Zibi Sarbinowski f343fee8c5
[libcxx][test][z/OS] Fix hermite.pass.cpp for HEX float (#101019)
The HEX float on z/OS does not have infinity nor NaN. In addition, the
limits are smaller before the overflow occurs in mathematical
calculations. This PR accounts for this.

FYI, this LIT test was recently added in PR
[89982](https://github.com/llvm/llvm-project/pull/89982)
2024-08-07 09:09:06 -04:00

357 lines
11 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14
// <cmath>
// double hermite(unsigned n, double x);
// float hermite(unsigned n, float x);
// long double hermite(unsigned n, long double x);
// float hermitef(unsigned n, float x);
// long double hermitel(unsigned n, long double x);
// template <class Integer>
// double hermite(unsigned n, Integer x);
#include <array>
#include <cassert>
#include <cmath>
#include <limits>
#include <vector>
#include "type_algorithms.h"
template <class Real>
constexpr unsigned get_maximal_order() {
if constexpr (std::numeric_limits<Real>::is_iec559)
return 128;
else { // Workaround for z/OS HexFloat.
// Note |H_n(x)| < 10^75 for n < 39 and x in sample_points().
static_assert(std::numeric_limits<Real>::max_exponent10 == 75);
return 39;
}
}
template <class T>
std::array<T, 11> sample_points() {
return {-12.34, -7.42, -1.0, -0.5, -0.1, 0.0, 0.1, 0.5, 1.0, 5.67, 15.67};
}
template <class Real>
class CompareFloatingValues {
private:
Real abs_tol;
Real rel_tol;
public:
CompareFloatingValues() {
abs_tol = []() -> Real {
if (std::is_same_v<Real, float>)
return 1e-5f;
else if (std::is_same_v<Real, double>)
return 1e-11;
else
return 1e-12l;
}();
rel_tol = abs_tol;
}
bool operator()(Real result, Real expected) const {
if (std::isinf(expected) && std::isinf(result))
return result == expected;
if (std::isnan(expected) || std::isnan(result))
return false;
Real tol = abs_tol + std::abs(expected) * rel_tol;
return std::abs(result - expected) < tol;
}
};
// Roots are taken from
// Salzer, Herbert E., Ruth Zucker, and Ruth Capuano.
// Table of the zeros and weight factors of the first twenty Hermite
// polynomials. US Government Printing Office, 1952.
template <class T>
std::vector<T> get_roots(unsigned n) {
switch (n) {
case 0:
return {};
case 1:
return {T(0)};
case 2:
return {T(0.707106781186548)};
case 3:
return {T(0), T(1.224744871391589)};
case 4:
return {T(0.524647623275290), T(1.650680123885785)};
case 5:
return {T(0), T(0.958572464613819), T(2.020182870456086)};
case 6:
return {T(0.436077411927617), T(1.335849074013697), T(2.350604973674492)};
case 7:
return {T(0), T(0.816287882858965), T(1.673551628767471), T(2.651961356835233)};
case 8:
return {T(0.381186990207322), T(1.157193712446780), T(1.981656756695843), T(2.930637420257244)};
case 9:
return {T(0), T(0.723551018752838), T(1.468553289216668), T(2.266580584531843), T(3.190993201781528)};
case 10:
return {
T(0.342901327223705), T(1.036610829789514), T(1.756683649299882), T(2.532731674232790), T(3.436159118837738)};
case 11:
return {T(0),
T(0.65680956682100),
T(1.326557084494933),
T(2.025948015825755),
T(2.783290099781652),
T(3.668470846559583)};
case 12:
return {T(0.314240376254359),
T(0.947788391240164),
T(1.597682635152605),
T(2.279507080501060),
T(3.020637025120890),
T(3.889724897869782)};
case 13:
return {T(0),
T(0.605763879171060),
T(1.220055036590748),
T(1.853107651601512),
T(2.519735685678238),
T(3.246608978372410),
T(4.101337596178640)};
case 14:
return {T(0.29174551067256),
T(0.87871378732940),
T(1.47668273114114),
T(2.09518325850772),
T(2.74847072498540),
T(3.46265693360227),
T(4.30444857047363)};
case 15:
return {T(0.00000000000000),
T(0.56506958325558),
T(1.13611558521092),
T(1.71999257518649),
T(2.32573248617386),
T(2.96716692790560),
T(3.66995037340445),
T(4.49999070730939)};
case 16:
return {T(0.27348104613815),
T(0.82295144914466),
T(1.38025853919888),
T(1.95178799091625),
T(2.54620215784748),
T(3.17699916197996),
T(3.86944790486012),
T(4.68873893930582)};
case 17:
return {T(0),
T(0.5316330013427),
T(1.0676487257435),
T(1.6129243142212),
T(2.1735028266666),
T(2.7577629157039),
T(3.3789320911415),
T(4.0619466758755),
T(4.8713451936744)};
case 18:
return {T(0.2582677505191),
T(0.7766829192674),
T(1.3009208583896),
T(1.8355316042616),
T(2.3862990891667),
T(2.9613775055316),
T(3.5737690684863),
T(4.2481178735681),
T(5.0483640088745)};
case 19:
return {T(0),
T(0.5035201634239),
T(1.0103683871343),
T(1.5241706193935),
T(2.0492317098506),
T(2.5911337897945),
T(3.1578488183476),
T(3.7621873519640),
T(4.4285328066038),
T(5.2202716905375)};
case 20:
return {T(0.2453407083009),
T(0.7374737285454),
T(1.2340762153953),
T(1.7385377121166),
T(2.2549740020893),
T(2.7888060584281),
T(3.347854567332),
T(3.9447640401156),
T(4.6036824495507),
T(5.3874808900112)};
default: // polynom degree n>20 is unsupported
assert(false);
return {T(-42)};
}
}
template <class Real>
void test() {
if constexpr (
std::numeric_limits<Real>::has_quiet_NaN &&
std::numeric_limits<
Real>::has_signaling_NaN) { // checks if NaNs are reported correctly (i.e. output == input for input == NaN)
using nl = std::numeric_limits<Real>;
for (Real NaN : {nl::quiet_NaN(), nl::signaling_NaN()})
for (unsigned n = 0; n < get_maximal_order<Real>(); ++n)
assert(std::isnan(std::hermite(n, NaN)));
}
if constexpr (std::numeric_limits<Real>::has_quiet_NaN &&
std::numeric_limits<
Real>::has_signaling_NaN) { // simple sample points for n=0..127 should not produce NaNs.
for (Real x : sample_points<Real>())
for (unsigned n = 0; n < get_maximal_order<Real>(); ++n)
assert(!std::isnan(std::hermite(n, x)));
}
{ // checks std::hermite(n, x) for n=0..5 against analytic polynoms
const auto h0 = [](Real) -> Real { return 1; };
const auto h1 = [](Real y) -> Real { return 2 * y; };
const auto h2 = [](Real y) -> Real { return 4 * y * y - 2; };
const auto h3 = [](Real y) -> Real { return y * (8 * y * y - 12); };
const auto h4 = [](Real y) -> Real { return (16 * std::pow(y, 4) - 48 * y * y + 12); };
const auto h5 = [](Real y) -> Real { return y * (32 * std::pow(y, 4) - 160 * y * y + 120); };
for (Real x : sample_points<Real>()) {
const CompareFloatingValues<Real> compare;
assert(compare(std::hermite(0, x), h0(x)));
assert(compare(std::hermite(1, x), h1(x)));
assert(compare(std::hermite(2, x), h2(x)));
assert(compare(std::hermite(3, x), h3(x)));
assert(compare(std::hermite(4, x), h4(x)));
assert(compare(std::hermite(5, x), h5(x)));
}
}
{ // checks std::hermitef for bitwise equality with std::hermite(unsigned, float)
if constexpr (std::is_same_v<Real, float>)
for (unsigned n = 0; n < get_maximal_order<Real>(); ++n)
for (float x : sample_points<float>())
assert(std::hermite(n, x) == std::hermitef(n, x));
}
{ // checks std::hermitel for bitwise equality with std::hermite(unsigned, long double)
if constexpr (std::is_same_v<Real, long double>)
for (unsigned n = 0; n < get_maximal_order<Real>(); ++n)
for (long double x : sample_points<long double>())
assert(std::hermite(n, x) == std::hermitel(n, x));
}
{ // Checks if the characteristic recurrence relation holds: H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x)
for (Real x : sample_points<Real>()) {
for (unsigned n = 1; n < get_maximal_order<Real>() - 1; ++n) {
Real H_next = std::hermite(n + 1, x);
Real H_next_recurrence = 2 * (x * std::hermite(n, x) - n * std::hermite(n - 1, x));
if (std::isinf(H_next))
break;
const CompareFloatingValues<Real> compare;
assert(compare(H_next, H_next_recurrence));
}
}
}
{ // sanity checks: hermite polynoms need to change signs at (simple) roots. checked upto order n<=20.
// root tolerance: must be smaller than the smallest difference between adjacent roots
Real tol = []() -> Real {
if (std::is_same_v<Real, float>)
return 1e-5f;
else if (std::is_same_v<Real, double>)
return 1e-9;
else
return 1e-10l;
}();
const auto is_sign_change = [tol](unsigned n, Real x) -> bool {
return std::hermite(n, x - tol) * std::hermite(n, x + tol) < 0;
};
for (unsigned n = 0; n <= 20u; ++n) {
for (Real x : get_roots<Real>(n)) {
// the roots are symmetric: if x is a root, so is -x
if (x > 0)
assert(is_sign_change(n, -x));
assert(is_sign_change(n, x));
}
}
}
if constexpr (std::numeric_limits<Real>::has_infinity) { // check input infinity is handled correctly
Real inf = std::numeric_limits<Real>::infinity();
for (unsigned n = 1; n < get_maximal_order<Real>(); ++n) {
assert(std::hermite(n, +inf) == inf);
assert(std::hermite(n, -inf) == ((n & 1) ? -inf : inf));
}
}
if constexpr (std::numeric_limits<
Real>::has_infinity) { // check: if overflow occurs that it is mapped to the correct infinity
if constexpr (std::is_same_v<Real, double>) {
// Q: Why only double?
// A: The numeric values (e.g. overflow threshold `n`) below are different for other types.
static_assert(sizeof(double) == 8);
for (unsigned n = 0; n < get_maximal_order<Real>(); ++n) {
// Q: Why n=111 and x=300?
// A: Both are chosen s.t. the first overlow occurs for some `n<get_maximal_order<Real>()`.
if (n < 111) {
assert(std::isfinite(std::hermite(n, +300.0)));
assert(std::isfinite(std::hermite(n, -300.0)));
} else {
double inf = std::numeric_limits<double>::infinity();
assert(std::hermite(n, +300.0) == inf);
assert(std::hermite(n, -300.0) == ((n & 1) ? -inf : inf));
}
}
}
}
}
struct TestFloat {
template <class Real>
void operator()() {
test<Real>();
}
};
struct TestInt {
template <class Integer>
void operator()() {
// checks that std::hermite(unsigned, Integer) actually wraps std::hermite(unsigned, double)
for (unsigned n = 0; n < get_maximal_order<double>(); ++n)
for (Integer x : {-42, -7, -5, -1, 0, 1, 5, 7, 42})
assert(std::hermite(n, x) == std::hermite(n, static_cast<double>(x)));
}
};
int main() {
types::for_each(types::floating_point_types(), TestFloat());
types::for_each(types::type_list<short, int, long, long long>(), TestInt());
}