mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-02 22:46:04 +00:00

Summary: Regular LTO modules do not need LTO Unit splitting, only ThinLTO does (they must be consistently split into regular and Thin units for optimizations such as whole program devirtualization and lower type tests). In order to avoid spurious errors from LTO when combining with split ThinLTO modules, always set this flag for regular LTO modules. Reviewers: pcc Subscribers: mehdi_amini, Prazek, inglorion, steven_wu, dexonsmith, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D65009 llvm-svn: 366623
1643 lines
64 KiB
C++
1643 lines
64 KiB
C++
//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/CodeGen/BackendUtil.h"
|
|
#include "clang/Basic/CodeGenOptions.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/TargetOptions.h"
|
|
#include "clang/Frontend/FrontendDiagnostic.h"
|
|
#include "clang/Frontend/Utils.h"
|
|
#include "clang/Lex/HeaderSearchOptions.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Bitcode/BitcodeReader.h"
|
|
#include "llvm/Bitcode/BitcodeWriter.h"
|
|
#include "llvm/Bitcode/BitcodeWriterPass.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/IRPrintingPasses.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ModuleSummaryIndex.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/LTO/LTOBackend.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/SubtargetFeature.h"
|
|
#include "llvm/Passes/PassBuilder.h"
|
|
#include "llvm/Passes/PassPlugin.h"
|
|
#include "llvm/Support/BuryPointer.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/PrettyStackTrace.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Transforms/Coroutines.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/AlwaysInliner.h"
|
|
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
|
|
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombine.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
|
|
#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
|
|
#include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
|
|
#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
|
|
#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
|
|
#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
|
|
#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
|
|
#include "llvm/Transforms/ObjCARC.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/GVN.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/CanonicalizeAliases.h"
|
|
#include "llvm/Transforms/Utils/EntryExitInstrumenter.h"
|
|
#include "llvm/Transforms/Utils/NameAnonGlobals.h"
|
|
#include "llvm/Transforms/Utils/SymbolRewriter.h"
|
|
#include <memory>
|
|
using namespace clang;
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
// Default filename used for profile generation.
|
|
static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
|
|
|
|
class EmitAssemblyHelper {
|
|
DiagnosticsEngine &Diags;
|
|
const HeaderSearchOptions &HSOpts;
|
|
const CodeGenOptions &CodeGenOpts;
|
|
const clang::TargetOptions &TargetOpts;
|
|
const LangOptions &LangOpts;
|
|
Module *TheModule;
|
|
|
|
Timer CodeGenerationTime;
|
|
|
|
std::unique_ptr<raw_pwrite_stream> OS;
|
|
|
|
TargetIRAnalysis getTargetIRAnalysis() const {
|
|
if (TM)
|
|
return TM->getTargetIRAnalysis();
|
|
|
|
return TargetIRAnalysis();
|
|
}
|
|
|
|
void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
|
|
|
|
/// Generates the TargetMachine.
|
|
/// Leaves TM unchanged if it is unable to create the target machine.
|
|
/// Some of our clang tests specify triples which are not built
|
|
/// into clang. This is okay because these tests check the generated
|
|
/// IR, and they require DataLayout which depends on the triple.
|
|
/// In this case, we allow this method to fail and not report an error.
|
|
/// When MustCreateTM is used, we print an error if we are unable to load
|
|
/// the requested target.
|
|
void CreateTargetMachine(bool MustCreateTM);
|
|
|
|
/// Add passes necessary to emit assembly or LLVM IR.
|
|
///
|
|
/// \return True on success.
|
|
bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
|
|
raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
|
|
|
|
std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
|
|
std::error_code EC;
|
|
auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC,
|
|
llvm::sys::fs::F_None);
|
|
if (EC) {
|
|
Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
|
|
F.reset();
|
|
}
|
|
return F;
|
|
}
|
|
|
|
public:
|
|
EmitAssemblyHelper(DiagnosticsEngine &_Diags,
|
|
const HeaderSearchOptions &HeaderSearchOpts,
|
|
const CodeGenOptions &CGOpts,
|
|
const clang::TargetOptions &TOpts,
|
|
const LangOptions &LOpts, Module *M)
|
|
: Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
|
|
TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
|
|
CodeGenerationTime("codegen", "Code Generation Time") {}
|
|
|
|
~EmitAssemblyHelper() {
|
|
if (CodeGenOpts.DisableFree)
|
|
BuryPointer(std::move(TM));
|
|
}
|
|
|
|
std::unique_ptr<TargetMachine> TM;
|
|
|
|
void EmitAssembly(BackendAction Action,
|
|
std::unique_ptr<raw_pwrite_stream> OS);
|
|
|
|
void EmitAssemblyWithNewPassManager(BackendAction Action,
|
|
std::unique_ptr<raw_pwrite_stream> OS);
|
|
};
|
|
|
|
// We need this wrapper to access LangOpts and CGOpts from extension functions
|
|
// that we add to the PassManagerBuilder.
|
|
class PassManagerBuilderWrapper : public PassManagerBuilder {
|
|
public:
|
|
PassManagerBuilderWrapper(const Triple &TargetTriple,
|
|
const CodeGenOptions &CGOpts,
|
|
const LangOptions &LangOpts)
|
|
: PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
|
|
LangOpts(LangOpts) {}
|
|
const Triple &getTargetTriple() const { return TargetTriple; }
|
|
const CodeGenOptions &getCGOpts() const { return CGOpts; }
|
|
const LangOptions &getLangOpts() const { return LangOpts; }
|
|
|
|
private:
|
|
const Triple &TargetTriple;
|
|
const CodeGenOptions &CGOpts;
|
|
const LangOptions &LangOpts;
|
|
};
|
|
}
|
|
|
|
static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
|
|
if (Builder.OptLevel > 0)
|
|
PM.add(createObjCARCAPElimPass());
|
|
}
|
|
|
|
static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
|
|
if (Builder.OptLevel > 0)
|
|
PM.add(createObjCARCExpandPass());
|
|
}
|
|
|
|
static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
|
|
if (Builder.OptLevel > 0)
|
|
PM.add(createObjCARCOptPass());
|
|
}
|
|
|
|
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
PM.add(createAddDiscriminatorsPass());
|
|
}
|
|
|
|
static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
PM.add(createBoundsCheckingLegacyPass());
|
|
}
|
|
|
|
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
const PassManagerBuilderWrapper &BuilderWrapper =
|
|
static_cast<const PassManagerBuilderWrapper&>(Builder);
|
|
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
|
|
SanitizerCoverageOptions Opts;
|
|
Opts.CoverageType =
|
|
static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
|
|
Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
|
|
Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
|
|
Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
|
|
Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
|
|
Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
|
|
Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
|
|
Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
|
|
Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
|
|
Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
|
|
Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
|
|
Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
|
|
Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
|
|
PM.add(createSanitizerCoverageModulePass(Opts));
|
|
}
|
|
|
|
// Check if ASan should use GC-friendly instrumentation for globals.
|
|
// First of all, there is no point if -fdata-sections is off (expect for MachO,
|
|
// where this is not a factor). Also, on ELF this feature requires an assembler
|
|
// extension that only works with -integrated-as at the moment.
|
|
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
|
|
if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
|
|
return false;
|
|
switch (T.getObjectFormat()) {
|
|
case Triple::MachO:
|
|
case Triple::COFF:
|
|
return true;
|
|
case Triple::ELF:
|
|
return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
|
|
case Triple::XCOFF:
|
|
llvm::report_fatal_error("ASan not implemented for XCOFF.");
|
|
case Triple::Wasm:
|
|
case Triple::UnknownObjectFormat:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
const PassManagerBuilderWrapper &BuilderWrapper =
|
|
static_cast<const PassManagerBuilderWrapper&>(Builder);
|
|
const Triple &T = BuilderWrapper.getTargetTriple();
|
|
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
|
|
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
|
|
bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
|
|
bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator;
|
|
bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
|
|
PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
|
|
UseAfterScope));
|
|
PM.add(createModuleAddressSanitizerLegacyPassPass(
|
|
/*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator));
|
|
}
|
|
|
|
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
PM.add(createAddressSanitizerFunctionPass(
|
|
/*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false));
|
|
PM.add(createModuleAddressSanitizerLegacyPassPass(
|
|
/*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true,
|
|
/*UseOdrIndicator*/ false));
|
|
}
|
|
|
|
static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
const PassManagerBuilderWrapper &BuilderWrapper =
|
|
static_cast<const PassManagerBuilderWrapper &>(Builder);
|
|
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
|
|
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
|
|
PM.add(
|
|
createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover));
|
|
}
|
|
|
|
static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
PM.add(createHWAddressSanitizerLegacyPassPass(
|
|
/*CompileKernel*/ true, /*Recover*/ true));
|
|
}
|
|
|
|
static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM,
|
|
bool CompileKernel) {
|
|
const PassManagerBuilderWrapper &BuilderWrapper =
|
|
static_cast<const PassManagerBuilderWrapper&>(Builder);
|
|
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
|
|
int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
|
|
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
|
|
PM.add(createMemorySanitizerLegacyPassPass(
|
|
MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel}));
|
|
|
|
// MemorySanitizer inserts complex instrumentation that mostly follows
|
|
// the logic of the original code, but operates on "shadow" values.
|
|
// It can benefit from re-running some general purpose optimization passes.
|
|
if (Builder.OptLevel > 0) {
|
|
PM.add(createEarlyCSEPass());
|
|
PM.add(createReassociatePass());
|
|
PM.add(createLICMPass());
|
|
PM.add(createGVNPass());
|
|
PM.add(createInstructionCombiningPass());
|
|
PM.add(createDeadStoreEliminationPass());
|
|
}
|
|
}
|
|
|
|
static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false);
|
|
}
|
|
|
|
static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true);
|
|
}
|
|
|
|
static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
PM.add(createThreadSanitizerLegacyPassPass());
|
|
}
|
|
|
|
static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
|
|
legacy::PassManagerBase &PM) {
|
|
const PassManagerBuilderWrapper &BuilderWrapper =
|
|
static_cast<const PassManagerBuilderWrapper&>(Builder);
|
|
const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
|
|
PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
|
|
}
|
|
|
|
static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
|
|
const CodeGenOptions &CodeGenOpts) {
|
|
TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
|
|
if (!CodeGenOpts.SimplifyLibCalls)
|
|
TLII->disableAllFunctions();
|
|
else {
|
|
// Disable individual libc/libm calls in TargetLibraryInfo.
|
|
LibFunc F;
|
|
for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs())
|
|
if (TLII->getLibFunc(FuncName, F))
|
|
TLII->setUnavailable(F);
|
|
}
|
|
|
|
switch (CodeGenOpts.getVecLib()) {
|
|
case CodeGenOptions::Accelerate:
|
|
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
|
|
break;
|
|
case CodeGenOptions::MASSV:
|
|
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV);
|
|
break;
|
|
case CodeGenOptions::SVML:
|
|
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return TLII;
|
|
}
|
|
|
|
static void addSymbolRewriterPass(const CodeGenOptions &Opts,
|
|
legacy::PassManager *MPM) {
|
|
llvm::SymbolRewriter::RewriteDescriptorList DL;
|
|
|
|
llvm::SymbolRewriter::RewriteMapParser MapParser;
|
|
for (const auto &MapFile : Opts.RewriteMapFiles)
|
|
MapParser.parse(MapFile, &DL);
|
|
|
|
MPM->add(createRewriteSymbolsPass(DL));
|
|
}
|
|
|
|
static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
|
|
switch (CodeGenOpts.OptimizationLevel) {
|
|
default:
|
|
llvm_unreachable("Invalid optimization level!");
|
|
case 0:
|
|
return CodeGenOpt::None;
|
|
case 1:
|
|
return CodeGenOpt::Less;
|
|
case 2:
|
|
return CodeGenOpt::Default; // O2/Os/Oz
|
|
case 3:
|
|
return CodeGenOpt::Aggressive;
|
|
}
|
|
}
|
|
|
|
static Optional<llvm::CodeModel::Model>
|
|
getCodeModel(const CodeGenOptions &CodeGenOpts) {
|
|
unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
|
|
.Case("tiny", llvm::CodeModel::Tiny)
|
|
.Case("small", llvm::CodeModel::Small)
|
|
.Case("kernel", llvm::CodeModel::Kernel)
|
|
.Case("medium", llvm::CodeModel::Medium)
|
|
.Case("large", llvm::CodeModel::Large)
|
|
.Case("default", ~1u)
|
|
.Default(~0u);
|
|
assert(CodeModel != ~0u && "invalid code model!");
|
|
if (CodeModel == ~1u)
|
|
return None;
|
|
return static_cast<llvm::CodeModel::Model>(CodeModel);
|
|
}
|
|
|
|
static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) {
|
|
if (Action == Backend_EmitObj)
|
|
return TargetMachine::CGFT_ObjectFile;
|
|
else if (Action == Backend_EmitMCNull)
|
|
return TargetMachine::CGFT_Null;
|
|
else {
|
|
assert(Action == Backend_EmitAssembly && "Invalid action!");
|
|
return TargetMachine::CGFT_AssemblyFile;
|
|
}
|
|
}
|
|
|
|
static void initTargetOptions(llvm::TargetOptions &Options,
|
|
const CodeGenOptions &CodeGenOpts,
|
|
const clang::TargetOptions &TargetOpts,
|
|
const LangOptions &LangOpts,
|
|
const HeaderSearchOptions &HSOpts) {
|
|
Options.ThreadModel =
|
|
llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel)
|
|
.Case("posix", llvm::ThreadModel::POSIX)
|
|
.Case("single", llvm::ThreadModel::Single);
|
|
|
|
// Set float ABI type.
|
|
assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
|
|
CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
|
|
"Invalid Floating Point ABI!");
|
|
Options.FloatABIType =
|
|
llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
|
|
.Case("soft", llvm::FloatABI::Soft)
|
|
.Case("softfp", llvm::FloatABI::Soft)
|
|
.Case("hard", llvm::FloatABI::Hard)
|
|
.Default(llvm::FloatABI::Default);
|
|
|
|
// Set FP fusion mode.
|
|
switch (LangOpts.getDefaultFPContractMode()) {
|
|
case LangOptions::FPC_Off:
|
|
// Preserve any contraction performed by the front-end. (Strict performs
|
|
// splitting of the muladd intrinsic in the backend.)
|
|
Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
|
|
break;
|
|
case LangOptions::FPC_On:
|
|
Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
|
|
break;
|
|
case LangOptions::FPC_Fast:
|
|
Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
|
|
break;
|
|
}
|
|
|
|
Options.UseInitArray = CodeGenOpts.UseInitArray;
|
|
Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
|
|
Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
|
|
Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
|
|
|
|
// Set EABI version.
|
|
Options.EABIVersion = TargetOpts.EABIVersion;
|
|
|
|
if (LangOpts.SjLjExceptions)
|
|
Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
|
|
if (LangOpts.SEHExceptions)
|
|
Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
|
|
if (LangOpts.DWARFExceptions)
|
|
Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
|
|
|
|
Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath;
|
|
Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath;
|
|
Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
|
|
Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath;
|
|
Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
|
|
Options.FunctionSections = CodeGenOpts.FunctionSections;
|
|
Options.DataSections = CodeGenOpts.DataSections;
|
|
Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
|
|
Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
|
|
Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
|
|
Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
|
|
Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
|
|
Options.EmitAddrsig = CodeGenOpts.Addrsig;
|
|
Options.EnableDebugEntryValues = CodeGenOpts.EnableDebugEntryValues;
|
|
|
|
Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
|
|
Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
|
|
Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
|
|
Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
|
|
Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
|
|
Options.MCOptions.MCIncrementalLinkerCompatible =
|
|
CodeGenOpts.IncrementalLinkerCompatible;
|
|
Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations;
|
|
Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
|
|
Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
|
|
Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
|
|
Options.MCOptions.ABIName = TargetOpts.ABI;
|
|
for (const auto &Entry : HSOpts.UserEntries)
|
|
if (!Entry.IsFramework &&
|
|
(Entry.Group == frontend::IncludeDirGroup::Quoted ||
|
|
Entry.Group == frontend::IncludeDirGroup::Angled ||
|
|
Entry.Group == frontend::IncludeDirGroup::System))
|
|
Options.MCOptions.IASSearchPaths.push_back(
|
|
Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
|
|
}
|
|
static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) {
|
|
if (CodeGenOpts.DisableGCov)
|
|
return None;
|
|
if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
|
|
return None;
|
|
// Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
|
|
// LLVM's -default-gcov-version flag is set to something invalid.
|
|
GCOVOptions Options;
|
|
Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
|
|
Options.EmitData = CodeGenOpts.EmitGcovArcs;
|
|
llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
|
|
Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
|
|
Options.NoRedZone = CodeGenOpts.DisableRedZone;
|
|
Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData;
|
|
Options.Filter = CodeGenOpts.ProfileFilterFiles;
|
|
Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
|
|
Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody;
|
|
return Options;
|
|
}
|
|
|
|
static Optional<InstrProfOptions>
|
|
getInstrProfOptions(const CodeGenOptions &CodeGenOpts,
|
|
const LangOptions &LangOpts) {
|
|
if (!CodeGenOpts.hasProfileClangInstr())
|
|
return None;
|
|
InstrProfOptions Options;
|
|
Options.NoRedZone = CodeGenOpts.DisableRedZone;
|
|
Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
|
|
|
|
// TODO: Surface the option to emit atomic profile counter increments at
|
|
// the driver level.
|
|
Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread);
|
|
return Options;
|
|
}
|
|
|
|
void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
|
|
legacy::FunctionPassManager &FPM) {
|
|
// Handle disabling of all LLVM passes, where we want to preserve the
|
|
// internal module before any optimization.
|
|
if (CodeGenOpts.DisableLLVMPasses)
|
|
return;
|
|
|
|
// Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
|
|
// manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
|
|
// are inserted before PMBuilder ones - they'd get the default-constructed
|
|
// TLI with an unknown target otherwise.
|
|
Triple TargetTriple(TheModule->getTargetTriple());
|
|
std::unique_ptr<TargetLibraryInfoImpl> TLII(
|
|
createTLII(TargetTriple, CodeGenOpts));
|
|
|
|
PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
|
|
|
|
// At O0 and O1 we only run the always inliner which is more efficient. At
|
|
// higher optimization levels we run the normal inliner.
|
|
if (CodeGenOpts.OptimizationLevel <= 1) {
|
|
bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 &&
|
|
!CodeGenOpts.DisableLifetimeMarkers);
|
|
PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
|
|
} else {
|
|
// We do not want to inline hot callsites for SamplePGO module-summary build
|
|
// because profile annotation will happen again in ThinLTO backend, and we
|
|
// want the IR of the hot path to match the profile.
|
|
PMBuilder.Inliner = createFunctionInliningPass(
|
|
CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
|
|
(!CodeGenOpts.SampleProfileFile.empty() &&
|
|
CodeGenOpts.PrepareForThinLTO));
|
|
}
|
|
|
|
PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
|
|
PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
|
|
PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
|
|
PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
|
|
|
|
PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
|
|
// Loop interleaving in the loop vectorizer has historically been set to be
|
|
// enabled when loop unrolling is enabled.
|
|
PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops;
|
|
PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
|
|
PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
|
|
PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
|
|
PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
|
|
|
|
MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
|
|
|
|
if (TM)
|
|
TM->adjustPassManager(PMBuilder);
|
|
|
|
if (CodeGenOpts.DebugInfoForProfiling ||
|
|
!CodeGenOpts.SampleProfileFile.empty())
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
|
|
addAddDiscriminatorsPass);
|
|
|
|
// In ObjC ARC mode, add the main ARC optimization passes.
|
|
if (LangOpts.ObjCAutoRefCount) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
|
|
addObjCARCExpandPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
|
|
addObjCARCAPElimPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
|
|
addObjCARCOptPass);
|
|
}
|
|
|
|
if (LangOpts.Coroutines)
|
|
addCoroutinePassesToExtensionPoints(PMBuilder);
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
|
|
addBoundsCheckingPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addBoundsCheckingPass);
|
|
}
|
|
|
|
if (CodeGenOpts.SanitizeCoverageType ||
|
|
CodeGenOpts.SanitizeCoverageIndirectCalls ||
|
|
CodeGenOpts.SanitizeCoverageTraceCmp) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addSanitizerCoveragePass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addSanitizerCoveragePass);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addAddressSanitizerPasses);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addAddressSanitizerPasses);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addKernelAddressSanitizerPasses);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addKernelAddressSanitizerPasses);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addHWAddressSanitizerPasses);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addHWAddressSanitizerPasses);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addKernelHWAddressSanitizerPasses);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addKernelHWAddressSanitizerPasses);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addMemorySanitizerPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addMemorySanitizerPass);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addKernelMemorySanitizerPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addKernelMemorySanitizerPass);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addThreadSanitizerPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addThreadSanitizerPass);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
|
|
addDataFlowSanitizerPass);
|
|
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
|
|
addDataFlowSanitizerPass);
|
|
}
|
|
|
|
// Set up the per-function pass manager.
|
|
FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
|
|
if (CodeGenOpts.VerifyModule)
|
|
FPM.add(createVerifierPass());
|
|
|
|
// Set up the per-module pass manager.
|
|
if (!CodeGenOpts.RewriteMapFiles.empty())
|
|
addSymbolRewriterPass(CodeGenOpts, &MPM);
|
|
|
|
if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) {
|
|
MPM.add(createGCOVProfilerPass(*Options));
|
|
if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
|
|
MPM.add(createStripSymbolsPass(true));
|
|
}
|
|
|
|
if (Optional<InstrProfOptions> Options =
|
|
getInstrProfOptions(CodeGenOpts, LangOpts))
|
|
MPM.add(createInstrProfilingLegacyPass(*Options, false));
|
|
|
|
bool hasIRInstr = false;
|
|
if (CodeGenOpts.hasProfileIRInstr()) {
|
|
PMBuilder.EnablePGOInstrGen = true;
|
|
hasIRInstr = true;
|
|
}
|
|
if (CodeGenOpts.hasProfileCSIRInstr()) {
|
|
assert(!CodeGenOpts.hasProfileCSIRUse() &&
|
|
"Cannot have both CSProfileUse pass and CSProfileGen pass at the "
|
|
"same time");
|
|
assert(!hasIRInstr &&
|
|
"Cannot have both ProfileGen pass and CSProfileGen pass at the "
|
|
"same time");
|
|
PMBuilder.EnablePGOCSInstrGen = true;
|
|
hasIRInstr = true;
|
|
}
|
|
if (hasIRInstr) {
|
|
if (!CodeGenOpts.InstrProfileOutput.empty())
|
|
PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
|
|
else
|
|
PMBuilder.PGOInstrGen = DefaultProfileGenName;
|
|
}
|
|
if (CodeGenOpts.hasProfileIRUse()) {
|
|
PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
|
|
PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse();
|
|
}
|
|
|
|
if (!CodeGenOpts.SampleProfileFile.empty())
|
|
PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
|
|
|
|
PMBuilder.populateFunctionPassManager(FPM);
|
|
PMBuilder.populateModulePassManager(MPM);
|
|
}
|
|
|
|
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
|
|
SmallVector<const char *, 16> BackendArgs;
|
|
BackendArgs.push_back("clang"); // Fake program name.
|
|
if (!CodeGenOpts.DebugPass.empty()) {
|
|
BackendArgs.push_back("-debug-pass");
|
|
BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
|
|
}
|
|
if (!CodeGenOpts.LimitFloatPrecision.empty()) {
|
|
BackendArgs.push_back("-limit-float-precision");
|
|
BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
|
|
}
|
|
BackendArgs.push_back(nullptr);
|
|
llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
|
|
BackendArgs.data());
|
|
}
|
|
|
|
void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
|
|
// Create the TargetMachine for generating code.
|
|
std::string Error;
|
|
std::string Triple = TheModule->getTargetTriple();
|
|
const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
|
|
if (!TheTarget) {
|
|
if (MustCreateTM)
|
|
Diags.Report(diag::err_fe_unable_to_create_target) << Error;
|
|
return;
|
|
}
|
|
|
|
Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
|
|
std::string FeaturesStr =
|
|
llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
|
|
llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
|
|
CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
|
|
|
|
llvm::TargetOptions Options;
|
|
initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts);
|
|
TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
|
|
Options, RM, CM, OptLevel));
|
|
}
|
|
|
|
bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
|
|
BackendAction Action,
|
|
raw_pwrite_stream &OS,
|
|
raw_pwrite_stream *DwoOS) {
|
|
// Add LibraryInfo.
|
|
llvm::Triple TargetTriple(TheModule->getTargetTriple());
|
|
std::unique_ptr<TargetLibraryInfoImpl> TLII(
|
|
createTLII(TargetTriple, CodeGenOpts));
|
|
CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
|
|
|
|
// Normal mode, emit a .s or .o file by running the code generator. Note,
|
|
// this also adds codegenerator level optimization passes.
|
|
TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action);
|
|
|
|
// Add ObjC ARC final-cleanup optimizations. This is done as part of the
|
|
// "codegen" passes so that it isn't run multiple times when there is
|
|
// inlining happening.
|
|
if (CodeGenOpts.OptimizationLevel > 0)
|
|
CodeGenPasses.add(createObjCARCContractPass());
|
|
|
|
if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
|
|
/*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
|
|
Diags.Report(diag::err_fe_unable_to_interface_with_target);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
|
|
std::unique_ptr<raw_pwrite_stream> OS) {
|
|
TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
|
|
|
|
setCommandLineOpts(CodeGenOpts);
|
|
|
|
bool UsesCodeGen = (Action != Backend_EmitNothing &&
|
|
Action != Backend_EmitBC &&
|
|
Action != Backend_EmitLL);
|
|
CreateTargetMachine(UsesCodeGen);
|
|
|
|
if (UsesCodeGen && !TM)
|
|
return;
|
|
if (TM)
|
|
TheModule->setDataLayout(TM->createDataLayout());
|
|
|
|
legacy::PassManager PerModulePasses;
|
|
PerModulePasses.add(
|
|
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
|
|
|
|
legacy::FunctionPassManager PerFunctionPasses(TheModule);
|
|
PerFunctionPasses.add(
|
|
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
|
|
|
|
CreatePasses(PerModulePasses, PerFunctionPasses);
|
|
|
|
legacy::PassManager CodeGenPasses;
|
|
CodeGenPasses.add(
|
|
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
|
|
|
|
std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
|
|
|
|
switch (Action) {
|
|
case Backend_EmitNothing:
|
|
break;
|
|
|
|
case Backend_EmitBC:
|
|
if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
|
|
if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
|
|
ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
|
|
if (!ThinLinkOS)
|
|
return;
|
|
}
|
|
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
|
|
CodeGenOpts.EnableSplitLTOUnit);
|
|
PerModulePasses.add(createWriteThinLTOBitcodePass(
|
|
*OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
|
|
} else {
|
|
// Emit a module summary by default for Regular LTO except for ld64
|
|
// targets
|
|
bool EmitLTOSummary =
|
|
(CodeGenOpts.PrepareForLTO &&
|
|
!CodeGenOpts.DisableLLVMPasses &&
|
|
llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
|
|
llvm::Triple::Apple);
|
|
if (EmitLTOSummary) {
|
|
if (!TheModule->getModuleFlag("ThinLTO"))
|
|
TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
|
|
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
|
|
uint32_t(1));
|
|
}
|
|
|
|
PerModulePasses.add(createBitcodeWriterPass(
|
|
*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
|
|
}
|
|
break;
|
|
|
|
case Backend_EmitLL:
|
|
PerModulePasses.add(
|
|
createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
|
|
break;
|
|
|
|
default:
|
|
if (!CodeGenOpts.SplitDwarfOutput.empty()) {
|
|
DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
|
|
if (!DwoOS)
|
|
return;
|
|
}
|
|
if (!AddEmitPasses(CodeGenPasses, Action, *OS,
|
|
DwoOS ? &DwoOS->os() : nullptr))
|
|
return;
|
|
}
|
|
|
|
// Before executing passes, print the final values of the LLVM options.
|
|
cl::PrintOptionValues();
|
|
|
|
// Run passes. For now we do all passes at once, but eventually we
|
|
// would like to have the option of streaming code generation.
|
|
|
|
{
|
|
PrettyStackTraceString CrashInfo("Per-function optimization");
|
|
|
|
PerFunctionPasses.doInitialization();
|
|
for (Function &F : *TheModule)
|
|
if (!F.isDeclaration())
|
|
PerFunctionPasses.run(F);
|
|
PerFunctionPasses.doFinalization();
|
|
}
|
|
|
|
{
|
|
PrettyStackTraceString CrashInfo("Per-module optimization passes");
|
|
PerModulePasses.run(*TheModule);
|
|
}
|
|
|
|
{
|
|
PrettyStackTraceString CrashInfo("Code generation");
|
|
CodeGenPasses.run(*TheModule);
|
|
}
|
|
|
|
if (ThinLinkOS)
|
|
ThinLinkOS->keep();
|
|
if (DwoOS)
|
|
DwoOS->keep();
|
|
}
|
|
|
|
static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
|
|
switch (Opts.OptimizationLevel) {
|
|
default:
|
|
llvm_unreachable("Invalid optimization level!");
|
|
|
|
case 1:
|
|
return PassBuilder::O1;
|
|
|
|
case 2:
|
|
switch (Opts.OptimizeSize) {
|
|
default:
|
|
llvm_unreachable("Invalid optimization level for size!");
|
|
|
|
case 0:
|
|
return PassBuilder::O2;
|
|
|
|
case 1:
|
|
return PassBuilder::Os;
|
|
|
|
case 2:
|
|
return PassBuilder::Oz;
|
|
}
|
|
|
|
case 3:
|
|
return PassBuilder::O3;
|
|
}
|
|
}
|
|
|
|
static void addSanitizersAtO0(ModulePassManager &MPM,
|
|
const Triple &TargetTriple,
|
|
const LangOptions &LangOpts,
|
|
const CodeGenOptions &CodeGenOpts) {
|
|
auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
|
|
MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
|
|
bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass(
|
|
CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope)));
|
|
bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
|
|
MPM.addPass(
|
|
ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope,
|
|
CodeGenOpts.SanitizeAddressUseOdrIndicator));
|
|
};
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
|
|
ASanPass(SanitizerKind::Address, /*CompileKernel=*/false);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
|
|
ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true);
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({})));
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(
|
|
MemorySanitizerPass({0, false, /*Kernel=*/true})));
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
|
|
}
|
|
}
|
|
|
|
/// A clean version of `EmitAssembly` that uses the new pass manager.
|
|
///
|
|
/// Not all features are currently supported in this system, but where
|
|
/// necessary it falls back to the legacy pass manager to at least provide
|
|
/// basic functionality.
|
|
///
|
|
/// This API is planned to have its functionality finished and then to replace
|
|
/// `EmitAssembly` at some point in the future when the default switches.
|
|
void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
|
|
BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
|
|
TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
|
|
setCommandLineOpts(CodeGenOpts);
|
|
|
|
bool RequiresCodeGen = (Action != Backend_EmitNothing &&
|
|
Action != Backend_EmitBC &&
|
|
Action != Backend_EmitLL);
|
|
CreateTargetMachine(RequiresCodeGen);
|
|
|
|
if (RequiresCodeGen && !TM)
|
|
return;
|
|
if (TM)
|
|
TheModule->setDataLayout(TM->createDataLayout());
|
|
|
|
Optional<PGOOptions> PGOOpt;
|
|
|
|
if (CodeGenOpts.hasProfileIRInstr())
|
|
// -fprofile-generate.
|
|
PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
|
|
? DefaultProfileGenName
|
|
: CodeGenOpts.InstrProfileOutput,
|
|
"", "", PGOOptions::IRInstr, PGOOptions::NoCSAction,
|
|
CodeGenOpts.DebugInfoForProfiling);
|
|
else if (CodeGenOpts.hasProfileIRUse()) {
|
|
// -fprofile-use.
|
|
auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
|
|
: PGOOptions::NoCSAction;
|
|
PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
|
|
CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse,
|
|
CSAction, CodeGenOpts.DebugInfoForProfiling);
|
|
} else if (!CodeGenOpts.SampleProfileFile.empty())
|
|
// -fprofile-sample-use
|
|
PGOOpt =
|
|
PGOOptions(CodeGenOpts.SampleProfileFile, "",
|
|
CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse,
|
|
PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling);
|
|
else if (CodeGenOpts.DebugInfoForProfiling)
|
|
// -fdebug-info-for-profiling
|
|
PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction,
|
|
PGOOptions::NoCSAction, true);
|
|
|
|
// Check to see if we want to generate a CS profile.
|
|
if (CodeGenOpts.hasProfileCSIRInstr()) {
|
|
assert(!CodeGenOpts.hasProfileCSIRUse() &&
|
|
"Cannot have both CSProfileUse pass and CSProfileGen pass at "
|
|
"the same time");
|
|
if (PGOOpt.hasValue()) {
|
|
assert(PGOOpt->Action != PGOOptions::IRInstr &&
|
|
PGOOpt->Action != PGOOptions::SampleUse &&
|
|
"Cannot run CSProfileGen pass with ProfileGen or SampleUse "
|
|
" pass");
|
|
PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
|
|
? DefaultProfileGenName
|
|
: CodeGenOpts.InstrProfileOutput;
|
|
PGOOpt->CSAction = PGOOptions::CSIRInstr;
|
|
} else
|
|
PGOOpt = PGOOptions("",
|
|
CodeGenOpts.InstrProfileOutput.empty()
|
|
? DefaultProfileGenName
|
|
: CodeGenOpts.InstrProfileOutput,
|
|
"", PGOOptions::NoAction, PGOOptions::CSIRInstr,
|
|
CodeGenOpts.DebugInfoForProfiling);
|
|
}
|
|
|
|
PipelineTuningOptions PTO;
|
|
PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
|
|
// For historical reasons, loop interleaving is set to mirror setting for loop
|
|
// unrolling.
|
|
PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
|
|
PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
|
|
PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
|
|
|
|
PassBuilder PB(TM.get(), PTO, PGOOpt);
|
|
|
|
// Attempt to load pass plugins and register their callbacks with PB.
|
|
for (auto &PluginFN : CodeGenOpts.PassPlugins) {
|
|
auto PassPlugin = PassPlugin::Load(PluginFN);
|
|
if (PassPlugin) {
|
|
PassPlugin->registerPassBuilderCallbacks(PB);
|
|
} else {
|
|
Diags.Report(diag::err_fe_unable_to_load_plugin)
|
|
<< PluginFN << toString(PassPlugin.takeError());
|
|
}
|
|
}
|
|
|
|
LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager);
|
|
FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager);
|
|
CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager);
|
|
ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager);
|
|
|
|
// Register the AA manager first so that our version is the one used.
|
|
FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
|
|
|
|
// Register the target library analysis directly and give it a customized
|
|
// preset TLI.
|
|
Triple TargetTriple(TheModule->getTargetTriple());
|
|
std::unique_ptr<TargetLibraryInfoImpl> TLII(
|
|
createTLII(TargetTriple, CodeGenOpts));
|
|
FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
|
|
MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
|
|
|
|
// Register all the basic analyses with the managers.
|
|
PB.registerModuleAnalyses(MAM);
|
|
PB.registerCGSCCAnalyses(CGAM);
|
|
PB.registerFunctionAnalyses(FAM);
|
|
PB.registerLoopAnalyses(LAM);
|
|
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
|
|
|
|
ModulePassManager MPM(CodeGenOpts.DebugPassManager);
|
|
|
|
if (!CodeGenOpts.DisableLLVMPasses) {
|
|
bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
|
|
bool IsLTO = CodeGenOpts.PrepareForLTO;
|
|
|
|
if (CodeGenOpts.OptimizationLevel == 0) {
|
|
if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
|
|
MPM.addPass(GCOVProfilerPass(*Options));
|
|
if (Optional<InstrProfOptions> Options =
|
|
getInstrProfOptions(CodeGenOpts, LangOpts))
|
|
MPM.addPass(InstrProfiling(*Options, false));
|
|
|
|
// Build a minimal pipeline based on the semantics required by Clang,
|
|
// which is just that always inlining occurs. Further, disable generating
|
|
// lifetime intrinsics to avoid enabling further optimizations during
|
|
// code generation.
|
|
MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/false));
|
|
|
|
// At -O0 we directly run necessary sanitizer passes.
|
|
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass()));
|
|
|
|
// Lastly, add semantically necessary passes for LTO.
|
|
if (IsLTO || IsThinLTO) {
|
|
MPM.addPass(CanonicalizeAliasesPass());
|
|
MPM.addPass(NameAnonGlobalPass());
|
|
}
|
|
} else {
|
|
// Map our optimization levels into one of the distinct levels used to
|
|
// configure the pipeline.
|
|
PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
|
|
|
|
PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) {
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(
|
|
EntryExitInstrumenterPass(/*PostInlining=*/false)));
|
|
});
|
|
|
|
// Register callbacks to schedule sanitizer passes at the appropriate part of
|
|
// the pipeline.
|
|
// FIXME: either handle asan/the remaining sanitizers or error out
|
|
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
|
|
PB.registerScalarOptimizerLateEPCallback(
|
|
[](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
|
|
FPM.addPass(BoundsCheckingPass());
|
|
});
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Memory))
|
|
PB.registerOptimizerLastEPCallback(
|
|
[](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
|
|
FPM.addPass(MemorySanitizerPass({}));
|
|
});
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Thread))
|
|
PB.registerOptimizerLastEPCallback(
|
|
[](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
|
|
FPM.addPass(ThreadSanitizerPass());
|
|
});
|
|
if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
|
|
PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) {
|
|
MPM.addPass(
|
|
RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
|
|
});
|
|
bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address);
|
|
bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
|
|
PB.registerOptimizerLastEPCallback(
|
|
[Recover, UseAfterScope](FunctionPassManager &FPM,
|
|
PassBuilder::OptimizationLevel Level) {
|
|
FPM.addPass(AddressSanitizerPass(
|
|
/*CompileKernel=*/false, Recover, UseAfterScope));
|
|
});
|
|
bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
|
|
bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
|
|
PB.registerPipelineStartEPCallback(
|
|
[Recover, ModuleUseAfterScope,
|
|
UseOdrIndicator](ModulePassManager &MPM) {
|
|
MPM.addPass(ModuleAddressSanitizerPass(
|
|
/*CompileKernel=*/false, Recover, ModuleUseAfterScope,
|
|
UseOdrIndicator));
|
|
});
|
|
}
|
|
if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
|
|
PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) {
|
|
MPM.addPass(GCOVProfilerPass(*Options));
|
|
});
|
|
if (Optional<InstrProfOptions> Options =
|
|
getInstrProfOptions(CodeGenOpts, LangOpts))
|
|
PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) {
|
|
MPM.addPass(InstrProfiling(*Options, false));
|
|
});
|
|
|
|
if (IsThinLTO) {
|
|
MPM = PB.buildThinLTOPreLinkDefaultPipeline(
|
|
Level, CodeGenOpts.DebugPassManager);
|
|
MPM.addPass(CanonicalizeAliasesPass());
|
|
MPM.addPass(NameAnonGlobalPass());
|
|
} else if (IsLTO) {
|
|
MPM = PB.buildLTOPreLinkDefaultPipeline(Level,
|
|
CodeGenOpts.DebugPassManager);
|
|
MPM.addPass(CanonicalizeAliasesPass());
|
|
MPM.addPass(NameAnonGlobalPass());
|
|
} else {
|
|
MPM = PB.buildPerModuleDefaultPipeline(Level,
|
|
CodeGenOpts.DebugPassManager);
|
|
}
|
|
}
|
|
|
|
if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
|
|
bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
|
|
MPM.addPass(HWAddressSanitizerPass(
|
|
/*CompileKernel=*/false, Recover));
|
|
}
|
|
if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
|
|
MPM.addPass(HWAddressSanitizerPass(
|
|
/*CompileKernel=*/true, /*Recover=*/true));
|
|
}
|
|
|
|
if (CodeGenOpts.OptimizationLevel == 0)
|
|
addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts);
|
|
}
|
|
|
|
// FIXME: We still use the legacy pass manager to do code generation. We
|
|
// create that pass manager here and use it as needed below.
|
|
legacy::PassManager CodeGenPasses;
|
|
bool NeedCodeGen = false;
|
|
std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
|
|
|
|
// Append any output we need to the pass manager.
|
|
switch (Action) {
|
|
case Backend_EmitNothing:
|
|
break;
|
|
|
|
case Backend_EmitBC:
|
|
if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
|
|
if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
|
|
ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
|
|
if (!ThinLinkOS)
|
|
return;
|
|
}
|
|
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
|
|
CodeGenOpts.EnableSplitLTOUnit);
|
|
MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
|
|
: nullptr));
|
|
} else {
|
|
// Emit a module summary by default for Regular LTO except for ld64
|
|
// targets
|
|
bool EmitLTOSummary =
|
|
(CodeGenOpts.PrepareForLTO &&
|
|
!CodeGenOpts.DisableLLVMPasses &&
|
|
llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
|
|
llvm::Triple::Apple);
|
|
if (EmitLTOSummary) {
|
|
if (!TheModule->getModuleFlag("ThinLTO"))
|
|
TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
|
|
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
|
|
CodeGenOpts.EnableSplitLTOUnit);
|
|
}
|
|
MPM.addPass(
|
|
BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
|
|
}
|
|
break;
|
|
|
|
case Backend_EmitLL:
|
|
MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
|
|
break;
|
|
|
|
case Backend_EmitAssembly:
|
|
case Backend_EmitMCNull:
|
|
case Backend_EmitObj:
|
|
NeedCodeGen = true;
|
|
CodeGenPasses.add(
|
|
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
|
|
if (!CodeGenOpts.SplitDwarfOutput.empty()) {
|
|
DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
|
|
if (!DwoOS)
|
|
return;
|
|
}
|
|
if (!AddEmitPasses(CodeGenPasses, Action, *OS,
|
|
DwoOS ? &DwoOS->os() : nullptr))
|
|
// FIXME: Should we handle this error differently?
|
|
return;
|
|
break;
|
|
}
|
|
|
|
// Before executing passes, print the final values of the LLVM options.
|
|
cl::PrintOptionValues();
|
|
|
|
// Now that we have all of the passes ready, run them.
|
|
{
|
|
PrettyStackTraceString CrashInfo("Optimizer");
|
|
MPM.run(*TheModule, MAM);
|
|
}
|
|
|
|
// Now if needed, run the legacy PM for codegen.
|
|
if (NeedCodeGen) {
|
|
PrettyStackTraceString CrashInfo("Code generation");
|
|
CodeGenPasses.run(*TheModule);
|
|
}
|
|
|
|
if (ThinLinkOS)
|
|
ThinLinkOS->keep();
|
|
if (DwoOS)
|
|
DwoOS->keep();
|
|
}
|
|
|
|
Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) {
|
|
Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef);
|
|
if (!BMsOrErr)
|
|
return BMsOrErr.takeError();
|
|
|
|
// The bitcode file may contain multiple modules, we want the one that is
|
|
// marked as being the ThinLTO module.
|
|
if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr))
|
|
return *Bm;
|
|
|
|
return make_error<StringError>("Could not find module summary",
|
|
inconvertibleErrorCode());
|
|
}
|
|
|
|
BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) {
|
|
for (BitcodeModule &BM : BMs) {
|
|
Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo();
|
|
if (LTOInfo && LTOInfo->IsThinLTO)
|
|
return &BM;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M,
|
|
const HeaderSearchOptions &HeaderOpts,
|
|
const CodeGenOptions &CGOpts,
|
|
const clang::TargetOptions &TOpts,
|
|
const LangOptions &LOpts,
|
|
std::unique_ptr<raw_pwrite_stream> OS,
|
|
std::string SampleProfile,
|
|
std::string ProfileRemapping,
|
|
BackendAction Action) {
|
|
StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
|
|
ModuleToDefinedGVSummaries;
|
|
CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
|
|
|
|
setCommandLineOpts(CGOpts);
|
|
|
|
// We can simply import the values mentioned in the combined index, since
|
|
// we should only invoke this using the individual indexes written out
|
|
// via a WriteIndexesThinBackend.
|
|
FunctionImporter::ImportMapTy ImportList;
|
|
for (auto &GlobalList : *CombinedIndex) {
|
|
// Ignore entries for undefined references.
|
|
if (GlobalList.second.SummaryList.empty())
|
|
continue;
|
|
|
|
auto GUID = GlobalList.first;
|
|
for (auto &Summary : GlobalList.second.SummaryList) {
|
|
// Skip the summaries for the importing module. These are included to
|
|
// e.g. record required linkage changes.
|
|
if (Summary->modulePath() == M->getModuleIdentifier())
|
|
continue;
|
|
// Add an entry to provoke importing by thinBackend.
|
|
ImportList[Summary->modulePath()].insert(GUID);
|
|
}
|
|
}
|
|
|
|
std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports;
|
|
MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap;
|
|
|
|
for (auto &I : ImportList) {
|
|
ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr =
|
|
llvm::MemoryBuffer::getFile(I.first());
|
|
if (!MBOrErr) {
|
|
errs() << "Error loading imported file '" << I.first()
|
|
<< "': " << MBOrErr.getError().message() << "\n";
|
|
return;
|
|
}
|
|
|
|
Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr);
|
|
if (!BMOrErr) {
|
|
handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) {
|
|
errs() << "Error loading imported file '" << I.first()
|
|
<< "': " << EIB.message() << '\n';
|
|
});
|
|
return;
|
|
}
|
|
ModuleMap.insert({I.first(), *BMOrErr});
|
|
|
|
OwnedImports.push_back(std::move(*MBOrErr));
|
|
}
|
|
auto AddStream = [&](size_t Task) {
|
|
return llvm::make_unique<lto::NativeObjectStream>(std::move(OS));
|
|
};
|
|
lto::Config Conf;
|
|
if (CGOpts.SaveTempsFilePrefix != "") {
|
|
if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
|
|
/* UseInputModulePath */ false)) {
|
|
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
|
|
errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
|
|
<< '\n';
|
|
});
|
|
}
|
|
}
|
|
Conf.CPU = TOpts.CPU;
|
|
Conf.CodeModel = getCodeModel(CGOpts);
|
|
Conf.MAttrs = TOpts.Features;
|
|
Conf.RelocModel = CGOpts.RelocationModel;
|
|
Conf.CGOptLevel = getCGOptLevel(CGOpts);
|
|
Conf.OptLevel = CGOpts.OptimizationLevel;
|
|
initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
|
|
Conf.SampleProfile = std::move(SampleProfile);
|
|
|
|
// Context sensitive profile.
|
|
if (CGOpts.hasProfileCSIRInstr()) {
|
|
Conf.RunCSIRInstr = true;
|
|
Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
|
|
} else if (CGOpts.hasProfileCSIRUse()) {
|
|
Conf.RunCSIRInstr = false;
|
|
Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
|
|
}
|
|
|
|
Conf.ProfileRemapping = std::move(ProfileRemapping);
|
|
Conf.UseNewPM = CGOpts.ExperimentalNewPassManager;
|
|
Conf.DebugPassManager = CGOpts.DebugPassManager;
|
|
Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
|
|
Conf.RemarksFilename = CGOpts.OptRecordFile;
|
|
Conf.RemarksPasses = CGOpts.OptRecordPasses;
|
|
Conf.RemarksFormat = CGOpts.OptRecordFormat;
|
|
Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
|
|
Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
|
|
switch (Action) {
|
|
case Backend_EmitNothing:
|
|
Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
|
|
return false;
|
|
};
|
|
break;
|
|
case Backend_EmitLL:
|
|
Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
|
|
M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
|
|
return false;
|
|
};
|
|
break;
|
|
case Backend_EmitBC:
|
|
Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
|
|
WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
|
|
return false;
|
|
};
|
|
break;
|
|
default:
|
|
Conf.CGFileType = getCodeGenFileType(Action);
|
|
break;
|
|
}
|
|
if (Error E = thinBackend(
|
|
Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
|
|
ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) {
|
|
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
|
|
errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
|
|
});
|
|
}
|
|
}
|
|
|
|
void clang::EmitBackendOutput(DiagnosticsEngine &Diags,
|
|
const HeaderSearchOptions &HeaderOpts,
|
|
const CodeGenOptions &CGOpts,
|
|
const clang::TargetOptions &TOpts,
|
|
const LangOptions &LOpts,
|
|
const llvm::DataLayout &TDesc, Module *M,
|
|
BackendAction Action,
|
|
std::unique_ptr<raw_pwrite_stream> OS) {
|
|
|
|
llvm::TimeTraceScope TimeScope("Backend", StringRef(""));
|
|
|
|
std::unique_ptr<llvm::Module> EmptyModule;
|
|
if (!CGOpts.ThinLTOIndexFile.empty()) {
|
|
// If we are performing a ThinLTO importing compile, load the function index
|
|
// into memory and pass it into runThinLTOBackend, which will run the
|
|
// function importer and invoke LTO passes.
|
|
Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr =
|
|
llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
|
|
/*IgnoreEmptyThinLTOIndexFile*/true);
|
|
if (!IndexOrErr) {
|
|
logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
|
|
"Error loading index file '" +
|
|
CGOpts.ThinLTOIndexFile + "': ");
|
|
return;
|
|
}
|
|
std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
|
|
// A null CombinedIndex means we should skip ThinLTO compilation
|
|
// (LLVM will optionally ignore empty index files, returning null instead
|
|
// of an error).
|
|
if (CombinedIndex) {
|
|
if (!CombinedIndex->skipModuleByDistributedBackend()) {
|
|
runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts,
|
|
LOpts, std::move(OS), CGOpts.SampleProfileFile,
|
|
CGOpts.ProfileRemappingFile, Action);
|
|
return;
|
|
}
|
|
// Distributed indexing detected that nothing from the module is needed
|
|
// for the final linking. So we can skip the compilation. We sill need to
|
|
// output an empty object file to make sure that a linker does not fail
|
|
// trying to read it. Also for some features, like CFI, we must skip
|
|
// the compilation as CombinedIndex does not contain all required
|
|
// information.
|
|
EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext());
|
|
EmptyModule->setTargetTriple(M->getTargetTriple());
|
|
M = EmptyModule.get();
|
|
}
|
|
}
|
|
|
|
EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
|
|
|
|
if (CGOpts.ExperimentalNewPassManager)
|
|
AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
|
|
else
|
|
AsmHelper.EmitAssembly(Action, std::move(OS));
|
|
|
|
// Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
|
|
// DataLayout.
|
|
if (AsmHelper.TM) {
|
|
std::string DLDesc = M->getDataLayout().getStringRepresentation();
|
|
if (DLDesc != TDesc.getStringRepresentation()) {
|
|
unsigned DiagID = Diags.getCustomDiagID(
|
|
DiagnosticsEngine::Error, "backend data layout '%0' does not match "
|
|
"expected target description '%1'");
|
|
Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation();
|
|
}
|
|
}
|
|
}
|
|
|
|
static const char* getSectionNameForBitcode(const Triple &T) {
|
|
switch (T.getObjectFormat()) {
|
|
case Triple::MachO:
|
|
return "__LLVM,__bitcode";
|
|
case Triple::COFF:
|
|
case Triple::ELF:
|
|
case Triple::Wasm:
|
|
case Triple::UnknownObjectFormat:
|
|
return ".llvmbc";
|
|
case Triple::XCOFF:
|
|
llvm_unreachable("XCOFF is not yet implemented");
|
|
break;
|
|
}
|
|
llvm_unreachable("Unimplemented ObjectFormatType");
|
|
}
|
|
|
|
static const char* getSectionNameForCommandline(const Triple &T) {
|
|
switch (T.getObjectFormat()) {
|
|
case Triple::MachO:
|
|
return "__LLVM,__cmdline";
|
|
case Triple::COFF:
|
|
case Triple::ELF:
|
|
case Triple::Wasm:
|
|
case Triple::UnknownObjectFormat:
|
|
return ".llvmcmd";
|
|
case Triple::XCOFF:
|
|
llvm_unreachable("XCOFF is not yet implemented");
|
|
break;
|
|
}
|
|
llvm_unreachable("Unimplemented ObjectFormatType");
|
|
}
|
|
|
|
// With -fembed-bitcode, save a copy of the llvm IR as data in the
|
|
// __LLVM,__bitcode section.
|
|
void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
|
|
llvm::MemoryBufferRef Buf) {
|
|
if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
|
|
return;
|
|
|
|
// Save llvm.compiler.used and remote it.
|
|
SmallVector<Constant*, 2> UsedArray;
|
|
SmallPtrSet<GlobalValue*, 4> UsedGlobals;
|
|
Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0);
|
|
GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true);
|
|
for (auto *GV : UsedGlobals) {
|
|
if (GV->getName() != "llvm.embedded.module" &&
|
|
GV->getName() != "llvm.cmdline")
|
|
UsedArray.push_back(
|
|
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
|
|
}
|
|
if (Used)
|
|
Used->eraseFromParent();
|
|
|
|
// Embed the bitcode for the llvm module.
|
|
std::string Data;
|
|
ArrayRef<uint8_t> ModuleData;
|
|
Triple T(M->getTargetTriple());
|
|
// Create a constant that contains the bitcode.
|
|
// In case of embedding a marker, ignore the input Buf and use the empty
|
|
// ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
|
|
if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) {
|
|
if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
|
|
(const unsigned char *)Buf.getBufferEnd())) {
|
|
// If the input is LLVM Assembly, bitcode is produced by serializing
|
|
// the module. Use-lists order need to be perserved in this case.
|
|
llvm::raw_string_ostream OS(Data);
|
|
llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true);
|
|
ModuleData =
|
|
ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
|
|
} else
|
|
// If the input is LLVM bitcode, write the input byte stream directly.
|
|
ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
|
|
Buf.getBufferSize());
|
|
}
|
|
llvm::Constant *ModuleConstant =
|
|
llvm::ConstantDataArray::get(M->getContext(), ModuleData);
|
|
llvm::GlobalVariable *GV = new llvm::GlobalVariable(
|
|
*M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
|
|
ModuleConstant);
|
|
GV->setSection(getSectionNameForBitcode(T));
|
|
UsedArray.push_back(
|
|
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
|
|
if (llvm::GlobalVariable *Old =
|
|
M->getGlobalVariable("llvm.embedded.module", true)) {
|
|
assert(Old->hasOneUse() &&
|
|
"llvm.embedded.module can only be used once in llvm.compiler.used");
|
|
GV->takeName(Old);
|
|
Old->eraseFromParent();
|
|
} else {
|
|
GV->setName("llvm.embedded.module");
|
|
}
|
|
|
|
// Skip if only bitcode needs to be embedded.
|
|
if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) {
|
|
// Embed command-line options.
|
|
ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()),
|
|
CGOpts.CmdArgs.size());
|
|
llvm::Constant *CmdConstant =
|
|
llvm::ConstantDataArray::get(M->getContext(), CmdData);
|
|
GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
CmdConstant);
|
|
GV->setSection(getSectionNameForCommandline(T));
|
|
UsedArray.push_back(
|
|
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
|
|
if (llvm::GlobalVariable *Old =
|
|
M->getGlobalVariable("llvm.cmdline", true)) {
|
|
assert(Old->hasOneUse() &&
|
|
"llvm.cmdline can only be used once in llvm.compiler.used");
|
|
GV->takeName(Old);
|
|
Old->eraseFromParent();
|
|
} else {
|
|
GV->setName("llvm.cmdline");
|
|
}
|
|
}
|
|
|
|
if (UsedArray.empty())
|
|
return;
|
|
|
|
// Recreate llvm.compiler.used.
|
|
ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
|
|
auto *NewUsed = new GlobalVariable(
|
|
*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
|
|
llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
|
|
NewUsed->setSection("llvm.metadata");
|
|
}
|