfoMap;
|
|
|
|
/// MethodVTableIndices - Contains the index (relative to the vtable address
|
|
/// point) where the function pointer for a virtual function is stored.
|
|
MethodVTableIndicesTy MethodVTableIndices;
|
|
|
|
typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
|
|
|
|
/// VTableThunks - The thunks by vtable index in the vtable currently being
|
|
/// built.
|
|
VTableThunksMapTy VTableThunks;
|
|
|
|
typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
|
|
typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
|
|
|
|
/// Thunks - A map that contains all the thunks needed for all methods in the
|
|
/// most derived class for which the vtable is currently being built.
|
|
ThunksMapTy Thunks;
|
|
|
|
/// AddThunk - Add a thunk for the given method.
|
|
void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
|
|
|
|
/// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
|
|
/// part of the vtable we're currently building.
|
|
void ComputeThisAdjustments();
|
|
|
|
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
|
|
|
|
/// PrimaryVirtualBases - All known virtual bases who are a primary base of
|
|
/// some other base.
|
|
VisitedVirtualBasesSetTy PrimaryVirtualBases;
|
|
|
|
/// ComputeReturnAdjustment - Compute the return adjustment given a return
|
|
/// adjustment base offset.
|
|
ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
|
|
|
|
/// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
|
|
/// the 'this' pointer from the base subobject to the derived subobject.
|
|
BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
|
|
BaseSubobject Derived) const;
|
|
|
|
/// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
|
|
/// given virtual member function, its offset in the layout class and its
|
|
/// final overrider.
|
|
ThisAdjustment
|
|
ComputeThisAdjustment(const CXXMethodDecl *MD,
|
|
CharUnits BaseOffsetInLayoutClass,
|
|
FinalOverriders::OverriderInfo Overrider);
|
|
|
|
/// AddMethod - Add a single virtual member function to the vtable
|
|
/// components vector.
|
|
void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
|
|
|
|
/// IsOverriderUsed - Returns whether the overrider will ever be used in this
|
|
/// part of the vtable.
|
|
///
|
|
/// Itanium C++ ABI 2.5.2:
|
|
///
|
|
/// struct A { virtual void f(); };
|
|
/// struct B : virtual public A { int i; };
|
|
/// struct C : virtual public A { int j; };
|
|
/// struct D : public B, public C {};
|
|
///
|
|
/// When B and C are declared, A is a primary base in each case, so although
|
|
/// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
|
|
/// adjustment is required and no thunk is generated. However, inside D
|
|
/// objects, A is no longer a primary base of C, so if we allowed calls to
|
|
/// C::f() to use the copy of A's vtable in the C subobject, we would need
|
|
/// to adjust this from C* to B::A*, which would require a third-party
|
|
/// thunk. Since we require that a call to C::f() first convert to A*,
|
|
/// C-in-D's copy of A's vtable is never referenced, so this is not
|
|
/// necessary.
|
|
bool IsOverriderUsed(const CXXMethodDecl *Overrider,
|
|
CharUnits BaseOffsetInLayoutClass,
|
|
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
|
|
CharUnits FirstBaseOffsetInLayoutClass) const;
|
|
|
|
|
|
/// AddMethods - Add the methods of this base subobject and all its
|
|
/// primary bases to the vtable components vector.
|
|
void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
|
|
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
|
|
CharUnits FirstBaseOffsetInLayoutClass,
|
|
PrimaryBasesSetVectorTy &PrimaryBases);
|
|
|
|
// LayoutVTable - Layout the vtable for the given base class, including its
|
|
// secondary vtables and any vtables for virtual bases.
|
|
void LayoutVTable();
|
|
|
|
/// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
|
|
/// given base subobject, as well as all its secondary vtables.
|
|
///
|
|
/// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
|
|
/// or a direct or indirect base of a virtual base.
|
|
///
|
|
/// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
|
|
/// in the layout class.
|
|
void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
|
|
bool BaseIsMorallyVirtual,
|
|
bool BaseIsVirtualInLayoutClass,
|
|
CharUnits OffsetInLayoutClass);
|
|
|
|
/// LayoutSecondaryVTables - Layout the secondary vtables for the given base
|
|
/// subobject.
|
|
///
|
|
/// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
|
|
/// or a direct or indirect base of a virtual base.
|
|
void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
|
|
CharUnits OffsetInLayoutClass);
|
|
|
|
/// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
|
|
/// class hierarchy.
|
|
void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
|
|
CharUnits OffsetInLayoutClass,
|
|
VisitedVirtualBasesSetTy &VBases);
|
|
|
|
/// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
|
|
/// given base (excluding any primary bases).
|
|
void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
|
|
VisitedVirtualBasesSetTy &VBases);
|
|
|
|
/// isBuildingConstructionVTable - Return whether this vtable builder is
|
|
/// building a construction vtable.
|
|
bool isBuildingConstructorVTable() const {
|
|
return MostDerivedClass != LayoutClass;
|
|
}
|
|
|
|
public:
|
|
ItaniumVTableBuilder(ItaniumVTableContext &VTables,
|
|
const CXXRecordDecl *MostDerivedClass,
|
|
CharUnits MostDerivedClassOffset,
|
|
bool MostDerivedClassIsVirtual,
|
|
const CXXRecordDecl *LayoutClass)
|
|
: VTables(VTables), MostDerivedClass(MostDerivedClass),
|
|
MostDerivedClassOffset(MostDerivedClassOffset),
|
|
MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
|
|
LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
|
|
Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
|
|
assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
|
|
|
|
LayoutVTable();
|
|
|
|
if (Context.getLangOpts().DumpVTableLayouts)
|
|
dumpLayout(llvm::outs());
|
|
}
|
|
|
|
uint64_t getNumThunks() const {
|
|
return Thunks.size();
|
|
}
|
|
|
|
ThunksMapTy::const_iterator thunks_begin() const {
|
|
return Thunks.begin();
|
|
}
|
|
|
|
ThunksMapTy::const_iterator thunks_end() const {
|
|
return Thunks.end();
|
|
}
|
|
|
|
const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
|
|
return VBaseOffsetOffsets;
|
|
}
|
|
|
|
const AddressPointsMapTy &getAddressPoints() const {
|
|
return AddressPoints;
|
|
}
|
|
|
|
MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
|
|
return MethodVTableIndices.begin();
|
|
}
|
|
|
|
MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
|
|
return MethodVTableIndices.end();
|
|
}
|
|
|
|
/// getNumVTableComponents - Return the number of components in the vtable
|
|
/// currently built.
|
|
uint64_t getNumVTableComponents() const {
|
|
return Components.size();
|
|
}
|
|
|
|
const VTableComponent *vtable_component_begin() const {
|
|
return Components.begin();
|
|
}
|
|
|
|
const VTableComponent *vtable_component_end() const {
|
|
return Components.end();
|
|
}
|
|
|
|
AddressPointsMapTy::const_iterator address_points_begin() const {
|
|
return AddressPoints.begin();
|
|
}
|
|
|
|
AddressPointsMapTy::const_iterator address_points_end() const {
|
|
return AddressPoints.end();
|
|
}
|
|
|
|
VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
|
|
return VTableThunks.begin();
|
|
}
|
|
|
|
VTableThunksMapTy::const_iterator vtable_thunks_end() const {
|
|
return VTableThunks.end();
|
|
}
|
|
|
|
/// dumpLayout - Dump the vtable layout.
|
|
void dumpLayout(raw_ostream&);
|
|
};
|
|
|
|
void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
|
|
const ThunkInfo &Thunk) {
|
|
assert(!isBuildingConstructorVTable() &&
|
|
"Can't add thunks for construction vtable");
|
|
|
|
SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
|
|
|
|
// Check if we have this thunk already.
|
|
if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
|
|
ThunksVector.end())
|
|
return;
|
|
|
|
ThunksVector.push_back(Thunk);
|
|
}
|
|
|
|
typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
|
|
|
|
/// Visit all the methods overridden by the given method recursively,
|
|
/// in a depth-first pre-order. The Visitor's visitor method returns a bool
|
|
/// indicating whether to continue the recursion for the given overridden
|
|
/// method (i.e. returning false stops the iteration).
|
|
template <class VisitorTy>
|
|
static void
|
|
visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
|
|
assert(MD->isVirtual() && "Method is not virtual!");
|
|
|
|
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
|
|
E = MD->end_overridden_methods(); I != E; ++I) {
|
|
const CXXMethodDecl *OverriddenMD = *I;
|
|
if (!Visitor.visit(OverriddenMD))
|
|
continue;
|
|
visitAllOverriddenMethods(OverriddenMD, Visitor);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct OverriddenMethodsCollector {
|
|
OverriddenMethodsSetTy *Methods;
|
|
|
|
bool visit(const CXXMethodDecl *MD) {
|
|
// Don't recurse on this method if we've already collected it.
|
|
return Methods->insert(MD);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
|
|
/// the overridden methods that the function decl overrides.
|
|
static void
|
|
ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
|
|
OverriddenMethodsSetTy& OverriddenMethods) {
|
|
OverriddenMethodsCollector Collector = { &OverriddenMethods };
|
|
visitAllOverriddenMethods(MD, Collector);
|
|
}
|
|
|
|
void ItaniumVTableBuilder::ComputeThisAdjustments() {
|
|
// Now go through the method info map and see if any of the methods need
|
|
// 'this' pointer adjustments.
|
|
for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
|
|
E = MethodInfoMap.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
const MethodInfo &MethodInfo = I->second;
|
|
|
|
// Ignore adjustments for unused function pointers.
|
|
uint64_t VTableIndex = MethodInfo.VTableIndex;
|
|
if (Components[VTableIndex].getKind() ==
|
|
VTableComponent::CK_UnusedFunctionPointer)
|
|
continue;
|
|
|
|
// Get the final overrider for this method.
|
|
FinalOverriders::OverriderInfo Overrider =
|
|
Overriders.getOverrider(MD, MethodInfo.BaseOffset);
|
|
|
|
// Check if we need an adjustment at all.
|
|
if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
|
|
// When a return thunk is needed by a derived class that overrides a
|
|
// virtual base, gcc uses a virtual 'this' adjustment as well.
|
|
// While the thunk itself might be needed by vtables in subclasses or
|
|
// in construction vtables, there doesn't seem to be a reason for using
|
|
// the thunk in this vtable. Still, we do so to match gcc.
|
|
if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
|
|
continue;
|
|
}
|
|
|
|
ThisAdjustment ThisAdjustment =
|
|
ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
|
|
|
|
if (ThisAdjustment.isEmpty())
|
|
continue;
|
|
|
|
// Add it.
|
|
VTableThunks[VTableIndex].This = ThisAdjustment;
|
|
|
|
if (isa<CXXDestructorDecl>(MD)) {
|
|
// Add an adjustment for the deleting destructor as well.
|
|
VTableThunks[VTableIndex + 1].This = ThisAdjustment;
|
|
}
|
|
}
|
|
|
|
/// Clear the method info map.
|
|
MethodInfoMap.clear();
|
|
|
|
if (isBuildingConstructorVTable()) {
|
|
// We don't need to store thunk information for construction vtables.
|
|
return;
|
|
}
|
|
|
|
for (VTableThunksMapTy::const_iterator I = VTableThunks.begin(),
|
|
E = VTableThunks.end(); I != E; ++I) {
|
|
const VTableComponent &Component = Components[I->first];
|
|
const ThunkInfo &Thunk = I->second;
|
|
const CXXMethodDecl *MD;
|
|
|
|
switch (Component.getKind()) {
|
|
default:
|
|
llvm_unreachable("Unexpected vtable component kind!");
|
|
case VTableComponent::CK_FunctionPointer:
|
|
MD = Component.getFunctionDecl();
|
|
break;
|
|
case VTableComponent::CK_CompleteDtorPointer:
|
|
MD = Component.getDestructorDecl();
|
|
break;
|
|
case VTableComponent::CK_DeletingDtorPointer:
|
|
// We've already added the thunk when we saw the complete dtor pointer.
|
|
continue;
|
|
}
|
|
|
|
if (MD->getParent() == MostDerivedClass)
|
|
AddThunk(MD, Thunk);
|
|
}
|
|
}
|
|
|
|
ReturnAdjustment
|
|
ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
|
|
ReturnAdjustment Adjustment;
|
|
|
|
if (!Offset.isEmpty()) {
|
|
if (Offset.VirtualBase) {
|
|
// Get the virtual base offset offset.
|
|
if (Offset.DerivedClass == MostDerivedClass) {
|
|
// We can get the offset offset directly from our map.
|
|
Adjustment.Virtual.Itanium.VBaseOffsetOffset =
|
|
VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
|
|
} else {
|
|
Adjustment.Virtual.Itanium.VBaseOffsetOffset =
|
|
VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
|
|
Offset.VirtualBase).getQuantity();
|
|
}
|
|
}
|
|
|
|
Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
|
|
}
|
|
|
|
return Adjustment;
|
|
}
|
|
|
|
BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
|
|
BaseSubobject Base, BaseSubobject Derived) const {
|
|
const CXXRecordDecl *BaseRD = Base.getBase();
|
|
const CXXRecordDecl *DerivedRD = Derived.getBase();
|
|
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true,
|
|
/*RecordPaths=*/true, /*DetectVirtual=*/true);
|
|
|
|
if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
|
|
llvm_unreachable("Class must be derived from the passed in base class!");
|
|
|
|
// We have to go through all the paths, and see which one leads us to the
|
|
// right base subobject.
|
|
for (CXXBasePaths::const_paths_iterator I = Paths.begin(), E = Paths.end();
|
|
I != E; ++I) {
|
|
BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, *I);
|
|
|
|
CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
|
|
|
|
if (Offset.VirtualBase) {
|
|
// If we have a virtual base class, the non-virtual offset is relative
|
|
// to the virtual base class offset.
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
/// Get the virtual base offset, relative to the most derived class
|
|
/// layout.
|
|
OffsetToBaseSubobject +=
|
|
LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
|
|
} else {
|
|
// Otherwise, the non-virtual offset is relative to the derived class
|
|
// offset.
|
|
OffsetToBaseSubobject += Derived.getBaseOffset();
|
|
}
|
|
|
|
// Check if this path gives us the right base subobject.
|
|
if (OffsetToBaseSubobject == Base.getBaseOffset()) {
|
|
// Since we're going from the base class _to_ the derived class, we'll
|
|
// invert the non-virtual offset here.
|
|
Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
|
|
return Offset;
|
|
}
|
|
}
|
|
|
|
return BaseOffset();
|
|
}
|
|
|
|
ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
|
|
const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
|
|
FinalOverriders::OverriderInfo Overrider) {
|
|
// Ignore adjustments for pure virtual member functions.
|
|
if (Overrider.Method->isPure())
|
|
return ThisAdjustment();
|
|
|
|
BaseSubobject OverriddenBaseSubobject(MD->getParent(),
|
|
BaseOffsetInLayoutClass);
|
|
|
|
BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
|
|
Overrider.Offset);
|
|
|
|
// Compute the adjustment offset.
|
|
BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
|
|
OverriderBaseSubobject);
|
|
if (Offset.isEmpty())
|
|
return ThisAdjustment();
|
|
|
|
ThisAdjustment Adjustment;
|
|
|
|
if (Offset.VirtualBase) {
|
|
// Get the vcall offset map for this virtual base.
|
|
VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
|
|
|
|
if (VCallOffsets.empty()) {
|
|
// We don't have vcall offsets for this virtual base, go ahead and
|
|
// build them.
|
|
VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
|
|
/*FinalOverriders=*/0,
|
|
BaseSubobject(Offset.VirtualBase,
|
|
CharUnits::Zero()),
|
|
/*BaseIsVirtual=*/true,
|
|
/*OffsetInLayoutClass=*/
|
|
CharUnits::Zero());
|
|
|
|
VCallOffsets = Builder.getVCallOffsets();
|
|
}
|
|
|
|
Adjustment.Virtual.Itanium.VCallOffsetOffset =
|
|
VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
|
|
}
|
|
|
|
// Set the non-virtual part of the adjustment.
|
|
Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
|
|
|
|
return Adjustment;
|
|
}
|
|
|
|
void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
|
|
ReturnAdjustment ReturnAdjustment) {
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
assert(ReturnAdjustment.isEmpty() &&
|
|
"Destructor can't have return adjustment!");
|
|
|
|
// Add both the complete destructor and the deleting destructor.
|
|
Components.push_back(VTableComponent::MakeCompleteDtor(DD));
|
|
Components.push_back(VTableComponent::MakeDeletingDtor(DD));
|
|
} else {
|
|
// Add the return adjustment if necessary.
|
|
if (!ReturnAdjustment.isEmpty())
|
|
VTableThunks[Components.size()].Return = ReturnAdjustment;
|
|
|
|
// Add the function.
|
|
Components.push_back(VTableComponent::MakeFunction(MD));
|
|
}
|
|
}
|
|
|
|
/// OverridesIndirectMethodInBase - Return whether the given member function
|
|
/// overrides any methods in the set of given bases.
|
|
/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
|
|
/// For example, if we have:
|
|
///
|
|
/// struct A { virtual void f(); }
|
|
/// struct B : A { virtual void f(); }
|
|
/// struct C : B { virtual void f(); }
|
|
///
|
|
/// OverridesIndirectMethodInBase will return true if given C::f as the method
|
|
/// and { A } as the set of bases.
|
|
static bool OverridesIndirectMethodInBases(
|
|
const CXXMethodDecl *MD,
|
|
ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
|
|
if (Bases.count(MD->getParent()))
|
|
return true;
|
|
|
|
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
|
|
E = MD->end_overridden_methods(); I != E; ++I) {
|
|
const CXXMethodDecl *OverriddenMD = *I;
|
|
|
|
// Check "indirect overriders".
|
|
if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ItaniumVTableBuilder::IsOverriderUsed(
|
|
const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
|
|
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
|
|
CharUnits FirstBaseOffsetInLayoutClass) const {
|
|
// If the base and the first base in the primary base chain have the same
|
|
// offsets, then this overrider will be used.
|
|
if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
|
|
return true;
|
|
|
|
// We know now that Base (or a direct or indirect base of it) is a primary
|
|
// base in part of the class hierarchy, but not a primary base in the most
|
|
// derived class.
|
|
|
|
// If the overrider is the first base in the primary base chain, we know
|
|
// that the overrider will be used.
|
|
if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
|
|
return true;
|
|
|
|
ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
|
|
|
|
const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
|
|
PrimaryBases.insert(RD);
|
|
|
|
// Now traverse the base chain, starting with the first base, until we find
|
|
// the base that is no longer a primary base.
|
|
while (true) {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
|
|
if (!PrimaryBase)
|
|
break;
|
|
|
|
if (Layout.isPrimaryBaseVirtual()) {
|
|
assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary base should always be at offset 0!");
|
|
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
// Now check if this is the primary base that is not a primary base in the
|
|
// most derived class.
|
|
if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
|
|
FirstBaseOffsetInLayoutClass) {
|
|
// We found it, stop walking the chain.
|
|
break;
|
|
}
|
|
} else {
|
|
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary base should always be at offset 0!");
|
|
}
|
|
|
|
if (!PrimaryBases.insert(PrimaryBase))
|
|
llvm_unreachable("Found a duplicate primary base!");
|
|
|
|
RD = PrimaryBase;
|
|
}
|
|
|
|
// If the final overrider is an override of one of the primary bases,
|
|
// then we know that it will be used.
|
|
return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
|
|
}
|
|
|
|
typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
|
|
|
|
/// FindNearestOverriddenMethod - Given a method, returns the overridden method
|
|
/// from the nearest base. Returns null if no method was found.
|
|
/// The Bases are expected to be sorted in a base-to-derived order.
|
|
static const CXXMethodDecl *
|
|
FindNearestOverriddenMethod(const CXXMethodDecl *MD,
|
|
BasesSetVectorTy &Bases) {
|
|
OverriddenMethodsSetTy OverriddenMethods;
|
|
ComputeAllOverriddenMethods(MD, OverriddenMethods);
|
|
|
|
for (int I = Bases.size(), E = 0; I != E; --I) {
|
|
const CXXRecordDecl *PrimaryBase = Bases[I - 1];
|
|
|
|
// Now check the overridden methods.
|
|
for (OverriddenMethodsSetTy::const_iterator I = OverriddenMethods.begin(),
|
|
E = OverriddenMethods.end(); I != E; ++I) {
|
|
const CXXMethodDecl *OverriddenMD = *I;
|
|
|
|
// We found our overridden method.
|
|
if (OverriddenMD->getParent() == PrimaryBase)
|
|
return OverriddenMD;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ItaniumVTableBuilder::AddMethods(
|
|
BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
|
|
const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
|
|
CharUnits FirstBaseOffsetInLayoutClass,
|
|
PrimaryBasesSetVectorTy &PrimaryBases) {
|
|
// Itanium C++ ABI 2.5.2:
|
|
// The order of the virtual function pointers in a virtual table is the
|
|
// order of declaration of the corresponding member functions in the class.
|
|
//
|
|
// There is an entry for any virtual function declared in a class,
|
|
// whether it is a new function or overrides a base class function,
|
|
// unless it overrides a function from the primary base, and conversion
|
|
// between their return types does not require an adjustment.
|
|
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
|
|
CharUnits PrimaryBaseOffset;
|
|
CharUnits PrimaryBaseOffsetInLayoutClass;
|
|
if (Layout.isPrimaryBaseVirtual()) {
|
|
assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary vbase should have a zero offset!");
|
|
|
|
const ASTRecordLayout &MostDerivedClassLayout =
|
|
Context.getASTRecordLayout(MostDerivedClass);
|
|
|
|
PrimaryBaseOffset =
|
|
MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
|
|
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
PrimaryBaseOffsetInLayoutClass =
|
|
LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
|
|
} else {
|
|
assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
|
|
"Primary base should have a zero offset!");
|
|
|
|
PrimaryBaseOffset = Base.getBaseOffset();
|
|
PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
|
|
}
|
|
|
|
AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
|
|
PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
|
|
FirstBaseOffsetInLayoutClass, PrimaryBases);
|
|
|
|
if (!PrimaryBases.insert(PrimaryBase))
|
|
llvm_unreachable("Found a duplicate primary base!");
|
|
}
|
|
|
|
const CXXDestructorDecl *ImplicitVirtualDtor = 0;
|
|
|
|
typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
|
|
NewVirtualFunctionsTy NewVirtualFunctions;
|
|
|
|
// Now go through all virtual member functions and add them.
|
|
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
|
|
E = RD->method_end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = *I;
|
|
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
|
|
// Get the final overrider.
|
|
FinalOverriders::OverriderInfo Overrider =
|
|
Overriders.getOverrider(MD, Base.getBaseOffset());
|
|
|
|
// Check if this virtual member function overrides a method in a primary
|
|
// base. If this is the case, and the return type doesn't require adjustment
|
|
// then we can just use the member function from the primary base.
|
|
if (const CXXMethodDecl *OverriddenMD =
|
|
FindNearestOverriddenMethod(MD, PrimaryBases)) {
|
|
if (ComputeReturnAdjustmentBaseOffset(Context, MD,
|
|
OverriddenMD).isEmpty()) {
|
|
// Replace the method info of the overridden method with our own
|
|
// method.
|
|
assert(MethodInfoMap.count(OverriddenMD) &&
|
|
"Did not find the overridden method!");
|
|
MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
|
|
|
|
MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
|
|
OverriddenMethodInfo.VTableIndex);
|
|
|
|
assert(!MethodInfoMap.count(MD) &&
|
|
"Should not have method info for this method yet!");
|
|
|
|
MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
|
|
MethodInfoMap.erase(OverriddenMD);
|
|
|
|
// If the overridden method exists in a virtual base class or a direct
|
|
// or indirect base class of a virtual base class, we need to emit a
|
|
// thunk if we ever have a class hierarchy where the base class is not
|
|
// a primary base in the complete object.
|
|
if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
|
|
// Compute the this adjustment.
|
|
ThisAdjustment ThisAdjustment =
|
|
ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
|
|
Overrider);
|
|
|
|
if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
|
|
Overrider.Method->getParent() == MostDerivedClass) {
|
|
|
|
// There's no return adjustment from OverriddenMD and MD,
|
|
// but that doesn't mean there isn't one between MD and
|
|
// the final overrider.
|
|
BaseOffset ReturnAdjustmentOffset =
|
|
ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
|
|
ReturnAdjustment ReturnAdjustment =
|
|
ComputeReturnAdjustment(ReturnAdjustmentOffset);
|
|
|
|
// This is a virtual thunk for the most derived class, add it.
|
|
AddThunk(Overrider.Method,
|
|
ThunkInfo(ThisAdjustment, ReturnAdjustment));
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
if (MD->isImplicit()) {
|
|
// Itanium C++ ABI 2.5.2:
|
|
// If a class has an implicitly-defined virtual destructor,
|
|
// its entries come after the declared virtual function pointers.
|
|
|
|
assert(!ImplicitVirtualDtor &&
|
|
"Did already see an implicit virtual dtor!");
|
|
ImplicitVirtualDtor = DD;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
NewVirtualFunctions.push_back(MD);
|
|
}
|
|
|
|
if (ImplicitVirtualDtor)
|
|
NewVirtualFunctions.push_back(ImplicitVirtualDtor);
|
|
|
|
for (NewVirtualFunctionsTy::const_iterator I = NewVirtualFunctions.begin(),
|
|
E = NewVirtualFunctions.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = *I;
|
|
|
|
// Get the final overrider.
|
|
FinalOverriders::OverriderInfo Overrider =
|
|
Overriders.getOverrider(MD, Base.getBaseOffset());
|
|
|
|
// Insert the method info for this method.
|
|
MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
|
|
Components.size());
|
|
|
|
assert(!MethodInfoMap.count(MD) &&
|
|
"Should not have method info for this method yet!");
|
|
MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
|
|
|
|
// Check if this overrider is going to be used.
|
|
const CXXMethodDecl *OverriderMD = Overrider.Method;
|
|
if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
|
|
FirstBaseInPrimaryBaseChain,
|
|
FirstBaseOffsetInLayoutClass)) {
|
|
Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
|
|
continue;
|
|
}
|
|
|
|
// Check if this overrider needs a return adjustment.
|
|
// We don't want to do this for pure virtual member functions.
|
|
BaseOffset ReturnAdjustmentOffset;
|
|
if (!OverriderMD->isPure()) {
|
|
ReturnAdjustmentOffset =
|
|
ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
|
|
}
|
|
|
|
ReturnAdjustment ReturnAdjustment =
|
|
ComputeReturnAdjustment(ReturnAdjustmentOffset);
|
|
|
|
AddMethod(Overrider.Method, ReturnAdjustment);
|
|
}
|
|
}
|
|
|
|
void ItaniumVTableBuilder::LayoutVTable() {
|
|
LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
|
|
CharUnits::Zero()),
|
|
/*BaseIsMorallyVirtual=*/false,
|
|
MostDerivedClassIsVirtual,
|
|
MostDerivedClassOffset);
|
|
|
|
VisitedVirtualBasesSetTy VBases;
|
|
|
|
// Determine the primary virtual bases.
|
|
DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
|
|
VBases);
|
|
VBases.clear();
|
|
|
|
LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
|
|
|
|
// -fapple-kext adds an extra entry at end of vtbl.
|
|
bool IsAppleKext = Context.getLangOpts().AppleKext;
|
|
if (IsAppleKext)
|
|
Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
|
|
}
|
|
|
|
void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
|
|
BaseSubobject Base, bool BaseIsMorallyVirtual,
|
|
bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
|
|
assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
|
|
|
|
// Add vcall and vbase offsets for this vtable.
|
|
VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
|
|
Base, BaseIsVirtualInLayoutClass,
|
|
OffsetInLayoutClass);
|
|
Components.append(Builder.components_begin(), Builder.components_end());
|
|
|
|
// Check if we need to add these vcall offsets.
|
|
if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
|
|
VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
|
|
|
|
if (VCallOffsets.empty())
|
|
VCallOffsets = Builder.getVCallOffsets();
|
|
}
|
|
|
|
// If we're laying out the most derived class we want to keep track of the
|
|
// virtual base class offset offsets.
|
|
if (Base.getBase() == MostDerivedClass)
|
|
VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
|
|
|
|
// Add the offset to top.
|
|
CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
|
|
Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
|
|
|
|
// Next, add the RTTI.
|
|
Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
|
|
|
|
uint64_t AddressPoint = Components.size();
|
|
|
|
// Now go through all virtual member functions and add them.
|
|
PrimaryBasesSetVectorTy PrimaryBases;
|
|
AddMethods(Base, OffsetInLayoutClass,
|
|
Base.getBase(), OffsetInLayoutClass,
|
|
PrimaryBases);
|
|
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
if (RD == MostDerivedClass) {
|
|
assert(MethodVTableIndices.empty());
|
|
for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
|
|
E = MethodInfoMap.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
const MethodInfo &MI = I->second;
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
|
|
= MI.VTableIndex - AddressPoint;
|
|
MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
|
|
= MI.VTableIndex + 1 - AddressPoint;
|
|
} else {
|
|
MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute 'this' pointer adjustments.
|
|
ComputeThisAdjustments();
|
|
|
|
// Add all address points.
|
|
while (true) {
|
|
AddressPoints.insert(std::make_pair(
|
|
BaseSubobject(RD, OffsetInLayoutClass),
|
|
AddressPoint));
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
|
|
if (!PrimaryBase)
|
|
break;
|
|
|
|
if (Layout.isPrimaryBaseVirtual()) {
|
|
// Check if this virtual primary base is a primary base in the layout
|
|
// class. If it's not, we don't want to add it.
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
|
|
OffsetInLayoutClass) {
|
|
// We don't want to add this class (or any of its primary bases).
|
|
break;
|
|
}
|
|
}
|
|
|
|
RD = PrimaryBase;
|
|
}
|
|
|
|
// Layout secondary vtables.
|
|
LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
|
|
}
|
|
|
|
void
|
|
ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
|
|
bool BaseIsMorallyVirtual,
|
|
CharUnits OffsetInLayoutClass) {
|
|
// Itanium C++ ABI 2.5.2:
|
|
// Following the primary virtual table of a derived class are secondary
|
|
// virtual tables for each of its proper base classes, except any primary
|
|
// base(s) with which it shares its primary virtual table.
|
|
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
// Ignore virtual bases, we'll emit them later.
|
|
if (I->isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
// Ignore bases that don't have a vtable.
|
|
if (!BaseDecl->isDynamicClass())
|
|
continue;
|
|
|
|
if (isBuildingConstructorVTable()) {
|
|
// Itanium C++ ABI 2.6.4:
|
|
// Some of the base class subobjects may not need construction virtual
|
|
// tables, which will therefore not be present in the construction
|
|
// virtual table group, even though the subobject virtual tables are
|
|
// present in the main virtual table group for the complete object.
|
|
if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
|
|
continue;
|
|
}
|
|
|
|
// Get the base offset of this base.
|
|
CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
|
|
CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
|
|
|
|
CharUnits BaseOffsetInLayoutClass =
|
|
OffsetInLayoutClass + RelativeBaseOffset;
|
|
|
|
// Don't emit a secondary vtable for a primary base. We might however want
|
|
// to emit secondary vtables for other bases of this base.
|
|
if (BaseDecl == PrimaryBase) {
|
|
LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
|
|
BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
|
|
continue;
|
|
}
|
|
|
|
// Layout the primary vtable (and any secondary vtables) for this base.
|
|
LayoutPrimaryAndSecondaryVTables(
|
|
BaseSubobject(BaseDecl, BaseOffset),
|
|
BaseIsMorallyVirtual,
|
|
/*BaseIsVirtualInLayoutClass=*/false,
|
|
BaseOffsetInLayoutClass);
|
|
}
|
|
}
|
|
|
|
void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
|
|
const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
|
|
VisitedVirtualBasesSetTy &VBases) {
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// Check if this base has a primary base.
|
|
if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
|
|
|
|
// Check if it's virtual.
|
|
if (Layout.isPrimaryBaseVirtual()) {
|
|
bool IsPrimaryVirtualBase = true;
|
|
|
|
if (isBuildingConstructorVTable()) {
|
|
// Check if the base is actually a primary base in the class we use for
|
|
// layout.
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
CharUnits PrimaryBaseOffsetInLayoutClass =
|
|
LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
|
|
|
|
// We know that the base is not a primary base in the layout class if
|
|
// the base offsets are different.
|
|
if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
|
|
IsPrimaryVirtualBase = false;
|
|
}
|
|
|
|
if (IsPrimaryVirtualBase)
|
|
PrimaryVirtualBases.insert(PrimaryBase);
|
|
}
|
|
}
|
|
|
|
// Traverse bases, looking for more primary virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits BaseOffsetInLayoutClass;
|
|
|
|
if (I->isVirtual()) {
|
|
if (!VBases.insert(BaseDecl))
|
|
continue;
|
|
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
|
|
BaseOffsetInLayoutClass =
|
|
LayoutClassLayout.getVBaseClassOffset(BaseDecl);
|
|
} else {
|
|
BaseOffsetInLayoutClass =
|
|
OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
|
|
}
|
|
|
|
DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
|
|
}
|
|
}
|
|
|
|
void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
|
|
const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
|
|
// Itanium C++ ABI 2.5.2:
|
|
// Then come the virtual base virtual tables, also in inheritance graph
|
|
// order, and again excluding primary bases (which share virtual tables with
|
|
// the classes for which they are primary).
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
// Check if this base needs a vtable. (If it's virtual, not a primary base
|
|
// of some other class, and we haven't visited it before).
|
|
if (I->isVirtual() && BaseDecl->isDynamicClass() &&
|
|
!PrimaryVirtualBases.count(BaseDecl) && VBases.insert(BaseDecl)) {
|
|
const ASTRecordLayout &MostDerivedClassLayout =
|
|
Context.getASTRecordLayout(MostDerivedClass);
|
|
CharUnits BaseOffset =
|
|
MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
|
|
|
|
const ASTRecordLayout &LayoutClassLayout =
|
|
Context.getASTRecordLayout(LayoutClass);
|
|
CharUnits BaseOffsetInLayoutClass =
|
|
LayoutClassLayout.getVBaseClassOffset(BaseDecl);
|
|
|
|
LayoutPrimaryAndSecondaryVTables(
|
|
BaseSubobject(BaseDecl, BaseOffset),
|
|
/*BaseIsMorallyVirtual=*/true,
|
|
/*BaseIsVirtualInLayoutClass=*/true,
|
|
BaseOffsetInLayoutClass);
|
|
}
|
|
|
|
// We only need to check the base for virtual base vtables if it actually
|
|
// has virtual bases.
|
|
if (BaseDecl->getNumVBases())
|
|
LayoutVTablesForVirtualBases(BaseDecl, VBases);
|
|
}
|
|
}
|
|
|
|
struct ItaniumThunkInfoComparator {
|
|
bool operator() (const ThunkInfo &LHS, const ThunkInfo &RHS) {
|
|
assert(LHS.Method == 0);
|
|
assert(RHS.Method == 0);
|
|
|
|
if (LHS.This != RHS.This)
|
|
return LHS.This < RHS.This;
|
|
|
|
if (LHS.Return != RHS.Return)
|
|
return LHS.Return < RHS.Return;
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
/// dumpLayout - Dump the vtable layout.
|
|
void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
|
|
// FIXME: write more tests that actually use the dumpLayout output to prevent
|
|
// ItaniumVTableBuilder regressions.
|
|
|
|
if (isBuildingConstructorVTable()) {
|
|
Out << "Construction vtable for ('";
|
|
MostDerivedClass->printQualifiedName(Out);
|
|
Out << "', ";
|
|
Out << MostDerivedClassOffset.getQuantity() << ") in '";
|
|
LayoutClass->printQualifiedName(Out);
|
|
} else {
|
|
Out << "Vtable for '";
|
|
MostDerivedClass->printQualifiedName(Out);
|
|
}
|
|
Out << "' (" << Components.size() << " entries).\n";
|
|
|
|
// Iterate through the address points and insert them into a new map where
|
|
// they are keyed by the index and not the base object.
|
|
// Since an address point can be shared by multiple subobjects, we use an
|
|
// STL multimap.
|
|
std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
|
|
for (AddressPointsMapTy::const_iterator I = AddressPoints.begin(),
|
|
E = AddressPoints.end(); I != E; ++I) {
|
|
const BaseSubobject& Base = I->first;
|
|
uint64_t Index = I->second;
|
|
|
|
AddressPointsByIndex.insert(std::make_pair(Index, Base));
|
|
}
|
|
|
|
for (unsigned I = 0, E = Components.size(); I != E; ++I) {
|
|
uint64_t Index = I;
|
|
|
|
Out << llvm::format("%4d | ", I);
|
|
|
|
const VTableComponent &Component = Components[I];
|
|
|
|
// Dump the component.
|
|
switch (Component.getKind()) {
|
|
|
|
case VTableComponent::CK_VCallOffset:
|
|
Out << "vcall_offset ("
|
|
<< Component.getVCallOffset().getQuantity()
|
|
<< ")";
|
|
break;
|
|
|
|
case VTableComponent::CK_VBaseOffset:
|
|
Out << "vbase_offset ("
|
|
<< Component.getVBaseOffset().getQuantity()
|
|
<< ")";
|
|
break;
|
|
|
|
case VTableComponent::CK_OffsetToTop:
|
|
Out << "offset_to_top ("
|
|
<< Component.getOffsetToTop().getQuantity()
|
|
<< ")";
|
|
break;
|
|
|
|
case VTableComponent::CK_RTTI:
|
|
Component.getRTTIDecl()->printQualifiedName(Out);
|
|
Out << " RTTI";
|
|
break;
|
|
|
|
case VTableComponent::CK_FunctionPointer: {
|
|
const CXXMethodDecl *MD = Component.getFunctionDecl();
|
|
|
|
std::string Str =
|
|
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
|
|
MD);
|
|
Out << Str;
|
|
if (MD->isPure())
|
|
Out << " [pure]";
|
|
|
|
if (MD->isDeleted())
|
|
Out << " [deleted]";
|
|
|
|
ThunkInfo Thunk = VTableThunks.lookup(I);
|
|
if (!Thunk.isEmpty()) {
|
|
// If this function pointer has a return adjustment, dump it.
|
|
if (!Thunk.Return.isEmpty()) {
|
|
Out << "\n [return adjustment: ";
|
|
Out << Thunk.Return.NonVirtual << " non-virtual";
|
|
|
|
if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
|
|
Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
|
|
Out << " vbase offset offset";
|
|
}
|
|
|
|
Out << ']';
|
|
}
|
|
|
|
// If this function pointer has a 'this' pointer adjustment, dump it.
|
|
if (!Thunk.This.isEmpty()) {
|
|
Out << "\n [this adjustment: ";
|
|
Out << Thunk.This.NonVirtual << " non-virtual";
|
|
|
|
if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
|
|
Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
|
|
Out << " vcall offset offset";
|
|
}
|
|
|
|
Out << ']';
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case VTableComponent::CK_CompleteDtorPointer:
|
|
case VTableComponent::CK_DeletingDtorPointer: {
|
|
bool IsComplete =
|
|
Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
|
|
|
|
const CXXDestructorDecl *DD = Component.getDestructorDecl();
|
|
|
|
DD->printQualifiedName(Out);
|
|
if (IsComplete)
|
|
Out << "() [complete]";
|
|
else
|
|
Out << "() [deleting]";
|
|
|
|
if (DD->isPure())
|
|
Out << " [pure]";
|
|
|
|
ThunkInfo Thunk = VTableThunks.lookup(I);
|
|
if (!Thunk.isEmpty()) {
|
|
// If this destructor has a 'this' pointer adjustment, dump it.
|
|
if (!Thunk.This.isEmpty()) {
|
|
Out << "\n [this adjustment: ";
|
|
Out << Thunk.This.NonVirtual << " non-virtual";
|
|
|
|
if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
|
|
Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
|
|
Out << " vcall offset offset";
|
|
}
|
|
|
|
Out << ']';
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case VTableComponent::CK_UnusedFunctionPointer: {
|
|
const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
|
|
|
|
std::string Str =
|
|
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
|
|
MD);
|
|
Out << "[unused] " << Str;
|
|
if (MD->isPure())
|
|
Out << " [pure]";
|
|
}
|
|
|
|
}
|
|
|
|
Out << '\n';
|
|
|
|
// Dump the next address point.
|
|
uint64_t NextIndex = Index + 1;
|
|
if (AddressPointsByIndex.count(NextIndex)) {
|
|
if (AddressPointsByIndex.count(NextIndex) == 1) {
|
|
const BaseSubobject &Base =
|
|
AddressPointsByIndex.find(NextIndex)->second;
|
|
|
|
Out << " -- (";
|
|
Base.getBase()->printQualifiedName(Out);
|
|
Out << ", " << Base.getBaseOffset().getQuantity();
|
|
Out << ") vtable address --\n";
|
|
} else {
|
|
CharUnits BaseOffset =
|
|
AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
|
|
|
|
// We store the class names in a set to get a stable order.
|
|
std::set<std::string> ClassNames;
|
|
for (std::multimap<uint64_t, BaseSubobject>::const_iterator I =
|
|
AddressPointsByIndex.lower_bound(NextIndex), E =
|
|
AddressPointsByIndex.upper_bound(NextIndex); I != E; ++I) {
|
|
assert(I->second.getBaseOffset() == BaseOffset &&
|
|
"Invalid base offset!");
|
|
const CXXRecordDecl *RD = I->second.getBase();
|
|
ClassNames.insert(RD->getQualifiedNameAsString());
|
|
}
|
|
|
|
for (std::set<std::string>::const_iterator I = ClassNames.begin(),
|
|
E = ClassNames.end(); I != E; ++I) {
|
|
Out << " -- (" << *I;
|
|
Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Out << '\n';
|
|
|
|
if (isBuildingConstructorVTable())
|
|
return;
|
|
|
|
if (MostDerivedClass->getNumVBases()) {
|
|
// We store the virtual base class names and their offsets in a map to get
|
|
// a stable order.
|
|
|
|
std::map<std::string, CharUnits> ClassNamesAndOffsets;
|
|
for (VBaseOffsetOffsetsMapTy::const_iterator I = VBaseOffsetOffsets.begin(),
|
|
E = VBaseOffsetOffsets.end(); I != E; ++I) {
|
|
std::string ClassName = I->first->getQualifiedNameAsString();
|
|
CharUnits OffsetOffset = I->second;
|
|
ClassNamesAndOffsets.insert(
|
|
std::make_pair(ClassName, OffsetOffset));
|
|
}
|
|
|
|
Out << "Virtual base offset offsets for '";
|
|
MostDerivedClass->printQualifiedName(Out);
|
|
Out << "' (";
|
|
Out << ClassNamesAndOffsets.size();
|
|
Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
|
|
|
|
for (std::map<std::string, CharUnits>::const_iterator I =
|
|
ClassNamesAndOffsets.begin(), E = ClassNamesAndOffsets.end();
|
|
I != E; ++I)
|
|
Out << " " << I->first << " | " << I->second.getQuantity() << '\n';
|
|
|
|
Out << "\n";
|
|
}
|
|
|
|
if (!Thunks.empty()) {
|
|
// We store the method names in a map to get a stable order.
|
|
std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
|
|
|
|
for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
|
|
I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
std::string MethodName =
|
|
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
|
|
MD);
|
|
|
|
MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
|
|
}
|
|
|
|
for (std::map<std::string, const CXXMethodDecl *>::const_iterator I =
|
|
MethodNamesAndDecls.begin(), E = MethodNamesAndDecls.end();
|
|
I != E; ++I) {
|
|
const std::string &MethodName = I->first;
|
|
const CXXMethodDecl *MD = I->second;
|
|
|
|
ThunkInfoVectorTy ThunksVector = Thunks[MD];
|
|
std::sort(ThunksVector.begin(), ThunksVector.end(),
|
|
ItaniumThunkInfoComparator());
|
|
|
|
Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
|
|
Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
|
|
|
|
for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
|
|
const ThunkInfo &Thunk = ThunksVector[I];
|
|
|
|
Out << llvm::format("%4d | ", I);
|
|
|
|
// If this function pointer has a return pointer adjustment, dump it.
|
|
if (!Thunk.Return.isEmpty()) {
|
|
Out << "return adjustment: " << Thunk.Return.NonVirtual;
|
|
Out << " non-virtual";
|
|
if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
|
|
Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
|
|
Out << " vbase offset offset";
|
|
}
|
|
|
|
if (!Thunk.This.isEmpty())
|
|
Out << "\n ";
|
|
}
|
|
|
|
// If this function pointer has a 'this' pointer adjustment, dump it.
|
|
if (!Thunk.This.isEmpty()) {
|
|
Out << "this adjustment: ";
|
|
Out << Thunk.This.NonVirtual << " non-virtual";
|
|
|
|
if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
|
|
Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
|
|
Out << " vcall offset offset";
|
|
}
|
|
}
|
|
|
|
Out << '\n';
|
|
}
|
|
|
|
Out << '\n';
|
|
}
|
|
}
|
|
|
|
// Compute the vtable indices for all the member functions.
|
|
// Store them in a map keyed by the index so we'll get a sorted table.
|
|
std::map<uint64_t, std::string> IndicesMap;
|
|
|
|
for (CXXRecordDecl::method_iterator i = MostDerivedClass->method_begin(),
|
|
e = MostDerivedClass->method_end(); i != e; ++i) {
|
|
const CXXMethodDecl *MD = *i;
|
|
|
|
// We only want virtual member functions.
|
|
if (!MD->isVirtual())
|
|
continue;
|
|
|
|
std::string MethodName =
|
|
PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
|
|
MD);
|
|
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
GlobalDecl GD(DD, Dtor_Complete);
|
|
assert(MethodVTableIndices.count(GD));
|
|
uint64_t VTableIndex = MethodVTableIndices[GD];
|
|
IndicesMap[VTableIndex] = MethodName + " [complete]";
|
|
IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
|
|
} else {
|
|
assert(MethodVTableIndices.count(MD));
|
|
IndicesMap[MethodVTableIndices[MD]] = MethodName;
|
|
}
|
|
}
|
|
|
|
// Print the vtable indices for all the member functions.
|
|
if (!IndicesMap.empty()) {
|
|
Out << "VTable indices for '";
|
|
MostDerivedClass->printQualifiedName(Out);
|
|
Out << "' (" << IndicesMap.size() << " entries).\n";
|
|
|
|
for (std::map<uint64_t, std::string>::const_iterator I = IndicesMap.begin(),
|
|
E = IndicesMap.end(); I != E; ++I) {
|
|
uint64_t VTableIndex = I->first;
|
|
const std::string &MethodName = I->second;
|
|
|
|
Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
|
|
<< '\n';
|
|
}
|
|
}
|
|
|
|
Out << '\n';
|
|
}
|
|
|
|
struct VTableThunksComparator {
|
|
bool operator()(const VTableLayout::VTableThunkTy &LHS,
|
|
const VTableLayout::VTableThunkTy &RHS) {
|
|
if (LHS.first == RHS.first) {
|
|
assert(LHS.second == RHS.second &&
|
|
"Different thunks should have unique indices!");
|
|
}
|
|
return LHS.first < RHS.first;
|
|
}
|
|
};
|
|
}
|
|
|
|
VTableLayout::VTableLayout(uint64_t NumVTableComponents,
|
|
const VTableComponent *VTableComponents,
|
|
uint64_t NumVTableThunks,
|
|
const VTableThunkTy *VTableThunks,
|
|
const AddressPointsMapTy &AddressPoints,
|
|
bool IsMicrosoftABI)
|
|
: NumVTableComponents(NumVTableComponents),
|
|
VTableComponents(new VTableComponent[NumVTableComponents]),
|
|
NumVTableThunks(NumVTableThunks),
|
|
VTableThunks(new VTableThunkTy[NumVTableThunks]),
|
|
AddressPoints(AddressPoints),
|
|
IsMicrosoftABI(IsMicrosoftABI) {
|
|
std::copy(VTableComponents, VTableComponents+NumVTableComponents,
|
|
this->VTableComponents.get());
|
|
std::copy(VTableThunks, VTableThunks+NumVTableThunks,
|
|
this->VTableThunks.get());
|
|
std::sort(this->VTableThunks.get(),
|
|
this->VTableThunks.get() + NumVTableThunks,
|
|
VTableThunksComparator());
|
|
}
|
|
|
|
VTableLayout::~VTableLayout() { }
|
|
|
|
ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context)
|
|
: VTableContextBase(/*MS=*/false) {}
|
|
|
|
ItaniumVTableContext::~ItaniumVTableContext() {
|
|
llvm::DeleteContainerSeconds(VTableLayouts);
|
|
}
|
|
|
|
uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
|
|
MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
|
|
if (I != MethodVTableIndices.end())
|
|
return I->second;
|
|
|
|
const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
|
|
|
|
computeVTableRelatedInformation(RD);
|
|
|
|
I = MethodVTableIndices.find(GD);
|
|
assert(I != MethodVTableIndices.end() && "Did not find index!");
|
|
return I->second;
|
|
}
|
|
|
|
CharUnits
|
|
ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
|
|
const CXXRecordDecl *VBase) {
|
|
ClassPairTy ClassPair(RD, VBase);
|
|
|
|
VirtualBaseClassOffsetOffsetsMapTy::iterator I =
|
|
VirtualBaseClassOffsetOffsets.find(ClassPair);
|
|
if (I != VirtualBaseClassOffsetOffsets.end())
|
|
return I->second;
|
|
|
|
VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/0,
|
|
BaseSubobject(RD, CharUnits::Zero()),
|
|
/*BaseIsVirtual=*/false,
|
|
/*OffsetInLayoutClass=*/CharUnits::Zero());
|
|
|
|
for (VCallAndVBaseOffsetBuilder::VBaseOffsetOffsetsMapTy::const_iterator I =
|
|
Builder.getVBaseOffsetOffsets().begin(),
|
|
E = Builder.getVBaseOffsetOffsets().end(); I != E; ++I) {
|
|
// Insert all types.
|
|
ClassPairTy ClassPair(RD, I->first);
|
|
|
|
VirtualBaseClassOffsetOffsets.insert(
|
|
std::make_pair(ClassPair, I->second));
|
|
}
|
|
|
|
I = VirtualBaseClassOffsetOffsets.find(ClassPair);
|
|
assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
|
|
|
|
return I->second;
|
|
}
|
|
|
|
static VTableLayout *CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
|
|
SmallVector<VTableLayout::VTableThunkTy, 1>
|
|
VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
|
|
|
|
return new VTableLayout(Builder.getNumVTableComponents(),
|
|
Builder.vtable_component_begin(),
|
|
VTableThunks.size(),
|
|
VTableThunks.data(),
|
|
Builder.getAddressPoints(),
|
|
/*IsMicrosoftABI=*/false);
|
|
}
|
|
|
|
void
|
|
ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
|
|
const VTableLayout *&Entry = VTableLayouts[RD];
|
|
|
|
// Check if we've computed this information before.
|
|
if (Entry)
|
|
return;
|
|
|
|
ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
|
|
/*MostDerivedClassIsVirtual=*/0, RD);
|
|
Entry = CreateVTableLayout(Builder);
|
|
|
|
MethodVTableIndices.insert(Builder.vtable_indices_begin(),
|
|
Builder.vtable_indices_end());
|
|
|
|
// Add the known thunks.
|
|
Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
|
|
|
|
// If we don't have the vbase information for this class, insert it.
|
|
// getVirtualBaseOffsetOffset will compute it separately without computing
|
|
// the rest of the vtable related information.
|
|
if (!RD->getNumVBases())
|
|
return;
|
|
|
|
const CXXRecordDecl *VBase =
|
|
RD->vbases_begin()->getType()->getAsCXXRecordDecl();
|
|
|
|
if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
|
|
return;
|
|
|
|
for (ItaniumVTableBuilder::VBaseOffsetOffsetsMapTy::const_iterator
|
|
I = Builder.getVBaseOffsetOffsets().begin(),
|
|
E = Builder.getVBaseOffsetOffsets().end();
|
|
I != E; ++I) {
|
|
// Insert all types.
|
|
ClassPairTy ClassPair(RD, I->first);
|
|
|
|
VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I->second));
|
|
}
|
|
}
|
|
|
|
VTableLayout *ItaniumVTableContext::createConstructionVTableLayout(
|
|
const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
|
|
bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
|
|
ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
|
|
MostDerivedClassIsVirtual, LayoutClass);
|
|
return CreateVTableLayout(Builder);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Vtables in the Microsoft ABI are different from the Itanium ABI.
|
|
//
|
|
// The main differences are:
|
|
// 1. Separate vftable and vbtable.
|
|
//
|
|
// 2. Each subobject with a vfptr gets its own vftable rather than an address
|
|
// point in a single vtable shared between all the subobjects.
|
|
// Each vftable is represented by a separate section and virtual calls
|
|
// must be done using the vftable which has a slot for the function to be
|
|
// called.
|
|
//
|
|
// 3. Virtual method definitions expect their 'this' parameter to point to the
|
|
// first vfptr whose table provides a compatible overridden method. In many
|
|
// cases, this permits the original vf-table entry to directly call
|
|
// the method instead of passing through a thunk.
|
|
//
|
|
// A compatible overridden method is one which does not have a non-trivial
|
|
// covariant-return adjustment.
|
|
//
|
|
// The first vfptr is the one with the lowest offset in the complete-object
|
|
// layout of the defining class, and the method definition will subtract
|
|
// that constant offset from the parameter value to get the real 'this'
|
|
// value. Therefore, if the offset isn't really constant (e.g. if a virtual
|
|
// function defined in a virtual base is overridden in a more derived
|
|
// virtual base and these bases have a reverse order in the complete
|
|
// object), the vf-table may require a this-adjustment thunk.
|
|
//
|
|
// 4. vftables do not contain new entries for overrides that merely require
|
|
// this-adjustment. Together with #3, this keeps vf-tables smaller and
|
|
// eliminates the need for this-adjustment thunks in many cases, at the cost
|
|
// of often requiring redundant work to adjust the "this" pointer.
|
|
//
|
|
// 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
|
|
// Vtordisps are emitted into the class layout if a class has
|
|
// a) a user-defined ctor/dtor
|
|
// and
|
|
// b) a method overriding a method in a virtual base.
|
|
|
|
class VFTableBuilder {
|
|
public:
|
|
typedef MicrosoftVTableContext::MethodVFTableLocation MethodVFTableLocation;
|
|
|
|
typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
|
|
MethodVFTableLocationsTy;
|
|
|
|
private:
|
|
/// VTables - Global vtable information.
|
|
MicrosoftVTableContext &VTables;
|
|
|
|
/// Context - The ASTContext which we will use for layout information.
|
|
ASTContext &Context;
|
|
|
|
/// MostDerivedClass - The most derived class for which we're building this
|
|
/// vtable.
|
|
const CXXRecordDecl *MostDerivedClass;
|
|
|
|
const ASTRecordLayout &MostDerivedClassLayout;
|
|
|
|
VFPtrInfo WhichVFPtr;
|
|
|
|
/// FinalOverriders - The final overriders of the most derived class.
|
|
const FinalOverriders Overriders;
|
|
|
|
/// Components - The components of the vftable being built.
|
|
SmallVector<VTableComponent, 64> Components;
|
|
|
|
MethodVFTableLocationsTy MethodVFTableLocations;
|
|
|
|
/// MethodInfo - Contains information about a method in a vtable.
|
|
/// (Used for computing 'this' pointer adjustment thunks.
|
|
struct MethodInfo {
|
|
/// VBTableIndex - The nonzero index in the vbtable that
|
|
/// this method's base has, or zero.
|
|
const uint64_t VBTableIndex;
|
|
|
|
/// VFTableIndex - The index in the vftable that this method has.
|
|
const uint64_t VFTableIndex;
|
|
|
|
/// Shadowed - Indicates if this vftable slot is shadowed by
|
|
/// a slot for a covariant-return override. If so, it shouldn't be printed
|
|
/// or used for vcalls in the most derived class.
|
|
bool Shadowed;
|
|
|
|
MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex)
|
|
: VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
|
|
Shadowed(false) {}
|
|
|
|
MethodInfo() : VBTableIndex(0), VFTableIndex(0), Shadowed(false) {}
|
|
};
|
|
|
|
typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
|
|
|
|
/// MethodInfoMap - The information for all methods in the vftable we're
|
|
/// currently building.
|
|
MethodInfoMapTy MethodInfoMap;
|
|
|
|
typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
|
|
|
|
/// VTableThunks - The thunks by vftable index in the vftable currently being
|
|
/// built.
|
|
VTableThunksMapTy VTableThunks;
|
|
|
|
typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
|
|
typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
|
|
|
|
/// Thunks - A map that contains all the thunks needed for all methods in the
|
|
/// most derived class for which the vftable is currently being built.
|
|
ThunksMapTy Thunks;
|
|
|
|
/// AddThunk - Add a thunk for the given method.
|
|
void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
|
|
SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
|
|
|
|
// Check if we have this thunk already.
|
|
if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
|
|
ThunksVector.end())
|
|
return;
|
|
|
|
ThunksVector.push_back(Thunk);
|
|
}
|
|
|
|
/// ComputeThisOffset - Returns the 'this' argument offset for the given
|
|
/// method in the given subobject, relative to the beginning of the
|
|
/// MostDerivedClass.
|
|
CharUnits ComputeThisOffset(const CXXMethodDecl *MD,
|
|
BaseSubobject Base,
|
|
FinalOverriders::OverriderInfo Overrider);
|
|
|
|
void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
|
|
CharUnits ThisOffset, ThisAdjustment &TA);
|
|
|
|
/// AddMethod - Add a single virtual member function to the vftable
|
|
/// components vector.
|
|
void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
assert(TI.Return.isEmpty() &&
|
|
"Destructor can't have return adjustment!");
|
|
Components.push_back(VTableComponent::MakeDeletingDtor(DD));
|
|
} else {
|
|
if (!TI.isEmpty())
|
|
VTableThunks[Components.size()] = TI;
|
|
Components.push_back(VTableComponent::MakeFunction(MD));
|
|
}
|
|
}
|
|
|
|
bool NeedsReturnAdjustingThunk(const CXXMethodDecl *MD);
|
|
|
|
/// AddMethods - Add the methods of this base subobject and the relevant
|
|
/// subbases to the vftable we're currently laying out.
|
|
void AddMethods(BaseSubobject Base, unsigned BaseDepth,
|
|
const CXXRecordDecl *LastVBase,
|
|
BasesSetVectorTy &VisitedBases);
|
|
|
|
void LayoutVFTable() {
|
|
// FIXME: add support for RTTI when we have proper LLVM support for symbols
|
|
// pointing to the middle of a section.
|
|
|
|
BasesSetVectorTy VisitedBases;
|
|
AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, 0,
|
|
VisitedBases);
|
|
|
|
assert(MethodVFTableLocations.empty());
|
|
for (MethodInfoMapTy::const_iterator I = MethodInfoMap.begin(),
|
|
E = MethodInfoMap.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
const MethodInfo &MI = I->second;
|
|
// Skip the methods that the MostDerivedClass didn't override
|
|
// and the entries shadowed by return adjusting thunks.
|
|
if (MD->getParent() != MostDerivedClass || MI.Shadowed)
|
|
continue;
|
|
MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.LastVBase,
|
|
WhichVFPtr.VFPtrOffset, MI.VFTableIndex);
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
|
|
} else {
|
|
MethodVFTableLocations[MD] = Loc;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ErrorUnsupported(StringRef Feature, SourceLocation Location) {
|
|
clang::DiagnosticsEngine &Diags = Context.getDiagnostics();
|
|
unsigned DiagID = Diags.getCustomDiagID(
|
|
DiagnosticsEngine::Error, "v-table layout for %0 is not supported yet");
|
|
Diags.Report(Context.getFullLoc(Location), DiagID) << Feature;
|
|
}
|
|
|
|
public:
|
|
VFTableBuilder(MicrosoftVTableContext &VTables,
|
|
const CXXRecordDecl *MostDerivedClass, VFPtrInfo Which)
|
|
: VTables(VTables),
|
|
Context(MostDerivedClass->getASTContext()),
|
|
MostDerivedClass(MostDerivedClass),
|
|
MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
|
|
WhichVFPtr(Which),
|
|
Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
|
|
LayoutVFTable();
|
|
|
|
if (Context.getLangOpts().DumpVTableLayouts)
|
|
dumpLayout(llvm::outs());
|
|
}
|
|
|
|
uint64_t getNumThunks() const { return Thunks.size(); }
|
|
|
|
ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
|
|
|
|
ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
|
|
|
|
MethodVFTableLocationsTy::const_iterator vtable_indices_begin() const {
|
|
return MethodVFTableLocations.begin();
|
|
}
|
|
|
|
MethodVFTableLocationsTy::const_iterator vtable_indices_end() const {
|
|
return MethodVFTableLocations.end();
|
|
}
|
|
|
|
uint64_t getNumVTableComponents() const { return Components.size(); }
|
|
|
|
const VTableComponent *vtable_component_begin() const {
|
|
return Components.begin();
|
|
}
|
|
|
|
const VTableComponent *vtable_component_end() const {
|
|
return Components.end();
|
|
}
|
|
|
|
VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
|
|
return VTableThunks.begin();
|
|
}
|
|
|
|
VTableThunksMapTy::const_iterator vtable_thunks_end() const {
|
|
return VTableThunks.end();
|
|
}
|
|
|
|
void dumpLayout(raw_ostream &);
|
|
};
|
|
|
|
} // end namespace
|
|
|
|
/// InitialOverriddenDefinitionCollector - Finds the set of least derived bases
|
|
/// that define the given method.
|
|
struct InitialOverriddenDefinitionCollector {
|
|
BasesSetVectorTy Bases;
|
|
OverriddenMethodsSetTy VisitedOverriddenMethods;
|
|
|
|
bool visit(const CXXMethodDecl *OverriddenMD) {
|
|
if (OverriddenMD->size_overridden_methods() == 0)
|
|
Bases.insert(OverriddenMD->getParent());
|
|
// Don't recurse on this method if we've already collected it.
|
|
return VisitedOverriddenMethods.insert(OverriddenMD);
|
|
}
|
|
};
|
|
|
|
static bool BaseInSet(const CXXBaseSpecifier *Specifier,
|
|
CXXBasePath &Path, void *BasesSet) {
|
|
BasesSetVectorTy *Bases = (BasesSetVectorTy *)BasesSet;
|
|
return Bases->count(Specifier->getType()->getAsCXXRecordDecl());
|
|
}
|
|
|
|
CharUnits
|
|
VFTableBuilder::ComputeThisOffset(const CXXMethodDecl *MD,
|
|
BaseSubobject Base,
|
|
FinalOverriders::OverriderInfo Overrider) {
|
|
InitialOverriddenDefinitionCollector Collector;
|
|
visitAllOverriddenMethods(MD, Collector);
|
|
|
|
CXXBasePaths Paths;
|
|
Base.getBase()->lookupInBases(BaseInSet, &Collector.Bases, Paths);
|
|
|
|
// This will hold the smallest this offset among overridees of MD.
|
|
// This implies that an offset of a non-virtual base will dominate an offset
|
|
// of a virtual base to potentially reduce the number of thunks required
|
|
// in the derived classes that inherit this method.
|
|
CharUnits Ret;
|
|
bool First = true;
|
|
|
|
for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
|
|
I != E; ++I) {
|
|
const CXXBasePath &Path = (*I);
|
|
CharUnits ThisOffset = Base.getBaseOffset();
|
|
CharUnits LastVBaseOffset;
|
|
|
|
// For each path from the overrider to the parents of the overridden methods,
|
|
// traverse the path, calculating the this offset in the most derived class.
|
|
for (int J = 0, F = Path.size(); J != F; ++J) {
|
|
const CXXBasePathElement &Element = Path[J];
|
|
QualType CurTy = Element.Base->getType();
|
|
const CXXRecordDecl *PrevRD = Element.Class,
|
|
*CurRD = CurTy->getAsCXXRecordDecl();
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
|
|
|
|
if (Element.Base->isVirtual()) {
|
|
LastVBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(CurRD);
|
|
if (Overrider.Method->getParent() == PrevRD) {
|
|
// This one's interesting. If the final overrider is in a vbase B of the
|
|
// most derived class and it overrides a method of the B's own vbase A,
|
|
// it uses A* as "this". In its prologue, it can cast A* to B* with
|
|
// a static offset. This offset is used regardless of the actual
|
|
// offset of A from B in the most derived class, requiring an
|
|
// this-adjusting thunk in the vftable if A and B are laid out
|
|
// differently in the most derived class.
|
|
ThisOffset += Layout.getVBaseClassOffset(CurRD);
|
|
} else {
|
|
ThisOffset = LastVBaseOffset;
|
|
}
|
|
} else {
|
|
ThisOffset += Layout.getBaseClassOffset(CurRD);
|
|
}
|
|
}
|
|
|
|
if (isa<CXXDestructorDecl>(MD)) {
|
|
if (LastVBaseOffset.isZero()) {
|
|
// If a "Base" class has at least one non-virtual base with a virtual
|
|
// destructor, the "Base" virtual destructor will take the address
|
|
// of the "Base" subobject as the "this" argument.
|
|
return Base.getBaseOffset();
|
|
} else {
|
|
// A virtual destructor of a virtual base takes the address of the
|
|
// virtual base subobject as the "this" argument.
|
|
return LastVBaseOffset;
|
|
}
|
|
}
|
|
|
|
if (Ret > ThisOffset || First) {
|
|
First = false;
|
|
Ret = ThisOffset;
|
|
}
|
|
}
|
|
|
|
assert(!First && "Method not found in the given subobject?");
|
|
return Ret;
|
|
}
|
|
|
|
void VFTableBuilder::CalculateVtordispAdjustment(
|
|
FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
|
|
ThisAdjustment &TA) {
|
|
const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
|
|
MostDerivedClassLayout.getVBaseOffsetsMap();
|
|
const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
|
|
VBaseMap.find(WhichVFPtr.LastVBase);
|
|
assert(VBaseMapEntry != VBaseMap.end());
|
|
|
|
// Check if we need a vtordisp adjustment at all.
|
|
if (!VBaseMapEntry->second.hasVtorDisp())
|
|
return;
|
|
|
|
CharUnits VFPtrVBaseOffset = VBaseMapEntry->second.VBaseOffset;
|
|
// The implicit vtordisp field is located right before the vbase.
|
|
TA.Virtual.Microsoft.VtordispOffset =
|
|
(VFPtrVBaseOffset - WhichVFPtr.VFPtrFullOffset).getQuantity() - 4;
|
|
|
|
// If the final overrider is defined in either:
|
|
// - the most derived class or its non-virtual base or
|
|
// - the same vbase as the initial declaration,
|
|
// a simple vtordisp thunk will suffice.
|
|
const CXXRecordDecl *OverriderRD = Overrider.Method->getParent();
|
|
if (OverriderRD == MostDerivedClass)
|
|
return;
|
|
|
|
const CXXRecordDecl *OverriderVBase =
|
|
ComputeBaseOffset(Context, OverriderRD, MostDerivedClass).VirtualBase;
|
|
if (!OverriderVBase || OverriderVBase == WhichVFPtr.LastVBase)
|
|
return;
|
|
|
|
// Otherwise, we need to do use the dynamic offset of the final overrider
|
|
// in order to get "this" adjustment right.
|
|
TA.Virtual.Microsoft.VBPtrOffset =
|
|
(VFPtrVBaseOffset + WhichVFPtr.VFPtrOffset -
|
|
MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
|
|
TA.Virtual.Microsoft.VBOffsetOffset =
|
|
Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
|
|
VTables.getVBTableIndex(MostDerivedClass, OverriderVBase);
|
|
|
|
TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
|
|
}
|
|
|
|
static void GroupNewVirtualOverloads(
|
|
const CXXRecordDecl *RD,
|
|
SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
|
|
// Put the virtual methods into VirtualMethods in the proper order:
|
|
// 1) Group overloads by declaration name. New groups are added to the
|
|
// vftable in the order of their first declarations in this class
|
|
// (including overrides and non-virtual methods).
|
|
// 2) In each group, new overloads appear in the reverse order of declaration.
|
|
typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
|
|
SmallVector<MethodGroup, 10> Groups;
|
|
typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
|
|
VisitedGroupIndicesTy VisitedGroupIndices;
|
|
for (CXXRecordDecl::method_iterator I = RD->method_begin(),
|
|
E = RD->method_end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = *I;
|
|
|
|
VisitedGroupIndicesTy::iterator J;
|
|
bool Inserted;
|
|
llvm::tie(J, Inserted) = VisitedGroupIndices.insert(
|
|
std::make_pair(MD->getDeclName(), Groups.size()));
|
|
if (Inserted)
|
|
Groups.push_back(MethodGroup());
|
|
if (I->isVirtual())
|
|
Groups[J->second].push_back(MD);
|
|
}
|
|
|
|
for (unsigned I = 0, E = Groups.size(); I != E; ++I)
|
|
VirtualMethods.append(Groups[I].rbegin(), Groups[I].rend());
|
|
}
|
|
|
|
/// We need a return adjusting thunk for this method if its return type is
|
|
/// not trivially convertible to the return type of any of its overridden
|
|
/// methods.
|
|
bool VFTableBuilder::NeedsReturnAdjustingThunk(const CXXMethodDecl *MD) {
|
|
OverriddenMethodsSetTy OverriddenMethods;
|
|
ComputeAllOverriddenMethods(MD, OverriddenMethods);
|
|
for (OverriddenMethodsSetTy::iterator I = OverriddenMethods.begin(),
|
|
E = OverriddenMethods.end();
|
|
I != E; ++I) {
|
|
const CXXMethodDecl *OverriddenMD = *I;
|
|
BaseOffset Adjustment =
|
|
ComputeReturnAdjustmentBaseOffset(Context, MD, OverriddenMD);
|
|
if (!Adjustment.isEmpty())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
|
|
const CXXRecordDecl *LastVBase,
|
|
BasesSetVectorTy &VisitedBases) {
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
if (!RD->isPolymorphic())
|
|
return;
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// See if this class expands a vftable of the base we look at, which is either
|
|
// the one defined by the vfptr base path or the primary base of the current class.
|
|
const CXXRecordDecl *NextBase = 0, *NextLastVBase = LastVBase;
|
|
CharUnits NextBaseOffset;
|
|
if (BaseDepth < WhichVFPtr.PathToBaseWithVFPtr.size()) {
|
|
NextBase = WhichVFPtr.PathToBaseWithVFPtr[BaseDepth];
|
|
if (Layout.getVBaseOffsetsMap().count(NextBase)) {
|
|
NextLastVBase = NextBase;
|
|
NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
|
|
} else {
|
|
NextBaseOffset =
|
|
Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
|
|
}
|
|
} else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
|
|
assert(!Layout.isPrimaryBaseVirtual() &&
|
|
"No primary virtual bases in this ABI");
|
|
NextBase = PrimaryBase;
|
|
NextBaseOffset = Base.getBaseOffset();
|
|
}
|
|
|
|
if (NextBase) {
|
|
AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
|
|
NextLastVBase, VisitedBases);
|
|
if (!VisitedBases.insert(NextBase))
|
|
llvm_unreachable("Found a duplicate primary base!");
|
|
}
|
|
|
|
SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
|
|
// Put virtual methods in the proper order.
|
|
GroupNewVirtualOverloads(RD, VirtualMethods);
|
|
|
|
// Now go through all virtual member functions and add them to the current
|
|
// vftable. This is done by
|
|
// - replacing overridden methods in their existing slots, as long as they
|
|
// don't require return adjustment; calculating This adjustment if needed.
|
|
// - adding new slots for methods of the current base not present in any
|
|
// sub-bases;
|
|
// - adding new slots for methods that require Return adjustment.
|
|
// We keep track of the methods visited in the sub-bases in MethodInfoMap.
|
|
for (unsigned I = 0, E = VirtualMethods.size(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = VirtualMethods[I];
|
|
|
|
FinalOverriders::OverriderInfo Overrider =
|
|
Overriders.getOverrider(MD, Base.getBaseOffset());
|
|
ThisAdjustment ThisAdjustmentOffset;
|
|
bool ForceThunk = false;
|
|
|
|
// Check if this virtual member function overrides
|
|
// a method in one of the visited bases.
|
|
if (const CXXMethodDecl *OverriddenMD =
|
|
FindNearestOverriddenMethod(MD, VisitedBases)) {
|
|
MethodInfoMapTy::iterator OverriddenMDIterator =
|
|
MethodInfoMap.find(OverriddenMD);
|
|
|
|
// If the overridden method went to a different vftable, skip it.
|
|
if (OverriddenMDIterator == MethodInfoMap.end())
|
|
continue;
|
|
|
|
MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
|
|
|
|
// Create a this-adjusting thunk if needed.
|
|
CharUnits TI = ComputeThisOffset(MD, Base, Overrider);
|
|
if (TI != WhichVFPtr.VFPtrFullOffset) {
|
|
ThisAdjustmentOffset.NonVirtual =
|
|
(TI - WhichVFPtr.VFPtrFullOffset).getQuantity();
|
|
}
|
|
|
|
if (WhichVFPtr.LastVBase)
|
|
CalculateVtordispAdjustment(Overrider, TI, ThisAdjustmentOffset);
|
|
|
|
if (!ThisAdjustmentOffset.isEmpty()) {
|
|
VTableThunks[OverriddenMethodInfo.VFTableIndex].This =
|
|
ThisAdjustmentOffset;
|
|
AddThunk(MD, VTableThunks[OverriddenMethodInfo.VFTableIndex]);
|
|
}
|
|
|
|
if (!NeedsReturnAdjustingThunk(MD)) {
|
|
// No return adjustment needed - just replace the overridden method info
|
|
// with the current info.
|
|
MethodInfo MI(OverriddenMethodInfo.VBTableIndex,
|
|
OverriddenMethodInfo.VFTableIndex);
|
|
MethodInfoMap.erase(OverriddenMDIterator);
|
|
|
|
assert(!MethodInfoMap.count(MD) &&
|
|
"Should not have method info for this method yet!");
|
|
MethodInfoMap.insert(std::make_pair(MD, MI));
|
|
continue;
|
|
}
|
|
|
|
// In case we need a return adjustment, we'll add a new slot for
|
|
// the overrider and put a return-adjusting thunk where the overridden
|
|
// method was in the vftable.
|
|
// For now, just mark the overriden method as shadowed by a new slot.
|
|
OverriddenMethodInfo.Shadowed = true;
|
|
ForceThunk = true;
|
|
|
|
// Also apply this adjustment to the shadowed slots.
|
|
if (!ThisAdjustmentOffset.isEmpty()) {
|
|
// FIXME: this is O(N^2), can be O(N).
|
|
const CXXMethodDecl *SubOverride = OverriddenMD;
|
|
while ((SubOverride =
|
|
FindNearestOverriddenMethod(SubOverride, VisitedBases))) {
|
|
MethodInfoMapTy::iterator SubOverrideIterator =
|
|
MethodInfoMap.find(SubOverride);
|
|
if (SubOverrideIterator == MethodInfoMap.end())
|
|
break;
|
|
MethodInfo &SubOverrideMI = SubOverrideIterator->second;
|
|
assert(SubOverrideMI.Shadowed);
|
|
VTableThunks[SubOverrideMI.VFTableIndex].This =
|
|
ThisAdjustmentOffset;
|
|
AddThunk(MD, VTableThunks[SubOverrideMI.VFTableIndex]);
|
|
}
|
|
}
|
|
} else if (Base.getBaseOffset() != WhichVFPtr.VFPtrFullOffset ||
|
|
MD->size_overridden_methods()) {
|
|
// Skip methods that don't belong to the vftable of the current class,
|
|
// e.g. each method that wasn't seen in any of the visited sub-bases
|
|
// but overrides multiple methods of other sub-bases.
|
|
continue;
|
|
}
|
|
|
|
// If we got here, MD is a method not seen in any of the sub-bases or
|
|
// it requires return adjustment. Insert the method info for this method.
|
|
unsigned VBIndex =
|
|
LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
|
|
MethodInfo MI(VBIndex, Components.size());
|
|
|
|
assert(!MethodInfoMap.count(MD) &&
|
|
"Should not have method info for this method yet!");
|
|
MethodInfoMap.insert(std::make_pair(MD, MI));
|
|
|
|
const CXXMethodDecl *OverriderMD = Overrider.Method;
|
|
|
|
// Check if this overrider needs a return adjustment.
|
|
// We don't want to do this for pure virtual member functions.
|
|
BaseOffset ReturnAdjustmentOffset;
|
|
ReturnAdjustment ReturnAdjustment;
|
|
if (!OverriderMD->isPure()) {
|
|
ReturnAdjustmentOffset =
|
|
ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
|
|
}
|
|
if (!ReturnAdjustmentOffset.isEmpty()) {
|
|
ForceThunk = true;
|
|
ReturnAdjustment.NonVirtual =
|
|
ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
|
|
if (ReturnAdjustmentOffset.VirtualBase) {
|
|
const ASTRecordLayout &DerivedLayout =
|
|
Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
|
|
ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
|
|
DerivedLayout.getVBPtrOffset().getQuantity();
|
|
ReturnAdjustment.Virtual.Microsoft.VBIndex =
|
|
VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
|
|
ReturnAdjustmentOffset.VirtualBase);
|
|
}
|
|
}
|
|
|
|
AddMethod(OverriderMD, ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
|
|
ForceThunk ? MD : 0));
|
|
}
|
|
}
|
|
|
|
static void PrintBasePath(const VFPtrInfo::BasePath &Path, raw_ostream &Out) {
|
|
for (VFPtrInfo::BasePath::const_reverse_iterator I = Path.rbegin(),
|
|
E = Path.rend(); I != E; ++I) {
|
|
Out << "'";
|
|
(*I)->printQualifiedName(Out);
|
|
Out << "' in ";
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct MicrosoftThunkInfoStableSortComparator {
|
|
bool operator() (const ThunkInfo &LHS, const ThunkInfo &RHS) {
|
|
if (LHS.This != RHS.This)
|
|
return LHS.This < RHS.This;
|
|
|
|
if (LHS.Return != RHS.Return)
|
|
return LHS.Return < RHS.Return;
|
|
|
|
// Keep different thunks with the same adjustments in the order they
|
|
// were put into the vector.
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
|
|
bool ContinueFirstLine) {
|
|
const ReturnAdjustment &R = TI.Return;
|
|
bool Multiline = false;
|
|
const char *LinePrefix = "\n ";
|
|
if (!R.isEmpty()) {
|
|
if (!ContinueFirstLine)
|
|
Out << LinePrefix;
|
|
Out << "[return adjustment: ";
|
|
if (R.Virtual.Microsoft.VBPtrOffset)
|
|
Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
|
|
if (R.Virtual.Microsoft.VBIndex)
|
|
Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
|
|
Out << R.NonVirtual << " non-virtual]";
|
|
Multiline = true;
|
|
}
|
|
|
|
const ThisAdjustment &T = TI.This;
|
|
if (!T.isEmpty()) {
|
|
if (Multiline || !ContinueFirstLine)
|
|
Out << LinePrefix;
|
|
Out << "[this adjustment: ";
|
|
if (!TI.This.Virtual.isEmpty()) {
|
|
assert(T.Virtual.Microsoft.VtordispOffset < 0);
|
|
Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
|
|
if (T.Virtual.Microsoft.VBPtrOffset) {
|
|
Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
|
|
<< " to the left, ";
|
|
assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
|
|
Out << LinePrefix << " vboffset at "
|
|
<< T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
|
|
}
|
|
}
|
|
Out << T.NonVirtual << " non-virtual]";
|
|
}
|
|
}
|
|
|
|
void VFTableBuilder::dumpLayout(raw_ostream &Out) {
|
|
Out << "VFTable for ";
|
|
PrintBasePath(WhichVFPtr.PathToBaseWithVFPtr, Out);
|
|
Out << "'";
|
|
MostDerivedClass->printQualifiedName(Out);
|
|
Out << "' (" << Components.size() << " entries).\n";
|
|
|
|
for (unsigned I = 0, E = Components.size(); I != E; ++I) {
|
|
Out << llvm::format("%4d | ", I);
|
|
|
|
const VTableComponent &Component = Components[I];
|
|
|
|
// Dump the component.
|
|
switch (Component.getKind()) {
|
|
case VTableComponent::CK_RTTI:
|
|
Component.getRTTIDecl()->printQualifiedName(Out);
|
|
Out << " RTTI";
|
|
break;
|
|
|
|
case VTableComponent::CK_FunctionPointer: {
|
|
const CXXMethodDecl *MD = Component.getFunctionDecl();
|
|
|
|
// FIXME: Figure out how to print the real thunk type, since they can
|
|
// differ in the return type.
|
|
std::string Str = PredefinedExpr::ComputeName(
|
|
PredefinedExpr::PrettyFunctionNoVirtual, MD);
|
|
Out << Str;
|
|
if (MD->isPure())
|
|
Out << " [pure]";
|
|
|
|
if (MD->isDeleted()) {
|
|
ErrorUnsupported("deleted methods", MD->getLocation());
|
|
Out << " [deleted]";
|
|
}
|
|
|
|
ThunkInfo Thunk = VTableThunks.lookup(I);
|
|
if (!Thunk.isEmpty())
|
|
dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
|
|
|
|
break;
|
|
}
|
|
|
|
case VTableComponent::CK_DeletingDtorPointer: {
|
|
const CXXDestructorDecl *DD = Component.getDestructorDecl();
|
|
|
|
DD->printQualifiedName(Out);
|
|
Out << "() [scalar deleting]";
|
|
|
|
if (DD->isPure())
|
|
Out << " [pure]";
|
|
|
|
ThunkInfo Thunk = VTableThunks.lookup(I);
|
|
if (!Thunk.isEmpty()) {
|
|
assert(Thunk.Return.isEmpty() &&
|
|
"No return adjustment needed for destructors!");
|
|
dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
DiagnosticsEngine &Diags = Context.getDiagnostics();
|
|
unsigned DiagID = Diags.getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"Unexpected vftable component type %0 for component number %1");
|
|
Diags.Report(MostDerivedClass->getLocation(), DiagID)
|
|
<< I << Component.getKind();
|
|
}
|
|
|
|
Out << '\n';
|
|
}
|
|
|
|
Out << '\n';
|
|
|
|
if (!Thunks.empty()) {
|
|
// We store the method names in a map to get a stable order.
|
|
std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
|
|
|
|
for (ThunksMapTy::const_iterator I = Thunks.begin(), E = Thunks.end();
|
|
I != E; ++I) {
|
|
const CXXMethodDecl *MD = I->first;
|
|
std::string MethodName = PredefinedExpr::ComputeName(
|
|
PredefinedExpr::PrettyFunctionNoVirtual, MD);
|
|
|
|
MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
|
|
}
|
|
|
|
for (std::map<std::string, const CXXMethodDecl *>::const_iterator
|
|
I = MethodNamesAndDecls.begin(),
|
|
E = MethodNamesAndDecls.end();
|
|
I != E; ++I) {
|
|
const std::string &MethodName = I->first;
|
|
const CXXMethodDecl *MD = I->second;
|
|
|
|
ThunkInfoVectorTy ThunksVector = Thunks[MD];
|
|
std::stable_sort(ThunksVector.begin(), ThunksVector.end(),
|
|
MicrosoftThunkInfoStableSortComparator());
|
|
|
|
Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
|
|
Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
|
|
|
|
for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
|
|
const ThunkInfo &Thunk = ThunksVector[I];
|
|
|
|
Out << llvm::format("%4d | ", I);
|
|
dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
|
|
Out << '\n';
|
|
}
|
|
|
|
Out << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
|
|
const llvm::ArrayRef<const CXXRecordDecl *> &B) {
|
|
for (llvm::ArrayRef<const CXXRecordDecl *>::iterator I = B.begin(),
|
|
E = B.end();
|
|
I != E; ++I) {
|
|
if (A.count(*I))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool rebucketPaths(VBTableVector &Paths);
|
|
|
|
/// Produces MSVC-compatible vbtable data. The symbols produced by this
|
|
/// algorithm match those produced by MSVC 2012 and newer, which is different
|
|
/// from MSVC 2010.
|
|
///
|
|
/// MSVC 2012 appears to minimize the vbtable names using the following
|
|
/// algorithm. First, walk the class hierarchy in the usual order, depth first,
|
|
/// left to right, to find all of the subobjects which contain a vbptr field.
|
|
/// Visiting each class node yields a list of inheritance paths to vbptrs. Each
|
|
/// record with a vbptr creates an initially empty path.
|
|
///
|
|
/// To combine paths from child nodes, the paths are compared to check for
|
|
/// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
|
|
/// components in the same order. Each group of ambiguous paths is extended by
|
|
/// appending the class of the base from which it came. If the current class
|
|
/// node produced an ambiguous path, its path is extended with the current class.
|
|
/// After extending paths, MSVC again checks for ambiguity, and extends any
|
|
/// ambiguous path which wasn't already extended. Because each node yields an
|
|
/// unambiguous set of paths, MSVC doesn't need to extend any path more than once
|
|
/// to produce an unambiguous set of paths.
|
|
///
|
|
/// TODO: Presumably vftables use the same algorithm.
|
|
void
|
|
MicrosoftVTableContext::computeVBTablePaths(const CXXRecordDecl *RD,
|
|
VBTableVector &Paths) {
|
|
assert(Paths.empty());
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// Base case: this subobject has its own vbptr.
|
|
if (Layout.hasOwnVBPtr())
|
|
Paths.push_back(new VBTableInfo(RD));
|
|
|
|
// Recursive case: get all the vbtables from our bases and remove anything
|
|
// that shares a virtual base.
|
|
llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
|
E = RD->bases_end();
|
|
I != E; ++I) {
|
|
const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
|
|
if (I->isVirtual() && VBasesSeen.count(Base))
|
|
continue;
|
|
|
|
const VBTableVector &BasePaths = enumerateVBTables(Base);
|
|
|
|
for (VBTableVector::const_iterator II = BasePaths.begin(),
|
|
EE = BasePaths.end();
|
|
II != EE; ++II) {
|
|
VBTableInfo *BasePath = *II;
|
|
|
|
// Don't include the path if it goes through a virtual base that we've
|
|
// already included.
|
|
if (setsIntersect(VBasesSeen, BasePath->ContainingVBases))
|
|
continue;
|
|
|
|
// Copy the path and adjust it as necessary.
|
|
VBTableInfo *P = new VBTableInfo(*BasePath);
|
|
|
|
// We mangle Base into the path if the path would've been ambiguous and it
|
|
// wasn't already extended with Base.
|
|
if (P->MangledPath.empty() || P->MangledPath.back() != Base)
|
|
P->NextBaseToMangle = Base;
|
|
|
|
// Keep track of which derived class ultimately uses the vbtable, and what
|
|
// the full adjustment is from the MDC to this vbtable. The adjustment is
|
|
// captured by an optional vbase and a non-virtual offset.
|
|
if (Base == Layout.getBaseSharingVBPtr())
|
|
P->ReusingBase = RD;
|
|
if (I->isVirtual())
|
|
P->ContainingVBases.push_back(Base);
|
|
else if (P->ContainingVBases.empty())
|
|
P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
|
|
|
|
Paths.push_back(P);
|
|
}
|
|
|
|
// After visiting any direct base, we've transitively visited all of its
|
|
// morally virtual bases.
|
|
for (CXXRecordDecl::base_class_const_iterator II = Base->vbases_begin(),
|
|
EE = Base->vbases_end();
|
|
II != EE; ++II)
|
|
VBasesSeen.insert(II->getType()->getAsCXXRecordDecl());
|
|
}
|
|
|
|
// Sort the paths into buckets, and if any of them are ambiguous, extend all
|
|
// paths in ambiguous buckets.
|
|
bool Changed = true;
|
|
while (Changed)
|
|
Changed = rebucketPaths(Paths);
|
|
}
|
|
|
|
static bool pathCompare(const VBTableInfo *LHS, const VBTableInfo *RHS) {
|
|
return LHS->MangledPath < RHS->MangledPath;
|
|
}
|
|
|
|
static bool extendPath(VBTableInfo *P) {
|
|
if (P->NextBaseToMangle) {
|
|
P->MangledPath.push_back(P->NextBaseToMangle);
|
|
P->NextBaseToMangle = 0; // Prevent the path from being extended twice.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool rebucketPaths(VBTableVector &Paths) {
|
|
// What we're essentially doing here is bucketing together ambiguous paths.
|
|
// Any bucket with more than one path in it gets extended by NextBase, which
|
|
// is usually the direct base of the inherited the vbptr. This code uses a
|
|
// sorted vector to implement a multiset to form the buckets. Note that the
|
|
// ordering is based on pointers, but it doesn't change our output order. The
|
|
// current algorithm is designed to match MSVC 2012's names.
|
|
VBTableVector PathsSorted(Paths);
|
|
std::sort(PathsSorted.begin(), PathsSorted.end(), pathCompare);
|
|
bool Changed = false;
|
|
for (size_t I = 0, E = PathsSorted.size(); I != E;) {
|
|
// Scan forward to find the end of the bucket.
|
|
size_t BucketStart = I;
|
|
do {
|
|
++I;
|
|
} while (I != E && PathsSorted[BucketStart]->MangledPath ==
|
|
PathsSorted[I]->MangledPath);
|
|
|
|
// If this bucket has multiple paths, extend them all.
|
|
if (I - BucketStart > 1) {
|
|
for (size_t II = BucketStart; II != I; ++II)
|
|
Changed |= extendPath(PathsSorted[II]);
|
|
assert(Changed && "no paths were extended to fix ambiguity");
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
MicrosoftVTableContext::~MicrosoftVTableContext() {
|
|
llvm::DeleteContainerSeconds(VFTableLayouts);
|
|
llvm::DeleteContainerSeconds(VBaseInfo);
|
|
}
|
|
|
|
void MicrosoftVTableContext::enumerateVFPtrs(
|
|
const CXXRecordDecl *MostDerivedClass,
|
|
const ASTRecordLayout &MostDerivedClassLayout, BaseSubobject Base,
|
|
const CXXRecordDecl *LastVBase,
|
|
const VFPtrInfo::BasePath &PathFromCompleteClass,
|
|
BasesSetVectorTy &VisitedVBases,
|
|
VFPtrListTy &Result) {
|
|
const CXXRecordDecl *CurrentClass = Base.getBase();
|
|
CharUnits OffsetInCompleteClass = Base.getBaseOffset();
|
|
const ASTRecordLayout &CurrentClassLayout =
|
|
Context.getASTRecordLayout(CurrentClass);
|
|
|
|
if (CurrentClassLayout.hasOwnVFPtr()) {
|
|
if (LastVBase) {
|
|
uint64_t VBIndex = getVBTableIndex(MostDerivedClass, LastVBase);
|
|
assert(VBIndex > 0 && "vbases must have vbindex!");
|
|
CharUnits VFPtrOffset =
|
|
OffsetInCompleteClass -
|
|
MostDerivedClassLayout.getVBaseClassOffset(LastVBase);
|
|
Result.push_back(VFPtrInfo(VBIndex, LastVBase, VFPtrOffset,
|
|
PathFromCompleteClass, OffsetInCompleteClass));
|
|
} else {
|
|
Result.push_back(VFPtrInfo(OffsetInCompleteClass, PathFromCompleteClass));
|
|
}
|
|
}
|
|
|
|
for (CXXRecordDecl::base_class_const_iterator I = CurrentClass->bases_begin(),
|
|
E = CurrentClass->bases_end(); I != E; ++I) {
|
|
const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
|
|
|
|
CharUnits NextBaseOffset;
|
|
const CXXRecordDecl *NextLastVBase;
|
|
if (I->isVirtual()) {
|
|
if (!VisitedVBases.insert(BaseDecl))
|
|
continue;
|
|
NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
|
|
NextLastVBase = BaseDecl;
|
|
} else {
|
|
NextBaseOffset = OffsetInCompleteClass +
|
|
CurrentClassLayout.getBaseClassOffset(BaseDecl);
|
|
NextLastVBase = LastVBase;
|
|
}
|
|
|
|
VFPtrInfo::BasePath NewPath = PathFromCompleteClass;
|
|
NewPath.push_back(BaseDecl);
|
|
BaseSubobject NextBase(BaseDecl, NextBaseOffset);
|
|
|
|
enumerateVFPtrs(MostDerivedClass, MostDerivedClassLayout, NextBase,
|
|
NextLastVBase, NewPath, VisitedVBases, Result);
|
|
}
|
|
}
|
|
|
|
/// CalculatePathToMangle - Calculate the subset of records that should be used
|
|
/// to mangle the vftable for the given vfptr.
|
|
/// Should only be called if a class has multiple vftables.
|
|
static void
|
|
CalculatePathToMangle(const CXXRecordDecl *RD, VFPtrInfo &VFPtr) {
|
|
// FIXME: In some rare cases this code produces a slightly incorrect mangling.
|
|
// It's very likely that the vbtable mangling code can be adjusted to mangle
|
|
// both vftables and vbtables correctly.
|
|
|
|
VFPtrInfo::BasePath &FullPath = VFPtr.PathToBaseWithVFPtr;
|
|
if (FullPath.empty()) {
|
|
// Mangle the class's own vftable.
|
|
assert(RD->getNumVBases() &&
|
|
"Something's wrong: if the most derived "
|
|
"class has more than one vftable, it can only have its own "
|
|
"vftable if it has vbases");
|
|
VFPtr.PathToMangle.push_back(RD);
|
|
return;
|
|
}
|
|
|
|
unsigned Begin = 0;
|
|
|
|
// First, skip all the bases before the vbase.
|
|
if (VFPtr.LastVBase) {
|
|
while (FullPath[Begin] != VFPtr.LastVBase) {
|
|
Begin++;
|
|
assert(Begin < FullPath.size());
|
|
}
|
|
}
|
|
|
|
// Then, put the rest of the base path in the reverse order.
|
|
for (unsigned I = FullPath.size(); I != Begin; --I) {
|
|
const CXXRecordDecl *CurBase = FullPath[I - 1],
|
|
*ItsBase = (I == 1) ? RD : FullPath[I - 2];
|
|
bool BaseIsVirtual = false;
|
|
for (CXXRecordDecl::base_class_const_iterator J = ItsBase->bases_begin(),
|
|
F = ItsBase->bases_end(); J != F; ++J) {
|
|
if (J->getType()->getAsCXXRecordDecl() == CurBase) {
|
|
BaseIsVirtual = J->isVirtual();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Should skip the current base if it is a non-virtual base with no siblings.
|
|
if (BaseIsVirtual || ItsBase->getNumBases() != 1)
|
|
VFPtr.PathToMangle.push_back(CurBase);
|
|
}
|
|
}
|
|
|
|
void MicrosoftVTableContext::enumerateVFPtrs(
|
|
const CXXRecordDecl *ForClass,
|
|
MicrosoftVTableContext::VFPtrListTy &Result) {
|
|
Result.clear();
|
|
const ASTRecordLayout &ClassLayout = Context.getASTRecordLayout(ForClass);
|
|
BasesSetVectorTy VisitedVBases;
|
|
enumerateVFPtrs(ForClass, ClassLayout,
|
|
BaseSubobject(ForClass, CharUnits::Zero()), 0,
|
|
VFPtrInfo::BasePath(), VisitedVBases, Result);
|
|
if (Result.size() > 1) {
|
|
for (unsigned I = 0, E = Result.size(); I != E; ++I)
|
|
CalculatePathToMangle(ForClass, Result[I]);
|
|
}
|
|
}
|
|
|
|
void MicrosoftVTableContext::computeVTableRelatedInformation(
|
|
const CXXRecordDecl *RD) {
|
|
assert(RD->isDynamicClass());
|
|
|
|
// Check if we've computed this information before.
|
|
if (VFPtrLocations.count(RD))
|
|
return;
|
|
|
|
const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
|
|
|
|
VFPtrListTy &VFPtrs = VFPtrLocations[RD];
|
|
enumerateVFPtrs(RD, VFPtrs);
|
|
|
|
MethodVFTableLocationsTy NewMethodLocations;
|
|
for (VFPtrListTy::iterator I = VFPtrs.begin(), E = VFPtrs.end();
|
|
I != E; ++I) {
|
|
VFTableBuilder Builder(*this, RD, *I);
|
|
|
|
VFTableIdTy id(RD, I->VFPtrFullOffset);
|
|
assert(VFTableLayouts.count(id) == 0);
|
|
SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
|
|
Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
|
|
VFTableLayouts[id] = new VTableLayout(
|
|
Builder.getNumVTableComponents(), Builder.vtable_component_begin(),
|
|
VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true);
|
|
NewMethodLocations.insert(Builder.vtable_indices_begin(),
|
|
Builder.vtable_indices_end());
|
|
Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
|
|
}
|
|
|
|
MethodVFTableLocations.insert(NewMethodLocations.begin(),
|
|
NewMethodLocations.end());
|
|
if (Context.getLangOpts().DumpVTableLayouts)
|
|
dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
|
|
}
|
|
|
|
void MicrosoftVTableContext::dumpMethodLocations(
|
|
const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
|
|
raw_ostream &Out) {
|
|
// Compute the vtable indices for all the member functions.
|
|
// Store them in a map keyed by the location so we'll get a sorted table.
|
|
std::map<MethodVFTableLocation, std::string> IndicesMap;
|
|
bool HasNonzeroOffset = false;
|
|
|
|
for (MethodVFTableLocationsTy::const_iterator I = NewMethods.begin(),
|
|
E = NewMethods.end(); I != E; ++I) {
|
|
const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I->first.getDecl());
|
|
assert(MD->isVirtual());
|
|
|
|
std::string MethodName = PredefinedExpr::ComputeName(
|
|
PredefinedExpr::PrettyFunctionNoVirtual, MD);
|
|
|
|
if (isa<CXXDestructorDecl>(MD)) {
|
|
IndicesMap[I->second] = MethodName + " [scalar deleting]";
|
|
} else {
|
|
IndicesMap[I->second] = MethodName;
|
|
}
|
|
|
|
if (!I->second.VFPtrOffset.isZero() || I->second.VBTableIndex != 0)
|
|
HasNonzeroOffset = true;
|
|
}
|
|
|
|
// Print the vtable indices for all the member functions.
|
|
if (!IndicesMap.empty()) {
|
|
Out << "VFTable indices for ";
|
|
Out << "'";
|
|
RD->printQualifiedName(Out);
|
|
Out << "' (" << IndicesMap.size() << " entries).\n";
|
|
|
|
CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
|
|
uint64_t LastVBIndex = 0;
|
|
for (std::map<MethodVFTableLocation, std::string>::const_iterator
|
|
I = IndicesMap.begin(),
|
|
E = IndicesMap.end();
|
|
I != E; ++I) {
|
|
CharUnits VFPtrOffset = I->first.VFPtrOffset;
|
|
uint64_t VBIndex = I->first.VBTableIndex;
|
|
if (HasNonzeroOffset &&
|
|
(VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
|
|
assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
|
|
Out << " -- accessible via ";
|
|
if (VBIndex)
|
|
Out << "vbtable index " << VBIndex << ", ";
|
|
Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
|
|
LastVFPtrOffset = VFPtrOffset;
|
|
LastVBIndex = VBIndex;
|
|
}
|
|
|
|
uint64_t VTableIndex = I->first.Index;
|
|
const std::string &MethodName = I->second;
|
|
Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
|
|
}
|
|
Out << '\n';
|
|
}
|
|
}
|
|
|
|
const VirtualBaseInfo *MicrosoftVTableContext::computeVBTableRelatedInformation(
|
|
const CXXRecordDecl *RD) {
|
|
VirtualBaseInfo *VBI;
|
|
|
|
{
|
|
// Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
|
|
// as it may be modified and rehashed under us.
|
|
VirtualBaseInfo *&Entry = VBaseInfo[RD];
|
|
if (Entry)
|
|
return Entry;
|
|
Entry = VBI = new VirtualBaseInfo();
|
|
}
|
|
|
|
computeVBTablePaths(RD, VBI->VBTables);
|
|
|
|
// First, see if the Derived class shared the vbptr with a non-virtual base.
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
|
|
// If the Derived class shares the vbptr with a non-virtual base, the shared
|
|
// virtual bases come first so that the layout is the same.
|
|
const VirtualBaseInfo *BaseInfo =
|
|
computeVBTableRelatedInformation(VBPtrBase);
|
|
VBI->VBTableIndices.insert(BaseInfo->VBTableIndices.begin(),
|
|
BaseInfo->VBTableIndices.end());
|
|
}
|
|
|
|
// New vbases are added to the end of the vbtable.
|
|
// Skip the self entry and vbases visited in the non-virtual base, if any.
|
|
unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
|
|
for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
|
|
E = RD->vbases_end();
|
|
I != E; ++I) {
|
|
const CXXRecordDecl *CurVBase = I->getType()->getAsCXXRecordDecl();
|
|
if (!VBI->VBTableIndices.count(CurVBase))
|
|
VBI->VBTableIndices[CurVBase] = VBTableIndex++;
|
|
}
|
|
|
|
return VBI;
|
|
}
|
|
|
|
unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
|
|
const CXXRecordDecl *VBase) {
|
|
const VirtualBaseInfo *VBInfo = computeVBTableRelatedInformation(Derived);
|
|
assert(VBInfo->VBTableIndices.count(VBase));
|
|
return VBInfo->VBTableIndices.find(VBase)->second;
|
|
}
|
|
|
|
const VBTableVector &
|
|
MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
|
|
return computeVBTableRelatedInformation(RD)->VBTables;
|
|
}
|
|
|
|
const MicrosoftVTableContext::VFPtrListTy &
|
|
MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
|
|
computeVTableRelatedInformation(RD);
|
|
|
|
assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
|
|
return VFPtrLocations[RD];
|
|
}
|
|
|
|
const VTableLayout &
|
|
MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
|
|
CharUnits VFPtrOffset) {
|
|
computeVTableRelatedInformation(RD);
|
|
|
|
VFTableIdTy id(RD, VFPtrOffset);
|
|
assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
|
|
return *VFTableLayouts[id];
|
|
}
|
|
|
|
const MicrosoftVTableContext::MethodVFTableLocation &
|
|
MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
|
|
assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
|
|
"Only use this method for virtual methods or dtors");
|
|
if (isa<CXXDestructorDecl>(GD.getDecl()))
|
|
assert(GD.getDtorType() == Dtor_Deleting);
|
|
|
|
MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
|
|
if (I != MethodVFTableLocations.end())
|
|
return I->second;
|
|
|
|
const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
|
|
|
|
computeVTableRelatedInformation(RD);
|
|
|
|
I = MethodVFTableLocations.find(GD);
|
|
assert(I != MethodVFTableLocations.end() && "Did not find index!");
|
|
return I->second;
|
|
}
|