llvm-project/flang/lib/Frontend/FrontendActions.cpp
Andrzej Warzynski 69c3309d45 [flang][driver] Add support for -emit-mlir
This patch adds support for generating MLIR files in Flang's frontend
driver (i.e. `flang-new -fc1`). `-emit-fir` is added as an alias for
`-emit-mlir`. We may want to decide to split the two in the future.

A new parent class for code-gen frontend actions is introduced:
`CodeGenAction`. We will be using this class to encapsulate logic shared
between all code-generation actions, but not required otherwise. For
now, it will:
 * run prescanning, parsing and semantic checks,
 * lower the input to MLIR.
`EmitObjAction` is updated to inherit from this class. This means that
the behaviour of `flang-new -fc1 -emit-obj` is also updated (previously,
it would just exit immediately). This change required
`flang/test/Driver/syntax-only.f90` to be updated.

For `-emit-fir`, a specialisation of `CodeGenAction` is introduced:
`EmitMLIRAction`. The key logic for this class is implemented in
`EmitMLIRAction::ExecuteAction`.

Differential Revision: https://reviews.llvm.org/D118985
2022-02-09 08:35:48 +00:00

449 lines
15 KiB
C++

//===--- FrontendActions.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Frontend/FrontendActions.h"
#include "flang/Common/default-kinds.h"
#include "flang/Frontend/CompilerInstance.h"
#include "flang/Frontend/FrontendOptions.h"
#include "flang/Frontend/PreprocessorOptions.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/Support/Verifier.h"
#include "flang/Optimizer/Support/InitFIR.h"
#include "flang/Optimizer/Support/KindMapping.h"
#include "flang/Optimizer/Support/Utils.h"
#include "flang/Parser/dump-parse-tree.h"
#include "flang/Parser/parsing.h"
#include "flang/Parser/provenance.h"
#include "flang/Parser/source.h"
#include "flang/Parser/unparse.h"
#include "flang/Semantics/runtime-type-info.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/unparse-with-symbols.h"
#include "mlir/IR/Dialect.h"
#include "mlir/Pass/PassManager.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ErrorHandling.h"
#include <clang/Basic/Diagnostic.h>
#include <memory>
using namespace Fortran::frontend;
//===----------------------------------------------------------------------===//
// Custom BeginSourceFileAction
//===----------------------------------------------------------------------===//
bool PrescanAction::BeginSourceFileAction() { return RunPrescan(); }
bool PrescanAndParseAction::BeginSourceFileAction() {
return RunPrescan() && RunParse();
}
bool PrescanAndSemaAction::BeginSourceFileAction() {
return RunPrescan() && RunParse() && RunSemanticChecks();
}
bool PrescanAndSemaDebugAction::BeginSourceFileAction() {
// Semantic checks are made to succeed unconditionally.
return RunPrescan() && RunParse() && (RunSemanticChecks() || true);
}
bool CodeGenAction::BeginSourceFileAction() {
bool res = RunPrescan() && RunParse() && RunSemanticChecks();
if (!res)
return res;
CompilerInstance &ci = this->instance();
// Load the MLIR dialects required by Flang
mlir::DialectRegistry registry;
mlirCtx = std::make_unique<mlir::MLIRContext>(registry);
fir::support::registerNonCodegenDialects(registry);
fir::support::loadNonCodegenDialects(*mlirCtx);
// Create a LoweringBridge
const common::IntrinsicTypeDefaultKinds &defKinds =
ci.invocation().semanticsContext().defaultKinds();
fir::KindMapping kindMap(mlirCtx.get(),
llvm::ArrayRef<fir::KindTy>{fir::fromDefaultKinds(defKinds)});
lower::LoweringBridge lb = Fortran::lower::LoweringBridge::create(*mlirCtx,
defKinds, ci.invocation().semanticsContext().intrinsics(),
ci.parsing().allCooked(), /*triple=*/"native", kindMap);
// Create a parse tree and lower it to FIR
Fortran::parser::Program &parseTree{*ci.parsing().parseTree()};
lb.lower(parseTree, ci.invocation().semanticsContext());
mlirModule = std::make_unique<mlir::ModuleOp>(lb.getModule());
// Run the default passes.
mlir::PassManager pm(mlirCtx.get(), mlir::OpPassManager::Nesting::Implicit);
pm.enableVerifier(/*verifyPasses=*/true);
pm.addPass(std::make_unique<Fortran::lower::VerifierPass>());
if (mlir::failed(pm.run(*mlirModule))) {
unsigned diagID =
ci.diagnostics().getCustomDiagID(clang::DiagnosticsEngine::Error,
"verification of lowering to FIR failed");
ci.diagnostics().Report(diagID);
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Custom ExecuteAction
//===----------------------------------------------------------------------===//
void InputOutputTestAction::ExecuteAction() {
CompilerInstance &ci = instance();
// Create a stream for errors
std::string buf;
llvm::raw_string_ostream error_stream{buf};
// Read the input file
Fortran::parser::AllSources &allSources{ci.allSources()};
std::string path{GetCurrentFileOrBufferName()};
const Fortran::parser::SourceFile *sf;
if (path == "-")
sf = allSources.ReadStandardInput(error_stream);
else
sf = allSources.Open(path, error_stream, std::optional<std::string>{"."s});
llvm::ArrayRef<char> fileContent = sf->content();
// Output file descriptor to receive the contents of the input file.
std::unique_ptr<llvm::raw_ostream> os;
// Copy the contents from the input file to the output file
if (!ci.IsOutputStreamNull()) {
// An output stream (outputStream_) was set earlier
ci.WriteOutputStream(fileContent.data());
} else {
// No pre-set output stream - create an output file
os = ci.CreateDefaultOutputFile(
/*binary=*/true, GetCurrentFileOrBufferName(), "txt");
if (!os)
return;
(*os) << fileContent.data();
}
}
void PrintPreprocessedAction::ExecuteAction() {
std::string buf;
llvm::raw_string_ostream outForPP{buf};
// Format or dump the prescanner's output
CompilerInstance &ci = this->instance();
if (ci.invocation().preprocessorOpts().noReformat) {
ci.parsing().DumpCookedChars(outForPP);
} else {
ci.parsing().EmitPreprocessedSource(
outForPP, !ci.invocation().preprocessorOpts().noLineDirectives);
}
// Print diagnostics from the prescanner
ci.parsing().messages().Emit(llvm::errs(), ci.allCookedSources());
// If a pre-defined output stream exists, dump the preprocessed content there
if (!ci.IsOutputStreamNull()) {
// Send the output to the pre-defined output buffer.
ci.WriteOutputStream(outForPP.str());
return;
}
// Create a file and save the preprocessed output there
std::unique_ptr<llvm::raw_pwrite_stream> os{ci.CreateDefaultOutputFile(
/*Binary=*/true, /*InFile=*/GetCurrentFileOrBufferName())};
if (!os) {
return;
}
(*os) << outForPP.str();
}
void DebugDumpProvenanceAction::ExecuteAction() {
this->instance().parsing().DumpProvenance(llvm::outs());
}
void ParseSyntaxOnlyAction::ExecuteAction() {
}
void DebugUnparseNoSemaAction::ExecuteAction() {
auto &invoc = this->instance().invocation();
auto &parseTree{instance().parsing().parseTree()};
// TODO: Options should come from CompilerInvocation
Unparse(llvm::outs(), *parseTree,
/*encoding=*/Fortran::parser::Encoding::UTF_8,
/*capitalizeKeywords=*/true, /*backslashEscapes=*/false,
/*preStatement=*/nullptr,
invoc.useAnalyzedObjectsForUnparse() ? &invoc.asFortran() : nullptr);
}
void DebugUnparseAction::ExecuteAction() {
auto &invoc = this->instance().invocation();
auto &parseTree{instance().parsing().parseTree()};
CompilerInstance &ci = this->instance();
auto os{ci.CreateDefaultOutputFile(
/*Binary=*/false, /*InFile=*/GetCurrentFileOrBufferName())};
// TODO: Options should come from CompilerInvocation
Unparse(*os, *parseTree,
/*encoding=*/Fortran::parser::Encoding::UTF_8,
/*capitalizeKeywords=*/true, /*backslashEscapes=*/false,
/*preStatement=*/nullptr,
invoc.useAnalyzedObjectsForUnparse() ? &invoc.asFortran() : nullptr);
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugUnparseWithSymbolsAction::ExecuteAction() {
auto &parseTree{*instance().parsing().parseTree()};
Fortran::semantics::UnparseWithSymbols(
llvm::outs(), parseTree, /*encoding=*/Fortran::parser::Encoding::UTF_8);
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugDumpSymbolsAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
auto &semantics = ci.semantics();
auto tables{Fortran::semantics::BuildRuntimeDerivedTypeTables(
instance().invocation().semanticsContext())};
// The runtime derived type information table builder may find and report
// semantic errors. So it is important that we report them _after_
// BuildRuntimeDerivedTypeTables is run.
reportFatalSemanticErrors();
if (!tables.schemata) {
unsigned DiagID =
ci.diagnostics().getCustomDiagID(clang::DiagnosticsEngine::Error,
"could not find module file for __fortran_type_info");
ci.diagnostics().Report(DiagID);
llvm::errs() << "\n";
}
// Dump symbols
semantics.DumpSymbols(llvm::outs());
}
void DebugDumpAllAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Dump parse tree
auto &parseTree{instance().parsing().parseTree()};
llvm::outs() << "========================";
llvm::outs() << " Flang: parse tree dump ";
llvm::outs() << "========================\n";
Fortran::parser::DumpTree(
llvm::outs(), parseTree, &ci.invocation().asFortran());
auto &semantics = ci.semantics();
auto tables{Fortran::semantics::BuildRuntimeDerivedTypeTables(
instance().invocation().semanticsContext())};
// The runtime derived type information table builder may find and report
// semantic errors. So it is important that we report them _after_
// BuildRuntimeDerivedTypeTables is run.
reportFatalSemanticErrors();
if (!tables.schemata) {
unsigned DiagID =
ci.diagnostics().getCustomDiagID(clang::DiagnosticsEngine::Error,
"could not find module file for __fortran_type_info");
ci.diagnostics().Report(DiagID);
llvm::errs() << "\n";
}
// Dump symbols
llvm::outs() << "=====================";
llvm::outs() << " Flang: symbols dump ";
llvm::outs() << "=====================\n";
semantics.DumpSymbols(llvm::outs());
}
void DebugDumpParseTreeNoSemaAction::ExecuteAction() {
auto &parseTree{instance().parsing().parseTree()};
// Dump parse tree
Fortran::parser::DumpTree(
llvm::outs(), parseTree, &this->instance().invocation().asFortran());
}
void DebugDumpParseTreeAction::ExecuteAction() {
auto &parseTree{instance().parsing().parseTree()};
// Dump parse tree
Fortran::parser::DumpTree(
llvm::outs(), parseTree, &this->instance().invocation().asFortran());
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugMeasureParseTreeAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Parse. In case of failure, report and return.
ci.parsing().Parse(llvm::outs());
if (!ci.parsing().messages().empty() &&
(ci.invocation().warnAsErr() ||
ci.parsing().messages().AnyFatalError())) {
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Could not parse %0");
ci.diagnostics().Report(diagID) << GetCurrentFileOrBufferName();
ci.parsing().messages().Emit(
llvm::errs(), this->instance().allCookedSources());
return;
}
// Report the diagnostics from parsing
ci.parsing().messages().Emit(llvm::errs(), ci.allCookedSources());
auto &parseTree{*ci.parsing().parseTree()};
// Measure the parse tree
MeasurementVisitor visitor;
Fortran::parser::Walk(parseTree, visitor);
llvm::outs() << "Parse tree comprises " << visitor.objects
<< " objects and occupies " << visitor.bytes
<< " total bytes.\n";
}
void DebugPreFIRTreeAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
auto &parseTree{*ci.parsing().parseTree()};
// Dump pre-FIR tree
if (auto ast{Fortran::lower::createPFT(
parseTree, ci.invocation().semanticsContext())}) {
Fortran::lower::dumpPFT(llvm::outs(), *ast);
} else {
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Pre FIR Tree is NULL.");
ci.diagnostics().Report(diagID);
}
}
void DebugDumpParsingLogAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
ci.parsing().Parse(llvm::errs());
ci.parsing().DumpParsingLog(llvm::outs());
}
void GetDefinitionAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
parser::AllCookedSources &cs = ci.allCookedSources();
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Symbol not found");
auto gdv = ci.invocation().frontendOpts().getDefVals;
auto charBlock{cs.GetCharBlockFromLineAndColumns(
gdv.line, gdv.startColumn, gdv.endColumn)};
if (!charBlock) {
ci.diagnostics().Report(diagID);
return;
}
llvm::outs() << "String range: >" << charBlock->ToString() << "<\n";
auto *symbol{ci.invocation()
.semanticsContext()
.FindScope(*charBlock)
.FindSymbol(*charBlock)};
if (!symbol) {
ci.diagnostics().Report(diagID);
return;
}
llvm::outs() << "Found symbol name: " << symbol->name().ToString() << "\n";
auto sourceInfo{cs.GetSourcePositionRange(symbol->name())};
if (!sourceInfo) {
llvm_unreachable(
"Failed to obtain SourcePosition."
"TODO: Please, write a test and replace this with a diagnostic!");
return;
}
llvm::outs() << "Found symbol name: " << symbol->name().ToString() << "\n";
llvm::outs() << symbol->name().ToString() << ": "
<< sourceInfo->first.file.path() << ", "
<< sourceInfo->first.line << ", " << sourceInfo->first.column
<< "-" << sourceInfo->second.column << "\n";
}
void GetSymbolsSourcesAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
ci.semantics().DumpSymbolsSources(llvm::outs());
}
void EmitMLIRAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Print the output. If a pre-defined output stream exists, dump the MLIR
// content there.
if (!ci.IsOutputStreamNull()) {
mlirModule->print(ci.GetOutputStream());
return;
}
// ... otherwise, print to a file.
std::unique_ptr<llvm::raw_pwrite_stream> os{ci.CreateDefaultOutputFile(
/*Binary=*/true, /*InFile=*/GetCurrentFileOrBufferName(), "mlir")};
if (!os) {
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "failed to create the output file");
ci.diagnostics().Report(diagID);
return;
}
mlirModule->print(*os);
}
void EmitObjAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
unsigned DiagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "code-generation is not available yet");
ci.diagnostics().Report(DiagID);
}
void InitOnlyAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
unsigned DiagID =
ci.diagnostics().getCustomDiagID(clang::DiagnosticsEngine::Warning,
"Use `-init-only` for testing purposes only");
ci.diagnostics().Report(DiagID);
}
void PluginParseTreeAction::ExecuteAction() {}