llvm-project/llvm/utils/TableGen/X86FoldTablesEmitter.cpp

765 lines
29 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting the memory fold tables of
// the X86 backend instructions.
//
//===----------------------------------------------------------------------===//
#include "Common/CodeGenInstruction.h"
#include "Common/CodeGenTarget.h"
#include "X86RecognizableInstr.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/X86FoldTablesUtils.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <set>
using namespace llvm;
using namespace X86Disassembler;
namespace {
// Represents an entry in the manual mapped instructions set.
struct ManualMapEntry {
const char *RegInstStr;
const char *MemInstStr;
uint16_t Strategy;
};
// List of instructions requiring explicitly aligned memory.
const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
"MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
// List of instructions NOT requiring explicit memory alignment.
const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
"PCMPESTRM", "PCMPESTRI", "PCMPISTRM",
"PCMPISTRI"};
const ManualMapEntry ManualMapSet[] = {
#define ENTRY(REG, MEM, FLAGS) {#REG, #MEM, FLAGS},
#include "X86ManualFoldTables.def"
};
const std::set<StringRef> NoFoldSet = {
#define NOFOLD(INSN) #INSN,
#include "X86ManualFoldTables.def"
};
static bool isExplicitAlign(const CodeGenInstruction *Inst) {
return any_of(ExplicitAlign, [Inst](const char *InstStr) {
return Inst->TheDef->getName().contains(InstStr);
});
}
static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
return Inst->TheDef->getName().contains(InstStr);
});
}
class X86FoldTablesEmitter {
const RecordKeeper &Records;
const CodeGenTarget Target;
// Represents an entry in the folding table
class X86FoldTableEntry {
const CodeGenInstruction *RegInst;
const CodeGenInstruction *MemInst;
public:
bool NoReverse = false;
bool NoForward = false;
bool FoldLoad = false;
bool FoldStore = false;
enum BcastType {
BCAST_NONE,
BCAST_W,
BCAST_D,
BCAST_Q,
BCAST_SS,
BCAST_SD,
BCAST_SH,
};
BcastType BroadcastKind = BCAST_NONE;
Align Alignment;
X86FoldTableEntry() = default;
X86FoldTableEntry(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst)
: RegInst(RegInst), MemInst(MemInst) {}
void print(raw_ostream &OS) const {
OS.indent(2);
OS << "{X86::" << RegInst->TheDef->getName() << ", ";
OS << "X86::" << MemInst->TheDef->getName() << ", ";
std::string Attrs;
if (FoldLoad)
Attrs += "TB_FOLDED_LOAD|";
if (FoldStore)
Attrs += "TB_FOLDED_STORE|";
if (NoReverse)
Attrs += "TB_NO_REVERSE|";
if (NoForward)
Attrs += "TB_NO_FORWARD|";
if (Alignment != Align(1))
Attrs += "TB_ALIGN_" + std::to_string(Alignment.value()) + "|";
switch (BroadcastKind) {
case BCAST_NONE:
break;
case BCAST_W:
Attrs += "TB_BCAST_W|";
break;
case BCAST_D:
Attrs += "TB_BCAST_D|";
break;
case BCAST_Q:
Attrs += "TB_BCAST_Q|";
break;
case BCAST_SS:
Attrs += "TB_BCAST_SS|";
break;
case BCAST_SD:
Attrs += "TB_BCAST_SD|";
break;
case BCAST_SH:
Attrs += "TB_BCAST_SH|";
break;
}
StringRef SimplifiedAttrs = StringRef(Attrs).rtrim("|");
if (SimplifiedAttrs.empty())
SimplifiedAttrs = "0";
OS << SimplifiedAttrs << "},\n";
}
#ifndef NDEBUG
// Check that Uses and Defs are same after memory fold.
void checkCorrectness() const {
auto &RegInstRec = *RegInst->TheDef;
auto &MemInstRec = *MemInst->TheDef;
auto ListOfUsesReg = RegInstRec.getValueAsListOfDefs("Uses");
auto ListOfUsesMem = MemInstRec.getValueAsListOfDefs("Uses");
auto ListOfDefsReg = RegInstRec.getValueAsListOfDefs("Defs");
auto ListOfDefsMem = MemInstRec.getValueAsListOfDefs("Defs");
if (ListOfUsesReg != ListOfUsesMem || ListOfDefsReg != ListOfDefsMem)
report_fatal_error("Uses/Defs couldn't be changed after folding " +
RegInstRec.getName() + " to " +
MemInstRec.getName());
}
#endif
};
// NOTE: We check the fold tables are sorted in X86InstrFoldTables.cpp by the
// enum of the instruction, which is computed in
// CodeGenTarget::ComputeInstrsByEnum. So we should use the same comparator
// here.
// FIXME: Could we share the code with CodeGenTarget::ComputeInstrsByEnum?
struct CompareInstrsByEnum {
bool operator()(const CodeGenInstruction *LHS,
const CodeGenInstruction *RHS) const {
assert(LHS && RHS && "LHS and RHS shouldn't be nullptr");
const auto &D1 = *LHS->TheDef;
const auto &D2 = *RHS->TheDef;
return std::tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
std::tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
}
};
typedef std::map<const CodeGenInstruction *, X86FoldTableEntry,
CompareInstrsByEnum>
FoldTable;
// Table2Addr - Holds instructions which their memory form performs
// load+store.
//
// Table#i - Holds instructions which the their memory form
// performs a load OR a store, and their #i'th operand is folded.
//
// BroadcastTable#i - Holds instructions which the their memory form performs
// a broadcast load and their #i'th operand is folded.
FoldTable Table2Addr;
FoldTable Table0;
FoldTable Table1;
FoldTable Table2;
FoldTable Table3;
FoldTable Table4;
FoldTable BroadcastTable1;
FoldTable BroadcastTable2;
FoldTable BroadcastTable3;
FoldTable BroadcastTable4;
public:
X86FoldTablesEmitter(const RecordKeeper &R) : Records(R), Target(R) {}
// run - Generate the 6 X86 memory fold tables.
void run(raw_ostream &OS);
private:
// Decides to which table to add the entry with the given instructions.
// S sets the strategy of adding the TB_NO_REVERSE flag.
void updateTables(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst, uint16_t S = 0,
bool IsManual = false, bool IsBroadcast = false);
// Generates X86FoldTableEntry with the given instructions and fill it with
// the appropriate flags, then adds it to a memory fold table.
void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst, uint16_t S,
unsigned FoldedIdx, bool IsManual);
// Generates X86FoldTableEntry with the given instructions and adds it to a
// broadcast table.
void addBroadcastEntry(FoldTable &Table, const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst);
// Print the given table as a static const C++ array of type
// X86FoldTableEntry.
void printTable(const FoldTable &Table, StringRef TableName,
raw_ostream &OS) {
OS << "static const X86FoldTableEntry " << TableName << "[] = {\n";
for (auto &E : Table)
E.second.print(OS);
OS << "};\n\n";
}
};
// Return true if one of the instruction's operands is a RST register class
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
});
}
// Return true if one of the instruction's operands is a ptr_rc_tailcall
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
return OpIn.Rec->getName() == "ptr_rc_tailcall";
});
}
static uint8_t byteFromBitsInit(const BitsInit *B) {
unsigned N = B->getNumBits();
assert(N <= 8 && "Field is too large for uint8_t!");
uint8_t Value = 0;
for (unsigned I = 0; I != N; ++I) {
const BitInit *Bit = cast<BitInit>(B->getBit(I));
Value |= Bit->getValue() << I;
}
return Value;
}
static bool mayFoldFromForm(uint8_t Form) {
switch (Form) {
default:
return Form >= X86Local::MRM0r && Form <= X86Local::MRM7r;
case X86Local::MRMXr:
case X86Local::MRMXrCC:
case X86Local::MRMDestReg:
case X86Local::MRMSrcReg:
case X86Local::MRMSrcReg4VOp3:
case X86Local::MRMSrcRegOp4:
case X86Local::MRMSrcRegCC:
return true;
}
}
static bool mayFoldToForm(uint8_t Form) {
switch (Form) {
default:
return Form >= X86Local::MRM0m && Form <= X86Local::MRM7m;
case X86Local::MRMXm:
case X86Local::MRMXmCC:
case X86Local::MRMDestMem:
case X86Local::MRMSrcMem:
case X86Local::MRMSrcMem4VOp3:
case X86Local::MRMSrcMemOp4:
case X86Local::MRMSrcMemCC:
return true;
}
}
static bool mayFoldFromLeftToRight(uint8_t LHS, uint8_t RHS) {
switch (LHS) {
default:
llvm_unreachable("Unexpected Form!");
case X86Local::MRM0r:
return RHS == X86Local::MRM0m;
case X86Local::MRM1r:
return RHS == X86Local::MRM1m;
case X86Local::MRM2r:
return RHS == X86Local::MRM2m;
case X86Local::MRM3r:
return RHS == X86Local::MRM3m;
case X86Local::MRM4r:
return RHS == X86Local::MRM4m;
case X86Local::MRM5r:
return RHS == X86Local::MRM5m;
case X86Local::MRM6r:
return RHS == X86Local::MRM6m;
case X86Local::MRM7r:
return RHS == X86Local::MRM7m;
case X86Local::MRMXr:
return RHS == X86Local::MRMXm;
case X86Local::MRMXrCC:
return RHS == X86Local::MRMXmCC;
case X86Local::MRMDestReg:
return RHS == X86Local::MRMDestMem;
case X86Local::MRMSrcReg:
return RHS == X86Local::MRMSrcMem;
case X86Local::MRMSrcReg4VOp3:
return RHS == X86Local::MRMSrcMem4VOp3;
case X86Local::MRMSrcRegOp4:
return RHS == X86Local::MRMSrcMemOp4;
case X86Local::MRMSrcRegCC:
return RHS == X86Local::MRMSrcMemCC;
}
}
static bool isNOREXRegClass(const Record *Op) {
return Op->getName().contains("_NOREX");
}
// Function object - Operator() returns true if the given Reg instruction
// matches the Mem instruction of this object.
class IsMatch {
const CodeGenInstruction *MemInst;
const X86Disassembler::RecognizableInstrBase MemRI;
bool IsBroadcast;
const unsigned Variant;
public:
IsMatch(const CodeGenInstruction *Inst, bool IsBroadcast, unsigned V)
: MemInst(Inst), MemRI(*MemInst), IsBroadcast(IsBroadcast), Variant(V) {}
bool operator()(const CodeGenInstruction *RegInst) {
X86Disassembler::RecognizableInstrBase RegRI(*RegInst);
const Record *RegRec = RegInst->TheDef;
const Record *MemRec = MemInst->TheDef;
// EVEX_B means different things for memory and register forms.
// register form: rounding control or SAE
// memory form: broadcast
if (IsBroadcast && (RegRI.HasEVEX_B || !MemRI.HasEVEX_B))
return false;
// EVEX_B indicates NDD for MAP4 instructions
if (!IsBroadcast && (RegRI.HasEVEX_B || MemRI.HasEVEX_B) &&
RegRI.OpMap != X86Local::T_MAP4)
return false;
if (!mayFoldFromLeftToRight(RegRI.Form, MemRI.Form))
return false;
// X86 encoding is crazy, e.g
//
// f3 0f c7 30 vmxon (%rax)
// f3 0f c7 f0 senduipi %rax
//
// This two instruction have similiar encoding fields but are unrelated
if (X86Disassembler::getMnemonic(MemInst, Variant) !=
X86Disassembler::getMnemonic(RegInst, Variant))
return false;
// Return false if any of the following fields of does not match.
if (std::tuple(RegRI.Encoding, RegRI.Opcode, RegRI.OpPrefix, RegRI.OpMap,
RegRI.OpSize, RegRI.AdSize, RegRI.HasREX_W, RegRI.HasVEX_4V,
RegRI.HasVEX_L, RegRI.IgnoresVEX_L, RegRI.IgnoresW,
RegRI.HasEVEX_K, RegRI.HasEVEX_KZ, RegRI.HasEVEX_L2,
RegRI.HasEVEX_NF, RegRec->getValueAsBit("hasEVEX_RC"),
RegRec->getValueAsBit("hasLockPrefix"),
RegRec->getValueAsBit("hasNoTrackPrefix")) !=
std::tuple(MemRI.Encoding, MemRI.Opcode, MemRI.OpPrefix, MemRI.OpMap,
MemRI.OpSize, MemRI.AdSize, MemRI.HasREX_W, MemRI.HasVEX_4V,
MemRI.HasVEX_L, MemRI.IgnoresVEX_L, MemRI.IgnoresW,
MemRI.HasEVEX_K, MemRI.HasEVEX_KZ, MemRI.HasEVEX_L2,
MemRI.HasEVEX_NF, MemRec->getValueAsBit("hasEVEX_RC"),
MemRec->getValueAsBit("hasLockPrefix"),
MemRec->getValueAsBit("hasNoTrackPrefix")))
return false;
// Make sure the sizes of the operands of both instructions suit each other.
// This is needed for instructions with intrinsic version (_Int).
// Where the only difference is the size of the operands.
// For example: VUCOMISDZrm and VUCOMISDrm_Int
// Also for instructions that their EVEX version was upgraded to work with
// k-registers. For example VPCMPEQBrm (xmm output register) and
// VPCMPEQBZ128rm (k register output register).
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// Instructions with one output in their memory form use the memory folded
// operand as source and destination (Read-Modify-Write).
unsigned RegStartIdx =
(MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
bool FoundFoldedOp = false;
for (unsigned I = 0, E = MemInst->Operands.size(); I != E; I++) {
const Record *MemOpRec = MemInst->Operands[I].Rec;
const Record *RegOpRec = RegInst->Operands[I + RegStartIdx].Rec;
if (MemOpRec == RegOpRec)
continue;
if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec) &&
((getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec)) ||
(isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))))
return false;
if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec) &&
(getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)))
return false;
if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec) &&
(MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")))
return false;
// Only one operand can be folded.
if (FoundFoldedOp)
return false;
assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
FoundFoldedOp = true;
}
return FoundFoldedOp;
}
};
} // end anonymous namespace
void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst,
uint16_t S, unsigned FoldedIdx,
bool IsManual) {
assert((IsManual || Table.find(RegInst) == Table.end()) &&
"Override entry unexpectedly");
X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst);
const Record *RegRec = RegInst->TheDef;
Result.NoReverse = S & TB_NO_REVERSE;
Result.NoForward = S & TB_NO_FORWARD;
Result.FoldLoad = S & TB_FOLDED_LOAD;
Result.FoldStore = S & TB_FOLDED_STORE;
Result.Alignment = Align(1ULL << ((S & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT));
if (IsManual) {
Table[RegInst] = Result;
return;
}
const Record *RegOpRec = RegInst->Operands[FoldedIdx].Rec;
const Record *MemOpRec = MemInst->Operands[FoldedIdx].Rec;
// Unfolding code generates a load/store instruction according to the size of
// the register in the register form instruction.
// If the register's size is greater than the memory's operand size, do not
// allow unfolding.
// the unfolded load size will be based on the register size. If thats bigger
// than the memory operand size, the unfolded load will load more memory and
// potentially cause a memory fault.
if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
Result.NoReverse = true;
// Check no-kz version's isMoveReg
StringRef RegInstName = RegRec->getName();
unsigned DropLen =
RegInstName.ends_with("rkz") ? 2 : (RegInstName.ends_with("rk") ? 1 : 0);
const Record *BaseDef =
DropLen ? Records.getDef(RegInstName.drop_back(DropLen)) : nullptr;
bool IsMoveReg =
BaseDef ? Target.getInstruction(BaseDef).isMoveReg : RegInst->isMoveReg;
// A masked load can not be unfolded to a full load, otherwise it would access
// unexpected memory. A simple store can not be unfolded.
if (IsMoveReg && (BaseDef || Result.FoldStore))
Result.NoReverse = true;
uint8_t Enc = byteFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
if (isExplicitAlign(RegInst)) {
// The instruction require explicitly aligned memory.
const BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
Result.Alignment = Align(byteFromBitsInit(VectSize));
} else if (!Enc && !isExplicitUnalign(RegInst) &&
getMemOperandSize(MemOpRec) > 64) {
// Instructions with XOP/VEX/EVEX encoding do not require alignment while
// SSE packed vector instructions require a 16 byte alignment.
Result.Alignment = Align(16);
}
// Expand is only ever created as a masked instruction. It is not safe to
// unfold a masked expand because we don't know if it came from an expand load
// intrinsic or folding a plain load. If it is from a expand load intrinsic,
// Unfolding to plain load would read more elements and could trigger a fault.
if (RegRec->getName().contains("EXPAND"))
Result.NoReverse = true;
Table[RegInst] = Result;
}
void X86FoldTablesEmitter::addBroadcastEntry(
FoldTable &Table, const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst) {
assert(Table.find(RegInst) == Table.end() && "Override entry unexpectedly");
X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst);
const DagInit *In = MemInst->TheDef->getValueAsDag("InOperandList");
for (unsigned I = 0, E = In->getNumArgs(); I != E; ++I) {
Result.BroadcastKind =
StringSwitch<X86FoldTableEntry::BcastType>(In->getArg(I)->getAsString())
.Case("i16mem", X86FoldTableEntry::BCAST_W)
.Case("i32mem", X86FoldTableEntry::BCAST_D)
.Case("i64mem", X86FoldTableEntry::BCAST_Q)
.Case("f16mem", X86FoldTableEntry::BCAST_SH)
.Case("f32mem", X86FoldTableEntry::BCAST_SS)
.Case("f64mem", X86FoldTableEntry::BCAST_SD)
.Default(X86FoldTableEntry::BCAST_NONE);
if (Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE)
break;
}
assert(Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE &&
"Unknown memory operand for broadcast");
Table[RegInst] = Result;
}
void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst,
uint16_t S, bool IsManual,
bool IsBroadcast) {
const Record *RegRec = RegInst->TheDef;
const Record *MemRec = MemInst->TheDef;
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// Instructions which Read-Modify-Write should be added to Table2Addr.
if (!MemOutSize && RegOutSize == 1 && MemInSize == RegInSize) {
assert(!IsBroadcast && "Read-Modify-Write can not be broadcast");
// X86 would not unfold Read-Modify-Write instructions so add TB_NO_REVERSE.
addEntryWithFlags(Table2Addr, RegInst, MemInst, S | TB_NO_REVERSE, 0,
IsManual);
return;
}
// Only table0 entries should explicitly specify a load or store flag.
// If the instruction writes to the folded operand, it will appear as
// an output in the register form instruction and as an input in the
// memory form instruction. If the instruction reads from the folded
// operand, it will appear as in input in both forms.
if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
// Load-Folding cases.
// If the i'th register form operand is a register and the i'th memory form
// operand is a memory operand, add instructions to Table#i.
for (unsigned I = RegOutSize, E = RegInst->Operands.size(); I < E; I++) {
const Record *RegOpRec = RegInst->Operands[I].Rec;
const Record *MemOpRec = MemInst->Operands[I].Rec;
// PointerLikeRegClass: For instructions like TAILJMPr, TAILJMPr64,
// TAILJMPr64_REX
if ((isRegisterOperand(RegOpRec) ||
RegOpRec->isSubClassOf("PointerLikeRegClass")) &&
isMemoryOperand(MemOpRec)) {
switch (I) {
case 0:
assert(!IsBroadcast && "BroadcastTable0 needs to be added");
addEntryWithFlags(Table0, RegInst, MemInst, S | TB_FOLDED_LOAD, 0,
IsManual);
return;
case 1:
IsBroadcast
? addBroadcastEntry(BroadcastTable1, RegInst, MemInst)
: addEntryWithFlags(Table1, RegInst, MemInst, S, 1, IsManual);
return;
case 2:
IsBroadcast
? addBroadcastEntry(BroadcastTable2, RegInst, MemInst)
: addEntryWithFlags(Table2, RegInst, MemInst, S, 2, IsManual);
return;
case 3:
IsBroadcast
? addBroadcastEntry(BroadcastTable3, RegInst, MemInst)
: addEntryWithFlags(Table3, RegInst, MemInst, S, 3, IsManual);
return;
case 4:
IsBroadcast
? addBroadcastEntry(BroadcastTable4, RegInst, MemInst)
: addEntryWithFlags(Table4, RegInst, MemInst, S, 4, IsManual);
return;
}
}
}
} else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
// Store-Folding cases.
// If the memory form instruction performs a store, the *output*
// register of the register form instructions disappear and instead a
// memory *input* operand appears in the memory form instruction.
// For example:
// MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
// MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
const Record *RegOpRec = RegInst->Operands[RegOutSize - 1].Rec;
const Record *MemOpRec = MemInst->Operands[RegOutSize - 1].Rec;
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) {
assert(!IsBroadcast && "Store can not be broadcast");
addEntryWithFlags(Table0, RegInst, MemInst, S | TB_FOLDED_STORE, 0,
IsManual);
}
}
}
void X86FoldTablesEmitter::run(raw_ostream &OS) {
// Holds all memory instructions
std::vector<const CodeGenInstruction *> MemInsts;
// Holds all register instructions - divided according to opcode.
std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
Target.getInstructionsByEnumValue();
for (const CodeGenInstruction *Inst : NumberedInstructions) {
const Record *Rec = Inst->TheDef;
if (!Rec->isSubClassOf("X86Inst") || Rec->getValueAsBit("isAsmParserOnly"))
continue;
if (NoFoldSet.find(Rec->getName()) != NoFoldSet.end())
continue;
// Promoted legacy instruction is in EVEX space, and has REX2-encoding
// alternative. It's added due to HW design and never emitted by compiler.
if (byteFromBitsInit(Rec->getValueAsBitsInit("OpMapBits")) ==
X86Local::T_MAP4 &&
byteFromBitsInit(Rec->getValueAsBitsInit("explicitOpPrefixBits")) ==
X86Local::ExplicitEVEX)
continue;
// - Instructions including RST register class operands are not relevant
// for memory folding (for further details check the explanation in
// lib/Target/X86/X86InstrFPStack.td file).
// - Some instructions (listed in the manual map above) use the register
// class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
// safe mapping of these instruction we manually map them and exclude
// them from the automation.
if (hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
continue;
// Add all the memory form instructions to MemInsts, and all the register
// form instructions to RegInsts[Opc], where Opc is the opcode of each
// instructions. this helps reducing the runtime of the backend.
const BitsInit *FormBits = Rec->getValueAsBitsInit("FormBits");
uint8_t Form = byteFromBitsInit(FormBits);
if (mayFoldToForm(Form))
MemInsts.push_back(Inst);
else if (mayFoldFromForm(Form)) {
uint8_t Opc = byteFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
RegInsts[Opc].push_back(Inst);
}
}
// Create a copy b/c the register instruction will removed when a new entry is
// added into memory fold tables.
auto RegInstsForBroadcast = RegInsts;
const Record *AsmWriter = Target.getAsmWriter();
unsigned Variant = AsmWriter->getValueAsInt("Variant");
auto FixUp = [&](const CodeGenInstruction *RegInst) {
StringRef RegInstName = RegInst->TheDef->getName();
if (RegInstName.ends_with("_REV") || RegInstName.ends_with("_alt"))
if (auto *RegAltRec = Records.getDef(RegInstName.drop_back(4)))
RegInst = &Target.getInstruction(RegAltRec);
return RegInst;
};
// For each memory form instruction, try to find its register form
// instruction.
for (const CodeGenInstruction *MemInst : MemInsts) {
uint8_t Opc =
byteFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
auto RegInstsIt = RegInsts.find(Opc);
if (RegInstsIt == RegInsts.end())
continue;
// Two forms (memory & register) of the same instruction must have the same
// opcode.
std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;
// Memory fold tables
auto Match =
find_if(OpcRegInsts, IsMatch(MemInst, /*IsBroadcast=*/false, Variant));
if (Match != OpcRegInsts.end()) {
updateTables(FixUp(*Match), MemInst);
OpcRegInsts.erase(Match);
}
// Broadcast tables
StringRef MemInstName = MemInst->TheDef->getName();
if (!MemInstName.contains("mb") && !MemInstName.contains("mib"))
continue;
RegInstsIt = RegInstsForBroadcast.find(Opc);
assert(RegInstsIt != RegInstsForBroadcast.end() &&
"Unexpected control flow");
std::vector<const CodeGenInstruction *> &OpcRegInstsForBroadcast =
RegInstsIt->second;
Match = find_if(OpcRegInstsForBroadcast,
IsMatch(MemInst, /*IsBroadcast=*/true, Variant));
if (Match != OpcRegInstsForBroadcast.end()) {
updateTables(FixUp(*Match), MemInst, 0, /*IsManual=*/false,
/*IsBroadcast=*/true);
OpcRegInstsForBroadcast.erase(Match);
}
}
// Add the manually mapped instructions listed above.
for (const ManualMapEntry &Entry : ManualMapSet) {
const Record *RegInstIter = Records.getDef(Entry.RegInstStr);
const Record *MemInstIter = Records.getDef(Entry.MemInstStr);
updateTables(&(Target.getInstruction(RegInstIter)),
&(Target.getInstruction(MemInstIter)), Entry.Strategy, true);
}
#ifndef NDEBUG
auto CheckMemFoldTable = [](const FoldTable &Table) -> void {
for (const auto &Record : Table) {
auto &FoldEntry = Record.second;
FoldEntry.checkCorrectness();
}
};
CheckMemFoldTable(Table2Addr);
CheckMemFoldTable(Table0);
CheckMemFoldTable(Table1);
CheckMemFoldTable(Table2);
CheckMemFoldTable(Table3);
CheckMemFoldTable(Table4);
CheckMemFoldTable(BroadcastTable1);
CheckMemFoldTable(BroadcastTable2);
CheckMemFoldTable(BroadcastTable3);
CheckMemFoldTable(BroadcastTable4);
#endif
#define PRINT_TABLE(TABLE) printTable(TABLE, #TABLE, OS);
// Print all tables.
PRINT_TABLE(Table2Addr)
PRINT_TABLE(Table0)
PRINT_TABLE(Table1)
PRINT_TABLE(Table2)
PRINT_TABLE(Table3)
PRINT_TABLE(Table4)
PRINT_TABLE(BroadcastTable1)
PRINT_TABLE(BroadcastTable2)
PRINT_TABLE(BroadcastTable3)
PRINT_TABLE(BroadcastTable4)
}
static TableGen::Emitter::OptClass<X86FoldTablesEmitter>
X("gen-x86-fold-tables", "Generate X86 fold tables");