Fraser Cormack ae5785460d
[libclc] Define macros for users of gentype.inc (#128012)
Several users of (mostly math/) gentype.inc rely on types other than the
'gentype'. This is commonly intN as several maths builtins expose this
as a return or paramter type. We were previously explicitly defining
this type for every gentype.

Other implementations rely on integer types of the same size and element
width as the gentype, such as short/ushort for half, long/ulong for
double, etc.

Users might also rely on as_type or convert_type builtins to/from these
types.

The previous method we used to define intN was unscalable if we wanted
to expose more types and helpers.

This commit introduces a simpler system whereby several macros are
defined at the beginning of gentype.inc. These rely on concatenating
with the vector size. To facilitate this system, scalar gentypes now
define an empty vector size. It was previously undefined, which was
dangerous. An added benefit is that it matches how the integer
gentype.inc vector size has been working.

These macros will be especially helpful for the definitions of
logb/ilogb in an upcoming patch.
2025-02-20 15:24:04 +00:00
..

libclc

libclc is an open source implementation of the library requirements of the OpenCL C programming language, as specified by the OpenCL 1.1 Specification. The following sections of the specification impose library requirements:

  • 6.1: Supported Data Types
  • 6.2.3: Explicit Conversions
  • 6.2.4.2: Reinterpreting Types Using as_type() and as_typen()
  • 6.9: Preprocessor Directives and Macros
  • 6.11: Built-in Functions
  • 9.3: Double Precision Floating-Point
  • 9.4: 64-bit Atomics
  • 9.5: Writing to 3D image memory objects
  • 9.6: Half Precision Floating-Point

libclc is intended to be used with the Clang compiler's OpenCL frontend.

libclc is designed to be portable and extensible. To this end, it provides generic implementations of most library requirements, allowing the target to override the generic implementation at the granularity of individual functions.

libclc currently supports PTX, AMDGPU, SPIRV and CLSPV targets, but support for more targets is welcome.

Compiling and installing

(in the following instructions you can use make or ninja)

For an in-tree build, Clang must also be built at the same time:

$ cmake <path-to>/llvm-project/llvm/CMakeLists.txt -DLLVM_ENABLE_PROJECTS="libclc;clang" \
    -DCMAKE_BUILD_TYPE=Release -G Ninja
$ ninja

Then install:

$ ninja install

Note you can use the DESTDIR Makefile variable to do staged installs.

$ DESTDIR=/path/for/staged/install ninja install

To build out of tree, or in other words, against an existing LLVM build or install:

$ cmake <path-to>/llvm-project/libclc/CMakeLists.txt -DCMAKE_BUILD_TYPE=Release \
  -G Ninja -DLLVM_DIR=$(<path-to>/llvm-config --cmakedir)
$ ninja

Then install as before.

In both cases this will include all supported targets. You can choose which targets are enabled by passing -DLIBCLC_TARGETS_TO_BUILD to CMake. The default is all.

In both cases, the LLVM used must include the targets you want libclc support for (AMDGPU and NVPTX are enabled in LLVM by default). Apart from SPIRV where you do not need an LLVM target but you do need the llvm-spirv tool available. Either build this in-tree, or place it in the directory pointed to by LLVM_TOOLS_BINARY_DIR.

Website

https://libclc.llvm.org/