mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-03 08:16:06 +00:00

Introduce an Address type to bundle a pointer value with an alignment. Introduce APIs on CGBuilderTy to work with Address values. Change core APIs on CGF/CGM to traffic in Address where appropriate. Require alignments to be non-zero. Update a ton of code to compute and propagate alignment information. As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment helper function to CGF and made use of it in a number of places in the expression emitter. The end result is that we should now be significantly more correct when performing operations on objects that are locally known to be under-aligned. Since alignment is not reliably tracked in the type system, there are inherent limits to this, but at least we are no longer confused by standard operations like derived-to-base conversions and array-to-pointer decay. I've also fixed a large number of bugs where we were applying the complete-object alignment to a pointer instead of the non-virtual alignment, although most of these were hidden by the very conservative approach we took with member alignment. Also, because IRGen now reliably asserts on zero alignments, we should no longer be subject to an absurd but frustrating recurring bug where an incomplete type would report a zero alignment and then we'd naively do a alignmentAtOffset on it and emit code using an alignment equal to the largest power-of-two factor of the offset. We should also now be emitting much more aggressive alignment attributes in the presence of over-alignment. In particular, field access now uses alignmentAtOffset instead of min. Several times in this patch, I had to change the existing code-generation pattern in order to more effectively use the Address APIs. For the most part, this seems to be a strict improvement, like doing pointer arithmetic with GEPs instead of ptrtoint. That said, I've tried very hard to not change semantics, but it is likely that I've failed in a few places, for which I apologize. ABIArgInfo now always carries the assumed alignment of indirect and indirect byval arguments. In order to cut down on what was already a dauntingly large patch, I changed the code to never set align attributes in the IR on non-byval indirect arguments. That is, we still generate code which assumes that indirect arguments have the given alignment, but we don't express this information to the backend except where it's semantically required (i.e. on byvals). This is likely a minor regression for those targets that did provide this information, but it'll be trivial to add it back in a later patch. I partially punted on applying this work to CGBuiltin. Please do not add more uses of the CreateDefaultAligned{Load,Store} APIs; they will be going away eventually. llvm-svn: 246985
320 lines
13 KiB
C++
320 lines
13 KiB
C++
//===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides a class for CUDA code generation targeting the NVIDIA CUDA
|
|
// runtime library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGCUDARuntime.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
|
|
class CGNVCUDARuntime : public CGCUDARuntime {
|
|
|
|
private:
|
|
llvm::Type *IntTy, *SizeTy, *VoidTy;
|
|
llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
|
|
|
|
/// Convenience reference to LLVM Context
|
|
llvm::LLVMContext &Context;
|
|
/// Convenience reference to the current module
|
|
llvm::Module &TheModule;
|
|
/// Keeps track of kernel launch stubs emitted in this module
|
|
llvm::SmallVector<llvm::Function *, 16> EmittedKernels;
|
|
/// Keeps track of variables containing handles of GPU binaries. Populated by
|
|
/// ModuleCtorFunction() and used to create corresponding cleanup calls in
|
|
/// ModuleDtorFunction()
|
|
llvm::SmallVector<llvm::GlobalVariable *, 16> GpuBinaryHandles;
|
|
|
|
llvm::Constant *getSetupArgumentFn() const;
|
|
llvm::Constant *getLaunchFn() const;
|
|
|
|
/// Creates a function to register all kernel stubs generated in this module.
|
|
llvm::Function *makeRegisterKernelsFn();
|
|
|
|
/// Helper function that generates a constant string and returns a pointer to
|
|
/// the start of the string. The result of this function can be used anywhere
|
|
/// where the C code specifies const char*.
|
|
llvm::Constant *makeConstantString(const std::string &Str,
|
|
const std::string &Name = "",
|
|
unsigned Alignment = 0) {
|
|
llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
|
|
llvm::ConstantInt::get(SizeTy, 0)};
|
|
auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
|
|
return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
|
|
ConstStr.getPointer(), Zeros);
|
|
}
|
|
|
|
void emitDeviceStubBody(CodeGenFunction &CGF, FunctionArgList &Args);
|
|
|
|
public:
|
|
CGNVCUDARuntime(CodeGenModule &CGM);
|
|
|
|
void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
|
|
/// Creates module constructor function
|
|
llvm::Function *makeModuleCtorFunction() override;
|
|
/// Creates module destructor function
|
|
llvm::Function *makeModuleDtorFunction() override;
|
|
};
|
|
|
|
}
|
|
|
|
CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
|
|
: CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
|
|
TheModule(CGM.getModule()) {
|
|
CodeGen::CodeGenTypes &Types = CGM.getTypes();
|
|
ASTContext &Ctx = CGM.getContext();
|
|
|
|
IntTy = Types.ConvertType(Ctx.IntTy);
|
|
SizeTy = Types.ConvertType(Ctx.getSizeType());
|
|
VoidTy = llvm::Type::getVoidTy(Context);
|
|
|
|
CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
|
|
VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
|
|
VoidPtrPtrTy = VoidPtrTy->getPointerTo();
|
|
}
|
|
|
|
llvm::Constant *CGNVCUDARuntime::getSetupArgumentFn() const {
|
|
// cudaError_t cudaSetupArgument(void *, size_t, size_t)
|
|
std::vector<llvm::Type*> Params;
|
|
Params.push_back(VoidPtrTy);
|
|
Params.push_back(SizeTy);
|
|
Params.push_back(SizeTy);
|
|
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(IntTy,
|
|
Params, false),
|
|
"cudaSetupArgument");
|
|
}
|
|
|
|
llvm::Constant *CGNVCUDARuntime::getLaunchFn() const {
|
|
// cudaError_t cudaLaunch(char *)
|
|
return CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
|
|
}
|
|
|
|
void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
|
|
FunctionArgList &Args) {
|
|
EmittedKernels.push_back(CGF.CurFn);
|
|
emitDeviceStubBody(CGF, Args);
|
|
}
|
|
|
|
void CGNVCUDARuntime::emitDeviceStubBody(CodeGenFunction &CGF,
|
|
FunctionArgList &Args) {
|
|
// Build the argument value list and the argument stack struct type.
|
|
SmallVector<llvm::Value *, 16> ArgValues;
|
|
std::vector<llvm::Type *> ArgTypes;
|
|
for (FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
|
|
I != E; ++I) {
|
|
llvm::Value *V = CGF.GetAddrOfLocalVar(*I).getPointer();
|
|
ArgValues.push_back(V);
|
|
assert(isa<llvm::PointerType>(V->getType()) && "Arg type not PointerType");
|
|
ArgTypes.push_back(cast<llvm::PointerType>(V->getType())->getElementType());
|
|
}
|
|
llvm::StructType *ArgStackTy = llvm::StructType::get(Context, ArgTypes);
|
|
|
|
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
|
|
|
|
// Emit the calls to cudaSetupArgument
|
|
llvm::Constant *cudaSetupArgFn = getSetupArgumentFn();
|
|
for (unsigned I = 0, E = Args.size(); I != E; ++I) {
|
|
llvm::Value *Args[3];
|
|
llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
|
|
Args[0] = CGF.Builder.CreatePointerCast(ArgValues[I], VoidPtrTy);
|
|
Args[1] = CGF.Builder.CreateIntCast(
|
|
llvm::ConstantExpr::getSizeOf(ArgTypes[I]),
|
|
SizeTy, false);
|
|
Args[2] = CGF.Builder.CreateIntCast(
|
|
llvm::ConstantExpr::getOffsetOf(ArgStackTy, I),
|
|
SizeTy, false);
|
|
llvm::CallSite CS = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
|
|
llvm::Value *CSZero = CGF.Builder.CreateICmpEQ(CS.getInstruction(), Zero);
|
|
CGF.Builder.CreateCondBr(CSZero, NextBlock, EndBlock);
|
|
CGF.EmitBlock(NextBlock);
|
|
}
|
|
|
|
// Emit the call to cudaLaunch
|
|
llvm::Constant *cudaLaunchFn = getLaunchFn();
|
|
llvm::Value *Arg = CGF.Builder.CreatePointerCast(CGF.CurFn, CharPtrTy);
|
|
CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
|
|
CGF.EmitBranch(EndBlock);
|
|
|
|
CGF.EmitBlock(EndBlock);
|
|
}
|
|
|
|
/// Creates internal function to register all kernel stubs generated in this
|
|
/// module with the CUDA runtime.
|
|
/// \code
|
|
/// void __cuda_register_kernels(void** GpuBinaryHandle) {
|
|
/// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
|
|
/// ...
|
|
/// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
|
|
/// }
|
|
/// \endcode
|
|
llvm::Function *CGNVCUDARuntime::makeRegisterKernelsFn() {
|
|
llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
|
|
llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
|
|
llvm::GlobalValue::InternalLinkage, "__cuda_register_kernels", &TheModule);
|
|
llvm::BasicBlock *EntryBB =
|
|
llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
|
|
CGBuilderTy Builder(CGM, Context);
|
|
Builder.SetInsertPoint(EntryBB);
|
|
|
|
// void __cudaRegisterFunction(void **, const char *, char *, const char *,
|
|
// int, uint3*, uint3*, dim3*, dim3*, int*)
|
|
std::vector<llvm::Type *> RegisterFuncParams = {
|
|
VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
|
|
VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
|
|
llvm::Constant *RegisterFunc = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
|
|
"__cudaRegisterFunction");
|
|
|
|
// Extract GpuBinaryHandle passed as the first argument passed to
|
|
// __cuda_register_kernels() and generate __cudaRegisterFunction() call for
|
|
// each emitted kernel.
|
|
llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
|
|
for (llvm::Function *Kernel : EmittedKernels) {
|
|
llvm::Constant *KernelName = makeConstantString(Kernel->getName());
|
|
llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
|
|
llvm::Value *args[] = {
|
|
&GpuBinaryHandlePtr, Builder.CreateBitCast(Kernel, VoidPtrTy),
|
|
KernelName, KernelName, llvm::ConstantInt::get(IntTy, -1), NullPtr,
|
|
NullPtr, NullPtr, NullPtr,
|
|
llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
|
|
Builder.CreateCall(RegisterFunc, args);
|
|
}
|
|
|
|
Builder.CreateRetVoid();
|
|
return RegisterKernelsFunc;
|
|
}
|
|
|
|
/// Creates a global constructor function for the module:
|
|
/// \code
|
|
/// void __cuda_module_ctor(void*) {
|
|
/// Handle0 = __cudaRegisterFatBinary(GpuBinaryBlob0);
|
|
/// __cuda_register_kernels(Handle0);
|
|
/// ...
|
|
/// HandleN = __cudaRegisterFatBinary(GpuBinaryBlobN);
|
|
/// __cuda_register_kernels(HandleN);
|
|
/// }
|
|
/// \endcode
|
|
llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
|
|
// void __cuda_register_kernels(void* handle);
|
|
llvm::Function *RegisterKernelsFunc = makeRegisterKernelsFn();
|
|
// void ** __cudaRegisterFatBinary(void *);
|
|
llvm::Constant *RegisterFatbinFunc = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
|
|
"__cudaRegisterFatBinary");
|
|
// struct { int magic, int version, void * gpu_binary, void * dont_care };
|
|
llvm::StructType *FatbinWrapperTy =
|
|
llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy, nullptr);
|
|
|
|
llvm::Function *ModuleCtorFunc = llvm::Function::Create(
|
|
llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
|
|
llvm::GlobalValue::InternalLinkage, "__cuda_module_ctor", &TheModule);
|
|
llvm::BasicBlock *CtorEntryBB =
|
|
llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
|
|
CGBuilderTy CtorBuilder(CGM, Context);
|
|
|
|
CtorBuilder.SetInsertPoint(CtorEntryBB);
|
|
|
|
// For each GPU binary, register it with the CUDA runtime and store returned
|
|
// handle in a global variable and save the handle in GpuBinaryHandles vector
|
|
// to be cleaned up in destructor on exit. Then associate all known kernels
|
|
// with the GPU binary handle so CUDA runtime can figure out what to call on
|
|
// the GPU side.
|
|
for (const std::string &GpuBinaryFileName :
|
|
CGM.getCodeGenOpts().CudaGpuBinaryFileNames) {
|
|
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> GpuBinaryOrErr =
|
|
llvm::MemoryBuffer::getFileOrSTDIN(GpuBinaryFileName);
|
|
if (std::error_code EC = GpuBinaryOrErr.getError()) {
|
|
CGM.getDiags().Report(diag::err_cannot_open_file) << GpuBinaryFileName
|
|
<< EC.message();
|
|
continue;
|
|
}
|
|
|
|
// Create initialized wrapper structure that points to the loaded GPU binary
|
|
llvm::Constant *Values[] = {
|
|
llvm::ConstantInt::get(IntTy, 0x466243b1), // Fatbin wrapper magic.
|
|
llvm::ConstantInt::get(IntTy, 1), // Fatbin version.
|
|
makeConstantString(GpuBinaryOrErr.get()->getBuffer(), "", 16), // Data.
|
|
llvm::ConstantPointerNull::get(VoidPtrTy)}; // Unused in fatbin v1.
|
|
llvm::GlobalVariable *FatbinWrapper = new llvm::GlobalVariable(
|
|
TheModule, FatbinWrapperTy, true, llvm::GlobalValue::InternalLinkage,
|
|
llvm::ConstantStruct::get(FatbinWrapperTy, Values),
|
|
"__cuda_fatbin_wrapper");
|
|
|
|
// GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
|
|
llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
|
|
RegisterFatbinFunc,
|
|
CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
|
|
llvm::GlobalVariable *GpuBinaryHandle = new llvm::GlobalVariable(
|
|
TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
|
|
llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
|
|
CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
|
|
CGM.getPointerAlign());
|
|
|
|
// Call __cuda_register_kernels(GpuBinaryHandle);
|
|
CtorBuilder.CreateCall(RegisterKernelsFunc, RegisterFatbinCall);
|
|
|
|
// Save GpuBinaryHandle so we can unregister it in destructor.
|
|
GpuBinaryHandles.push_back(GpuBinaryHandle);
|
|
}
|
|
|
|
CtorBuilder.CreateRetVoid();
|
|
return ModuleCtorFunc;
|
|
}
|
|
|
|
/// Creates a global destructor function that unregisters all GPU code blobs
|
|
/// registered by constructor.
|
|
/// \code
|
|
/// void __cuda_module_dtor(void*) {
|
|
/// __cudaUnregisterFatBinary(Handle0);
|
|
/// ...
|
|
/// __cudaUnregisterFatBinary(HandleN);
|
|
/// }
|
|
/// \endcode
|
|
llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
|
|
// void __cudaUnregisterFatBinary(void ** handle);
|
|
llvm::Constant *UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
|
|
"__cudaUnregisterFatBinary");
|
|
|
|
llvm::Function *ModuleDtorFunc = llvm::Function::Create(
|
|
llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
|
|
llvm::GlobalValue::InternalLinkage, "__cuda_module_dtor", &TheModule);
|
|
llvm::BasicBlock *DtorEntryBB =
|
|
llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
|
|
CGBuilderTy DtorBuilder(CGM, Context);
|
|
DtorBuilder.SetInsertPoint(DtorEntryBB);
|
|
|
|
for (llvm::GlobalVariable *GpuBinaryHandle : GpuBinaryHandles) {
|
|
auto HandleValue =
|
|
DtorBuilder.CreateAlignedLoad(GpuBinaryHandle, CGM.getPointerAlign());
|
|
DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
|
|
}
|
|
|
|
DtorBuilder.CreateRetVoid();
|
|
return ModuleDtorFunc;
|
|
}
|
|
|
|
CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
|
|
return new CGNVCUDARuntime(CGM);
|
|
}
|