mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 22:06:06 +00:00
885 lines
30 KiB
C++
885 lines
30 KiB
C++
///===- FastISelEmitter.cpp - Generate an instruction selector ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits code for use by the "fast" instruction
|
|
// selection algorithm. See the comments at the top of
|
|
// lib/CodeGen/SelectionDAG/FastISel.cpp for background.
|
|
//
|
|
// This file scans through the target's tablegen instruction-info files
|
|
// and extracts instructions with obvious-looking patterns, and it emits
|
|
// code to look up these instructions by type and operator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Common/CodeGenDAGPatterns.h"
|
|
#include "Common/CodeGenInstruction.h"
|
|
#include "Common/CodeGenRegisters.h"
|
|
#include "Common/CodeGenTarget.h"
|
|
#include "Common/InfoByHwMode.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
#include <set>
|
|
#include <utility>
|
|
using namespace llvm;
|
|
|
|
/// InstructionMemo - This class holds additional information about an
|
|
/// instruction needed to emit code for it.
|
|
///
|
|
namespace {
|
|
struct InstructionMemo {
|
|
std::string Name;
|
|
const CodeGenRegisterClass *RC;
|
|
std::string SubRegNo;
|
|
std::vector<std::string> PhysRegs;
|
|
std::string PredicateCheck;
|
|
|
|
InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
|
|
std::string SubRegNo, std::vector<std::string> PhysRegs,
|
|
std::string PredicateCheck)
|
|
: Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
|
|
PhysRegs(std::move(PhysRegs)),
|
|
PredicateCheck(std::move(PredicateCheck)) {}
|
|
|
|
// Make sure we do not copy InstructionMemo.
|
|
InstructionMemo(const InstructionMemo &Other) = delete;
|
|
InstructionMemo(InstructionMemo &&Other) = default;
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
/// ImmPredicateSet - This uniques predicates (represented as a string) and
|
|
/// gives them unique (small) integer ID's that start at 0.
|
|
namespace {
|
|
class ImmPredicateSet {
|
|
DenseMap<TreePattern *, unsigned> ImmIDs;
|
|
std::vector<TreePredicateFn> PredsByName;
|
|
|
|
public:
|
|
unsigned getIDFor(TreePredicateFn Pred) {
|
|
unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
|
|
if (Entry == 0) {
|
|
PredsByName.push_back(Pred);
|
|
Entry = PredsByName.size();
|
|
}
|
|
return Entry - 1;
|
|
}
|
|
|
|
const TreePredicateFn &getPredicate(unsigned i) {
|
|
assert(i < PredsByName.size());
|
|
return PredsByName[i];
|
|
}
|
|
|
|
typedef std::vector<TreePredicateFn>::const_iterator iterator;
|
|
iterator begin() const { return PredsByName.begin(); }
|
|
iterator end() const { return PredsByName.end(); }
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
/// OperandsSignature - This class holds a description of a list of operand
|
|
/// types. It has utility methods for emitting text based on the operands.
|
|
///
|
|
namespace {
|
|
struct OperandsSignature {
|
|
class OpKind {
|
|
enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
|
|
char Repr;
|
|
|
|
public:
|
|
OpKind() : Repr(OK_Invalid) {}
|
|
|
|
bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
|
|
bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
|
|
|
|
static OpKind getReg() {
|
|
OpKind K;
|
|
K.Repr = OK_Reg;
|
|
return K;
|
|
}
|
|
static OpKind getFP() {
|
|
OpKind K;
|
|
K.Repr = OK_FP;
|
|
return K;
|
|
}
|
|
static OpKind getImm(unsigned V) {
|
|
assert((unsigned)OK_Imm + V < 128 &&
|
|
"Too many integer predicates for the 'Repr' char");
|
|
OpKind K;
|
|
K.Repr = OK_Imm + V;
|
|
return K;
|
|
}
|
|
|
|
bool isReg() const { return Repr == OK_Reg; }
|
|
bool isFP() const { return Repr == OK_FP; }
|
|
bool isImm() const { return Repr >= OK_Imm; }
|
|
|
|
unsigned getImmCode() const {
|
|
assert(isImm());
|
|
return Repr - OK_Imm;
|
|
}
|
|
|
|
void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
|
|
bool StripImmCodes) const {
|
|
if (isReg())
|
|
OS << 'r';
|
|
else if (isFP())
|
|
OS << 'f';
|
|
else {
|
|
OS << 'i';
|
|
if (!StripImmCodes)
|
|
if (unsigned Code = getImmCode())
|
|
OS << "_" << ImmPredicates.getPredicate(Code - 1).getFnName();
|
|
}
|
|
}
|
|
};
|
|
|
|
SmallVector<OpKind, 3> Operands;
|
|
|
|
bool operator<(const OperandsSignature &O) const {
|
|
return Operands < O.Operands;
|
|
}
|
|
bool operator==(const OperandsSignature &O) const {
|
|
return Operands == O.Operands;
|
|
}
|
|
|
|
bool empty() const { return Operands.empty(); }
|
|
|
|
bool hasAnyImmediateCodes() const {
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
|
|
if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// getWithoutImmCodes - Return a copy of this with any immediate codes forced
|
|
/// to zero.
|
|
OperandsSignature getWithoutImmCodes() const {
|
|
OperandsSignature Result;
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
|
|
if (!Operands[i].isImm())
|
|
Result.Operands.push_back(Operands[i]);
|
|
else
|
|
Result.Operands.push_back(OpKind::getImm(0));
|
|
return Result;
|
|
}
|
|
|
|
void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
|
|
bool EmittedAnything = false;
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (!Operands[i].isImm())
|
|
continue;
|
|
|
|
unsigned Code = Operands[i].getImmCode();
|
|
if (Code == 0)
|
|
continue;
|
|
|
|
if (EmittedAnything)
|
|
OS << " &&\n ";
|
|
|
|
TreePredicateFn PredFn = ImmPredicates.getPredicate(Code - 1);
|
|
|
|
// Emit the type check.
|
|
TreePattern *TP = PredFn.getOrigPatFragRecord();
|
|
ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
|
|
assert(VVT.isSimple() &&
|
|
"Cannot use variable value types with fast isel");
|
|
OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";
|
|
|
|
OS << PredFn.getFnName() << "(imm" << i << ')';
|
|
EmittedAnything = true;
|
|
}
|
|
}
|
|
|
|
/// initialize - Examine the given pattern and initialize the contents
|
|
/// of the Operands array accordingly. Return true if all the operands
|
|
/// are supported, false otherwise.
|
|
///
|
|
bool initialize(TreePatternNode &InstPatNode, const CodeGenTarget &Target,
|
|
MVT::SimpleValueType VT, ImmPredicateSet &ImmediatePredicates,
|
|
const CodeGenRegisterClass *OrigDstRC) {
|
|
if (InstPatNode.isLeaf())
|
|
return false;
|
|
|
|
if (InstPatNode.getOperator()->getName() == "imm") {
|
|
Operands.push_back(OpKind::getImm(0));
|
|
return true;
|
|
}
|
|
|
|
if (InstPatNode.getOperator()->getName() == "fpimm") {
|
|
Operands.push_back(OpKind::getFP());
|
|
return true;
|
|
}
|
|
|
|
const CodeGenRegisterClass *DstRC = nullptr;
|
|
|
|
for (const TreePatternNode &Op : InstPatNode.children()) {
|
|
// Handle imm operands specially.
|
|
if (!Op.isLeaf() && Op.getOperator()->getName() == "imm") {
|
|
unsigned PredNo = 0;
|
|
if (!Op.getPredicateCalls().empty()) {
|
|
TreePredicateFn PredFn = Op.getPredicateCalls()[0].Fn;
|
|
// If there is more than one predicate weighing in on this operand
|
|
// then we don't handle it. This doesn't typically happen for
|
|
// immediates anyway.
|
|
if (Op.getPredicateCalls().size() > 1 ||
|
|
!PredFn.isImmediatePattern() || PredFn.usesOperands())
|
|
return false;
|
|
// Ignore any instruction with 'FastIselShouldIgnore', these are
|
|
// not needed and just bloat the fast instruction selector. For
|
|
// example, X86 doesn't need to generate code to match ADD16ri8 since
|
|
// ADD16ri will do just fine.
|
|
const Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
|
|
if (Rec->getValueAsBit("FastIselShouldIgnore"))
|
|
return false;
|
|
|
|
PredNo = ImmediatePredicates.getIDFor(PredFn) + 1;
|
|
}
|
|
|
|
Operands.push_back(OpKind::getImm(PredNo));
|
|
continue;
|
|
}
|
|
|
|
// For now, filter out any operand with a predicate.
|
|
// For now, filter out any operand with multiple values.
|
|
if (!Op.getPredicateCalls().empty() || Op.getNumTypes() != 1)
|
|
return false;
|
|
|
|
if (!Op.isLeaf()) {
|
|
if (Op.getOperator()->getName() == "fpimm") {
|
|
Operands.push_back(OpKind::getFP());
|
|
continue;
|
|
}
|
|
// For now, ignore other non-leaf nodes.
|
|
return false;
|
|
}
|
|
|
|
assert(Op.hasConcreteType(0) && "Type infererence not done?");
|
|
|
|
// For now, all the operands must have the same type (if they aren't
|
|
// immediates). Note that this causes us to reject variable sized shifts
|
|
// on X86.
|
|
if (Op.getSimpleType(0) != VT)
|
|
return false;
|
|
|
|
const DefInit *OpDI = dyn_cast<DefInit>(Op.getLeafValue());
|
|
if (!OpDI)
|
|
return false;
|
|
const Record *OpLeafRec = OpDI->getDef();
|
|
|
|
// For now, the only other thing we accept is register operands.
|
|
const CodeGenRegisterClass *RC = nullptr;
|
|
if (OpLeafRec->isSubClassOf("RegisterOperand"))
|
|
OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
|
|
if (OpLeafRec->isSubClassOf("RegisterClass"))
|
|
RC = &Target.getRegisterClass(OpLeafRec);
|
|
else if (OpLeafRec->isSubClassOf("Register"))
|
|
RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
|
|
else if (OpLeafRec->isSubClassOf("ValueType")) {
|
|
RC = OrigDstRC;
|
|
} else
|
|
return false;
|
|
|
|
// For now, this needs to be a register class of some sort.
|
|
if (!RC)
|
|
return false;
|
|
|
|
// For now, all the operands must have the same register class or be
|
|
// a strict subclass of the destination.
|
|
if (DstRC) {
|
|
if (DstRC != RC && !DstRC->hasSubClass(RC))
|
|
return false;
|
|
} else
|
|
DstRC = RC;
|
|
Operands.push_back(OpKind::getReg());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void PrintParameters(raw_ostream &OS) const {
|
|
ListSeparator LS;
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
OS << LS;
|
|
if (Operands[i].isReg()) {
|
|
OS << "Register Op" << i;
|
|
} else if (Operands[i].isImm()) {
|
|
OS << "uint64_t imm" << i;
|
|
} else if (Operands[i].isFP()) {
|
|
OS << "const ConstantFP *f" << i;
|
|
} else {
|
|
llvm_unreachable("Unknown operand kind!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void PrintArguments(raw_ostream &OS,
|
|
const std::vector<std::string> &PR) const {
|
|
assert(PR.size() == Operands.size());
|
|
ListSeparator LS;
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (PR[i] != "")
|
|
// Implicit physical register operand.
|
|
continue;
|
|
|
|
OS << LS;
|
|
if (Operands[i].isReg()) {
|
|
OS << "Op" << i;
|
|
} else if (Operands[i].isImm()) {
|
|
OS << "imm" << i;
|
|
} else if (Operands[i].isFP()) {
|
|
OS << "f" << i;
|
|
} else {
|
|
llvm_unreachable("Unknown operand kind!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void PrintArguments(raw_ostream &OS) const {
|
|
ListSeparator LS;
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
OS << LS;
|
|
if (Operands[i].isReg()) {
|
|
OS << "Op" << i;
|
|
} else if (Operands[i].isImm()) {
|
|
OS << "imm" << i;
|
|
} else if (Operands[i].isFP()) {
|
|
OS << "f" << i;
|
|
} else {
|
|
llvm_unreachable("Unknown operand kind!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
|
|
ImmPredicateSet &ImmPredicates,
|
|
bool StripImmCodes = false) const {
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
if (PR[i] != "")
|
|
// Implicit physical register operand. e.g. Instruction::Mul expect to
|
|
// select to a binary op. On x86, mul may take a single operand with
|
|
// the other operand being implicit. We must emit something that looks
|
|
// like a binary instruction except for the very inner fastEmitInst_*
|
|
// call.
|
|
continue;
|
|
Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
|
|
}
|
|
}
|
|
|
|
void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
|
|
bool StripImmCodes = false) const {
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
|
|
Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
|
|
}
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
namespace {
|
|
class FastISelMap {
|
|
// A multimap is needed instead of a "plain" map because the key is
|
|
// the instruction's complexity (an int) and they are not unique.
|
|
typedef std::multimap<int, InstructionMemo> PredMap;
|
|
typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
|
|
typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
|
|
typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
|
|
typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
|
|
OperandsOpcodeTypeRetPredMap;
|
|
|
|
OperandsOpcodeTypeRetPredMap SimplePatterns;
|
|
|
|
// This is used to check that there are no duplicate predicates
|
|
std::set<std::tuple<OperandsSignature, std::string, MVT::SimpleValueType,
|
|
MVT::SimpleValueType, std::string>>
|
|
SimplePatternsCheck;
|
|
|
|
std::map<OperandsSignature, std::vector<OperandsSignature>>
|
|
SignaturesWithConstantForms;
|
|
|
|
StringRef InstNS;
|
|
ImmPredicateSet ImmediatePredicates;
|
|
|
|
public:
|
|
explicit FastISelMap(StringRef InstNS);
|
|
|
|
void collectPatterns(const CodeGenDAGPatterns &CGP);
|
|
void printImmediatePredicates(raw_ostream &OS);
|
|
void printFunctionDefinitions(raw_ostream &OS);
|
|
|
|
private:
|
|
void emitInstructionCode(raw_ostream &OS, const OperandsSignature &Operands,
|
|
const PredMap &PM, const std::string &RetVTName);
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
static std::string getOpcodeName(const Record *Op,
|
|
const CodeGenDAGPatterns &CGP) {
|
|
return std::string(CGP.getSDNodeInfo(Op).getEnumName());
|
|
}
|
|
|
|
static std::string getLegalCName(std::string OpName) {
|
|
std::string::size_type pos = OpName.find("::");
|
|
if (pos != std::string::npos)
|
|
OpName.replace(pos, 2, "_");
|
|
return OpName;
|
|
}
|
|
|
|
FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}
|
|
|
|
static std::string PhysRegForNode(const TreePatternNode &Op,
|
|
const CodeGenTarget &Target) {
|
|
std::string PhysReg;
|
|
|
|
if (!Op.isLeaf())
|
|
return PhysReg;
|
|
|
|
const Record *OpLeafRec = cast<DefInit>(Op.getLeafValue())->getDef();
|
|
if (!OpLeafRec->isSubClassOf("Register"))
|
|
return PhysReg;
|
|
|
|
PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
|
|
->getValue();
|
|
PhysReg += "::";
|
|
PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
|
|
return PhysReg;
|
|
}
|
|
|
|
void FastISelMap::collectPatterns(const CodeGenDAGPatterns &CGP) {
|
|
const CodeGenTarget &Target = CGP.getTargetInfo();
|
|
|
|
// Scan through all the patterns and record the simple ones.
|
|
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
|
|
I != E; ++I) {
|
|
const PatternToMatch &Pattern = *I;
|
|
|
|
// For now, just look at Instructions, so that we don't have to worry
|
|
// about emitting multiple instructions for a pattern.
|
|
TreePatternNode &Dst = Pattern.getDstPattern();
|
|
if (Dst.isLeaf())
|
|
continue;
|
|
const Record *Op = Dst.getOperator();
|
|
if (!Op->isSubClassOf("Instruction"))
|
|
continue;
|
|
CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
|
|
if (II.Operands.empty())
|
|
continue;
|
|
|
|
// Allow instructions to be marked as unavailable for FastISel for
|
|
// certain cases, i.e. an ISA has two 'and' instruction which differ
|
|
// by what registers they can use but are otherwise identical for
|
|
// codegen purposes.
|
|
if (II.FastISelShouldIgnore)
|
|
continue;
|
|
|
|
// For now, ignore multi-instruction patterns.
|
|
bool MultiInsts = false;
|
|
for (const TreePatternNode &ChildOp : Dst.children()) {
|
|
if (ChildOp.isLeaf())
|
|
continue;
|
|
if (ChildOp.getOperator()->isSubClassOf("Instruction")) {
|
|
MultiInsts = true;
|
|
break;
|
|
}
|
|
}
|
|
if (MultiInsts)
|
|
continue;
|
|
|
|
// For now, ignore instructions where the first operand is not an
|
|
// output register.
|
|
const CodeGenRegisterClass *DstRC = nullptr;
|
|
std::string SubRegNo;
|
|
if (Op->getName() != "EXTRACT_SUBREG") {
|
|
const Record *Op0Rec = II.Operands[0].Rec;
|
|
if (Op0Rec->isSubClassOf("RegisterOperand"))
|
|
Op0Rec = Op0Rec->getValueAsDef("RegClass");
|
|
if (!Op0Rec->isSubClassOf("RegisterClass"))
|
|
continue;
|
|
DstRC = &Target.getRegisterClass(Op0Rec);
|
|
if (!DstRC)
|
|
continue;
|
|
} else {
|
|
// If this isn't a leaf, then continue since the register classes are
|
|
// a bit too complicated for now.
|
|
if (!Dst.getChild(1).isLeaf())
|
|
continue;
|
|
|
|
const DefInit *SR = dyn_cast<DefInit>(Dst.getChild(1).getLeafValue());
|
|
if (SR)
|
|
SubRegNo = getQualifiedName(SR->getDef());
|
|
else
|
|
SubRegNo = Dst.getChild(1).getLeafValue()->getAsString();
|
|
}
|
|
|
|
// Inspect the pattern.
|
|
TreePatternNode &InstPatNode = Pattern.getSrcPattern();
|
|
if (InstPatNode.isLeaf())
|
|
continue;
|
|
|
|
// Ignore multiple result nodes for now.
|
|
if (InstPatNode.getNumTypes() > 1)
|
|
continue;
|
|
|
|
const Record *InstPatOp = InstPatNode.getOperator();
|
|
std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
|
|
MVT::SimpleValueType RetVT = MVT::isVoid;
|
|
if (InstPatNode.getNumTypes())
|
|
RetVT = InstPatNode.getSimpleType(0);
|
|
MVT::SimpleValueType VT = RetVT;
|
|
if (InstPatNode.getNumChildren()) {
|
|
assert(InstPatNode.getChild(0).getNumTypes() == 1);
|
|
VT = InstPatNode.getChild(0).getSimpleType(0);
|
|
}
|
|
|
|
// For now, filter out any instructions with predicates.
|
|
if (!InstPatNode.getPredicateCalls().empty())
|
|
continue;
|
|
|
|
// Check all the operands.
|
|
OperandsSignature Operands;
|
|
if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
|
|
DstRC))
|
|
continue;
|
|
|
|
std::vector<std::string> PhysRegInputs;
|
|
if (InstPatNode.getOperator()->getName() == "imm" ||
|
|
InstPatNode.getOperator()->getName() == "fpimm")
|
|
PhysRegInputs.push_back("");
|
|
else {
|
|
// Compute the PhysRegs used by the given pattern, and check that
|
|
// the mapping from the src to dst patterns is simple.
|
|
bool FoundNonSimplePattern = false;
|
|
unsigned DstIndex = 0;
|
|
for (const TreePatternNode &SrcChild : InstPatNode.children()) {
|
|
std::string PhysReg = PhysRegForNode(SrcChild, Target);
|
|
if (PhysReg.empty()) {
|
|
if (DstIndex >= Dst.getNumChildren() ||
|
|
Dst.getChild(DstIndex).getName() != SrcChild.getName()) {
|
|
FoundNonSimplePattern = true;
|
|
break;
|
|
}
|
|
++DstIndex;
|
|
}
|
|
|
|
PhysRegInputs.push_back(std::move(PhysReg));
|
|
}
|
|
|
|
if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst.getNumChildren())
|
|
FoundNonSimplePattern = true;
|
|
|
|
if (FoundNonSimplePattern)
|
|
continue;
|
|
}
|
|
|
|
// Check if the operands match one of the patterns handled by FastISel.
|
|
std::string ManglingSuffix;
|
|
raw_string_ostream SuffixOS(ManglingSuffix);
|
|
Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
|
|
if (!StringSwitch<bool>(ManglingSuffix)
|
|
.Cases("", "r", "rr", "ri", "i", "f", true)
|
|
.Default(false))
|
|
continue;
|
|
|
|
// Get the predicate that guards this pattern.
|
|
std::string PredicateCheck = Pattern.getPredicateCheck();
|
|
|
|
// Ok, we found a pattern that we can handle. Remember it.
|
|
InstructionMemo Memo(Pattern.getDstPattern().getOperator()->getName(),
|
|
DstRC, std::move(SubRegNo), std::move(PhysRegInputs),
|
|
PredicateCheck);
|
|
|
|
int complexity = Pattern.getPatternComplexity(CGP);
|
|
|
|
auto inserted_simple_pattern = SimplePatternsCheck.insert(
|
|
{Operands, OpcodeName, VT, RetVT, PredicateCheck});
|
|
if (!inserted_simple_pattern.second) {
|
|
PrintFatalError(Pattern.getSrcRecord()->getLoc(),
|
|
"Duplicate predicate in FastISel table!");
|
|
}
|
|
|
|
// Note: Instructions with the same complexity will appear in the order
|
|
// that they are encountered.
|
|
SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
|
|
std::move(Memo));
|
|
|
|
// If any of the operands were immediates with predicates on them, strip
|
|
// them down to a signature that doesn't have predicates so that we can
|
|
// associate them with the stripped predicate version.
|
|
if (Operands.hasAnyImmediateCodes()) {
|
|
SignaturesWithConstantForms[Operands.getWithoutImmCodes()].push_back(
|
|
Operands);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
|
|
if (ImmediatePredicates.begin() == ImmediatePredicates.end())
|
|
return;
|
|
|
|
OS << "\n// FastEmit Immediate Predicate functions.\n";
|
|
for (auto ImmediatePredicate : ImmediatePredicates) {
|
|
OS << "static bool " << ImmediatePredicate.getFnName()
|
|
<< "(int64_t Imm) {\n";
|
|
OS << ImmediatePredicate.getImmediatePredicateCode() << "\n}\n";
|
|
}
|
|
|
|
OS << "\n\n";
|
|
}
|
|
|
|
void FastISelMap::emitInstructionCode(raw_ostream &OS,
|
|
const OperandsSignature &Operands,
|
|
const PredMap &PM,
|
|
const std::string &RetVTName) {
|
|
// Emit code for each possible instruction. There may be
|
|
// multiple if there are subtarget concerns. A reverse iterator
|
|
// is used to produce the ones with highest complexity first.
|
|
|
|
bool OneHadNoPredicate = false;
|
|
for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
|
|
PI != PE; ++PI) {
|
|
const InstructionMemo &Memo = PI->second;
|
|
std::string PredicateCheck = Memo.PredicateCheck;
|
|
|
|
if (PredicateCheck.empty()) {
|
|
assert(!OneHadNoPredicate &&
|
|
"Multiple instructions match and more than one had "
|
|
"no predicate!");
|
|
OneHadNoPredicate = true;
|
|
} else {
|
|
if (OneHadNoPredicate) {
|
|
PrintFatalError("Multiple instructions match and one with no "
|
|
"predicate came before one with a predicate! "
|
|
"name:" +
|
|
Memo.Name + " predicate: " + PredicateCheck);
|
|
}
|
|
OS << " if (" + PredicateCheck + ") {\n";
|
|
OS << " ";
|
|
}
|
|
|
|
for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
|
|
if (Memo.PhysRegs[i] != "")
|
|
OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, "
|
|
<< "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
|
|
<< ").addReg(Op" << i << ");\n";
|
|
}
|
|
|
|
OS << " return fastEmitInst_";
|
|
if (Memo.SubRegNo.empty()) {
|
|
Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
|
|
true);
|
|
OS << "(" << InstNS << "::" << Memo.Name << ", ";
|
|
OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
|
|
if (!Operands.empty())
|
|
OS << ", ";
|
|
Operands.PrintArguments(OS, Memo.PhysRegs);
|
|
OS << ");\n";
|
|
} else {
|
|
OS << "extractsubreg(" << RetVTName << ", Op0, " << Memo.SubRegNo
|
|
<< ");\n";
|
|
}
|
|
|
|
if (!PredicateCheck.empty()) {
|
|
OS << " }\n";
|
|
}
|
|
}
|
|
// Return 0 if all of the possibilities had predicates but none
|
|
// were satisfied.
|
|
if (!OneHadNoPredicate)
|
|
OS << " return 0;\n";
|
|
OS << "}\n";
|
|
OS << "\n";
|
|
}
|
|
|
|
void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
|
|
// Now emit code for all the patterns that we collected.
|
|
for (const auto &SimplePattern : SimplePatterns) {
|
|
const OperandsSignature &Operands = SimplePattern.first;
|
|
const OpcodeTypeRetPredMap &OTM = SimplePattern.second;
|
|
|
|
for (const auto &I : OTM) {
|
|
const std::string &Opcode = I.first;
|
|
const TypeRetPredMap &TM = I.second;
|
|
|
|
OS << "// FastEmit functions for " << Opcode << ".\n";
|
|
OS << "\n";
|
|
|
|
// Emit one function for each opcode,type pair.
|
|
for (const auto &TI : TM) {
|
|
MVT::SimpleValueType VT = TI.first;
|
|
const RetPredMap &RM = TI.second;
|
|
if (RM.size() != 1) {
|
|
for (const auto &RI : RM) {
|
|
MVT::SimpleValueType RetVT = RI.first;
|
|
const PredMap &PM = RI.second;
|
|
|
|
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
|
|
<< getLegalCName(std::string(getEnumName(VT))) << "_"
|
|
<< getLegalCName(std::string(getEnumName(RetVT))) << "_";
|
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
|
OS << "(";
|
|
Operands.PrintParameters(OS);
|
|
OS << ") {\n";
|
|
|
|
emitInstructionCode(OS, Operands, PM,
|
|
std::string(getEnumName(RetVT)));
|
|
}
|
|
|
|
// Emit one function for the type that demultiplexes on return type.
|
|
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
|
|
<< getLegalCName(std::string(getEnumName(VT))) << "_";
|
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
|
OS << "(MVT RetVT";
|
|
if (!Operands.empty())
|
|
OS << ", ";
|
|
Operands.PrintParameters(OS);
|
|
OS << ") {\nswitch (RetVT.SimpleTy) {\n";
|
|
for (const auto &RI : RM) {
|
|
MVT::SimpleValueType RetVT = RI.first;
|
|
OS << " case " << getEnumName(RetVT) << ": return fastEmit_"
|
|
<< getLegalCName(Opcode) << "_"
|
|
<< getLegalCName(std::string(getEnumName(VT))) << "_"
|
|
<< getLegalCName(std::string(getEnumName(RetVT))) << "_";
|
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
|
OS << "(";
|
|
Operands.PrintArguments(OS);
|
|
OS << ");\n";
|
|
}
|
|
OS << " default: return 0;\n}\n}\n\n";
|
|
|
|
} else {
|
|
// Non-variadic return type.
|
|
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
|
|
<< getLegalCName(std::string(getEnumName(VT))) << "_";
|
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
|
OS << "(MVT RetVT";
|
|
if (!Operands.empty())
|
|
OS << ", ";
|
|
Operands.PrintParameters(OS);
|
|
OS << ") {\n";
|
|
|
|
OS << " if (RetVT.SimpleTy != " << getEnumName(RM.begin()->first)
|
|
<< ")\n return 0;\n";
|
|
|
|
const PredMap &PM = RM.begin()->second;
|
|
|
|
emitInstructionCode(OS, Operands, PM, "RetVT");
|
|
}
|
|
}
|
|
|
|
// Emit one function for the opcode that demultiplexes based on the type.
|
|
OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_";
|
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
|
OS << "(MVT VT, MVT RetVT";
|
|
if (!Operands.empty())
|
|
OS << ", ";
|
|
Operands.PrintParameters(OS);
|
|
OS << ") {\n";
|
|
OS << " switch (VT.SimpleTy) {\n";
|
|
for (const auto &TI : TM) {
|
|
MVT::SimpleValueType VT = TI.first;
|
|
std::string TypeName = std::string(getEnumName(VT));
|
|
OS << " case " << TypeName << ": return fastEmit_"
|
|
<< getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
|
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
|
OS << "(RetVT";
|
|
if (!Operands.empty())
|
|
OS << ", ";
|
|
Operands.PrintArguments(OS);
|
|
OS << ");\n";
|
|
}
|
|
OS << " default: return 0;\n";
|
|
OS << " }\n";
|
|
OS << "}\n";
|
|
OS << "\n";
|
|
}
|
|
|
|
OS << "// Top-level FastEmit function.\n";
|
|
OS << "\n";
|
|
|
|
// Emit one function for the operand signature that demultiplexes based
|
|
// on opcode and type.
|
|
OS << "unsigned fastEmit_";
|
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
|
OS << "(MVT VT, MVT RetVT, unsigned Opcode";
|
|
if (!Operands.empty())
|
|
OS << ", ";
|
|
Operands.PrintParameters(OS);
|
|
OS << ") ";
|
|
if (!Operands.hasAnyImmediateCodes())
|
|
OS << "override ";
|
|
OS << "{\n";
|
|
|
|
// If there are any forms of this signature available that operate on
|
|
// constrained forms of the immediate (e.g., 32-bit sext immediate in a
|
|
// 64-bit operand), check them first.
|
|
|
|
std::map<OperandsSignature, std::vector<OperandsSignature>>::iterator MI =
|
|
SignaturesWithConstantForms.find(Operands);
|
|
if (MI != SignaturesWithConstantForms.end()) {
|
|
// Unique any duplicates out of the list.
|
|
llvm::sort(MI->second);
|
|
MI->second.erase(llvm::unique(MI->second), MI->second.end());
|
|
|
|
// Check each in order it was seen. It would be nice to have a good
|
|
// relative ordering between them, but we're not going for optimality
|
|
// here.
|
|
for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
|
|
OS << " if (";
|
|
MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
|
|
OS << ")\n if (unsigned Reg = fastEmit_";
|
|
MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
|
|
OS << "(VT, RetVT, Opcode";
|
|
if (!MI->second[i].empty())
|
|
OS << ", ";
|
|
MI->second[i].PrintArguments(OS);
|
|
OS << "))\n return Reg;\n\n";
|
|
}
|
|
|
|
// Done with this, remove it.
|
|
SignaturesWithConstantForms.erase(MI);
|
|
}
|
|
|
|
OS << " switch (Opcode) {\n";
|
|
for (const auto &I : OTM) {
|
|
const std::string &Opcode = I.first;
|
|
|
|
OS << " case " << Opcode << ": return fastEmit_" << getLegalCName(Opcode)
|
|
<< "_";
|
|
Operands.PrintManglingSuffix(OS, ImmediatePredicates);
|
|
OS << "(VT, RetVT";
|
|
if (!Operands.empty())
|
|
OS << ", ";
|
|
Operands.PrintArguments(OS);
|
|
OS << ");\n";
|
|
}
|
|
OS << " default: return 0;\n";
|
|
OS << " }\n";
|
|
OS << "}\n";
|
|
OS << "\n";
|
|
}
|
|
|
|
// TODO: SignaturesWithConstantForms should be empty here.
|
|
}
|
|
|
|
static void EmitFastISel(const RecordKeeper &RK, raw_ostream &OS) {
|
|
const CodeGenDAGPatterns CGP(RK);
|
|
const CodeGenTarget &Target = CGP.getTargetInfo();
|
|
emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
|
|
Target.getName().str() + " target",
|
|
OS);
|
|
|
|
// Determine the target's namespace name.
|
|
StringRef InstNS = Target.getInstNamespace();
|
|
assert(!InstNS.empty() && "Can't determine target-specific namespace!");
|
|
|
|
FastISelMap F(InstNS);
|
|
F.collectPatterns(CGP);
|
|
F.printImmediatePredicates(OS);
|
|
F.printFunctionDefinitions(OS);
|
|
}
|
|
|
|
static TableGen::Emitter::Opt X("gen-fast-isel", EmitFastISel,
|
|
"Generate a \"fast\" instruction selector");
|