mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 12:36:09 +00:00

Fixes the case where subsequent passes were unable to find and delete the invariant loop left over by the strlen idiom conversion. Since `loop-deletion` only operate on computable loops, we can update the loop condition to something more easily picked up by `loop-deletion` As pointed out in https://github.com/llvm/llvm-project/issues/134736
3396 lines
126 KiB
C++
3396 lines
126 KiB
C++
//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This pass implements an idiom recognizer that transforms simple loops into a
|
||
// non-loop form. In cases that this kicks in, it can be a significant
|
||
// performance win.
|
||
//
|
||
// If compiling for code size we avoid idiom recognition if the resulting
|
||
// code could be larger than the code for the original loop. One way this could
|
||
// happen is if the loop is not removable after idiom recognition due to the
|
||
// presence of non-idiom instructions. The initial implementation of the
|
||
// heuristics applies to idioms in multi-block loops.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// TODO List:
|
||
//
|
||
// Future loop memory idioms to recognize: memcmp, etc.
|
||
//
|
||
// This could recognize common matrix multiplies and dot product idioms and
|
||
// replace them with calls to BLAS (if linked in??).
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
|
||
#include "llvm/ADT/APInt.h"
|
||
#include "llvm/ADT/ArrayRef.h"
|
||
#include "llvm/ADT/DenseMap.h"
|
||
#include "llvm/ADT/MapVector.h"
|
||
#include "llvm/ADT/STLExtras.h"
|
||
#include "llvm/ADT/SetVector.h"
|
||
#include "llvm/ADT/SmallPtrSet.h"
|
||
#include "llvm/ADT/SmallVector.h"
|
||
#include "llvm/ADT/Statistic.h"
|
||
#include "llvm/ADT/StringRef.h"
|
||
#include "llvm/Analysis/AliasAnalysis.h"
|
||
#include "llvm/Analysis/CmpInstAnalysis.h"
|
||
#include "llvm/Analysis/LoopInfo.h"
|
||
#include "llvm/Analysis/LoopPass.h"
|
||
#include "llvm/Analysis/MemoryLocation.h"
|
||
#include "llvm/Analysis/MemorySSA.h"
|
||
#include "llvm/Analysis/MemorySSAUpdater.h"
|
||
#include "llvm/Analysis/MustExecute.h"
|
||
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||
#include "llvm/Analysis/ScalarEvolution.h"
|
||
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||
#include "llvm/Analysis/ValueTracking.h"
|
||
#include "llvm/IR/BasicBlock.h"
|
||
#include "llvm/IR/Constant.h"
|
||
#include "llvm/IR/Constants.h"
|
||
#include "llvm/IR/DataLayout.h"
|
||
#include "llvm/IR/DebugLoc.h"
|
||
#include "llvm/IR/DerivedTypes.h"
|
||
#include "llvm/IR/Dominators.h"
|
||
#include "llvm/IR/GlobalValue.h"
|
||
#include "llvm/IR/GlobalVariable.h"
|
||
#include "llvm/IR/IRBuilder.h"
|
||
#include "llvm/IR/InstrTypes.h"
|
||
#include "llvm/IR/Instruction.h"
|
||
#include "llvm/IR/Instructions.h"
|
||
#include "llvm/IR/IntrinsicInst.h"
|
||
#include "llvm/IR/Intrinsics.h"
|
||
#include "llvm/IR/LLVMContext.h"
|
||
#include "llvm/IR/Module.h"
|
||
#include "llvm/IR/PassManager.h"
|
||
#include "llvm/IR/PatternMatch.h"
|
||
#include "llvm/IR/Type.h"
|
||
#include "llvm/IR/User.h"
|
||
#include "llvm/IR/Value.h"
|
||
#include "llvm/IR/ValueHandle.h"
|
||
#include "llvm/Support/Casting.h"
|
||
#include "llvm/Support/CommandLine.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "llvm/Support/InstructionCost.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
#include "llvm/Transforms/Utils/BuildLibCalls.h"
|
||
#include "llvm/Transforms/Utils/Local.h"
|
||
#include "llvm/Transforms/Utils/LoopUtils.h"
|
||
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
||
#include <algorithm>
|
||
#include <cassert>
|
||
#include <cstdint>
|
||
#include <utility>
|
||
#include <vector>
|
||
|
||
using namespace llvm;
|
||
|
||
#define DEBUG_TYPE "loop-idiom"
|
||
|
||
STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
|
||
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
|
||
STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
|
||
STATISTIC(NumStrLen, "Number of strlen's and wcslen's formed from loop loads");
|
||
STATISTIC(
|
||
NumShiftUntilBitTest,
|
||
"Number of uncountable loops recognized as 'shift until bitttest' idiom");
|
||
STATISTIC(NumShiftUntilZero,
|
||
"Number of uncountable loops recognized as 'shift until zero' idiom");
|
||
|
||
bool DisableLIRP::All;
|
||
static cl::opt<bool, true>
|
||
DisableLIRPAll("disable-" DEBUG_TYPE "-all",
|
||
cl::desc("Options to disable Loop Idiom Recognize Pass."),
|
||
cl::location(DisableLIRP::All), cl::init(false),
|
||
cl::ReallyHidden);
|
||
|
||
bool DisableLIRP::Memset;
|
||
static cl::opt<bool, true>
|
||
DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
|
||
cl::desc("Proceed with loop idiom recognize pass, but do "
|
||
"not convert loop(s) to memset."),
|
||
cl::location(DisableLIRP::Memset), cl::init(false),
|
||
cl::ReallyHidden);
|
||
|
||
bool DisableLIRP::Memcpy;
|
||
static cl::opt<bool, true>
|
||
DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
|
||
cl::desc("Proceed with loop idiom recognize pass, but do "
|
||
"not convert loop(s) to memcpy."),
|
||
cl::location(DisableLIRP::Memcpy), cl::init(false),
|
||
cl::ReallyHidden);
|
||
|
||
bool DisableLIRP::Strlen;
|
||
static cl::opt<bool, true>
|
||
DisableLIRPStrlen("disable-loop-idiom-strlen",
|
||
cl::desc("Proceed with loop idiom recognize pass, but do "
|
||
"not convert loop(s) to strlen."),
|
||
cl::location(DisableLIRP::Strlen), cl::init(false),
|
||
cl::ReallyHidden);
|
||
|
||
bool DisableLIRP::Wcslen;
|
||
static cl::opt<bool, true>
|
||
EnableLIRPWcslen("disable-loop-idiom-wcslen",
|
||
cl::desc("Proceed with loop idiom recognize pass, "
|
||
"enable conversion of loop(s) to wcslen."),
|
||
cl::location(DisableLIRP::Wcslen), cl::init(false),
|
||
cl::ReallyHidden);
|
||
|
||
static cl::opt<bool> UseLIRCodeSizeHeurs(
|
||
"use-lir-code-size-heurs",
|
||
cl::desc("Use loop idiom recognition code size heuristics when compiling "
|
||
"with -Os/-Oz"),
|
||
cl::init(true), cl::Hidden);
|
||
|
||
namespace {
|
||
|
||
class LoopIdiomRecognize {
|
||
Loop *CurLoop = nullptr;
|
||
AliasAnalysis *AA;
|
||
DominatorTree *DT;
|
||
LoopInfo *LI;
|
||
ScalarEvolution *SE;
|
||
TargetLibraryInfo *TLI;
|
||
const TargetTransformInfo *TTI;
|
||
const DataLayout *DL;
|
||
OptimizationRemarkEmitter &ORE;
|
||
bool ApplyCodeSizeHeuristics;
|
||
std::unique_ptr<MemorySSAUpdater> MSSAU;
|
||
|
||
public:
|
||
explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
|
||
LoopInfo *LI, ScalarEvolution *SE,
|
||
TargetLibraryInfo *TLI,
|
||
const TargetTransformInfo *TTI, MemorySSA *MSSA,
|
||
const DataLayout *DL,
|
||
OptimizationRemarkEmitter &ORE)
|
||
: AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
|
||
if (MSSA)
|
||
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
|
||
}
|
||
|
||
bool runOnLoop(Loop *L);
|
||
|
||
private:
|
||
using StoreList = SmallVector<StoreInst *, 8>;
|
||
using StoreListMap = MapVector<Value *, StoreList>;
|
||
|
||
StoreListMap StoreRefsForMemset;
|
||
StoreListMap StoreRefsForMemsetPattern;
|
||
StoreList StoreRefsForMemcpy;
|
||
bool HasMemset;
|
||
bool HasMemsetPattern;
|
||
bool HasMemcpy;
|
||
|
||
/// Return code for isLegalStore()
|
||
enum LegalStoreKind {
|
||
None = 0,
|
||
Memset,
|
||
MemsetPattern,
|
||
Memcpy,
|
||
UnorderedAtomicMemcpy,
|
||
DontUse // Dummy retval never to be used. Allows catching errors in retval
|
||
// handling.
|
||
};
|
||
|
||
/// \name Countable Loop Idiom Handling
|
||
/// @{
|
||
|
||
bool runOnCountableLoop();
|
||
bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
|
||
SmallVectorImpl<BasicBlock *> &ExitBlocks);
|
||
|
||
void collectStores(BasicBlock *BB);
|
||
LegalStoreKind isLegalStore(StoreInst *SI);
|
||
enum class ForMemset { No, Yes };
|
||
bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
|
||
ForMemset For);
|
||
|
||
template <typename MemInst>
|
||
bool processLoopMemIntrinsic(
|
||
BasicBlock *BB,
|
||
bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
|
||
const SCEV *BECount);
|
||
bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
|
||
bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
|
||
|
||
bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
|
||
MaybeAlign StoreAlignment, Value *StoredVal,
|
||
Instruction *TheStore,
|
||
SmallPtrSetImpl<Instruction *> &Stores,
|
||
const SCEVAddRecExpr *Ev, const SCEV *BECount,
|
||
bool IsNegStride, bool IsLoopMemset = false);
|
||
bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
|
||
bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
|
||
const SCEV *StoreSize, MaybeAlign StoreAlign,
|
||
MaybeAlign LoadAlign, Instruction *TheStore,
|
||
Instruction *TheLoad,
|
||
const SCEVAddRecExpr *StoreEv,
|
||
const SCEVAddRecExpr *LoadEv,
|
||
const SCEV *BECount);
|
||
bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
|
||
bool IsLoopMemset = false);
|
||
|
||
/// @}
|
||
/// \name Noncountable Loop Idiom Handling
|
||
/// @{
|
||
|
||
bool runOnNoncountableLoop();
|
||
|
||
bool recognizePopcount();
|
||
void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
|
||
PHINode *CntPhi, Value *Var);
|
||
bool isProfitableToInsertFFS(Intrinsic::ID IntrinID, Value *InitX,
|
||
bool ZeroCheck, size_t CanonicalSize);
|
||
bool insertFFSIfProfitable(Intrinsic::ID IntrinID, Value *InitX,
|
||
Instruction *DefX, PHINode *CntPhi,
|
||
Instruction *CntInst);
|
||
bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
|
||
bool recognizeShiftUntilLessThan();
|
||
void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
|
||
Instruction *CntInst, PHINode *CntPhi,
|
||
Value *Var, Instruction *DefX,
|
||
const DebugLoc &DL, bool ZeroCheck,
|
||
bool IsCntPhiUsedOutsideLoop,
|
||
bool InsertSub = false);
|
||
|
||
bool recognizeShiftUntilBitTest();
|
||
bool recognizeShiftUntilZero();
|
||
bool recognizeAndInsertStrLen();
|
||
|
||
/// @}
|
||
};
|
||
} // end anonymous namespace
|
||
|
||
PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
|
||
LoopStandardAnalysisResults &AR,
|
||
LPMUpdater &) {
|
||
if (DisableLIRP::All)
|
||
return PreservedAnalyses::all();
|
||
|
||
const auto *DL = &L.getHeader()->getDataLayout();
|
||
|
||
// For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
|
||
// pass. Function analyses need to be preserved across loop transformations
|
||
// but ORE cannot be preserved (see comment before the pass definition).
|
||
OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
|
||
|
||
LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
|
||
AR.MSSA, DL, ORE);
|
||
if (!LIR.runOnLoop(&L))
|
||
return PreservedAnalyses::all();
|
||
|
||
auto PA = getLoopPassPreservedAnalyses();
|
||
if (AR.MSSA)
|
||
PA.preserve<MemorySSAAnalysis>();
|
||
return PA;
|
||
}
|
||
|
||
static void deleteDeadInstruction(Instruction *I) {
|
||
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
|
||
I->eraseFromParent();
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// Implementation of LoopIdiomRecognize
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
bool LoopIdiomRecognize::runOnLoop(Loop *L) {
|
||
CurLoop = L;
|
||
// If the loop could not be converted to canonical form, it must have an
|
||
// indirectbr in it, just give up.
|
||
if (!L->getLoopPreheader())
|
||
return false;
|
||
|
||
// Disable loop idiom recognition if the function's name is a common idiom.
|
||
StringRef Name = L->getHeader()->getParent()->getName();
|
||
if (Name == "memset" || Name == "memcpy" || Name == "strlen" ||
|
||
Name == "wcslen")
|
||
return false;
|
||
|
||
// Determine if code size heuristics need to be applied.
|
||
ApplyCodeSizeHeuristics =
|
||
L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
|
||
|
||
HasMemset = TLI->has(LibFunc_memset);
|
||
HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
|
||
HasMemcpy = TLI->has(LibFunc_memcpy);
|
||
|
||
if (HasMemset || HasMemsetPattern || HasMemcpy)
|
||
if (SE->hasLoopInvariantBackedgeTakenCount(L))
|
||
return runOnCountableLoop();
|
||
|
||
return runOnNoncountableLoop();
|
||
}
|
||
|
||
bool LoopIdiomRecognize::runOnCountableLoop() {
|
||
const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
|
||
assert(!isa<SCEVCouldNotCompute>(BECount) &&
|
||
"runOnCountableLoop() called on a loop without a predictable"
|
||
"backedge-taken count");
|
||
|
||
// If this loop executes exactly one time, then it should be peeled, not
|
||
// optimized by this pass.
|
||
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
|
||
if (BECst->getAPInt() == 0)
|
||
return false;
|
||
|
||
SmallVector<BasicBlock *, 8> ExitBlocks;
|
||
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
||
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
|
||
<< CurLoop->getHeader()->getParent()->getName()
|
||
<< "] Countable Loop %" << CurLoop->getHeader()->getName()
|
||
<< "\n");
|
||
|
||
// The following transforms hoist stores/memsets into the loop pre-header.
|
||
// Give up if the loop has instructions that may throw.
|
||
SimpleLoopSafetyInfo SafetyInfo;
|
||
SafetyInfo.computeLoopSafetyInfo(CurLoop);
|
||
if (SafetyInfo.anyBlockMayThrow())
|
||
return false;
|
||
|
||
bool MadeChange = false;
|
||
|
||
// Scan all the blocks in the loop that are not in subloops.
|
||
for (auto *BB : CurLoop->getBlocks()) {
|
||
// Ignore blocks in subloops.
|
||
if (LI->getLoopFor(BB) != CurLoop)
|
||
continue;
|
||
|
||
MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
|
||
}
|
||
return MadeChange;
|
||
}
|
||
|
||
static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
|
||
const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
|
||
return ConstStride->getAPInt();
|
||
}
|
||
|
||
/// getMemSetPatternValue - If a strided store of the specified value is safe to
|
||
/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
|
||
/// be passed in. Otherwise, return null.
|
||
///
|
||
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
|
||
/// just replicate their input array and then pass on to memset_pattern16.
|
||
static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
|
||
// FIXME: This could check for UndefValue because it can be merged into any
|
||
// other valid pattern.
|
||
|
||
// If the value isn't a constant, we can't promote it to being in a constant
|
||
// array. We could theoretically do a store to an alloca or something, but
|
||
// that doesn't seem worthwhile.
|
||
Constant *C = dyn_cast<Constant>(V);
|
||
if (!C || isa<ConstantExpr>(C))
|
||
return nullptr;
|
||
|
||
// Only handle simple values that are a power of two bytes in size.
|
||
uint64_t Size = DL->getTypeSizeInBits(V->getType());
|
||
if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
|
||
return nullptr;
|
||
|
||
// Don't care enough about darwin/ppc to implement this.
|
||
if (DL->isBigEndian())
|
||
return nullptr;
|
||
|
||
// Convert to size in bytes.
|
||
Size /= 8;
|
||
|
||
// TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
|
||
// if the top and bottom are the same (e.g. for vectors and large integers).
|
||
if (Size > 16)
|
||
return nullptr;
|
||
|
||
// If the constant is exactly 16 bytes, just use it.
|
||
if (Size == 16)
|
||
return C;
|
||
|
||
// Otherwise, we'll use an array of the constants.
|
||
unsigned ArraySize = 16 / Size;
|
||
ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
|
||
return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
|
||
}
|
||
|
||
LoopIdiomRecognize::LegalStoreKind
|
||
LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
|
||
// Don't touch volatile stores.
|
||
if (SI->isVolatile())
|
||
return LegalStoreKind::None;
|
||
// We only want simple or unordered-atomic stores.
|
||
if (!SI->isUnordered())
|
||
return LegalStoreKind::None;
|
||
|
||
// Avoid merging nontemporal stores.
|
||
if (SI->getMetadata(LLVMContext::MD_nontemporal))
|
||
return LegalStoreKind::None;
|
||
|
||
Value *StoredVal = SI->getValueOperand();
|
||
Value *StorePtr = SI->getPointerOperand();
|
||
|
||
// Don't convert stores of non-integral pointer types to memsets (which stores
|
||
// integers).
|
||
if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
|
||
return LegalStoreKind::None;
|
||
|
||
// Reject stores that are so large that they overflow an unsigned.
|
||
// When storing out scalable vectors we bail out for now, since the code
|
||
// below currently only works for constant strides.
|
||
TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
|
||
if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) ||
|
||
(SizeInBits.getFixedValue() >> 32) != 0)
|
||
return LegalStoreKind::None;
|
||
|
||
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
||
// loop, which indicates a strided store. If we have something else, it's a
|
||
// random store we can't handle.
|
||
const SCEVAddRecExpr *StoreEv =
|
||
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
|
||
if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
|
||
return LegalStoreKind::None;
|
||
|
||
// Check to see if we have a constant stride.
|
||
if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
|
||
return LegalStoreKind::None;
|
||
|
||
// See if the store can be turned into a memset.
|
||
|
||
// If the stored value is a byte-wise value (like i32 -1), then it may be
|
||
// turned into a memset of i8 -1, assuming that all the consecutive bytes
|
||
// are stored. A store of i32 0x01020304 can never be turned into a memset,
|
||
// but it can be turned into memset_pattern if the target supports it.
|
||
Value *SplatValue = isBytewiseValue(StoredVal, *DL);
|
||
|
||
// Note: memset and memset_pattern on unordered-atomic is yet not supported
|
||
bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
|
||
|
||
// If we're allowed to form a memset, and the stored value would be
|
||
// acceptable for memset, use it.
|
||
if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
|
||
// Verify that the stored value is loop invariant. If not, we can't
|
||
// promote the memset.
|
||
CurLoop->isLoopInvariant(SplatValue)) {
|
||
// It looks like we can use SplatValue.
|
||
return LegalStoreKind::Memset;
|
||
}
|
||
if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
|
||
// Don't create memset_pattern16s with address spaces.
|
||
StorePtr->getType()->getPointerAddressSpace() == 0 &&
|
||
getMemSetPatternValue(StoredVal, DL)) {
|
||
// It looks like we can use PatternValue!
|
||
return LegalStoreKind::MemsetPattern;
|
||
}
|
||
|
||
// Otherwise, see if the store can be turned into a memcpy.
|
||
if (HasMemcpy && !DisableLIRP::Memcpy) {
|
||
// Check to see if the stride matches the size of the store. If so, then we
|
||
// know that every byte is touched in the loop.
|
||
APInt Stride = getStoreStride(StoreEv);
|
||
unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
|
||
if (StoreSize != Stride && StoreSize != -Stride)
|
||
return LegalStoreKind::None;
|
||
|
||
// The store must be feeding a non-volatile load.
|
||
LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
|
||
|
||
// Only allow non-volatile loads
|
||
if (!LI || LI->isVolatile())
|
||
return LegalStoreKind::None;
|
||
// Only allow simple or unordered-atomic loads
|
||
if (!LI->isUnordered())
|
||
return LegalStoreKind::None;
|
||
|
||
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
||
// loop, which indicates a strided load. If we have something else, it's a
|
||
// random load we can't handle.
|
||
const SCEVAddRecExpr *LoadEv =
|
||
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
|
||
if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
|
||
return LegalStoreKind::None;
|
||
|
||
// The store and load must share the same stride.
|
||
if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
|
||
return LegalStoreKind::None;
|
||
|
||
// Success. This store can be converted into a memcpy.
|
||
UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
|
||
return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
|
||
: LegalStoreKind::Memcpy;
|
||
}
|
||
// This store can't be transformed into a memset/memcpy.
|
||
return LegalStoreKind::None;
|
||
}
|
||
|
||
void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
|
||
StoreRefsForMemset.clear();
|
||
StoreRefsForMemsetPattern.clear();
|
||
StoreRefsForMemcpy.clear();
|
||
for (Instruction &I : *BB) {
|
||
StoreInst *SI = dyn_cast<StoreInst>(&I);
|
||
if (!SI)
|
||
continue;
|
||
|
||
// Make sure this is a strided store with a constant stride.
|
||
switch (isLegalStore(SI)) {
|
||
case LegalStoreKind::None:
|
||
// Nothing to do
|
||
break;
|
||
case LegalStoreKind::Memset: {
|
||
// Find the base pointer.
|
||
Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
|
||
StoreRefsForMemset[Ptr].push_back(SI);
|
||
} break;
|
||
case LegalStoreKind::MemsetPattern: {
|
||
// Find the base pointer.
|
||
Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
|
||
StoreRefsForMemsetPattern[Ptr].push_back(SI);
|
||
} break;
|
||
case LegalStoreKind::Memcpy:
|
||
case LegalStoreKind::UnorderedAtomicMemcpy:
|
||
StoreRefsForMemcpy.push_back(SI);
|
||
break;
|
||
default:
|
||
assert(false && "unhandled return value");
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
|
||
/// with the specified backedge count. This block is known to be in the current
|
||
/// loop and not in any subloops.
|
||
bool LoopIdiomRecognize::runOnLoopBlock(
|
||
BasicBlock *BB, const SCEV *BECount,
|
||
SmallVectorImpl<BasicBlock *> &ExitBlocks) {
|
||
// We can only promote stores in this block if they are unconditionally
|
||
// executed in the loop. For a block to be unconditionally executed, it has
|
||
// to dominate all the exit blocks of the loop. Verify this now.
|
||
for (BasicBlock *ExitBlock : ExitBlocks)
|
||
if (!DT->dominates(BB, ExitBlock))
|
||
return false;
|
||
|
||
bool MadeChange = false;
|
||
// Look for store instructions, which may be optimized to memset/memcpy.
|
||
collectStores(BB);
|
||
|
||
// Look for a single store or sets of stores with a common base, which can be
|
||
// optimized into a memset (memset_pattern). The latter most commonly happens
|
||
// with structs and handunrolled loops.
|
||
for (auto &SL : StoreRefsForMemset)
|
||
MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
|
||
|
||
for (auto &SL : StoreRefsForMemsetPattern)
|
||
MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
|
||
|
||
// Optimize the store into a memcpy, if it feeds an similarly strided load.
|
||
for (auto &SI : StoreRefsForMemcpy)
|
||
MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
|
||
|
||
MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
|
||
BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
|
||
MadeChange |= processLoopMemIntrinsic<MemSetInst>(
|
||
BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
|
||
|
||
return MadeChange;
|
||
}
|
||
|
||
/// See if this store(s) can be promoted to a memset.
|
||
bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
|
||
const SCEV *BECount, ForMemset For) {
|
||
// Try to find consecutive stores that can be transformed into memsets.
|
||
SetVector<StoreInst *> Heads, Tails;
|
||
SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
|
||
|
||
// Do a quadratic search on all of the given stores and find
|
||
// all of the pairs of stores that follow each other.
|
||
SmallVector<unsigned, 16> IndexQueue;
|
||
for (unsigned i = 0, e = SL.size(); i < e; ++i) {
|
||
assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
|
||
|
||
Value *FirstStoredVal = SL[i]->getValueOperand();
|
||
Value *FirstStorePtr = SL[i]->getPointerOperand();
|
||
const SCEVAddRecExpr *FirstStoreEv =
|
||
cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
|
||
APInt FirstStride = getStoreStride(FirstStoreEv);
|
||
unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
|
||
|
||
// See if we can optimize just this store in isolation.
|
||
if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
|
||
Heads.insert(SL[i]);
|
||
continue;
|
||
}
|
||
|
||
Value *FirstSplatValue = nullptr;
|
||
Constant *FirstPatternValue = nullptr;
|
||
|
||
if (For == ForMemset::Yes)
|
||
FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
|
||
else
|
||
FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
|
||
|
||
assert((FirstSplatValue || FirstPatternValue) &&
|
||
"Expected either splat value or pattern value.");
|
||
|
||
IndexQueue.clear();
|
||
// If a store has multiple consecutive store candidates, search Stores
|
||
// array according to the sequence: from i+1 to e, then from i-1 to 0.
|
||
// This is because usually pairing with immediate succeeding or preceding
|
||
// candidate create the best chance to find memset opportunity.
|
||
unsigned j = 0;
|
||
for (j = i + 1; j < e; ++j)
|
||
IndexQueue.push_back(j);
|
||
for (j = i; j > 0; --j)
|
||
IndexQueue.push_back(j - 1);
|
||
|
||
for (auto &k : IndexQueue) {
|
||
assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
|
||
Value *SecondStorePtr = SL[k]->getPointerOperand();
|
||
const SCEVAddRecExpr *SecondStoreEv =
|
||
cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
|
||
APInt SecondStride = getStoreStride(SecondStoreEv);
|
||
|
||
if (FirstStride != SecondStride)
|
||
continue;
|
||
|
||
Value *SecondStoredVal = SL[k]->getValueOperand();
|
||
Value *SecondSplatValue = nullptr;
|
||
Constant *SecondPatternValue = nullptr;
|
||
|
||
if (For == ForMemset::Yes)
|
||
SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
|
||
else
|
||
SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
|
||
|
||
assert((SecondSplatValue || SecondPatternValue) &&
|
||
"Expected either splat value or pattern value.");
|
||
|
||
if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
|
||
if (For == ForMemset::Yes) {
|
||
if (isa<UndefValue>(FirstSplatValue))
|
||
FirstSplatValue = SecondSplatValue;
|
||
if (FirstSplatValue != SecondSplatValue)
|
||
continue;
|
||
} else {
|
||
if (isa<UndefValue>(FirstPatternValue))
|
||
FirstPatternValue = SecondPatternValue;
|
||
if (FirstPatternValue != SecondPatternValue)
|
||
continue;
|
||
}
|
||
Tails.insert(SL[k]);
|
||
Heads.insert(SL[i]);
|
||
ConsecutiveChain[SL[i]] = SL[k];
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// We may run into multiple chains that merge into a single chain. We mark the
|
||
// stores that we transformed so that we don't visit the same store twice.
|
||
SmallPtrSet<Value *, 16> TransformedStores;
|
||
bool Changed = false;
|
||
|
||
// For stores that start but don't end a link in the chain:
|
||
for (StoreInst *I : Heads) {
|
||
if (Tails.count(I))
|
||
continue;
|
||
|
||
// We found a store instr that starts a chain. Now follow the chain and try
|
||
// to transform it.
|
||
SmallPtrSet<Instruction *, 8> AdjacentStores;
|
||
StoreInst *HeadStore = I;
|
||
unsigned StoreSize = 0;
|
||
|
||
// Collect the chain into a list.
|
||
while (Tails.count(I) || Heads.count(I)) {
|
||
if (TransformedStores.count(I))
|
||
break;
|
||
AdjacentStores.insert(I);
|
||
|
||
StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
|
||
// Move to the next value in the chain.
|
||
I = ConsecutiveChain[I];
|
||
}
|
||
|
||
Value *StoredVal = HeadStore->getValueOperand();
|
||
Value *StorePtr = HeadStore->getPointerOperand();
|
||
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
|
||
APInt Stride = getStoreStride(StoreEv);
|
||
|
||
// Check to see if the stride matches the size of the stores. If so, then
|
||
// we know that every byte is touched in the loop.
|
||
if (StoreSize != Stride && StoreSize != -Stride)
|
||
continue;
|
||
|
||
bool IsNegStride = StoreSize == -Stride;
|
||
|
||
Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
|
||
const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
|
||
if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
|
||
MaybeAlign(HeadStore->getAlign()), StoredVal,
|
||
HeadStore, AdjacentStores, StoreEv, BECount,
|
||
IsNegStride)) {
|
||
TransformedStores.insert_range(AdjacentStores);
|
||
Changed = true;
|
||
}
|
||
}
|
||
|
||
return Changed;
|
||
}
|
||
|
||
/// processLoopMemIntrinsic - Template function for calling different processor
|
||
/// functions based on mem intrinsic type.
|
||
template <typename MemInst>
|
||
bool LoopIdiomRecognize::processLoopMemIntrinsic(
|
||
BasicBlock *BB,
|
||
bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
|
||
const SCEV *BECount) {
|
||
bool MadeChange = false;
|
||
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
|
||
Instruction *Inst = &*I++;
|
||
// Look for memory instructions, which may be optimized to a larger one.
|
||
if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
|
||
WeakTrackingVH InstPtr(&*I);
|
||
if (!(this->*Processor)(MI, BECount))
|
||
continue;
|
||
MadeChange = true;
|
||
|
||
// If processing the instruction invalidated our iterator, start over from
|
||
// the top of the block.
|
||
if (!InstPtr)
|
||
I = BB->begin();
|
||
}
|
||
}
|
||
return MadeChange;
|
||
}
|
||
|
||
/// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
|
||
bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
|
||
const SCEV *BECount) {
|
||
// We can only handle non-volatile memcpys with a constant size.
|
||
if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
|
||
return false;
|
||
|
||
// If we're not allowed to hack on memcpy, we fail.
|
||
if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
|
||
return false;
|
||
|
||
Value *Dest = MCI->getDest();
|
||
Value *Source = MCI->getSource();
|
||
if (!Dest || !Source)
|
||
return false;
|
||
|
||
// See if the load and store pointer expressions are AddRec like {base,+,1} on
|
||
// the current loop, which indicates a strided load and store. If we have
|
||
// something else, it's a random load or store we can't handle.
|
||
const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
|
||
if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
|
||
return false;
|
||
const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
|
||
if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
|
||
return false;
|
||
|
||
// Reject memcpys that are so large that they overflow an unsigned.
|
||
uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
|
||
if ((SizeInBytes >> 32) != 0)
|
||
return false;
|
||
|
||
// Check if the stride matches the size of the memcpy. If so, then we know
|
||
// that every byte is touched in the loop.
|
||
const SCEVConstant *ConstStoreStride =
|
||
dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
|
||
const SCEVConstant *ConstLoadStride =
|
||
dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
|
||
if (!ConstStoreStride || !ConstLoadStride)
|
||
return false;
|
||
|
||
APInt StoreStrideValue = ConstStoreStride->getAPInt();
|
||
APInt LoadStrideValue = ConstLoadStride->getAPInt();
|
||
// Huge stride value - give up
|
||
if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
|
||
return false;
|
||
|
||
if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
|
||
ORE.emit([&]() {
|
||
return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
|
||
<< ore::NV("Inst", "memcpy") << " in "
|
||
<< ore::NV("Function", MCI->getFunction())
|
||
<< " function will not be hoisted: "
|
||
<< ore::NV("Reason", "memcpy size is not equal to stride");
|
||
});
|
||
return false;
|
||
}
|
||
|
||
int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
|
||
int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
|
||
// Check if the load stride matches the store stride.
|
||
if (StoreStrideInt != LoadStrideInt)
|
||
return false;
|
||
|
||
return processLoopStoreOfLoopLoad(
|
||
Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
|
||
MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
|
||
BECount);
|
||
}
|
||
|
||
/// processLoopMemSet - See if this memset can be promoted to a large memset.
|
||
bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
|
||
const SCEV *BECount) {
|
||
// We can only handle non-volatile memsets.
|
||
if (MSI->isVolatile())
|
||
return false;
|
||
|
||
// If we're not allowed to hack on memset, we fail.
|
||
if (!HasMemset || DisableLIRP::Memset)
|
||
return false;
|
||
|
||
Value *Pointer = MSI->getDest();
|
||
|
||
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
||
// loop, which indicates a strided store. If we have something else, it's a
|
||
// random store we can't handle.
|
||
const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
|
||
if (!Ev || Ev->getLoop() != CurLoop)
|
||
return false;
|
||
if (!Ev->isAffine()) {
|
||
LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n");
|
||
return false;
|
||
}
|
||
|
||
const SCEV *PointerStrideSCEV = Ev->getOperand(1);
|
||
const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
|
||
if (!PointerStrideSCEV || !MemsetSizeSCEV)
|
||
return false;
|
||
|
||
bool IsNegStride = false;
|
||
const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
|
||
|
||
if (IsConstantSize) {
|
||
// Memset size is constant.
|
||
// Check if the pointer stride matches the memset size. If so, then
|
||
// we know that every byte is touched in the loop.
|
||
LLVM_DEBUG(dbgs() << " memset size is constant\n");
|
||
uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
|
||
const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
|
||
if (!ConstStride)
|
||
return false;
|
||
|
||
APInt Stride = ConstStride->getAPInt();
|
||
if (SizeInBytes != Stride && SizeInBytes != -Stride)
|
||
return false;
|
||
|
||
IsNegStride = SizeInBytes == -Stride;
|
||
} else {
|
||
// Memset size is non-constant.
|
||
// Check if the pointer stride matches the memset size.
|
||
// To be conservative, the pass would not promote pointers that aren't in
|
||
// address space zero. Also, the pass only handles memset length and stride
|
||
// that are invariant for the top level loop.
|
||
LLVM_DEBUG(dbgs() << " memset size is non-constant\n");
|
||
if (Pointer->getType()->getPointerAddressSpace() != 0) {
|
||
LLVM_DEBUG(dbgs() << " pointer is not in address space zero, "
|
||
<< "abort\n");
|
||
return false;
|
||
}
|
||
if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
|
||
LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, "
|
||
<< "abort\n");
|
||
return false;
|
||
}
|
||
|
||
// Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
|
||
IsNegStride = PointerStrideSCEV->isNonConstantNegative();
|
||
const SCEV *PositiveStrideSCEV =
|
||
IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
|
||
: PointerStrideSCEV;
|
||
LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
|
||
<< " PositiveStrideSCEV: " << *PositiveStrideSCEV
|
||
<< "\n");
|
||
|
||
if (PositiveStrideSCEV != MemsetSizeSCEV) {
|
||
// If an expression is covered by the loop guard, compare again and
|
||
// proceed with optimization if equal.
|
||
const SCEV *FoldedPositiveStride =
|
||
SE->applyLoopGuards(PositiveStrideSCEV, CurLoop);
|
||
const SCEV *FoldedMemsetSize =
|
||
SE->applyLoopGuards(MemsetSizeSCEV, CurLoop);
|
||
|
||
LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n"
|
||
<< " FoldedMemsetSize: " << *FoldedMemsetSize << "\n"
|
||
<< " FoldedPositiveStride: " << *FoldedPositiveStride
|
||
<< "\n");
|
||
|
||
if (FoldedPositiveStride != FoldedMemsetSize) {
|
||
LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n");
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Verify that the memset value is loop invariant. If not, we can't promote
|
||
// the memset.
|
||
Value *SplatValue = MSI->getValue();
|
||
if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
|
||
return false;
|
||
|
||
SmallPtrSet<Instruction *, 1> MSIs;
|
||
MSIs.insert(MSI);
|
||
return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
|
||
MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev,
|
||
BECount, IsNegStride, /*IsLoopMemset=*/true);
|
||
}
|
||
|
||
/// mayLoopAccessLocation - Return true if the specified loop might access the
|
||
/// specified pointer location, which is a loop-strided access. The 'Access'
|
||
/// argument specifies what the verboten forms of access are (read or write).
|
||
static bool
|
||
mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
|
||
const SCEV *BECount, const SCEV *StoreSizeSCEV,
|
||
AliasAnalysis &AA,
|
||
SmallPtrSetImpl<Instruction *> &IgnoredInsts) {
|
||
// Get the location that may be stored across the loop. Since the access is
|
||
// strided positively through memory, we say that the modified location starts
|
||
// at the pointer and has infinite size.
|
||
LocationSize AccessSize = LocationSize::afterPointer();
|
||
|
||
// If the loop iterates a fixed number of times, we can refine the access size
|
||
// to be exactly the size of the memset, which is (BECount+1)*StoreSize
|
||
const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
|
||
const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
|
||
if (BECst && ConstSize) {
|
||
std::optional<uint64_t> BEInt = BECst->getAPInt().tryZExtValue();
|
||
std::optional<uint64_t> SizeInt = ConstSize->getAPInt().tryZExtValue();
|
||
// FIXME: Should this check for overflow?
|
||
if (BEInt && SizeInt)
|
||
AccessSize = LocationSize::precise((*BEInt + 1) * *SizeInt);
|
||
}
|
||
|
||
// TODO: For this to be really effective, we have to dive into the pointer
|
||
// operand in the store. Store to &A[i] of 100 will always return may alias
|
||
// with store of &A[100], we need to StoreLoc to be "A" with size of 100,
|
||
// which will then no-alias a store to &A[100].
|
||
MemoryLocation StoreLoc(Ptr, AccessSize);
|
||
|
||
for (BasicBlock *B : L->blocks())
|
||
for (Instruction &I : *B)
|
||
if (!IgnoredInsts.contains(&I) &&
|
||
isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
// If we have a negative stride, Start refers to the end of the memory location
|
||
// we're trying to memset. Therefore, we need to recompute the base pointer,
|
||
// which is just Start - BECount*Size.
|
||
static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
|
||
Type *IntPtr, const SCEV *StoreSizeSCEV,
|
||
ScalarEvolution *SE) {
|
||
const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
|
||
if (!StoreSizeSCEV->isOne()) {
|
||
// index = back edge count * store size
|
||
Index = SE->getMulExpr(Index,
|
||
SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
|
||
SCEV::FlagNUW);
|
||
}
|
||
// base pointer = start - index * store size
|
||
return SE->getMinusSCEV(Start, Index);
|
||
}
|
||
|
||
/// Compute the number of bytes as a SCEV from the backedge taken count.
|
||
///
|
||
/// This also maps the SCEV into the provided type and tries to handle the
|
||
/// computation in a way that will fold cleanly.
|
||
static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
|
||
const SCEV *StoreSizeSCEV, Loop *CurLoop,
|
||
const DataLayout *DL, ScalarEvolution *SE) {
|
||
const SCEV *TripCountSCEV =
|
||
SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop);
|
||
return SE->getMulExpr(TripCountSCEV,
|
||
SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
|
||
SCEV::FlagNUW);
|
||
}
|
||
|
||
/// processLoopStridedStore - We see a strided store of some value. If we can
|
||
/// transform this into a memset or memset_pattern in the loop preheader, do so.
|
||
bool LoopIdiomRecognize::processLoopStridedStore(
|
||
Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
|
||
Value *StoredVal, Instruction *TheStore,
|
||
SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
|
||
const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
|
||
Module *M = TheStore->getModule();
|
||
Value *SplatValue = isBytewiseValue(StoredVal, *DL);
|
||
Constant *PatternValue = nullptr;
|
||
|
||
if (!SplatValue)
|
||
PatternValue = getMemSetPatternValue(StoredVal, DL);
|
||
|
||
assert((SplatValue || PatternValue) &&
|
||
"Expected either splat value or pattern value.");
|
||
|
||
// The trip count of the loop and the base pointer of the addrec SCEV is
|
||
// guaranteed to be loop invariant, which means that it should dominate the
|
||
// header. This allows us to insert code for it in the preheader.
|
||
unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
|
||
BasicBlock *Preheader = CurLoop->getLoopPreheader();
|
||
IRBuilder<> Builder(Preheader->getTerminator());
|
||
SCEVExpander Expander(*SE, *DL, "loop-idiom");
|
||
SCEVExpanderCleaner ExpCleaner(Expander);
|
||
|
||
Type *DestInt8PtrTy = Builder.getPtrTy(DestAS);
|
||
Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
|
||
|
||
bool Changed = false;
|
||
const SCEV *Start = Ev->getStart();
|
||
// Handle negative strided loops.
|
||
if (IsNegStride)
|
||
Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
|
||
|
||
// TODO: ideally we should still be able to generate memset if SCEV expander
|
||
// is taught to generate the dependencies at the latest point.
|
||
if (!Expander.isSafeToExpand(Start))
|
||
return Changed;
|
||
|
||
// Okay, we have a strided store "p[i]" of a splattable value. We can turn
|
||
// this into a memset in the loop preheader now if we want. However, this
|
||
// would be unsafe to do if there is anything else in the loop that may read
|
||
// or write to the aliased location. Check for any overlap by generating the
|
||
// base pointer and checking the region.
|
||
Value *BasePtr =
|
||
Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
|
||
|
||
// From here on out, conservatively report to the pass manager that we've
|
||
// changed the IR, even if we later clean up these added instructions. There
|
||
// may be structural differences e.g. in the order of use lists not accounted
|
||
// for in just a textual dump of the IR. This is written as a variable, even
|
||
// though statically all the places this dominates could be replaced with
|
||
// 'true', with the hope that anyone trying to be clever / "more precise" with
|
||
// the return value will read this comment, and leave them alone.
|
||
Changed = true;
|
||
|
||
if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
|
||
StoreSizeSCEV, *AA, Stores))
|
||
return Changed;
|
||
|
||
if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
|
||
return Changed;
|
||
|
||
// Okay, everything looks good, insert the memset.
|
||
|
||
const SCEV *NumBytesS =
|
||
getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
|
||
|
||
// TODO: ideally we should still be able to generate memset if SCEV expander
|
||
// is taught to generate the dependencies at the latest point.
|
||
if (!Expander.isSafeToExpand(NumBytesS))
|
||
return Changed;
|
||
|
||
Value *NumBytes =
|
||
Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
|
||
|
||
if (!SplatValue && !isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16))
|
||
return Changed;
|
||
|
||
AAMDNodes AATags = TheStore->getAAMetadata();
|
||
for (Instruction *Store : Stores)
|
||
AATags = AATags.merge(Store->getAAMetadata());
|
||
if (auto CI = dyn_cast<ConstantInt>(NumBytes))
|
||
AATags = AATags.extendTo(CI->getZExtValue());
|
||
else
|
||
AATags = AATags.extendTo(-1);
|
||
|
||
CallInst *NewCall;
|
||
if (SplatValue) {
|
||
NewCall = Builder.CreateMemSet(
|
||
BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment),
|
||
/*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
|
||
} else {
|
||
assert (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16));
|
||
// Everything is emitted in default address space
|
||
Type *Int8PtrTy = DestInt8PtrTy;
|
||
|
||
StringRef FuncName = "memset_pattern16";
|
||
FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16,
|
||
Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy);
|
||
inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
|
||
|
||
// Otherwise we should form a memset_pattern16. PatternValue is known to be
|
||
// an constant array of 16-bytes. Plop the value into a mergable global.
|
||
GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
|
||
GlobalValue::PrivateLinkage,
|
||
PatternValue, ".memset_pattern");
|
||
GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
|
||
GV->setAlignment(Align(16));
|
||
Value *PatternPtr = GV;
|
||
NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
|
||
|
||
// Set the TBAA info if present.
|
||
if (AATags.TBAA)
|
||
NewCall->setMetadata(LLVMContext::MD_tbaa, AATags.TBAA);
|
||
|
||
if (AATags.Scope)
|
||
NewCall->setMetadata(LLVMContext::MD_alias_scope, AATags.Scope);
|
||
|
||
if (AATags.NoAlias)
|
||
NewCall->setMetadata(LLVMContext::MD_noalias, AATags.NoAlias);
|
||
}
|
||
|
||
NewCall->setDebugLoc(TheStore->getDebugLoc());
|
||
|
||
if (MSSAU) {
|
||
MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
|
||
NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
|
||
MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
|
||
}
|
||
|
||
LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
|
||
<< " from store to: " << *Ev << " at: " << *TheStore
|
||
<< "\n");
|
||
|
||
ORE.emit([&]() {
|
||
OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore",
|
||
NewCall->getDebugLoc(), Preheader);
|
||
R << "Transformed loop-strided store in "
|
||
<< ore::NV("Function", TheStore->getFunction())
|
||
<< " function into a call to "
|
||
<< ore::NV("NewFunction", NewCall->getCalledFunction())
|
||
<< "() intrinsic";
|
||
if (!Stores.empty())
|
||
R << ore::setExtraArgs();
|
||
for (auto *I : Stores) {
|
||
R << ore::NV("FromBlock", I->getParent()->getName())
|
||
<< ore::NV("ToBlock", Preheader->getName());
|
||
}
|
||
return R;
|
||
});
|
||
|
||
// Okay, the memset has been formed. Zap the original store and anything that
|
||
// feeds into it.
|
||
for (auto *I : Stores) {
|
||
if (MSSAU)
|
||
MSSAU->removeMemoryAccess(I, true);
|
||
deleteDeadInstruction(I);
|
||
}
|
||
if (MSSAU && VerifyMemorySSA)
|
||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||
++NumMemSet;
|
||
ExpCleaner.markResultUsed();
|
||
return true;
|
||
}
|
||
|
||
/// If the stored value is a strided load in the same loop with the same stride
|
||
/// this may be transformable into a memcpy. This kicks in for stuff like
|
||
/// for (i) A[i] = B[i];
|
||
bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
|
||
const SCEV *BECount) {
|
||
assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
|
||
|
||
Value *StorePtr = SI->getPointerOperand();
|
||
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
|
||
unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
|
||
|
||
// The store must be feeding a non-volatile load.
|
||
LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
|
||
assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
|
||
|
||
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
||
// loop, which indicates a strided load. If we have something else, it's a
|
||
// random load we can't handle.
|
||
Value *LoadPtr = LI->getPointerOperand();
|
||
const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
|
||
|
||
const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize);
|
||
return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
|
||
SI->getAlign(), LI->getAlign(), SI, LI,
|
||
StoreEv, LoadEv, BECount);
|
||
}
|
||
|
||
namespace {
|
||
class MemmoveVerifier {
|
||
public:
|
||
explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr,
|
||
const DataLayout &DL)
|
||
: DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset(
|
||
LoadBasePtr.stripPointerCasts(), LoadOff, DL)),
|
||
BP2(llvm::GetPointerBaseWithConstantOffset(
|
||
StoreBasePtr.stripPointerCasts(), StoreOff, DL)),
|
||
IsSameObject(BP1 == BP2) {}
|
||
|
||
bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride,
|
||
const Instruction &TheLoad,
|
||
bool IsMemCpy) const {
|
||
if (IsMemCpy) {
|
||
// Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
|
||
// for negative stride.
|
||
if ((!IsNegStride && LoadOff <= StoreOff) ||
|
||
(IsNegStride && LoadOff >= StoreOff))
|
||
return false;
|
||
} else {
|
||
// Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
|
||
// for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
|
||
int64_t LoadSize =
|
||
DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8;
|
||
if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
|
||
return false;
|
||
if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
|
||
(IsNegStride && LoadOff + LoadSize > StoreOff))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
private:
|
||
const DataLayout &DL;
|
||
int64_t LoadOff = 0;
|
||
int64_t StoreOff = 0;
|
||
const Value *BP1;
|
||
const Value *BP2;
|
||
|
||
public:
|
||
const bool IsSameObject;
|
||
};
|
||
} // namespace
|
||
|
||
bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
|
||
Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV,
|
||
MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore,
|
||
Instruction *TheLoad, const SCEVAddRecExpr *StoreEv,
|
||
const SCEVAddRecExpr *LoadEv, const SCEV *BECount) {
|
||
|
||
// FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
|
||
// conservatively bail here, since otherwise we may have to transform
|
||
// llvm.memcpy.inline into llvm.memcpy which is illegal.
|
||
if (isa<MemCpyInlineInst>(TheStore))
|
||
return false;
|
||
|
||
// The trip count of the loop and the base pointer of the addrec SCEV is
|
||
// guaranteed to be loop invariant, which means that it should dominate the
|
||
// header. This allows us to insert code for it in the preheader.
|
||
BasicBlock *Preheader = CurLoop->getLoopPreheader();
|
||
IRBuilder<> Builder(Preheader->getTerminator());
|
||
SCEVExpander Expander(*SE, *DL, "loop-idiom");
|
||
|
||
SCEVExpanderCleaner ExpCleaner(Expander);
|
||
|
||
bool Changed = false;
|
||
const SCEV *StrStart = StoreEv->getStart();
|
||
unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
|
||
Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
|
||
|
||
APInt Stride = getStoreStride(StoreEv);
|
||
const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
|
||
|
||
// TODO: Deal with non-constant size; Currently expect constant store size
|
||
assert(ConstStoreSize && "store size is expected to be a constant");
|
||
|
||
int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue();
|
||
bool IsNegStride = StoreSize == -Stride;
|
||
|
||
// Handle negative strided loops.
|
||
if (IsNegStride)
|
||
StrStart =
|
||
getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
|
||
|
||
// Okay, we have a strided store "p[i]" of a loaded value. We can turn
|
||
// this into a memcpy in the loop preheader now if we want. However, this
|
||
// would be unsafe to do if there is anything else in the loop that may read
|
||
// or write the memory region we're storing to. This includes the load that
|
||
// feeds the stores. Check for an alias by generating the base address and
|
||
// checking everything.
|
||
Value *StoreBasePtr = Expander.expandCodeFor(
|
||
StrStart, Builder.getPtrTy(StrAS), Preheader->getTerminator());
|
||
|
||
// From here on out, conservatively report to the pass manager that we've
|
||
// changed the IR, even if we later clean up these added instructions. There
|
||
// may be structural differences e.g. in the order of use lists not accounted
|
||
// for in just a textual dump of the IR. This is written as a variable, even
|
||
// though statically all the places this dominates could be replaced with
|
||
// 'true', with the hope that anyone trying to be clever / "more precise" with
|
||
// the return value will read this comment, and leave them alone.
|
||
Changed = true;
|
||
|
||
SmallPtrSet<Instruction *, 2> IgnoredInsts;
|
||
IgnoredInsts.insert(TheStore);
|
||
|
||
bool IsMemCpy = isa<MemCpyInst>(TheStore);
|
||
const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
|
||
|
||
bool LoopAccessStore =
|
||
mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
|
||
StoreSizeSCEV, *AA, IgnoredInsts);
|
||
if (LoopAccessStore) {
|
||
// For memmove case it's not enough to guarantee that loop doesn't access
|
||
// TheStore and TheLoad. Additionally we need to make sure that TheStore is
|
||
// the only user of TheLoad.
|
||
if (!TheLoad->hasOneUse())
|
||
return Changed;
|
||
IgnoredInsts.insert(TheLoad);
|
||
if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
|
||
BECount, StoreSizeSCEV, *AA, IgnoredInsts)) {
|
||
ORE.emit([&]() {
|
||
return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
|
||
TheStore)
|
||
<< ore::NV("Inst", InstRemark) << " in "
|
||
<< ore::NV("Function", TheStore->getFunction())
|
||
<< " function will not be hoisted: "
|
||
<< ore::NV("Reason", "The loop may access store location");
|
||
});
|
||
return Changed;
|
||
}
|
||
IgnoredInsts.erase(TheLoad);
|
||
}
|
||
|
||
const SCEV *LdStart = LoadEv->getStart();
|
||
unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
|
||
|
||
// Handle negative strided loops.
|
||
if (IsNegStride)
|
||
LdStart =
|
||
getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
|
||
|
||
// For a memcpy, we have to make sure that the input array is not being
|
||
// mutated by the loop.
|
||
Value *LoadBasePtr = Expander.expandCodeFor(LdStart, Builder.getPtrTy(LdAS),
|
||
Preheader->getTerminator());
|
||
|
||
// If the store is a memcpy instruction, we must check if it will write to
|
||
// the load memory locations. So remove it from the ignored stores.
|
||
MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL);
|
||
if (IsMemCpy && !Verifier.IsSameObject)
|
||
IgnoredInsts.erase(TheStore);
|
||
if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
|
||
StoreSizeSCEV, *AA, IgnoredInsts)) {
|
||
ORE.emit([&]() {
|
||
return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad)
|
||
<< ore::NV("Inst", InstRemark) << " in "
|
||
<< ore::NV("Function", TheStore->getFunction())
|
||
<< " function will not be hoisted: "
|
||
<< ore::NV("Reason", "The loop may access load location");
|
||
});
|
||
return Changed;
|
||
}
|
||
|
||
bool IsAtomic = TheStore->isAtomic() || TheLoad->isAtomic();
|
||
bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore;
|
||
|
||
if (IsAtomic) {
|
||
// For now don't support unordered atomic memmove.
|
||
if (UseMemMove)
|
||
return Changed;
|
||
|
||
// We cannot allow unaligned ops for unordered load/store, so reject
|
||
// anything where the alignment isn't at least the element size.
|
||
assert((StoreAlign && LoadAlign) &&
|
||
"Expect unordered load/store to have align.");
|
||
if (*StoreAlign < StoreSize || *LoadAlign < StoreSize)
|
||
return Changed;
|
||
|
||
// If the element.atomic memcpy is not lowered into explicit
|
||
// loads/stores later, then it will be lowered into an element-size
|
||
// specific lib call. If the lib call doesn't exist for our store size, then
|
||
// we shouldn't generate the memcpy.
|
||
if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
|
||
return Changed;
|
||
}
|
||
|
||
if (UseMemMove)
|
||
if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
|
||
IsMemCpy))
|
||
return Changed;
|
||
|
||
if (avoidLIRForMultiBlockLoop())
|
||
return Changed;
|
||
|
||
// Okay, everything is safe, we can transform this!
|
||
|
||
const SCEV *NumBytesS =
|
||
getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
|
||
|
||
Value *NumBytes =
|
||
Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
|
||
|
||
AAMDNodes AATags = TheLoad->getAAMetadata();
|
||
AAMDNodes StoreAATags = TheStore->getAAMetadata();
|
||
AATags = AATags.merge(StoreAATags);
|
||
if (auto CI = dyn_cast<ConstantInt>(NumBytes))
|
||
AATags = AATags.extendTo(CI->getZExtValue());
|
||
else
|
||
AATags = AATags.extendTo(-1);
|
||
|
||
CallInst *NewCall = nullptr;
|
||
// Check whether to generate an unordered atomic memcpy:
|
||
// If the load or store are atomic, then they must necessarily be unordered
|
||
// by previous checks.
|
||
if (!IsAtomic) {
|
||
if (UseMemMove)
|
||
NewCall = Builder.CreateMemMove(
|
||
StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
|
||
/*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
|
||
else
|
||
NewCall =
|
||
Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign,
|
||
NumBytes, /*isVolatile=*/false, AATags.TBAA,
|
||
AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
|
||
} else {
|
||
// Create the call.
|
||
// Note that unordered atomic loads/stores are *required* by the spec to
|
||
// have an alignment but non-atomic loads/stores may not.
|
||
NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
|
||
StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize,
|
||
AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
|
||
}
|
||
NewCall->setDebugLoc(TheStore->getDebugLoc());
|
||
|
||
if (MSSAU) {
|
||
MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
|
||
NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
|
||
MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
|
||
}
|
||
|
||
LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n"
|
||
<< " from load ptr=" << *LoadEv << " at: " << *TheLoad
|
||
<< "\n"
|
||
<< " from store ptr=" << *StoreEv << " at: " << *TheStore
|
||
<< "\n");
|
||
|
||
ORE.emit([&]() {
|
||
return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
|
||
NewCall->getDebugLoc(), Preheader)
|
||
<< "Formed a call to "
|
||
<< ore::NV("NewFunction", NewCall->getCalledFunction())
|
||
<< "() intrinsic from " << ore::NV("Inst", InstRemark)
|
||
<< " instruction in " << ore::NV("Function", TheStore->getFunction())
|
||
<< " function"
|
||
<< ore::setExtraArgs()
|
||
<< ore::NV("FromBlock", TheStore->getParent()->getName())
|
||
<< ore::NV("ToBlock", Preheader->getName());
|
||
});
|
||
|
||
// Okay, a new call to memcpy/memmove has been formed. Zap the original store
|
||
// and anything that feeds into it.
|
||
if (MSSAU)
|
||
MSSAU->removeMemoryAccess(TheStore, true);
|
||
deleteDeadInstruction(TheStore);
|
||
if (MSSAU && VerifyMemorySSA)
|
||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||
if (UseMemMove)
|
||
++NumMemMove;
|
||
else
|
||
++NumMemCpy;
|
||
ExpCleaner.markResultUsed();
|
||
return true;
|
||
}
|
||
|
||
// When compiling for codesize we avoid idiom recognition for a multi-block loop
|
||
// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
|
||
//
|
||
bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
|
||
bool IsLoopMemset) {
|
||
if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
|
||
if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
|
||
LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()
|
||
<< " : LIR " << (IsMemset ? "Memset" : "Memcpy")
|
||
<< " avoided: multi-block top-level loop\n");
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
bool LoopIdiomRecognize::runOnNoncountableLoop() {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
|
||
<< CurLoop->getHeader()->getParent()->getName()
|
||
<< "] Noncountable Loop %"
|
||
<< CurLoop->getHeader()->getName() << "\n");
|
||
|
||
return recognizePopcount() || recognizeAndInsertFFS() ||
|
||
recognizeShiftUntilBitTest() || recognizeShiftUntilZero() ||
|
||
recognizeShiftUntilLessThan() || recognizeAndInsertStrLen();
|
||
}
|
||
|
||
/// Check if the given conditional branch is based on the comparison between
|
||
/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
|
||
/// true), the control yields to the loop entry. If the branch matches the
|
||
/// behavior, the variable involved in the comparison is returned. This function
|
||
/// will be called to see if the precondition and postcondition of the loop are
|
||
/// in desirable form.
|
||
static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
|
||
bool JmpOnZero = false) {
|
||
if (!BI || !BI->isConditional())
|
||
return nullptr;
|
||
|
||
ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
|
||
if (!Cond)
|
||
return nullptr;
|
||
|
||
auto *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
|
||
if (!CmpZero || !CmpZero->isZero())
|
||
return nullptr;
|
||
|
||
BasicBlock *TrueSucc = BI->getSuccessor(0);
|
||
BasicBlock *FalseSucc = BI->getSuccessor(1);
|
||
if (JmpOnZero)
|
||
std::swap(TrueSucc, FalseSucc);
|
||
|
||
ICmpInst::Predicate Pred = Cond->getPredicate();
|
||
if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
|
||
(Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
|
||
return Cond->getOperand(0);
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
namespace {
|
||
|
||
class StrlenVerifier {
|
||
public:
|
||
explicit StrlenVerifier(const Loop *CurLoop, ScalarEvolution *SE,
|
||
const TargetLibraryInfo *TLI)
|
||
: CurLoop(CurLoop), SE(SE), TLI(TLI) {}
|
||
|
||
bool isValidStrlenIdiom() {
|
||
// Give up if the loop has multiple blocks, multiple backedges, or
|
||
// multiple exit blocks
|
||
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1 ||
|
||
!CurLoop->getUniqueExitBlock())
|
||
return false;
|
||
|
||
// It should have a preheader and a branch instruction.
|
||
BasicBlock *Preheader = CurLoop->getLoopPreheader();
|
||
if (!Preheader)
|
||
return false;
|
||
|
||
BranchInst *EntryBI = dyn_cast<BranchInst>(Preheader->getTerminator());
|
||
if (!EntryBI)
|
||
return false;
|
||
|
||
// The loop exit must be conditioned on an icmp with 0 the null terminator.
|
||
// The icmp operand has to be a load on some SSA reg that increments
|
||
// by 1 in the loop.
|
||
BasicBlock *LoopBody = *CurLoop->block_begin();
|
||
|
||
// Skip if the body is too big as it most likely is not a strlen idiom.
|
||
if (!LoopBody || LoopBody->size() >= 15)
|
||
return false;
|
||
|
||
BranchInst *LoopTerm = dyn_cast<BranchInst>(LoopBody->getTerminator());
|
||
Value *LoopCond = matchCondition(LoopTerm, LoopBody);
|
||
if (!LoopCond)
|
||
return false;
|
||
|
||
LoadInst *LoopLoad = dyn_cast<LoadInst>(LoopCond);
|
||
if (!LoopLoad || LoopLoad->getPointerAddressSpace() != 0)
|
||
return false;
|
||
|
||
OperandType = LoopLoad->getType();
|
||
if (!OperandType || !OperandType->isIntegerTy())
|
||
return false;
|
||
|
||
// See if the pointer expression is an AddRec with constant step a of form
|
||
// ({n,+,a}) where a is the width of the char type.
|
||
Value *IncPtr = LoopLoad->getPointerOperand();
|
||
const SCEVAddRecExpr *LoadEv =
|
||
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IncPtr));
|
||
if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
|
||
return false;
|
||
LoadBaseEv = LoadEv->getStart();
|
||
|
||
LLVM_DEBUG(dbgs() << "pointer load scev: " << *LoadEv << "\n");
|
||
|
||
const SCEVConstant *Step =
|
||
dyn_cast<SCEVConstant>(LoadEv->getStepRecurrence(*SE));
|
||
if (!Step)
|
||
return false;
|
||
|
||
unsigned StepSize = 0;
|
||
StepSizeCI = dyn_cast<ConstantInt>(Step->getValue());
|
||
if (!StepSizeCI)
|
||
return false;
|
||
StepSize = StepSizeCI->getZExtValue();
|
||
|
||
// Verify that StepSize is consistent with platform char width.
|
||
OpWidth = OperandType->getIntegerBitWidth();
|
||
unsigned WcharSize = TLI->getWCharSize(*LoopLoad->getModule());
|
||
if (OpWidth != StepSize * 8)
|
||
return false;
|
||
if (OpWidth != 8 && OpWidth != 16 && OpWidth != 32)
|
||
return false;
|
||
if (OpWidth >= 16)
|
||
if (OpWidth != WcharSize * 8)
|
||
return false;
|
||
|
||
// Scan every instruction in the loop to ensure there are no side effects.
|
||
for (Instruction &I : *LoopBody)
|
||
if (I.mayHaveSideEffects())
|
||
return false;
|
||
|
||
BasicBlock *LoopExitBB = CurLoop->getExitBlock();
|
||
if (!LoopExitBB)
|
||
return false;
|
||
|
||
for (PHINode &PN : LoopExitBB->phis()) {
|
||
if (!SE->isSCEVable(PN.getType()))
|
||
return false;
|
||
|
||
const SCEV *Ev = SE->getSCEV(&PN);
|
||
if (!Ev)
|
||
return false;
|
||
|
||
LLVM_DEBUG(dbgs() << "loop exit phi scev: " << *Ev << "\n");
|
||
|
||
// Since we verified that the loop trip count will be a valid strlen
|
||
// idiom, we can expand all lcssa phi with {n,+,1} as (n + strlen) and use
|
||
// SCEVExpander materialize the loop output.
|
||
const SCEVAddRecExpr *AddRecEv = dyn_cast<SCEVAddRecExpr>(Ev);
|
||
if (!AddRecEv || !AddRecEv->isAffine())
|
||
return false;
|
||
|
||
// We only want RecAddExpr with recurrence step that is constant. This
|
||
// is good enough for all the idioms we want to recognize. Later we expand
|
||
// and materialize the recurrence as {base,+,a} -> (base + a * strlen)
|
||
if (!dyn_cast<SCEVConstant>(AddRecEv->getStepRecurrence(*SE)))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
public:
|
||
const Loop *CurLoop;
|
||
ScalarEvolution *SE;
|
||
const TargetLibraryInfo *TLI;
|
||
|
||
unsigned OpWidth;
|
||
ConstantInt *StepSizeCI;
|
||
const SCEV *LoadBaseEv;
|
||
Type *OperandType;
|
||
};
|
||
|
||
} // namespace
|
||
|
||
/// The Strlen Idiom we are trying to detect has the following structure
|
||
///
|
||
/// preheader:
|
||
/// ...
|
||
/// br label %body, ...
|
||
///
|
||
/// body:
|
||
/// ... ; %0 is incremented by a gep
|
||
/// %1 = load i8, ptr %0, align 1
|
||
/// %2 = icmp eq i8 %1, 0
|
||
/// br i1 %2, label %exit, label %body
|
||
///
|
||
/// exit:
|
||
/// %lcssa = phi [%0, %body], ...
|
||
///
|
||
/// We expect the strlen idiom to have a load of a character type that
|
||
/// is compared against '\0', and such load pointer operand must have scev
|
||
/// expression of the form {%str,+,c} where c is a ConstantInt of the
|
||
/// appropiate character width for the idiom, and %str is the base of the string
|
||
/// And, that all lcssa phis have the form {...,+,n} where n is a constant,
|
||
///
|
||
/// When transforming the output of the strlen idiom, the lccsa phi are
|
||
/// expanded using SCEVExpander as {base scev,+,a} -> (base scev + a * strlen)
|
||
/// and all subsequent uses are replaced. For example,
|
||
///
|
||
/// \code{.c}
|
||
/// const char* base = str;
|
||
/// while (*str != '\0')
|
||
/// ++str;
|
||
/// size_t result = str - base;
|
||
/// \endcode
|
||
///
|
||
/// will be transformed as follows: The idiom will be replaced by a strlen
|
||
/// computation to compute the address of the null terminator of the string.
|
||
///
|
||
/// \code{.c}
|
||
/// const char* base = str;
|
||
/// const char* end = base + strlen(str);
|
||
/// size_t result = end - base;
|
||
/// \endcode
|
||
///
|
||
/// In the case we index by an induction variable, as long as the induction
|
||
/// variable has a constant int increment, we can replace all such indvars
|
||
/// with the closed form computation of strlen
|
||
///
|
||
/// \code{.c}
|
||
/// size_t i = 0;
|
||
/// while (str[i] != '\0')
|
||
/// ++i;
|
||
/// size_t result = i;
|
||
/// \endcode
|
||
///
|
||
/// Will be replaced by
|
||
///
|
||
/// \code{.c}
|
||
/// size_t i = 0 + strlen(str);
|
||
/// size_t result = i;
|
||
/// \endcode
|
||
///
|
||
bool LoopIdiomRecognize::recognizeAndInsertStrLen() {
|
||
if (DisableLIRP::All)
|
||
return false;
|
||
|
||
StrlenVerifier Verifier(CurLoop, SE, TLI);
|
||
|
||
if (!Verifier.isValidStrlenIdiom())
|
||
return false;
|
||
|
||
BasicBlock *Preheader = CurLoop->getLoopPreheader();
|
||
BasicBlock *LoopBody = *CurLoop->block_begin();
|
||
BasicBlock *LoopExitBB = CurLoop->getExitBlock();
|
||
BranchInst *LoopTerm = dyn_cast<BranchInst>(LoopBody->getTerminator());
|
||
assert(Preheader && LoopBody && LoopExitBB && LoopTerm &&
|
||
"Should be verified to be valid by StrlenVerifier");
|
||
|
||
if (Verifier.OpWidth == 8) {
|
||
if (DisableLIRP::Strlen)
|
||
return false;
|
||
if (!isLibFuncEmittable(Preheader->getModule(), TLI, LibFunc_strlen))
|
||
return false;
|
||
} else {
|
||
if (DisableLIRP::Wcslen)
|
||
return false;
|
||
if (!isLibFuncEmittable(Preheader->getModule(), TLI, LibFunc_wcslen))
|
||
return false;
|
||
}
|
||
|
||
IRBuilder<> Builder(Preheader->getTerminator());
|
||
SCEVExpander Expander(*SE, Preheader->getModule()->getDataLayout(),
|
||
"strlen_idiom");
|
||
Value *MaterialzedBase = Expander.expandCodeFor(
|
||
Verifier.LoadBaseEv, Verifier.LoadBaseEv->getType(),
|
||
Builder.GetInsertPoint());
|
||
|
||
Value *StrLenFunc = nullptr;
|
||
if (Verifier.OpWidth == 8) {
|
||
StrLenFunc = emitStrLen(MaterialzedBase, Builder, *DL, TLI);
|
||
} else {
|
||
StrLenFunc = emitWcsLen(MaterialzedBase, Builder, *DL, TLI);
|
||
}
|
||
assert(StrLenFunc && "Failed to emit strlen function.");
|
||
|
||
const SCEV *StrlenEv = SE->getSCEV(StrLenFunc);
|
||
SmallVector<PHINode *, 4> Cleanup;
|
||
for (PHINode &PN : LoopExitBB->phis()) {
|
||
// We can now materialize the loop output as all phi have scev {base,+,a}.
|
||
// We expand the phi as:
|
||
// %strlen = call i64 @strlen(%str)
|
||
// %phi.new = base expression + step * %strlen
|
||
const SCEV *Ev = SE->getSCEV(&PN);
|
||
const SCEVAddRecExpr *AddRecEv = dyn_cast<SCEVAddRecExpr>(Ev);
|
||
const SCEVConstant *Step =
|
||
dyn_cast<SCEVConstant>(AddRecEv->getStepRecurrence(*SE));
|
||
const SCEV *Base = AddRecEv->getStart();
|
||
|
||
// It is safe to truncate to base since if base is narrower than size_t
|
||
// the equivalent user code will have to truncate anyways.
|
||
const SCEV *NewEv = SE->getAddExpr(
|
||
Base, SE->getMulExpr(Step, SE->getTruncateOrSignExtend(
|
||
StrlenEv, Base->getType())));
|
||
|
||
Value *MaterializedPHI = Expander.expandCodeFor(NewEv, NewEv->getType(),
|
||
Builder.GetInsertPoint());
|
||
Expander.clear();
|
||
PN.replaceAllUsesWith(MaterializedPHI);
|
||
Cleanup.push_back(&PN);
|
||
}
|
||
|
||
// All LCSSA Loop Phi are dead, the left over dead loop body can be cleaned
|
||
// up by later passes
|
||
for (PHINode *PN : Cleanup)
|
||
RecursivelyDeleteDeadPHINode(PN);
|
||
|
||
// LoopDeletion only delete invariant loops with known trip-count. We can
|
||
// update the condition so it will reliablely delete the invariant loop
|
||
assert(LoopTerm->getNumSuccessors() == 2 &&
|
||
(LoopTerm->getSuccessor(0) == LoopBody ||
|
||
LoopTerm->getSuccessor(1) == LoopBody) &&
|
||
"loop body must have a successor that is it self");
|
||
ConstantInt *NewLoopCond = LoopTerm->getSuccessor(0) == LoopBody
|
||
? Builder.getFalse()
|
||
: Builder.getTrue();
|
||
LoopTerm->setCondition(NewLoopCond);
|
||
SE->forgetLoop(CurLoop);
|
||
|
||
++NumStrLen;
|
||
LLVM_DEBUG(dbgs() << " Formed strlen idiom: " << *StrLenFunc << "\n");
|
||
ORE.emit([&]() {
|
||
return OptimizationRemark(DEBUG_TYPE, "recognizeAndInsertStrLen",
|
||
CurLoop->getStartLoc(), Preheader)
|
||
<< "Transformed " << StrLenFunc->getName() << " loop idiom";
|
||
});
|
||
|
||
return true;
|
||
}
|
||
|
||
/// Check if the given conditional branch is based on an unsigned less-than
|
||
/// comparison between a variable and a constant, and if the comparison is false
|
||
/// the control yields to the loop entry. If the branch matches the behaviour,
|
||
/// the variable involved in the comparison is returned.
|
||
static Value *matchShiftULTCondition(BranchInst *BI, BasicBlock *LoopEntry,
|
||
APInt &Threshold) {
|
||
if (!BI || !BI->isConditional())
|
||
return nullptr;
|
||
|
||
ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
|
||
if (!Cond)
|
||
return nullptr;
|
||
|
||
ConstantInt *CmpConst = dyn_cast<ConstantInt>(Cond->getOperand(1));
|
||
if (!CmpConst)
|
||
return nullptr;
|
||
|
||
BasicBlock *FalseSucc = BI->getSuccessor(1);
|
||
ICmpInst::Predicate Pred = Cond->getPredicate();
|
||
|
||
if (Pred == ICmpInst::ICMP_ULT && FalseSucc == LoopEntry) {
|
||
Threshold = CmpConst->getValue();
|
||
return Cond->getOperand(0);
|
||
}
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
// Check if the recurrence variable `VarX` is in the right form to create
|
||
// the idiom. Returns the value coerced to a PHINode if so.
|
||
static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
|
||
BasicBlock *LoopEntry) {
|
||
auto *PhiX = dyn_cast<PHINode>(VarX);
|
||
if (PhiX && PhiX->getParent() == LoopEntry &&
|
||
(PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
|
||
return PhiX;
|
||
return nullptr;
|
||
}
|
||
|
||
/// Return true if the idiom is detected in the loop.
|
||
///
|
||
/// Additionally:
|
||
/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
|
||
/// or nullptr if there is no such.
|
||
/// 2) \p CntPhi is set to the corresponding phi node
|
||
/// or nullptr if there is no such.
|
||
/// 3) \p InitX is set to the value whose CTLZ could be used.
|
||
/// 4) \p DefX is set to the instruction calculating Loop exit condition.
|
||
/// 5) \p Threshold is set to the constant involved in the unsigned less-than
|
||
/// comparison.
|
||
///
|
||
/// The core idiom we are trying to detect is:
|
||
/// \code
|
||
/// if (x0 < 2)
|
||
/// goto loop-exit // the precondition of the loop
|
||
/// cnt0 = init-val
|
||
/// do {
|
||
/// x = phi (x0, x.next); //PhiX
|
||
/// cnt = phi (cnt0, cnt.next)
|
||
///
|
||
/// cnt.next = cnt + 1;
|
||
/// ...
|
||
/// x.next = x >> 1; // DefX
|
||
/// } while (x >= 4)
|
||
/// loop-exit:
|
||
/// \endcode
|
||
static bool detectShiftUntilLessThanIdiom(Loop *CurLoop, const DataLayout &DL,
|
||
Intrinsic::ID &IntrinID,
|
||
Value *&InitX, Instruction *&CntInst,
|
||
PHINode *&CntPhi, Instruction *&DefX,
|
||
APInt &Threshold) {
|
||
BasicBlock *LoopEntry;
|
||
|
||
DefX = nullptr;
|
||
CntInst = nullptr;
|
||
CntPhi = nullptr;
|
||
LoopEntry = *(CurLoop->block_begin());
|
||
|
||
// step 1: Check if the loop-back branch is in desirable form.
|
||
if (Value *T = matchShiftULTCondition(
|
||
dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry,
|
||
Threshold))
|
||
DefX = dyn_cast<Instruction>(T);
|
||
else
|
||
return false;
|
||
|
||
// step 2: Check the recurrence of variable X
|
||
if (!DefX || !isa<PHINode>(DefX))
|
||
return false;
|
||
|
||
PHINode *VarPhi = cast<PHINode>(DefX);
|
||
int Idx = VarPhi->getBasicBlockIndex(LoopEntry);
|
||
if (Idx == -1)
|
||
return false;
|
||
|
||
DefX = dyn_cast<Instruction>(VarPhi->getIncomingValue(Idx));
|
||
if (!DefX || DefX->getNumOperands() == 0 || DefX->getOperand(0) != VarPhi)
|
||
return false;
|
||
|
||
// step 3: detect instructions corresponding to "x.next = x >> 1"
|
||
if (DefX->getOpcode() != Instruction::LShr)
|
||
return false;
|
||
|
||
IntrinID = Intrinsic::ctlz;
|
||
ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
|
||
if (!Shft || !Shft->isOne())
|
||
return false;
|
||
|
||
InitX = VarPhi->getIncomingValueForBlock(CurLoop->getLoopPreheader());
|
||
|
||
// step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
|
||
// or cnt.next = cnt + -1.
|
||
// TODO: We can skip the step. If loop trip count is known (CTLZ),
|
||
// then all uses of "cnt.next" could be optimized to the trip count
|
||
// plus "cnt0". Currently it is not optimized.
|
||
// This step could be used to detect POPCNT instruction:
|
||
// cnt.next = cnt + (x.next & 1)
|
||
for (Instruction &Inst :
|
||
llvm::make_range(LoopEntry->getFirstNonPHIIt(), LoopEntry->end())) {
|
||
if (Inst.getOpcode() != Instruction::Add)
|
||
continue;
|
||
|
||
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
|
||
if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
|
||
continue;
|
||
|
||
PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
|
||
if (!Phi)
|
||
continue;
|
||
|
||
CntInst = &Inst;
|
||
CntPhi = Phi;
|
||
break;
|
||
}
|
||
if (!CntInst)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/// Return true iff the idiom is detected in the loop.
|
||
///
|
||
/// Additionally:
|
||
/// 1) \p CntInst is set to the instruction counting the population bit.
|
||
/// 2) \p CntPhi is set to the corresponding phi node.
|
||
/// 3) \p Var is set to the value whose population bits are being counted.
|
||
///
|
||
/// The core idiom we are trying to detect is:
|
||
/// \code
|
||
/// if (x0 != 0)
|
||
/// goto loop-exit // the precondition of the loop
|
||
/// cnt0 = init-val;
|
||
/// do {
|
||
/// x1 = phi (x0, x2);
|
||
/// cnt1 = phi(cnt0, cnt2);
|
||
///
|
||
/// cnt2 = cnt1 + 1;
|
||
/// ...
|
||
/// x2 = x1 & (x1 - 1);
|
||
/// ...
|
||
/// } while(x != 0);
|
||
///
|
||
/// loop-exit:
|
||
/// \endcode
|
||
static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
|
||
Instruction *&CntInst, PHINode *&CntPhi,
|
||
Value *&Var) {
|
||
// step 1: Check to see if the look-back branch match this pattern:
|
||
// "if (a!=0) goto loop-entry".
|
||
BasicBlock *LoopEntry;
|
||
Instruction *DefX2, *CountInst;
|
||
Value *VarX1, *VarX0;
|
||
PHINode *PhiX, *CountPhi;
|
||
|
||
DefX2 = CountInst = nullptr;
|
||
VarX1 = VarX0 = nullptr;
|
||
PhiX = CountPhi = nullptr;
|
||
LoopEntry = *(CurLoop->block_begin());
|
||
|
||
// step 1: Check if the loop-back branch is in desirable form.
|
||
{
|
||
if (Value *T = matchCondition(
|
||
dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
|
||
DefX2 = dyn_cast<Instruction>(T);
|
||
else
|
||
return false;
|
||
}
|
||
|
||
// step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
|
||
{
|
||
if (!DefX2 || DefX2->getOpcode() != Instruction::And)
|
||
return false;
|
||
|
||
BinaryOperator *SubOneOp;
|
||
|
||
if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
|
||
VarX1 = DefX2->getOperand(1);
|
||
else {
|
||
VarX1 = DefX2->getOperand(0);
|
||
SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
|
||
}
|
||
if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
|
||
return false;
|
||
|
||
ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
|
||
if (!Dec ||
|
||
!((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
|
||
(SubOneOp->getOpcode() == Instruction::Add &&
|
||
Dec->isMinusOne()))) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// step 3: Check the recurrence of variable X
|
||
PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
|
||
if (!PhiX)
|
||
return false;
|
||
|
||
// step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
|
||
{
|
||
CountInst = nullptr;
|
||
for (Instruction &Inst :
|
||
llvm::make_range(LoopEntry->getFirstNonPHIIt(), LoopEntry->end())) {
|
||
if (Inst.getOpcode() != Instruction::Add)
|
||
continue;
|
||
|
||
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
|
||
if (!Inc || !Inc->isOne())
|
||
continue;
|
||
|
||
PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
|
||
if (!Phi)
|
||
continue;
|
||
|
||
// Check if the result of the instruction is live of the loop.
|
||
bool LiveOutLoop = false;
|
||
for (User *U : Inst.users()) {
|
||
if ((cast<Instruction>(U))->getParent() != LoopEntry) {
|
||
LiveOutLoop = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (LiveOutLoop) {
|
||
CountInst = &Inst;
|
||
CountPhi = Phi;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!CountInst)
|
||
return false;
|
||
}
|
||
|
||
// step 5: check if the precondition is in this form:
|
||
// "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
|
||
{
|
||
auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
|
||
Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
|
||
if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
|
||
return false;
|
||
|
||
CntInst = CountInst;
|
||
CntPhi = CountPhi;
|
||
Var = T;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/// Return true if the idiom is detected in the loop.
|
||
///
|
||
/// Additionally:
|
||
/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
|
||
/// or nullptr if there is no such.
|
||
/// 2) \p CntPhi is set to the corresponding phi node
|
||
/// or nullptr if there is no such.
|
||
/// 3) \p Var is set to the value whose CTLZ could be used.
|
||
/// 4) \p DefX is set to the instruction calculating Loop exit condition.
|
||
///
|
||
/// The core idiom we are trying to detect is:
|
||
/// \code
|
||
/// if (x0 == 0)
|
||
/// goto loop-exit // the precondition of the loop
|
||
/// cnt0 = init-val;
|
||
/// do {
|
||
/// x = phi (x0, x.next); //PhiX
|
||
/// cnt = phi(cnt0, cnt.next);
|
||
///
|
||
/// cnt.next = cnt + 1;
|
||
/// ...
|
||
/// x.next = x >> 1; // DefX
|
||
/// ...
|
||
/// } while(x.next != 0);
|
||
///
|
||
/// loop-exit:
|
||
/// \endcode
|
||
static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
|
||
Intrinsic::ID &IntrinID, Value *&InitX,
|
||
Instruction *&CntInst, PHINode *&CntPhi,
|
||
Instruction *&DefX) {
|
||
BasicBlock *LoopEntry;
|
||
Value *VarX = nullptr;
|
||
|
||
DefX = nullptr;
|
||
CntInst = nullptr;
|
||
CntPhi = nullptr;
|
||
LoopEntry = *(CurLoop->block_begin());
|
||
|
||
// step 1: Check if the loop-back branch is in desirable form.
|
||
if (Value *T = matchCondition(
|
||
dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
|
||
DefX = dyn_cast<Instruction>(T);
|
||
else
|
||
return false;
|
||
|
||
// step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
|
||
if (!DefX || !DefX->isShift())
|
||
return false;
|
||
IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
|
||
Intrinsic::ctlz;
|
||
ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
|
||
if (!Shft || !Shft->isOne())
|
||
return false;
|
||
VarX = DefX->getOperand(0);
|
||
|
||
// step 3: Check the recurrence of variable X
|
||
PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
|
||
if (!PhiX)
|
||
return false;
|
||
|
||
InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
|
||
|
||
// Make sure the initial value can't be negative otherwise the ashr in the
|
||
// loop might never reach zero which would make the loop infinite.
|
||
if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
|
||
return false;
|
||
|
||
// step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
|
||
// or cnt.next = cnt + -1.
|
||
// TODO: We can skip the step. If loop trip count is known (CTLZ),
|
||
// then all uses of "cnt.next" could be optimized to the trip count
|
||
// plus "cnt0". Currently it is not optimized.
|
||
// This step could be used to detect POPCNT instruction:
|
||
// cnt.next = cnt + (x.next & 1)
|
||
for (Instruction &Inst :
|
||
llvm::make_range(LoopEntry->getFirstNonPHIIt(), LoopEntry->end())) {
|
||
if (Inst.getOpcode() != Instruction::Add)
|
||
continue;
|
||
|
||
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
|
||
if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
|
||
continue;
|
||
|
||
PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
|
||
if (!Phi)
|
||
continue;
|
||
|
||
CntInst = &Inst;
|
||
CntPhi = Phi;
|
||
break;
|
||
}
|
||
if (!CntInst)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
// Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
|
||
// profitable if we delete the loop.
|
||
bool LoopIdiomRecognize::isProfitableToInsertFFS(Intrinsic::ID IntrinID,
|
||
Value *InitX, bool ZeroCheck,
|
||
size_t CanonicalSize) {
|
||
const Value *Args[] = {InitX,
|
||
ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
|
||
|
||
// @llvm.dbg doesn't count as they have no semantic effect.
|
||
auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
|
||
uint32_t HeaderSize =
|
||
std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
|
||
|
||
IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
|
||
InstructionCost Cost = TTI->getIntrinsicInstrCost(
|
||
Attrs, TargetTransformInfo::TCK_SizeAndLatency);
|
||
if (HeaderSize != CanonicalSize && Cost > TargetTransformInfo::TCC_Basic)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/// Convert CTLZ / CTTZ idiom loop into countable loop.
|
||
/// If CTLZ / CTTZ inserted as a new trip count returns true; otherwise,
|
||
/// returns false.
|
||
bool LoopIdiomRecognize::insertFFSIfProfitable(Intrinsic::ID IntrinID,
|
||
Value *InitX, Instruction *DefX,
|
||
PHINode *CntPhi,
|
||
Instruction *CntInst) {
|
||
bool IsCntPhiUsedOutsideLoop = false;
|
||
for (User *U : CntPhi->users())
|
||
if (!CurLoop->contains(cast<Instruction>(U))) {
|
||
IsCntPhiUsedOutsideLoop = true;
|
||
break;
|
||
}
|
||
bool IsCntInstUsedOutsideLoop = false;
|
||
for (User *U : CntInst->users())
|
||
if (!CurLoop->contains(cast<Instruction>(U))) {
|
||
IsCntInstUsedOutsideLoop = true;
|
||
break;
|
||
}
|
||
// If both CntInst and CntPhi are used outside the loop the profitability
|
||
// is questionable.
|
||
if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
|
||
return false;
|
||
|
||
// For some CPUs result of CTLZ(X) intrinsic is undefined
|
||
// when X is 0. If we can not guarantee X != 0, we need to check this
|
||
// when expand.
|
||
bool ZeroCheck = false;
|
||
// It is safe to assume Preheader exist as it was checked in
|
||
// parent function RunOnLoop.
|
||
BasicBlock *PH = CurLoop->getLoopPreheader();
|
||
|
||
// If we are using the count instruction outside the loop, make sure we
|
||
// have a zero check as a precondition. Without the check the loop would run
|
||
// one iteration for before any check of the input value. This means 0 and 1
|
||
// would have identical behavior in the original loop and thus
|
||
if (!IsCntPhiUsedOutsideLoop) {
|
||
auto *PreCondBB = PH->getSinglePredecessor();
|
||
if (!PreCondBB)
|
||
return false;
|
||
auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
|
||
if (!PreCondBI)
|
||
return false;
|
||
if (matchCondition(PreCondBI, PH) != InitX)
|
||
return false;
|
||
ZeroCheck = true;
|
||
}
|
||
|
||
// FFS idiom loop has only 6 instructions:
|
||
// %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
|
||
// %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
|
||
// %shr = ashr %n.addr.0, 1
|
||
// %tobool = icmp eq %shr, 0
|
||
// %inc = add nsw %i.0, 1
|
||
// br i1 %tobool
|
||
size_t IdiomCanonicalSize = 6;
|
||
if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize))
|
||
return false;
|
||
|
||
transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
|
||
DefX->getDebugLoc(), ZeroCheck,
|
||
IsCntPhiUsedOutsideLoop);
|
||
return true;
|
||
}
|
||
|
||
/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
|
||
/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
|
||
/// trip count returns true; otherwise, returns false.
|
||
bool LoopIdiomRecognize::recognizeAndInsertFFS() {
|
||
// Give up if the loop has multiple blocks or multiple backedges.
|
||
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
|
||
return false;
|
||
|
||
Intrinsic::ID IntrinID;
|
||
Value *InitX;
|
||
Instruction *DefX = nullptr;
|
||
PHINode *CntPhi = nullptr;
|
||
Instruction *CntInst = nullptr;
|
||
|
||
if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, CntInst, CntPhi,
|
||
DefX))
|
||
return false;
|
||
|
||
return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst);
|
||
}
|
||
|
||
bool LoopIdiomRecognize::recognizeShiftUntilLessThan() {
|
||
// Give up if the loop has multiple blocks or multiple backedges.
|
||
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
|
||
return false;
|
||
|
||
Intrinsic::ID IntrinID;
|
||
Value *InitX;
|
||
Instruction *DefX = nullptr;
|
||
PHINode *CntPhi = nullptr;
|
||
Instruction *CntInst = nullptr;
|
||
|
||
APInt LoopThreshold;
|
||
if (!detectShiftUntilLessThanIdiom(CurLoop, *DL, IntrinID, InitX, CntInst,
|
||
CntPhi, DefX, LoopThreshold))
|
||
return false;
|
||
|
||
if (LoopThreshold == 2) {
|
||
// Treat as regular FFS.
|
||
return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst);
|
||
}
|
||
|
||
// Look for Floor Log2 Idiom.
|
||
if (LoopThreshold != 4)
|
||
return false;
|
||
|
||
// Abort if CntPhi is used outside of the loop.
|
||
for (User *U : CntPhi->users())
|
||
if (!CurLoop->contains(cast<Instruction>(U)))
|
||
return false;
|
||
|
||
// It is safe to assume Preheader exist as it was checked in
|
||
// parent function RunOnLoop.
|
||
BasicBlock *PH = CurLoop->getLoopPreheader();
|
||
auto *PreCondBB = PH->getSinglePredecessor();
|
||
if (!PreCondBB)
|
||
return false;
|
||
auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
|
||
if (!PreCondBI)
|
||
return false;
|
||
|
||
APInt PreLoopThreshold;
|
||
if (matchShiftULTCondition(PreCondBI, PH, PreLoopThreshold) != InitX ||
|
||
PreLoopThreshold != 2)
|
||
return false;
|
||
|
||
bool ZeroCheck = true;
|
||
|
||
// the loop has only 6 instructions:
|
||
// %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
|
||
// %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
|
||
// %shr = ashr %n.addr.0, 1
|
||
// %tobool = icmp ult %n.addr.0, C
|
||
// %inc = add nsw %i.0, 1
|
||
// br i1 %tobool
|
||
size_t IdiomCanonicalSize = 6;
|
||
if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize))
|
||
return false;
|
||
|
||
// log2(x) = w − 1 − clz(x)
|
||
transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
|
||
DefX->getDebugLoc(), ZeroCheck,
|
||
/*IsCntPhiUsedOutsideLoop=*/false,
|
||
/*InsertSub=*/true);
|
||
return true;
|
||
}
|
||
|
||
/// Recognizes a population count idiom in a non-countable loop.
|
||
///
|
||
/// If detected, transforms the relevant code to issue the popcount intrinsic
|
||
/// function call, and returns true; otherwise, returns false.
|
||
bool LoopIdiomRecognize::recognizePopcount() {
|
||
if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
|
||
return false;
|
||
|
||
// Counting population are usually conducted by few arithmetic instructions.
|
||
// Such instructions can be easily "absorbed" by vacant slots in a
|
||
// non-compact loop. Therefore, recognizing popcount idiom only makes sense
|
||
// in a compact loop.
|
||
|
||
// Give up if the loop has multiple blocks or multiple backedges.
|
||
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
|
||
return false;
|
||
|
||
BasicBlock *LoopBody = *(CurLoop->block_begin());
|
||
if (LoopBody->size() >= 20) {
|
||
// The loop is too big, bail out.
|
||
return false;
|
||
}
|
||
|
||
// It should have a preheader containing nothing but an unconditional branch.
|
||
BasicBlock *PH = CurLoop->getLoopPreheader();
|
||
if (!PH || &PH->front() != PH->getTerminator())
|
||
return false;
|
||
auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
|
||
if (!EntryBI || EntryBI->isConditional())
|
||
return false;
|
||
|
||
// It should have a precondition block where the generated popcount intrinsic
|
||
// function can be inserted.
|
||
auto *PreCondBB = PH->getSinglePredecessor();
|
||
if (!PreCondBB)
|
||
return false;
|
||
auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
|
||
if (!PreCondBI || PreCondBI->isUnconditional())
|
||
return false;
|
||
|
||
Instruction *CntInst;
|
||
PHINode *CntPhi;
|
||
Value *Val;
|
||
if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
|
||
return false;
|
||
|
||
transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
|
||
return true;
|
||
}
|
||
|
||
static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
|
||
const DebugLoc &DL) {
|
||
Value *Ops[] = {Val};
|
||
Type *Tys[] = {Val->getType()};
|
||
|
||
CallInst *CI = IRBuilder.CreateIntrinsic(Intrinsic::ctpop, Tys, Ops);
|
||
CI->setDebugLoc(DL);
|
||
|
||
return CI;
|
||
}
|
||
|
||
static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
|
||
const DebugLoc &DL, bool ZeroCheck,
|
||
Intrinsic::ID IID) {
|
||
Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
|
||
Type *Tys[] = {Val->getType()};
|
||
|
||
CallInst *CI = IRBuilder.CreateIntrinsic(IID, Tys, Ops);
|
||
CI->setDebugLoc(DL);
|
||
|
||
return CI;
|
||
}
|
||
|
||
/// Transform the following loop (Using CTLZ, CTTZ is similar):
|
||
/// loop:
|
||
/// CntPhi = PHI [Cnt0, CntInst]
|
||
/// PhiX = PHI [InitX, DefX]
|
||
/// CntInst = CntPhi + 1
|
||
/// DefX = PhiX >> 1
|
||
/// LOOP_BODY
|
||
/// Br: loop if (DefX != 0)
|
||
/// Use(CntPhi) or Use(CntInst)
|
||
///
|
||
/// Into:
|
||
/// If CntPhi used outside the loop:
|
||
/// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
|
||
/// Count = CountPrev + 1
|
||
/// else
|
||
/// Count = BitWidth(InitX) - CTLZ(InitX)
|
||
/// loop:
|
||
/// CntPhi = PHI [Cnt0, CntInst]
|
||
/// PhiX = PHI [InitX, DefX]
|
||
/// PhiCount = PHI [Count, Dec]
|
||
/// CntInst = CntPhi + 1
|
||
/// DefX = PhiX >> 1
|
||
/// Dec = PhiCount - 1
|
||
/// LOOP_BODY
|
||
/// Br: loop if (Dec != 0)
|
||
/// Use(CountPrev + Cnt0) // Use(CntPhi)
|
||
/// or
|
||
/// Use(Count + Cnt0) // Use(CntInst)
|
||
///
|
||
/// If LOOP_BODY is empty the loop will be deleted.
|
||
/// If CntInst and DefX are not used in LOOP_BODY they will be removed.
|
||
void LoopIdiomRecognize::transformLoopToCountable(
|
||
Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
|
||
PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
|
||
bool ZeroCheck, bool IsCntPhiUsedOutsideLoop, bool InsertSub) {
|
||
BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
|
||
|
||
// Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
|
||
IRBuilder<> Builder(PreheaderBr);
|
||
Builder.SetCurrentDebugLocation(DL);
|
||
|
||
// If there are no uses of CntPhi crate:
|
||
// Count = BitWidth - CTLZ(InitX);
|
||
// NewCount = Count;
|
||
// If there are uses of CntPhi create:
|
||
// NewCount = BitWidth - CTLZ(InitX >> 1);
|
||
// Count = NewCount + 1;
|
||
Value *InitXNext;
|
||
if (IsCntPhiUsedOutsideLoop) {
|
||
if (DefX->getOpcode() == Instruction::AShr)
|
||
InitXNext = Builder.CreateAShr(InitX, 1);
|
||
else if (DefX->getOpcode() == Instruction::LShr)
|
||
InitXNext = Builder.CreateLShr(InitX, 1);
|
||
else if (DefX->getOpcode() == Instruction::Shl) // cttz
|
||
InitXNext = Builder.CreateShl(InitX, 1);
|
||
else
|
||
llvm_unreachable("Unexpected opcode!");
|
||
} else
|
||
InitXNext = InitX;
|
||
Value *Count =
|
||
createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
|
||
Type *CountTy = Count->getType();
|
||
Count = Builder.CreateSub(
|
||
ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
|
||
if (InsertSub)
|
||
Count = Builder.CreateSub(Count, ConstantInt::get(CountTy, 1));
|
||
Value *NewCount = Count;
|
||
if (IsCntPhiUsedOutsideLoop)
|
||
Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
|
||
|
||
NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
|
||
|
||
Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
|
||
if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
|
||
// If the counter was being incremented in the loop, add NewCount to the
|
||
// counter's initial value, but only if the initial value is not zero.
|
||
ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
|
||
if (!InitConst || !InitConst->isZero())
|
||
NewCount = Builder.CreateAdd(NewCount, CntInitVal);
|
||
} else {
|
||
// If the count was being decremented in the loop, subtract NewCount from
|
||
// the counter's initial value.
|
||
NewCount = Builder.CreateSub(CntInitVal, NewCount);
|
||
}
|
||
|
||
// Step 2: Insert new IV and loop condition:
|
||
// loop:
|
||
// ...
|
||
// PhiCount = PHI [Count, Dec]
|
||
// ...
|
||
// Dec = PhiCount - 1
|
||
// ...
|
||
// Br: loop if (Dec != 0)
|
||
BasicBlock *Body = *(CurLoop->block_begin());
|
||
auto *LbBr = cast<BranchInst>(Body->getTerminator());
|
||
ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
|
||
|
||
PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi");
|
||
TcPhi->insertBefore(Body->begin());
|
||
|
||
Builder.SetInsertPoint(LbCond);
|
||
Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
|
||
TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
|
||
|
||
TcPhi->addIncoming(Count, Preheader);
|
||
TcPhi->addIncoming(TcDec, Body);
|
||
|
||
CmpInst::Predicate Pred =
|
||
(LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
|
||
LbCond->setPredicate(Pred);
|
||
LbCond->setOperand(0, TcDec);
|
||
LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
|
||
|
||
// Step 3: All the references to the original counter outside
|
||
// the loop are replaced with the NewCount
|
||
if (IsCntPhiUsedOutsideLoop)
|
||
CntPhi->replaceUsesOutsideBlock(NewCount, Body);
|
||
else
|
||
CntInst->replaceUsesOutsideBlock(NewCount, Body);
|
||
|
||
// step 4: Forget the "non-computable" trip-count SCEV associated with the
|
||
// loop. The loop would otherwise not be deleted even if it becomes empty.
|
||
SE->forgetLoop(CurLoop);
|
||
}
|
||
|
||
void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
|
||
Instruction *CntInst,
|
||
PHINode *CntPhi, Value *Var) {
|
||
BasicBlock *PreHead = CurLoop->getLoopPreheader();
|
||
auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
|
||
const DebugLoc &DL = CntInst->getDebugLoc();
|
||
|
||
// Assuming before transformation, the loop is following:
|
||
// if (x) // the precondition
|
||
// do { cnt++; x &= x - 1; } while(x);
|
||
|
||
// Step 1: Insert the ctpop instruction at the end of the precondition block
|
||
IRBuilder<> Builder(PreCondBr);
|
||
Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
|
||
{
|
||
PopCnt = createPopcntIntrinsic(Builder, Var, DL);
|
||
NewCount = PopCntZext =
|
||
Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
|
||
|
||
if (NewCount != PopCnt)
|
||
(cast<Instruction>(NewCount))->setDebugLoc(DL);
|
||
|
||
// TripCnt is exactly the number of iterations the loop has
|
||
TripCnt = NewCount;
|
||
|
||
// If the population counter's initial value is not zero, insert Add Inst.
|
||
Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
|
||
ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
|
||
if (!InitConst || !InitConst->isZero()) {
|
||
NewCount = Builder.CreateAdd(NewCount, CntInitVal);
|
||
(cast<Instruction>(NewCount))->setDebugLoc(DL);
|
||
}
|
||
}
|
||
|
||
// Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
|
||
// "if (NewCount == 0) loop-exit". Without this change, the intrinsic
|
||
// function would be partial dead code, and downstream passes will drag
|
||
// it back from the precondition block to the preheader.
|
||
{
|
||
ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
|
||
|
||
Value *Opnd0 = PopCntZext;
|
||
Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
|
||
if (PreCond->getOperand(0) != Var)
|
||
std::swap(Opnd0, Opnd1);
|
||
|
||
ICmpInst *NewPreCond = cast<ICmpInst>(
|
||
Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
|
||
PreCondBr->setCondition(NewPreCond);
|
||
|
||
RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
|
||
}
|
||
|
||
// Step 3: Note that the population count is exactly the trip count of the
|
||
// loop in question, which enable us to convert the loop from noncountable
|
||
// loop into a countable one. The benefit is twofold:
|
||
//
|
||
// - If the loop only counts population, the entire loop becomes dead after
|
||
// the transformation. It is a lot easier to prove a countable loop dead
|
||
// than to prove a noncountable one. (In some C dialects, an infinite loop
|
||
// isn't dead even if it computes nothing useful. In general, DCE needs
|
||
// to prove a noncountable loop finite before safely delete it.)
|
||
//
|
||
// - If the loop also performs something else, it remains alive.
|
||
// Since it is transformed to countable form, it can be aggressively
|
||
// optimized by some optimizations which are in general not applicable
|
||
// to a noncountable loop.
|
||
//
|
||
// After this step, this loop (conceptually) would look like following:
|
||
// newcnt = __builtin_ctpop(x);
|
||
// t = newcnt;
|
||
// if (x)
|
||
// do { cnt++; x &= x-1; t--) } while (t > 0);
|
||
BasicBlock *Body = *(CurLoop->block_begin());
|
||
{
|
||
auto *LbBr = cast<BranchInst>(Body->getTerminator());
|
||
ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
|
||
Type *Ty = TripCnt->getType();
|
||
|
||
PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi");
|
||
TcPhi->insertBefore(Body->begin());
|
||
|
||
Builder.SetInsertPoint(LbCond);
|
||
Instruction *TcDec = cast<Instruction>(
|
||
Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
|
||
"tcdec", false, true));
|
||
|
||
TcPhi->addIncoming(TripCnt, PreHead);
|
||
TcPhi->addIncoming(TcDec, Body);
|
||
|
||
CmpInst::Predicate Pred =
|
||
(LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
|
||
LbCond->setPredicate(Pred);
|
||
LbCond->setOperand(0, TcDec);
|
||
LbCond->setOperand(1, ConstantInt::get(Ty, 0));
|
||
}
|
||
|
||
// Step 4: All the references to the original population counter outside
|
||
// the loop are replaced with the NewCount -- the value returned from
|
||
// __builtin_ctpop().
|
||
CntInst->replaceUsesOutsideBlock(NewCount, Body);
|
||
|
||
// step 5: Forget the "non-computable" trip-count SCEV associated with the
|
||
// loop. The loop would otherwise not be deleted even if it becomes empty.
|
||
SE->forgetLoop(CurLoop);
|
||
}
|
||
|
||
/// Match loop-invariant value.
|
||
template <typename SubPattern_t> struct match_LoopInvariant {
|
||
SubPattern_t SubPattern;
|
||
const Loop *L;
|
||
|
||
match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
|
||
: SubPattern(SP), L(L) {}
|
||
|
||
template <typename ITy> bool match(ITy *V) {
|
||
return L->isLoopInvariant(V) && SubPattern.match(V);
|
||
}
|
||
};
|
||
|
||
/// Matches if the value is loop-invariant.
|
||
template <typename Ty>
|
||
inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
|
||
return match_LoopInvariant<Ty>(M, L);
|
||
}
|
||
|
||
/// Return true if the idiom is detected in the loop.
|
||
///
|
||
/// The core idiom we are trying to detect is:
|
||
/// \code
|
||
/// entry:
|
||
/// <...>
|
||
/// %bitmask = shl i32 1, %bitpos
|
||
/// br label %loop
|
||
///
|
||
/// loop:
|
||
/// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
|
||
/// %x.curr.bitmasked = and i32 %x.curr, %bitmask
|
||
/// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
|
||
/// %x.next = shl i32 %x.curr, 1
|
||
/// <...>
|
||
/// br i1 %x.curr.isbitunset, label %loop, label %end
|
||
///
|
||
/// end:
|
||
/// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
|
||
/// %x.next.res = phi i32 [ %x.next, %loop ] <...>
|
||
/// <...>
|
||
/// \endcode
|
||
static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
|
||
Value *&BitMask, Value *&BitPos,
|
||
Value *&CurrX, Instruction *&NextX) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE
|
||
" Performing shift-until-bittest idiom detection.\n");
|
||
|
||
// Give up if the loop has multiple blocks or multiple backedges.
|
||
if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
|
||
return false;
|
||
}
|
||
|
||
BasicBlock *LoopHeaderBB = CurLoop->getHeader();
|
||
BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
|
||
assert(LoopPreheaderBB && "There is always a loop preheader.");
|
||
|
||
using namespace PatternMatch;
|
||
|
||
// Step 1: Check if the loop backedge is in desirable form.
|
||
|
||
CmpPredicate Pred;
|
||
Value *CmpLHS, *CmpRHS;
|
||
BasicBlock *TrueBB, *FalseBB;
|
||
if (!match(LoopHeaderBB->getTerminator(),
|
||
m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
|
||
m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
|
||
return false;
|
||
}
|
||
|
||
// Step 2: Check if the backedge's condition is in desirable form.
|
||
|
||
auto MatchVariableBitMask = [&]() {
|
||
return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
|
||
match(CmpLHS,
|
||
m_c_And(m_Value(CurrX),
|
||
m_CombineAnd(
|
||
m_Value(BitMask),
|
||
m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
|
||
CurLoop))));
|
||
};
|
||
auto MatchConstantBitMask = [&]() {
|
||
return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
|
||
match(CmpLHS, m_And(m_Value(CurrX),
|
||
m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
|
||
(BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
|
||
};
|
||
auto MatchDecomposableConstantBitMask = [&]() {
|
||
auto Res = llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred);
|
||
if (Res && Res->Mask.isPowerOf2()) {
|
||
assert(ICmpInst::isEquality(Res->Pred));
|
||
Pred = Res->Pred;
|
||
CurrX = Res->X;
|
||
BitMask = ConstantInt::get(CurrX->getType(), Res->Mask);
|
||
BitPos = ConstantInt::get(CurrX->getType(), Res->Mask.logBase2());
|
||
return true;
|
||
}
|
||
return false;
|
||
};
|
||
|
||
if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
|
||
!MatchDecomposableConstantBitMask()) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
|
||
return false;
|
||
}
|
||
|
||
// Step 3: Check if the recurrence is in desirable form.
|
||
auto *CurrXPN = dyn_cast<PHINode>(CurrX);
|
||
if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
|
||
return false;
|
||
}
|
||
|
||
BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
|
||
NextX =
|
||
dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
|
||
|
||
assert(CurLoop->isLoopInvariant(BaseX) &&
|
||
"Expected BaseX to be available in the preheader!");
|
||
|
||
if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
|
||
// FIXME: support right-shift?
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
|
||
return false;
|
||
}
|
||
|
||
// Step 4: Check if the backedge's destinations are in desirable form.
|
||
|
||
assert(ICmpInst::isEquality(Pred) &&
|
||
"Should only get equality predicates here.");
|
||
|
||
// cmp-br is commutative, so canonicalize to a single variant.
|
||
if (Pred != ICmpInst::Predicate::ICMP_EQ) {
|
||
Pred = ICmpInst::getInversePredicate(Pred);
|
||
std::swap(TrueBB, FalseBB);
|
||
}
|
||
|
||
// We expect to exit loop when comparison yields false,
|
||
// so when it yields true we should branch back to loop header.
|
||
if (TrueBB != LoopHeaderBB) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
|
||
return false;
|
||
}
|
||
|
||
// Okay, idiom checks out.
|
||
return true;
|
||
}
|
||
|
||
/// Look for the following loop:
|
||
/// \code
|
||
/// entry:
|
||
/// <...>
|
||
/// %bitmask = shl i32 1, %bitpos
|
||
/// br label %loop
|
||
///
|
||
/// loop:
|
||
/// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
|
||
/// %x.curr.bitmasked = and i32 %x.curr, %bitmask
|
||
/// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
|
||
/// %x.next = shl i32 %x.curr, 1
|
||
/// <...>
|
||
/// br i1 %x.curr.isbitunset, label %loop, label %end
|
||
///
|
||
/// end:
|
||
/// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
|
||
/// %x.next.res = phi i32 [ %x.next, %loop ] <...>
|
||
/// <...>
|
||
/// \endcode
|
||
///
|
||
/// And transform it into:
|
||
/// \code
|
||
/// entry:
|
||
/// %bitmask = shl i32 1, %bitpos
|
||
/// %lowbitmask = add i32 %bitmask, -1
|
||
/// %mask = or i32 %lowbitmask, %bitmask
|
||
/// %x.masked = and i32 %x, %mask
|
||
/// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
|
||
/// i1 true)
|
||
/// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
|
||
/// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
|
||
/// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
|
||
/// %tripcount = add i32 %backedgetakencount, 1
|
||
/// %x.curr = shl i32 %x, %backedgetakencount
|
||
/// %x.next = shl i32 %x, %tripcount
|
||
/// br label %loop
|
||
///
|
||
/// loop:
|
||
/// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
|
||
/// %loop.iv.next = add nuw i32 %loop.iv, 1
|
||
/// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
|
||
/// <...>
|
||
/// br i1 %loop.ivcheck, label %end, label %loop
|
||
///
|
||
/// end:
|
||
/// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
|
||
/// %x.next.res = phi i32 [ %x.next, %loop ] <...>
|
||
/// <...>
|
||
/// \endcode
|
||
bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
|
||
bool MadeChange = false;
|
||
|
||
Value *X, *BitMask, *BitPos, *XCurr;
|
||
Instruction *XNext;
|
||
if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
|
||
XNext)) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE
|
||
" shift-until-bittest idiom detection failed.\n");
|
||
return MadeChange;
|
||
}
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
|
||
|
||
// Ok, it is the idiom we were looking for, we *could* transform this loop,
|
||
// but is it profitable to transform?
|
||
|
||
BasicBlock *LoopHeaderBB = CurLoop->getHeader();
|
||
BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
|
||
assert(LoopPreheaderBB && "There is always a loop preheader.");
|
||
|
||
BasicBlock *SuccessorBB = CurLoop->getExitBlock();
|
||
assert(SuccessorBB && "There is only a single successor.");
|
||
|
||
IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
|
||
Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
|
||
|
||
Intrinsic::ID IntrID = Intrinsic::ctlz;
|
||
Type *Ty = X->getType();
|
||
unsigned Bitwidth = Ty->getScalarSizeInBits();
|
||
|
||
TargetTransformInfo::TargetCostKind CostKind =
|
||
TargetTransformInfo::TCK_SizeAndLatency;
|
||
|
||
// The rewrite is considered to be unprofitable iff and only iff the
|
||
// intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
|
||
// making the loop countable, even if nothing else changes.
|
||
IntrinsicCostAttributes Attrs(
|
||
IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getTrue()});
|
||
InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
|
||
if (Cost > TargetTransformInfo::TCC_Basic) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE
|
||
" Intrinsic is too costly, not beneficial\n");
|
||
return MadeChange;
|
||
}
|
||
if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
|
||
TargetTransformInfo::TCC_Basic) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
|
||
return MadeChange;
|
||
}
|
||
|
||
// Ok, transform appears worthwhile.
|
||
MadeChange = true;
|
||
|
||
if (!isGuaranteedNotToBeUndefOrPoison(BitPos)) {
|
||
// BitMask may be computed from BitPos, Freeze BitPos so we can increase
|
||
// it's use count.
|
||
std::optional<BasicBlock::iterator> InsertPt = std::nullopt;
|
||
if (auto *BitPosI = dyn_cast<Instruction>(BitPos))
|
||
InsertPt = BitPosI->getInsertionPointAfterDef();
|
||
else
|
||
InsertPt = DT->getRoot()->getFirstNonPHIOrDbgOrAlloca();
|
||
if (!InsertPt)
|
||
return false;
|
||
FreezeInst *BitPosFrozen =
|
||
new FreezeInst(BitPos, BitPos->getName() + ".fr", *InsertPt);
|
||
BitPos->replaceUsesWithIf(BitPosFrozen, [BitPosFrozen](Use &U) {
|
||
return U.getUser() != BitPosFrozen;
|
||
});
|
||
BitPos = BitPosFrozen;
|
||
}
|
||
|
||
// Step 1: Compute the loop trip count.
|
||
|
||
Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
|
||
BitPos->getName() + ".lowbitmask");
|
||
Value *Mask =
|
||
Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
|
||
Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
|
||
CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
|
||
IntrID, Ty, {XMasked, /*is_zero_poison=*/Builder.getTrue()},
|
||
/*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
|
||
Value *XMaskedNumActiveBits = Builder.CreateSub(
|
||
ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
|
||
XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
|
||
/*HasNSW=*/Bitwidth != 2);
|
||
Value *XMaskedLeadingOnePos =
|
||
Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
|
||
XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
|
||
/*HasNSW=*/Bitwidth > 2);
|
||
|
||
Value *LoopBackedgeTakenCount = Builder.CreateSub(
|
||
BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
|
||
/*HasNUW=*/true, /*HasNSW=*/true);
|
||
// We know loop's backedge-taken count, but what's loop's trip count?
|
||
// Note that while NUW is always safe, while NSW is only for bitwidths != 2.
|
||
Value *LoopTripCount =
|
||
Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
|
||
CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
|
||
/*HasNSW=*/Bitwidth != 2);
|
||
|
||
// Step 2: Compute the recurrence's final value without a loop.
|
||
|
||
// NewX is always safe to compute, because `LoopBackedgeTakenCount`
|
||
// will always be smaller than `bitwidth(X)`, i.e. we never get poison.
|
||
Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
|
||
NewX->takeName(XCurr);
|
||
if (auto *I = dyn_cast<Instruction>(NewX))
|
||
I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
|
||
|
||
Value *NewXNext;
|
||
// Rewriting XNext is more complicated, however, because `X << LoopTripCount`
|
||
// will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
|
||
// iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
|
||
// that isn't the case, we'll need to emit an alternative, safe IR.
|
||
if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
|
||
PatternMatch::match(
|
||
BitPos, PatternMatch::m_SpecificInt_ICMP(
|
||
ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
|
||
Ty->getScalarSizeInBits() - 1))))
|
||
NewXNext = Builder.CreateShl(X, LoopTripCount);
|
||
else {
|
||
// Otherwise, just additionally shift by one. It's the smallest solution,
|
||
// alternatively, we could check that NewX is INT_MIN (or BitPos is )
|
||
// and select 0 instead.
|
||
NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
|
||
}
|
||
|
||
NewXNext->takeName(XNext);
|
||
if (auto *I = dyn_cast<Instruction>(NewXNext))
|
||
I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
|
||
|
||
// Step 3: Adjust the successor basic block to recieve the computed
|
||
// recurrence's final value instead of the recurrence itself.
|
||
|
||
XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
|
||
XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
|
||
|
||
// Step 4: Rewrite the loop into a countable form, with canonical IV.
|
||
|
||
// The new canonical induction variable.
|
||
Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin());
|
||
auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
|
||
|
||
// The induction itself.
|
||
// Note that while NUW is always safe, while NSW is only for bitwidths != 2.
|
||
Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
|
||
auto *IVNext =
|
||
Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
|
||
/*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
|
||
|
||
// The loop trip count check.
|
||
auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
|
||
CurLoop->getName() + ".ivcheck");
|
||
Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
|
||
LoopHeaderBB->getTerminator()->eraseFromParent();
|
||
|
||
// Populate the IV PHI.
|
||
IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
|
||
IV->addIncoming(IVNext, LoopHeaderBB);
|
||
|
||
// Step 5: Forget the "non-computable" trip-count SCEV associated with the
|
||
// loop. The loop would otherwise not be deleted even if it becomes empty.
|
||
|
||
SE->forgetLoop(CurLoop);
|
||
|
||
// Other passes will take care of actually deleting the loop if possible.
|
||
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
|
||
|
||
++NumShiftUntilBitTest;
|
||
return MadeChange;
|
||
}
|
||
|
||
/// Return true if the idiom is detected in the loop.
|
||
///
|
||
/// The core idiom we are trying to detect is:
|
||
/// \code
|
||
/// entry:
|
||
/// <...>
|
||
/// %start = <...>
|
||
/// %extraoffset = <...>
|
||
/// <...>
|
||
/// br label %for.cond
|
||
///
|
||
/// loop:
|
||
/// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
|
||
/// %nbits = add nsw i8 %iv, %extraoffset
|
||
/// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
|
||
/// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
|
||
/// %iv.next = add i8 %iv, 1
|
||
/// <...>
|
||
/// br i1 %val.shifted.iszero, label %end, label %loop
|
||
///
|
||
/// end:
|
||
/// %iv.res = phi i8 [ %iv, %loop ] <...>
|
||
/// %nbits.res = phi i8 [ %nbits, %loop ] <...>
|
||
/// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
|
||
/// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
|
||
/// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
|
||
/// <...>
|
||
/// \endcode
|
||
static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
|
||
Instruction *&ValShiftedIsZero,
|
||
Intrinsic::ID &IntrinID, Instruction *&IV,
|
||
Value *&Start, Value *&Val,
|
||
const SCEV *&ExtraOffsetExpr,
|
||
bool &InvertedCond) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE
|
||
" Performing shift-until-zero idiom detection.\n");
|
||
|
||
// Give up if the loop has multiple blocks or multiple backedges.
|
||
if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
|
||
return false;
|
||
}
|
||
|
||
Instruction *ValShifted, *NBits, *IVNext;
|
||
Value *ExtraOffset;
|
||
|
||
BasicBlock *LoopHeaderBB = CurLoop->getHeader();
|
||
BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
|
||
assert(LoopPreheaderBB && "There is always a loop preheader.");
|
||
|
||
using namespace PatternMatch;
|
||
|
||
// Step 1: Check if the loop backedge, condition is in desirable form.
|
||
|
||
CmpPredicate Pred;
|
||
BasicBlock *TrueBB, *FalseBB;
|
||
if (!match(LoopHeaderBB->getTerminator(),
|
||
m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
|
||
m_BasicBlock(FalseBB))) ||
|
||
!match(ValShiftedIsZero,
|
||
m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
|
||
!ICmpInst::isEquality(Pred)) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
|
||
return false;
|
||
}
|
||
|
||
// Step 2: Check if the comparison's operand is in desirable form.
|
||
// FIXME: Val could be a one-input PHI node, which we should look past.
|
||
if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
|
||
m_Instruction(NBits)))) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
|
||
return false;
|
||
}
|
||
IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
|
||
: Intrinsic::ctlz;
|
||
|
||
// Step 3: Check if the shift amount is in desirable form.
|
||
|
||
if (match(NBits, m_c_Add(m_Instruction(IV),
|
||
m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
|
||
(NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
|
||
ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
|
||
else if (match(NBits,
|
||
m_Sub(m_Instruction(IV),
|
||
m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
|
||
NBits->hasNoSignedWrap())
|
||
ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
|
||
else {
|
||
IV = NBits;
|
||
ExtraOffsetExpr = SE->getZero(NBits->getType());
|
||
}
|
||
|
||
// Step 4: Check if the recurrence is in desirable form.
|
||
auto *IVPN = dyn_cast<PHINode>(IV);
|
||
if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
|
||
return false;
|
||
}
|
||
|
||
Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
|
||
IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
|
||
|
||
if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
|
||
return false;
|
||
}
|
||
|
||
// Step 4: Check if the backedge's destinations are in desirable form.
|
||
|
||
assert(ICmpInst::isEquality(Pred) &&
|
||
"Should only get equality predicates here.");
|
||
|
||
// cmp-br is commutative, so canonicalize to a single variant.
|
||
InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
|
||
if (InvertedCond) {
|
||
Pred = ICmpInst::getInversePredicate(Pred);
|
||
std::swap(TrueBB, FalseBB);
|
||
}
|
||
|
||
// We expect to exit loop when comparison yields true,
|
||
// so when it yields false we should branch back to loop header.
|
||
if (FalseBB != LoopHeaderBB) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
|
||
return false;
|
||
}
|
||
|
||
// The new, countable, loop will certainly only run a known number of
|
||
// iterations, It won't be infinite. But the old loop might be infinite
|
||
// under certain conditions. For logical shifts, the value will become zero
|
||
// after at most bitwidth(%Val) loop iterations. However, for arithmetic
|
||
// right-shift, iff the sign bit was set, the value will never become zero,
|
||
// and the loop may never finish.
|
||
if (ValShifted->getOpcode() == Instruction::AShr &&
|
||
!isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
|
||
return false;
|
||
}
|
||
|
||
// Okay, idiom checks out.
|
||
return true;
|
||
}
|
||
|
||
/// Look for the following loop:
|
||
/// \code
|
||
/// entry:
|
||
/// <...>
|
||
/// %start = <...>
|
||
/// %extraoffset = <...>
|
||
/// <...>
|
||
/// br label %for.cond
|
||
///
|
||
/// loop:
|
||
/// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
|
||
/// %nbits = add nsw i8 %iv, %extraoffset
|
||
/// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
|
||
/// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
|
||
/// %iv.next = add i8 %iv, 1
|
||
/// <...>
|
||
/// br i1 %val.shifted.iszero, label %end, label %loop
|
||
///
|
||
/// end:
|
||
/// %iv.res = phi i8 [ %iv, %loop ] <...>
|
||
/// %nbits.res = phi i8 [ %nbits, %loop ] <...>
|
||
/// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
|
||
/// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
|
||
/// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
|
||
/// <...>
|
||
/// \endcode
|
||
///
|
||
/// And transform it into:
|
||
/// \code
|
||
/// entry:
|
||
/// <...>
|
||
/// %start = <...>
|
||
/// %extraoffset = <...>
|
||
/// <...>
|
||
/// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
|
||
/// %val.numactivebits = sub i8 8, %val.numleadingzeros
|
||
/// %extraoffset.neg = sub i8 0, %extraoffset
|
||
/// %tmp = add i8 %val.numactivebits, %extraoffset.neg
|
||
/// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
|
||
/// %loop.tripcount = sub i8 %iv.final, %start
|
||
/// br label %loop
|
||
///
|
||
/// loop:
|
||
/// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
|
||
/// %loop.iv.next = add i8 %loop.iv, 1
|
||
/// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
|
||
/// %iv = add i8 %loop.iv, %start
|
||
/// <...>
|
||
/// br i1 %loop.ivcheck, label %end, label %loop
|
||
///
|
||
/// end:
|
||
/// %iv.res = phi i8 [ %iv.final, %loop ] <...>
|
||
/// <...>
|
||
/// \endcode
|
||
bool LoopIdiomRecognize::recognizeShiftUntilZero() {
|
||
bool MadeChange = false;
|
||
|
||
Instruction *ValShiftedIsZero;
|
||
Intrinsic::ID IntrID;
|
||
Instruction *IV;
|
||
Value *Start, *Val;
|
||
const SCEV *ExtraOffsetExpr;
|
||
bool InvertedCond;
|
||
if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
|
||
Start, Val, ExtraOffsetExpr, InvertedCond)) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE
|
||
" shift-until-zero idiom detection failed.\n");
|
||
return MadeChange;
|
||
}
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
|
||
|
||
// Ok, it is the idiom we were looking for, we *could* transform this loop,
|
||
// but is it profitable to transform?
|
||
|
||
BasicBlock *LoopHeaderBB = CurLoop->getHeader();
|
||
BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
|
||
assert(LoopPreheaderBB && "There is always a loop preheader.");
|
||
|
||
BasicBlock *SuccessorBB = CurLoop->getExitBlock();
|
||
assert(SuccessorBB && "There is only a single successor.");
|
||
|
||
IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
|
||
Builder.SetCurrentDebugLocation(IV->getDebugLoc());
|
||
|
||
Type *Ty = Val->getType();
|
||
unsigned Bitwidth = Ty->getScalarSizeInBits();
|
||
|
||
TargetTransformInfo::TargetCostKind CostKind =
|
||
TargetTransformInfo::TCK_SizeAndLatency;
|
||
|
||
// The rewrite is considered to be unprofitable iff and only iff the
|
||
// intrinsic we'll use are not cheap. Note that we are okay with *just*
|
||
// making the loop countable, even if nothing else changes.
|
||
IntrinsicCostAttributes Attrs(
|
||
IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getFalse()});
|
||
InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
|
||
if (Cost > TargetTransformInfo::TCC_Basic) {
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE
|
||
" Intrinsic is too costly, not beneficial\n");
|
||
return MadeChange;
|
||
}
|
||
|
||
// Ok, transform appears worthwhile.
|
||
MadeChange = true;
|
||
|
||
bool OffsetIsZero = false;
|
||
if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
|
||
OffsetIsZero = ExtraOffsetExprC->isZero();
|
||
|
||
// Step 1: Compute the loop's final IV value / trip count.
|
||
|
||
CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
|
||
IntrID, Ty, {Val, /*is_zero_poison=*/Builder.getFalse()},
|
||
/*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
|
||
Value *ValNumActiveBits = Builder.CreateSub(
|
||
ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
|
||
Val->getName() + ".numactivebits", /*HasNUW=*/true,
|
||
/*HasNSW=*/Bitwidth != 2);
|
||
|
||
SCEVExpander Expander(*SE, *DL, "loop-idiom");
|
||
Expander.setInsertPoint(&*Builder.GetInsertPoint());
|
||
Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
|
||
|
||
Value *ValNumActiveBitsOffset = Builder.CreateAdd(
|
||
ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
|
||
/*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
|
||
Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
|
||
{ValNumActiveBitsOffset, Start},
|
||
/*FMFSource=*/nullptr, "iv.final");
|
||
|
||
auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
|
||
IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
|
||
/*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
|
||
// FIXME: or when the offset was `add nuw`
|
||
|
||
// We know loop's backedge-taken count, but what's loop's trip count?
|
||
Value *LoopTripCount =
|
||
Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
|
||
CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
|
||
/*HasNSW=*/Bitwidth != 2);
|
||
|
||
// Step 2: Adjust the successor basic block to recieve the original
|
||
// induction variable's final value instead of the orig. IV itself.
|
||
|
||
IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
|
||
|
||
// Step 3: Rewrite the loop into a countable form, with canonical IV.
|
||
|
||
// The new canonical induction variable.
|
||
Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin());
|
||
auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
|
||
|
||
// The induction itself.
|
||
Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->getFirstNonPHIIt());
|
||
auto *CIVNext =
|
||
Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
|
||
/*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
|
||
|
||
// The loop trip count check.
|
||
auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
|
||
CurLoop->getName() + ".ivcheck");
|
||
auto *NewIVCheck = CIVCheck;
|
||
if (InvertedCond) {
|
||
NewIVCheck = Builder.CreateNot(CIVCheck);
|
||
NewIVCheck->takeName(ValShiftedIsZero);
|
||
}
|
||
|
||
// The original IV, but rebased to be an offset to the CIV.
|
||
auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
|
||
/*HasNSW=*/true); // FIXME: what about NUW?
|
||
IVDePHId->takeName(IV);
|
||
|
||
// The loop terminator.
|
||
Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
|
||
Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
|
||
LoopHeaderBB->getTerminator()->eraseFromParent();
|
||
|
||
// Populate the IV PHI.
|
||
CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
|
||
CIV->addIncoming(CIVNext, LoopHeaderBB);
|
||
|
||
// Step 4: Forget the "non-computable" trip-count SCEV associated with the
|
||
// loop. The loop would otherwise not be deleted even if it becomes empty.
|
||
|
||
SE->forgetLoop(CurLoop);
|
||
|
||
// Step 5: Try to cleanup the loop's body somewhat.
|
||
IV->replaceAllUsesWith(IVDePHId);
|
||
IV->eraseFromParent();
|
||
|
||
ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
|
||
ValShiftedIsZero->eraseFromParent();
|
||
|
||
// Other passes will take care of actually deleting the loop if possible.
|
||
|
||
LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
|
||
|
||
++NumShiftUntilZero;
|
||
return MadeChange;
|
||
}
|