llvm-project/llvm/tools/llvm-profgen/ProfileGenerator.cpp
wlei 6bccdcdb35 Revert "[CSSPGO][llvm-profgen] Compress recursive cycles in calling context"
This reverts commit 0609f257dc2e2c3e4c7cd30fe2ffd520117e706b.
2021-02-03 22:16:05 -08:00

515 lines
19 KiB
C++

//===-- ProfileGenerator.cpp - Profile Generator ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ProfileGenerator.h"
static cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
cl::Required,
cl::desc("Output profile file"));
static cl::opt<SampleProfileFormat> OutputFormat(
"format", cl::desc("Format of output profile"), cl::init(SPF_Text),
cl::values(
clEnumValN(SPF_Binary, "binary", "Binary encoding (default)"),
clEnumValN(SPF_Compact_Binary, "compbinary", "Compact binary encoding"),
clEnumValN(SPF_Ext_Binary, "extbinary", "Extensible binary encoding"),
clEnumValN(SPF_Text, "text", "Text encoding"),
clEnumValN(SPF_GCC, "gcc",
"GCC encoding (only meaningful for -sample)")));
using namespace llvm;
using namespace sampleprof;
namespace llvm {
namespace sampleprof {
static bool
usePseudoProbes(const BinarySampleCounterMap &BinarySampleCounters) {
return BinarySampleCounters.size() &&
BinarySampleCounters.begin()->first->usePseudoProbes();
}
std::unique_ptr<ProfileGenerator>
ProfileGenerator::create(const BinarySampleCounterMap &BinarySampleCounters,
enum PerfScriptType SampleType) {
std::unique_ptr<ProfileGenerator> ProfileGenerator;
if (SampleType == PERF_LBR_STACK) {
if (usePseudoProbes(BinarySampleCounters)) {
ProfileGenerator.reset(
new PseudoProbeCSProfileGenerator(BinarySampleCounters));
} else {
ProfileGenerator.reset(new CSProfileGenerator(BinarySampleCounters));
}
} else {
// TODO:
llvm_unreachable("Unsupported perfscript!");
}
return ProfileGenerator;
}
void ProfileGenerator::write() {
auto WriterOrErr = SampleProfileWriter::create(OutputFilename, OutputFormat);
if (std::error_code EC = WriterOrErr.getError())
exitWithError(EC, OutputFilename);
auto Writer = std::move(WriterOrErr.get());
Writer->write(ProfileMap);
}
void ProfileGenerator::findDisjointRanges(RangeSample &DisjointRanges,
const RangeSample &Ranges) {
/*
Regions may overlap with each other. Using the boundary info, find all
disjoint ranges and their sample count. BoundaryPoint contains the count
multiple samples begin/end at this points.
|<--100-->| Sample1
|<------200------>| Sample2
A B C
In the example above,
Sample1 begins at A, ends at B, its value is 100.
Sample2 beings at A, ends at C, its value is 200.
For A, BeginCount is the sum of sample begins at A, which is 300 and no
samples ends at A, so EndCount is 0.
Then boundary points A, B, and C with begin/end counts are:
A: (300, 0)
B: (0, 100)
C: (0, 200)
*/
struct BoundaryPoint {
// Sum of sample counts beginning at this point
uint64_t BeginCount;
// Sum of sample counts ending at this point
uint64_t EndCount;
BoundaryPoint() : BeginCount(0), EndCount(0){};
void addBeginCount(uint64_t Count) { BeginCount += Count; }
void addEndCount(uint64_t Count) { EndCount += Count; }
};
/*
For the above example. With boundary points, follwing logic finds two
disjoint region of
[A,B]: 300
[B+1,C]: 200
If there is a boundary point that both begin and end, the point itself
becomes a separate disjoint region. For example, if we have original
ranges of
|<--- 100 --->|
|<--- 200 --->|
A B C
there are three boundary points with their begin/end counts of
A: (100, 0)
B: (200, 100)
C: (0, 200)
the disjoint ranges would be
[A, B-1]: 100
[B, B]: 300
[B+1, C]: 200.
*/
std::map<uint64_t, BoundaryPoint> Boundaries;
for (auto Item : Ranges) {
uint64_t Begin = Item.first.first;
uint64_t End = Item.first.second;
uint64_t Count = Item.second;
if (Boundaries.find(Begin) == Boundaries.end())
Boundaries[Begin] = BoundaryPoint();
Boundaries[Begin].addBeginCount(Count);
if (Boundaries.find(End) == Boundaries.end())
Boundaries[End] = BoundaryPoint();
Boundaries[End].addEndCount(Count);
}
uint64_t BeginAddress = 0;
int Count = 0;
for (auto Item : Boundaries) {
uint64_t Address = Item.first;
BoundaryPoint &Point = Item.second;
if (Point.BeginCount) {
if (BeginAddress)
DisjointRanges[{BeginAddress, Address - 1}] = Count;
Count += Point.BeginCount;
BeginAddress = Address;
}
if (Point.EndCount) {
assert(BeginAddress && "First boundary point cannot be 'end' point");
DisjointRanges[{BeginAddress, Address}] = Count;
Count -= Point.EndCount;
BeginAddress = Address + 1;
}
}
}
FunctionSamples &
CSProfileGenerator::getFunctionProfileForContext(StringRef ContextStr) {
auto Ret = ProfileMap.try_emplace(ContextStr, FunctionSamples());
if (Ret.second) {
SampleContext FContext(Ret.first->first(), RawContext);
FunctionSamples &FProfile = Ret.first->second;
FProfile.setName(FContext.getNameWithoutContext());
FProfile.setContext(FContext);
}
return Ret.first->second;
}
void CSProfileGenerator::updateBodySamplesforFunctionProfile(
FunctionSamples &FunctionProfile, const FrameLocation &LeafLoc,
uint64_t Count) {
// Filter out invalid negative(int type) lineOffset
if (LeafLoc.second.LineOffset & 0x80000000)
return;
// Use the maximum count of samples with same line location
ErrorOr<uint64_t> R = FunctionProfile.findSamplesAt(
LeafLoc.second.LineOffset, LeafLoc.second.Discriminator);
uint64_t PreviousCount = R ? R.get() : 0;
if (PreviousCount < Count) {
FunctionProfile.addBodySamples(LeafLoc.second.LineOffset,
LeafLoc.second.Discriminator,
Count - PreviousCount);
FunctionProfile.addTotalSamples(Count - PreviousCount);
}
}
void CSProfileGenerator::populateFunctionBodySamples(
FunctionSamples &FunctionProfile, const RangeSample &RangeCounter,
ProfiledBinary *Binary) {
// Compute disjoint ranges first, so we can use MAX
// for calculating count for each location.
RangeSample Ranges;
findDisjointRanges(Ranges, RangeCounter);
for (auto Range : Ranges) {
uint64_t RangeBegin = Binary->offsetToVirtualAddr(Range.first.first);
uint64_t RangeEnd = Binary->offsetToVirtualAddr(Range.first.second);
uint64_t Count = Range.second;
// Disjoint ranges have introduce zero-filled gap that
// doesn't belong to current context, filter them out.
if (Count == 0)
continue;
InstructionPointer IP(Binary, RangeBegin, true);
// Disjoint ranges may have range in the middle of two instr,
// e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range
// can be Addr1+1 to Addr2-1. We should ignore such range.
if (IP.Address > RangeEnd)
continue;
while (IP.Address <= RangeEnd) {
uint64_t Offset = Binary->virtualAddrToOffset(IP.Address);
const FrameLocation &LeafLoc = Binary->getInlineLeafFrameLoc(Offset);
// Recording body sample for this specific context
updateBodySamplesforFunctionProfile(FunctionProfile, LeafLoc, Count);
// Move to next IP within the range
IP.advance();
}
}
}
void CSProfileGenerator::populateFunctionBoundarySamples(
StringRef ContextId, FunctionSamples &FunctionProfile,
const BranchSample &BranchCounters, ProfiledBinary *Binary) {
for (auto Entry : BranchCounters) {
uint64_t SourceOffset = Entry.first.first;
uint64_t TargetOffset = Entry.first.second;
uint64_t Count = Entry.second;
// Get the callee name by branch target if it's a call branch
StringRef CalleeName = FunctionSamples::getCanonicalFnName(
Binary->getFuncFromStartOffset(TargetOffset));
if (CalleeName.size() == 0)
continue;
// Record called target sample and its count
const FrameLocation &LeafLoc = Binary->getInlineLeafFrameLoc(SourceOffset);
FunctionProfile.addCalledTargetSamples(LeafLoc.second.LineOffset,
LeafLoc.second.Discriminator,
CalleeName, Count);
// Record head sample for called target(callee)
// TODO: Cleanup ' @ '
std::string CalleeContextId =
getCallSite(LeafLoc) + " @ " + CalleeName.str();
if (ContextId.find(" @ ") != StringRef::npos) {
CalleeContextId =
ContextId.rsplit(" @ ").first.str() + " @ " + CalleeContextId;
}
FunctionSamples &CalleeProfile =
getFunctionProfileForContext(CalleeContextId);
assert(Count != 0 && "Unexpected zero weight branch");
CalleeProfile.addHeadSamples(Count);
}
}
static FrameLocation getCallerContext(StringRef CalleeContext,
StringRef &CallerNameWithContext) {
StringRef CallerContext = CalleeContext.rsplit(" @ ").first;
CallerNameWithContext = CallerContext.rsplit(':').first;
auto ContextSplit = CallerContext.rsplit(" @ ");
StringRef CallerFrameStr = ContextSplit.second.size() == 0
? ContextSplit.first
: ContextSplit.second;
FrameLocation LeafFrameLoc = {"", {0, 0}};
StringRef Funcname;
SampleContext::decodeContextString(CallerFrameStr, Funcname,
LeafFrameLoc.second);
LeafFrameLoc.first = Funcname.str();
return LeafFrameLoc;
}
void CSProfileGenerator::populateInferredFunctionSamples() {
for (const auto &Item : ProfileMap) {
const StringRef CalleeContext = Item.first();
const FunctionSamples &CalleeProfile = Item.second;
// If we already have head sample counts, we must have value profile
// for call sites added already. Skip to avoid double counting.
if (CalleeProfile.getHeadSamples())
continue;
// If we don't have context, nothing to do for caller's call site.
// This could happen for entry point function.
if (CalleeContext.find(" @ ") == StringRef::npos)
continue;
// Infer Caller's frame loc and context ID through string splitting
StringRef CallerContextId;
FrameLocation &&CallerLeafFrameLoc =
getCallerContext(CalleeContext, CallerContextId);
// It's possible that we haven't seen any sample directly in the caller,
// in which case CallerProfile will not exist. But we can't modify
// ProfileMap while iterating it.
// TODO: created function profile for those callers too
if (ProfileMap.find(CallerContextId) == ProfileMap.end())
continue;
FunctionSamples &CallerProfile = ProfileMap[CallerContextId];
// Since we don't have call count for inlined functions, we
// estimate it from inlinee's profile using entry body sample.
uint64_t EstimatedCallCount = CalleeProfile.getEntrySamples();
// If we don't have samples with location, use 1 to indicate live.
if (!EstimatedCallCount && !CalleeProfile.getBodySamples().size())
EstimatedCallCount = 1;
CallerProfile.addCalledTargetSamples(
CallerLeafFrameLoc.second.LineOffset,
CallerLeafFrameLoc.second.Discriminator, CalleeProfile.getName(),
EstimatedCallCount);
CallerProfile.addBodySamples(CallerLeafFrameLoc.second.LineOffset,
CallerLeafFrameLoc.second.Discriminator,
EstimatedCallCount);
CallerProfile.addTotalSamples(EstimatedCallCount);
}
}
// Helper function to extract context prefix
// PrefixContextId is the context id string except for the leaf probe's
// context, the final ContextId will be:
// ContextId = PrefixContextId + LeafContextId;
// Remind that the string in ContextStrStack is in callee-caller order
// So process the string vector reversely
static std::string
extractPrefixContextId(const SmallVector<const PseudoProbe *, 16> &Probes,
ProfiledBinary *Binary) {
SmallVector<std::string, 16> ContextStrStack;
for (const auto *P : Probes) {
Binary->getInlineContextForProbe(P, ContextStrStack, true);
}
std::ostringstream OContextStr;
for (auto &CxtStr : ContextStrStack) {
if (OContextStr.str().size())
OContextStr << " @ ";
OContextStr << CxtStr;
}
return OContextStr.str();
}
void PseudoProbeCSProfileGenerator::generateProfile() {
// Enable CS and pseudo probe functionalities in SampleProf
FunctionSamples::ProfileIsCS = true;
FunctionSamples::ProfileIsProbeBased = true;
for (const auto &BI : BinarySampleCounters) {
ProfiledBinary *Binary = BI.first;
for (const auto &CI : BI.second) {
const ProbeBasedCtxKey *CtxKey =
dyn_cast<ProbeBasedCtxKey>(CI.first.getPtr());
std::string PrefixContextId =
extractPrefixContextId(CtxKey->Probes, Binary);
// Fill in function body samples from probes, also infer caller's samples
// from callee's probe
populateBodySamplesWithProbes(CI.second.RangeCounter, PrefixContextId,
Binary);
// Fill in boundary samples for a call probe
populateBoundarySamplesWithProbes(CI.second.BranchCounter,
PrefixContextId, Binary);
}
}
}
void PseudoProbeCSProfileGenerator::extractProbesFromRange(
const RangeSample &RangeCounter, ProbeCounterMap &ProbeCounter,
ProfiledBinary *Binary) {
RangeSample Ranges;
findDisjointRanges(Ranges, RangeCounter);
for (const auto &Range : Ranges) {
uint64_t RangeBegin = Binary->offsetToVirtualAddr(Range.first.first);
uint64_t RangeEnd = Binary->offsetToVirtualAddr(Range.first.second);
uint64_t Count = Range.second;
// Disjoint ranges have introduce zero-filled gap that
// doesn't belong to current context, filter them out.
if (Count == 0)
continue;
InstructionPointer IP(Binary, RangeBegin, true);
// Disjoint ranges may have range in the middle of two instr,
// e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range
// can be Addr1+1 to Addr2-1. We should ignore such range.
if (IP.Address > RangeEnd)
continue;
while (IP.Address <= RangeEnd) {
const AddressProbesMap &Address2ProbesMap =
Binary->getAddress2ProbesMap();
auto It = Address2ProbesMap.find(IP.Address);
if (It != Address2ProbesMap.end()) {
for (const auto &Probe : It->second) {
if (!Probe.isBlock())
continue;
ProbeCounter[&Probe] += Count;
}
}
IP.advance();
}
}
}
void PseudoProbeCSProfileGenerator::populateBodySamplesWithProbes(
const RangeSample &RangeCounter, StringRef PrefixContextId,
ProfiledBinary *Binary) {
ProbeCounterMap ProbeCounter;
// Extract the top frame probes by looking up each address among the range in
// the Address2ProbeMap
extractProbesFromRange(RangeCounter, ProbeCounter, Binary);
for (auto PI : ProbeCounter) {
const PseudoProbe *Probe = PI.first;
uint64_t Count = PI.second;
FunctionSamples &FunctionProfile =
getFunctionProfileForLeafProbe(PrefixContextId, Probe, Binary);
FunctionProfile.addBodySamples(Probe->Index, 0, Count);
FunctionProfile.addTotalSamples(Count);
if (Probe->isEntry()) {
FunctionProfile.addHeadSamples(Count);
// Look up for the caller's function profile
const auto *InlinerDesc = Binary->getInlinerDescForProbe(Probe);
if (InlinerDesc != nullptr) {
// Since the context id will be compressed, we have to use callee's
// context id to infer caller's context id to ensure they share the
// same context prefix.
StringRef CalleeContextId =
FunctionProfile.getContext().getNameWithContext(true);
StringRef CallerContextId;
FrameLocation &&CallerLeafFrameLoc =
getCallerContext(CalleeContextId, CallerContextId);
uint64_t CallerIndex = CallerLeafFrameLoc.second.LineOffset;
assert(CallerIndex &&
"Inferred caller's location index shouldn't be zero!");
FunctionSamples &CallerProfile =
getFunctionProfileForContext(CallerContextId);
CallerProfile.setFunctionHash(InlinerDesc->FuncHash);
CallerProfile.addBodySamples(CallerIndex, 0, Count);
CallerProfile.addTotalSamples(Count);
CallerProfile.addCalledTargetSamples(CallerIndex, 0,
FunctionProfile.getName(), Count);
}
}
}
}
void PseudoProbeCSProfileGenerator::populateBoundarySamplesWithProbes(
const BranchSample &BranchCounter, StringRef PrefixContextId,
ProfiledBinary *Binary) {
for (auto BI : BranchCounter) {
uint64_t SourceOffset = BI.first.first;
uint64_t TargetOffset = BI.first.second;
uint64_t Count = BI.second;
uint64_t SourceAddress = Binary->offsetToVirtualAddr(SourceOffset);
const PseudoProbe *CallProbe = Binary->getCallProbeForAddr(SourceAddress);
if (CallProbe == nullptr)
continue;
FunctionSamples &FunctionProfile =
getFunctionProfileForLeafProbe(PrefixContextId, CallProbe, Binary);
FunctionProfile.addBodySamples(CallProbe->Index, 0, Count);
FunctionProfile.addTotalSamples(Count);
StringRef CalleeName = FunctionSamples::getCanonicalFnName(
Binary->getFuncFromStartOffset(TargetOffset));
if (CalleeName.size() == 0)
continue;
FunctionProfile.addCalledTargetSamples(CallProbe->Index, 0, CalleeName,
Count);
}
}
FunctionSamples &PseudoProbeCSProfileGenerator::getFunctionProfileForLeafProbe(
StringRef PrefixContextId, SmallVector<std::string, 16> &LeafInlinedContext,
const PseudoProbeFuncDesc *LeafFuncDesc) {
assert(LeafInlinedContext.size() &&
"Profile context must have the leaf frame");
std::ostringstream OContextStr;
OContextStr << PrefixContextId.str();
for (uint32_t I = 0; I < LeafInlinedContext.size() - 1; I++) {
if (OContextStr.str().size())
OContextStr << " @ ";
OContextStr << LeafInlinedContext[I];
}
// For leaf inlined context with the top frame, we should strip off the top
// frame's probe id, like:
// Inlined stack: [foo:1, bar:2], the ContextId will be "foo:1 @ bar"
if (OContextStr.str().size())
OContextStr << " @ ";
StringRef LeafLoc = LeafInlinedContext.back();
OContextStr << LeafLoc.split(":").first.str();
FunctionSamples &FunctionProile =
getFunctionProfileForContext(OContextStr.str());
FunctionProile.setFunctionHash(LeafFuncDesc->FuncHash);
return FunctionProile;
}
FunctionSamples &PseudoProbeCSProfileGenerator::getFunctionProfileForLeafProbe(
StringRef PrefixContextId, const PseudoProbe *LeafProbe,
ProfiledBinary *Binary) {
SmallVector<std::string, 16> LeafInlinedContext;
Binary->getInlineContextForProbe(LeafProbe, LeafInlinedContext);
// Note that the context from probe doesn't include leaf frame,
// hence we need to retrieve and append the leaf frame.
const auto *FuncDesc = Binary->getFuncDescForGUID(LeafProbe->GUID);
LeafInlinedContext.emplace_back(FuncDesc->FuncName + ":" +
Twine(LeafProbe->Index).str());
return getFunctionProfileForLeafProbe(PrefixContextId, LeafInlinedContext,
FuncDesc);
}
} // end namespace sampleprof
} // end namespace llvm