llvm-project/clang/utils/TableGen/SveEmitter.cpp
Virginia Cangelosi e92ff64bad
[Clang][LLVM] Implement single-multi vectors MOP4{A/S} (#128854)
Implement all single-multi {BF/F/S/U/SU/US}MOP4{A/S} instructions in
clang and llvm following the acle in
https://github.com/ARM-software/acle/pull/381/files.

This PR depends on https://github.com/llvm/llvm-project/pull/127797

This patch updates the semantics of template arguments in intrinsic
names for clarity and ease of use. Previously, template argument numbers
indicated which character in the prototype string determined the final
type suffix, which was confusing—especially for intrinsics using
multiple prototype modifiers per operand (e.g., intrinsics operating on
arrays of vectors). The number had to reference the correct character in
the prototype (e.g., the ‘u’ in “2.u”), making the system cumbersome and
error-prone.
With this patch, template argument numbers now refer to the operand
number that determines the final type suffix, providing a more intuitive
and consistent approach.
2025-04-01 15:05:30 +01:00

1986 lines
60 KiB
C++

//===-- SveEmitter.cpp - Generate arm_sve.h for use with clang ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting arm_sve.h, which includes
// a declaration and definition of each function specified by the ARM C/C++
// Language Extensions (ACLE).
//
// For details, visit:
// https://developer.arm.com/architectures/system-architectures/software-standards/acle
//
// Each SVE instruction is implemented in terms of 1 or more functions which
// are suffixed with the element type of the input vectors. Functions may be
// implemented in terms of generic vector operations such as +, *, -, etc. or
// by calling a __builtin_-prefixed function which will be handled by clang's
// CodeGen library.
//
// See also the documentation in include/clang/Basic/arm_sve.td.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/AArch64ImmCheck.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringToOffsetTable.h"
#include <array>
#include <cctype>
#include <set>
#include <string>
#include <tuple>
using namespace llvm;
enum ClassKind {
ClassNone,
ClassS, // signed/unsigned, e.g., "_s8", "_u8" suffix
ClassG, // Overloaded name without type suffix
};
enum class ACLEKind { SVE, SME };
using TypeSpec = std::string;
namespace {
class SVEType {
enum TypeKind {
Invalid,
Void,
Float,
SInt,
UInt,
BFloat16,
MFloat8,
Svcount,
PrefetchOp,
PredicatePattern,
Predicate,
Fpm
};
TypeKind Kind;
bool Immediate, Constant, Pointer, DefaultType, IsScalable;
unsigned Bitwidth, ElementBitwidth, NumVectors;
public:
SVEType() : SVEType("", 'v') {}
SVEType(StringRef TS, char CharMod, unsigned NumVectors = 1)
: Kind(Invalid), Immediate(false), Constant(false), Pointer(false),
DefaultType(false), IsScalable(true), Bitwidth(128),
ElementBitwidth(~0U), NumVectors(NumVectors) {
if (!TS.empty())
applyTypespec(TS);
applyModifier(CharMod);
}
SVEType(const SVEType &Base, unsigned NumV) : SVEType(Base) {
NumVectors = NumV;
}
bool isPointer() const { return Pointer; }
bool isConstant() const { return Constant; }
bool isImmediate() const { return Immediate; }
bool isScalar() const { return NumVectors == 0; }
bool isVector() const { return NumVectors > 0; }
bool isScalableVector() const { return isVector() && IsScalable; }
bool isFixedLengthVector() const { return isVector() && !IsScalable; }
bool isChar() const { return ElementBitwidth == 8 && isInteger(); }
bool isVoid() const { return Kind == Void; }
bool isDefault() const { return DefaultType; }
bool isFloat() const { return Kind == Float; }
bool isBFloat() const { return Kind == BFloat16; }
bool isMFloat() const { return Kind == MFloat8; }
bool isFloatingPoint() const {
return Kind == Float || Kind == BFloat16 || Kind == MFloat8;
}
bool isInteger() const { return Kind == SInt || Kind == UInt; }
bool isSignedInteger() const { return Kind == SInt; }
bool isUnsignedInteger() const { return Kind == UInt; }
bool isScalarPredicate() const {
return Kind == Predicate && NumVectors == 0;
}
bool isPredicate() const { return Kind == Predicate; }
bool isPredicatePattern() const { return Kind == PredicatePattern; }
bool isPrefetchOp() const { return Kind == PrefetchOp; }
bool isSvcount() const { return Kind == Svcount; }
bool isFpm() const { return Kind == Fpm; }
bool isInvalid() const { return Kind == Invalid; }
unsigned getElementSizeInBits() const { return ElementBitwidth; }
unsigned getNumVectors() const { return NumVectors; }
unsigned getNumElements() const {
assert(ElementBitwidth != ~0U);
return isPredicate() ? 16 : (Bitwidth / ElementBitwidth);
}
unsigned getSizeInBits() const {
return Bitwidth;
}
/// Return the string representation of a type, which is an encoded
/// string for passing to the BUILTIN() macro in Builtins.def.
std::string builtin_str() const;
/// Return the C/C++ string representation of a type for use in the
/// arm_sve.h header file.
std::string str() const;
private:
/// Creates the type based on the typespec string in TS.
void applyTypespec(StringRef TS);
/// Applies a prototype modifier to the type.
void applyModifier(char Mod);
/// Get the builtin base for this SVEType, e.g. 'Wi' for svint64_t.
std::string builtinBaseType() const;
};
class SVEEmitter;
/// The main grunt class. This represents an instantiation of an intrinsic with
/// a particular typespec and prototype.
class Intrinsic {
/// The unmangled name.
std::string Name;
/// The name of the corresponding LLVM IR intrinsic.
std::string LLVMName;
/// Intrinsic prototype.
std::string Proto;
/// The base type spec for this intrinsic.
TypeSpec BaseTypeSpec;
/// The base class kind. Most intrinsics use ClassS, which has full type
/// info for integers (_s32/_u32), or ClassG which is used for overloaded
/// intrinsics.
ClassKind Class;
/// The architectural #ifdef guard.
std::string SVEGuard, SMEGuard;
// The merge suffix such as _m, _x or _z.
std::string MergeSuffix;
/// The types of return value [0] and parameters [1..].
std::vector<SVEType> Types;
/// The "base type", which is VarType('d', BaseTypeSpec).
SVEType BaseType;
uint64_t Flags;
SmallVector<ImmCheck, 2> ImmChecks;
bool SetsFPMR;
public:
Intrinsic(StringRef Name, StringRef Proto, uint64_t MergeTy,
StringRef MergeSuffix, uint64_t MemoryElementTy, StringRef LLVMName,
uint64_t Flags, ArrayRef<ImmCheck> ImmChecks, TypeSpec BT,
ClassKind Class, SVEEmitter &Emitter, StringRef SVEGuard,
StringRef SMEGuard);
~Intrinsic()=default;
std::string getName() const { return Name; }
std::string getLLVMName() const { return LLVMName; }
std::string getProto() const { return Proto; }
TypeSpec getBaseTypeSpec() const { return BaseTypeSpec; }
SVEType getBaseType() const { return BaseType; }
StringRef getSVEGuard() const { return SVEGuard; }
StringRef getSMEGuard() const { return SMEGuard; }
std::string getGuard() const {
std::string Guard;
llvm::raw_string_ostream OS(Guard);
if (!SVEGuard.empty() && SMEGuard.empty())
OS << SVEGuard;
else if (SVEGuard.empty() && !SMEGuard.empty())
OS << SMEGuard;
else {
if (SVEGuard.find(",") != std::string::npos ||
SVEGuard.find("|") != std::string::npos)
OS << "(" << SVEGuard << ")";
else
OS << SVEGuard;
OS << "|";
if (SMEGuard.find(",") != std::string::npos ||
SMEGuard.find("|") != std::string::npos)
OS << "(" << SMEGuard << ")";
else
OS << SMEGuard;
}
return Guard;
}
ClassKind getClassKind() const { return Class; }
SVEType getReturnType() const { return Types[0]; }
ArrayRef<SVEType> getTypes() const { return Types; }
SVEType getParamType(unsigned I) const { return Types[I + 1]; }
unsigned getNumParams() const {
return Proto.size() - (2 * count(Proto, '.')) - 1;
}
uint64_t getFlags() const { return Flags; }
bool isFlagSet(uint64_t Flag) const { return Flags & Flag;}
ArrayRef<ImmCheck> getImmChecks() const { return ImmChecks; }
/// Return the type string for a BUILTIN() macro in Builtins.def.
std::string getBuiltinTypeStr();
/// Return the name, mangled with type information. The name is mangled for
/// ClassS, so will add type suffixes such as _u32/_s32.
std::string getMangledName() const { return mangleName(ClassS); }
/// As above, but mangles the LLVM name instead.
std::string getMangledLLVMName() const { return mangleLLVMName(); }
/// Returns true if the intrinsic is overloaded, in that it should also generate
/// a short form without the type-specifiers, e.g. 'svld1(..)' instead of
/// 'svld1_u32(..)'.
static bool isOverloadedIntrinsic(StringRef Name) {
auto BrOpen = Name.find('[');
auto BrClose = Name.find(']');
return BrOpen != std::string::npos && BrClose != std::string::npos;
}
/// Return true if the intrinsic takes a splat operand.
bool hasSplat() const {
// These prototype modifiers are described in arm_sve.td.
return Proto.find_first_of("ajfrKLR@!") != std::string::npos;
}
/// Return the parameter index of the splat operand.
unsigned getSplatIdx() const {
unsigned I = 1, Param = 0;
for (; I < Proto.size(); ++I, ++Param) {
if (Proto[I] == 'a' || Proto[I] == 'j' || Proto[I] == 'f' ||
Proto[I] == 'r' || Proto[I] == 'K' || Proto[I] == 'L' ||
Proto[I] == 'R' || Proto[I] == '@' || Proto[I] == '!')
break;
// Multivector modifier can be skipped
if (Proto[I] == '.')
I += 2;
}
assert(I != Proto.size() && "Prototype has no splat operand");
return Param;
}
/// Emits the intrinsic declaration to the ostream.
void emitIntrinsic(raw_ostream &OS, SVEEmitter &Emitter, ACLEKind Kind) const;
private:
std::string getMergeSuffix() const { return MergeSuffix; }
StringRef getFPMSuffix() const { return SetsFPMR ? "_fpm" : ""; }
std::string mangleName(ClassKind LocalCK) const;
std::string mangleLLVMName() const;
std::string replaceTemplatedArgs(std::string Name, TypeSpec TS,
std::string Proto) const;
};
class SVEEmitter {
private:
// The reinterpret builtins are generated separately because they
// need the cross product of all types (121 functions in total),
// which is inconvenient to specify in the arm_sve.td file or
// generate in CGBuiltin.cpp.
struct ReinterpretTypeInfo {
SVEType BaseType;
const char *Suffix;
};
static const std::array<ReinterpretTypeInfo, 13> Reinterprets;
const RecordKeeper &Records;
StringMap<uint64_t> EltTypes;
StringMap<uint64_t> MemEltTypes;
StringMap<uint64_t> FlagTypes;
StringMap<uint64_t> MergeTypes;
StringMap<uint64_t> ImmCheckTypes;
public:
SVEEmitter(const RecordKeeper &R) : Records(R) {
for (auto *RV : Records.getAllDerivedDefinitions("EltType"))
EltTypes[RV->getNameInitAsString()] = RV->getValueAsInt("Value");
for (auto *RV : Records.getAllDerivedDefinitions("MemEltType"))
MemEltTypes[RV->getNameInitAsString()] = RV->getValueAsInt("Value");
for (auto *RV : Records.getAllDerivedDefinitions("FlagType"))
FlagTypes[RV->getNameInitAsString()] = RV->getValueAsInt("Value");
for (auto *RV : Records.getAllDerivedDefinitions("MergeType"))
MergeTypes[RV->getNameInitAsString()] = RV->getValueAsInt("Value");
for (auto *RV : Records.getAllDerivedDefinitions("ImmCheckType"))
ImmCheckTypes[RV->getNameInitAsString()] = RV->getValueAsInt("Value");
}
/// Returns the enum value for the immcheck type
unsigned getEnumValueForImmCheck(StringRef C) const {
auto It = ImmCheckTypes.find(C);
if (It != ImmCheckTypes.end())
return It->getValue();
llvm_unreachable("Unsupported imm check");
}
/// Returns the enum value for the flag type
uint64_t getEnumValueForFlag(StringRef C) const {
auto Res = FlagTypes.find(C);
if (Res != FlagTypes.end())
return Res->getValue();
llvm_unreachable("Unsupported flag");
}
// Returns the SVETypeFlags for a given value and mask.
uint64_t encodeFlag(uint64_t V, StringRef MaskName) const {
auto It = FlagTypes.find(MaskName);
if (It != FlagTypes.end()) {
uint64_t Mask = It->getValue();
unsigned Shift = countr_zero(Mask);
assert(Shift < 64 && "Mask value produced an invalid shift value");
return (V << Shift) & Mask;
}
llvm_unreachable("Unsupported flag");
}
// Returns the SVETypeFlags for the given element type.
uint64_t encodeEltType(StringRef EltName) {
auto It = EltTypes.find(EltName);
if (It != EltTypes.end())
return encodeFlag(It->getValue(), "EltTypeMask");
llvm_unreachable("Unsupported EltType");
}
// Returns the SVETypeFlags for the given memory element type.
uint64_t encodeMemoryElementType(uint64_t MT) {
return encodeFlag(MT, "MemEltTypeMask");
}
// Returns the SVETypeFlags for the given merge type.
uint64_t encodeMergeType(uint64_t MT) {
return encodeFlag(MT, "MergeTypeMask");
}
// Returns the SVETypeFlags for the given splat operand.
unsigned encodeSplatOperand(unsigned SplatIdx) {
assert(SplatIdx < 7 && "SplatIdx out of encodable range");
return encodeFlag(SplatIdx + 1, "SplatOperandMask");
}
// Returns the SVETypeFlags value for the given SVEType.
uint64_t encodeTypeFlags(const SVEType &T);
/// Emit arm_sve.h.
void createHeader(raw_ostream &o);
// Emits core intrinsics in both arm_sme.h and arm_sve.h
void createCoreHeaderIntrinsics(raw_ostream &o, SVEEmitter &Emitter,
ACLEKind Kind);
/// Emit all the __builtin prototypes and code needed by Sema.
void createBuiltins(raw_ostream &o);
/// Emit all the information needed to map builtin -> LLVM IR intrinsic.
void createCodeGenMap(raw_ostream &o);
/// Emit all the range checks for the immediates.
void createRangeChecks(raw_ostream &o);
// Emit all the ImmCheckTypes to arm_immcheck_types.inc
void createImmCheckTypes(raw_ostream &OS);
/// Create the SVETypeFlags used in CGBuiltins
void createTypeFlags(raw_ostream &o);
/// Emit arm_sme.h.
void createSMEHeader(raw_ostream &o);
/// Emit all the SME __builtin prototypes and code needed by Sema.
void createSMEBuiltins(raw_ostream &o);
/// Emit all the information needed to map builtin -> LLVM IR intrinsic.
void createSMECodeGenMap(raw_ostream &o);
/// Create a table for a builtin's requirement for PSTATE.SM.
void createStreamingAttrs(raw_ostream &o, ACLEKind Kind);
/// Emit all the range checks for the immediates.
void createSMERangeChecks(raw_ostream &o);
/// Create a table for a builtin's requirement for PSTATE.ZA.
void createBuiltinZAState(raw_ostream &OS);
/// Create intrinsic and add it to \p Out
void createIntrinsic(const Record *R,
SmallVectorImpl<std::unique_ptr<Intrinsic>> &Out);
};
const std::array<SVEEmitter::ReinterpretTypeInfo, 13> SVEEmitter::Reinterprets =
{{{SVEType("c", 'd'), "s8"},
{SVEType("Uc", 'd'), "u8"},
{SVEType("m", 'd'), "mf8"},
{SVEType("s", 'd'), "s16"},
{SVEType("Us", 'd'), "u16"},
{SVEType("i", 'd'), "s32"},
{SVEType("Ui", 'd'), "u32"},
{SVEType("l", 'd'), "s64"},
{SVEType("Ul", 'd'), "u64"},
{SVEType("h", 'd'), "f16"},
{SVEType("b", 'd'), "bf16"},
{SVEType("f", 'd'), "f32"},
{SVEType("d", 'd'), "f64"}}};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Type implementation
//===----------------------------------------------------------------------===//
std::string SVEType::builtinBaseType() const {
switch (Kind) {
case TypeKind::Void:
return "v";
case TypeKind::Svcount:
return "Qa";
case TypeKind::PrefetchOp:
case TypeKind::PredicatePattern:
return "i";
case TypeKind::Fpm:
return "UWi";
case TypeKind::Predicate:
return "b";
case TypeKind::BFloat16:
assert(ElementBitwidth == 16 && "Invalid BFloat16!");
return "y";
case TypeKind::MFloat8:
assert(ElementBitwidth == 8 && "Invalid MFloat8!");
return "m";
case TypeKind::Float:
switch (ElementBitwidth) {
case 16:
return "h";
case 32:
return "f";
case 64:
return "d";
default:
llvm_unreachable("Unhandled float width!");
}
case TypeKind::SInt:
case TypeKind::UInt:
switch (ElementBitwidth) {
case 1:
return "b";
case 8:
return "c";
case 16:
return "s";
case 32:
return "i";
case 64:
return "Wi";
case 128:
return "LLLi";
default:
llvm_unreachable("Unhandled bitwidth!");
}
case TypeKind::Invalid:
llvm_unreachable("Attempting to resolve builtin string from Invalid type!");
}
llvm_unreachable("Unhandled TypeKind!");
}
std::string SVEType::builtin_str() const {
std::string Prefix;
if (isScalableVector())
Prefix = "q" + llvm::utostr(getNumElements() * NumVectors);
else if (isFixedLengthVector())
Prefix = "V" + llvm::utostr(getNumElements() * NumVectors);
else if (isImmediate()) {
assert(!isFloatingPoint() && "fp immediates are not supported");
Prefix = "I";
}
// Make chars and integer pointers explicitly signed.
if ((ElementBitwidth == 8 || isPointer()) && isSignedInteger())
Prefix += "S";
else if (isUnsignedInteger())
Prefix += "U";
std::string BuiltinStr = Prefix + builtinBaseType();
if (isConstant())
BuiltinStr += "C";
if (isPointer())
BuiltinStr += "*";
return BuiltinStr;
}
std::string SVEType::str() const {
std::string TypeStr;
switch (Kind) {
case TypeKind::PrefetchOp:
return "enum svprfop";
case TypeKind::PredicatePattern:
return "enum svpattern";
case TypeKind::Fpm:
TypeStr += "fpm";
break;
case TypeKind::Void:
TypeStr += "void";
break;
case TypeKind::Float:
TypeStr += "float" + llvm::utostr(ElementBitwidth);
break;
case TypeKind::Svcount:
TypeStr += "svcount";
break;
case TypeKind::Predicate:
TypeStr += "bool";
break;
case TypeKind::BFloat16:
TypeStr += "bfloat16";
break;
case TypeKind::MFloat8:
TypeStr += "mfloat8";
break;
case TypeKind::SInt:
TypeStr += "int" + llvm::utostr(ElementBitwidth);
break;
case TypeKind::UInt:
TypeStr += "uint" + llvm::utostr(ElementBitwidth);
break;
case TypeKind::Invalid:
llvm_unreachable("Attempting to resolve type name from Invalid type!");
}
if (isFixedLengthVector())
TypeStr += "x" + llvm::utostr(getNumElements());
else if (isScalableVector())
TypeStr = "sv" + TypeStr;
if (NumVectors > 1)
TypeStr += "x" + llvm::utostr(NumVectors);
if (!isScalarPredicate() && !isVoid())
TypeStr += "_t";
if (isConstant())
TypeStr += " const";
if (isPointer())
TypeStr += " *";
return TypeStr;
}
void SVEType::applyTypespec(StringRef TS) {
for (char I : TS) {
switch (I) {
case 'Q':
assert(isInvalid() && "Unexpected use of typespec modifier");
Kind = Svcount;
break;
case 'P':
assert(isInvalid() && "Unexpected use of typespec modifier");
Kind = Predicate;
break;
case 'U':
assert(isInvalid() && "Unexpected use of typespec modifier");
Kind = UInt;
break;
case 'c':
Kind = isInvalid() ? SInt : Kind;
ElementBitwidth = 8;
break;
case 's':
Kind = isInvalid() ? SInt : Kind;
ElementBitwidth = 16;
break;
case 'i':
Kind = isInvalid() ? SInt : Kind;
ElementBitwidth = 32;
break;
case 'l':
Kind = isInvalid() ? SInt : Kind;
ElementBitwidth = 64;
break;
case 'q':
Kind = isInvalid() ? SInt : Kind;
ElementBitwidth = 128;
break;
case 'h':
assert(isInvalid() && "Unexpected use of typespec modifier");
Kind = Float;
ElementBitwidth = 16;
break;
case 'f':
assert(isInvalid() && "Unexpected use of typespec modifier");
Kind = Float;
ElementBitwidth = 32;
break;
case 'd':
assert(isInvalid() && "Unexpected use of typespec modifier");
Kind = Float;
ElementBitwidth = 64;
break;
case 'b':
assert(isInvalid() && "Unexpected use of typespec modifier");
Kind = BFloat16;
ElementBitwidth = 16;
break;
case 'm':
assert(isInvalid() && "Unexpected use of typespec modifier");
Kind = MFloat8;
ElementBitwidth = 8;
break;
default:
llvm_unreachable("Unhandled type code!");
}
}
assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
}
void SVEType::applyModifier(char Mod) {
switch (Mod) {
case 'v':
Kind = Void;
NumVectors = 0;
break;
case 'd':
DefaultType = true;
break;
case 'c':
Constant = true;
[[fallthrough]];
case 'p':
Pointer = true;
Bitwidth = ElementBitwidth;
NumVectors = 0;
break;
case 'e':
Kind = UInt;
ElementBitwidth /= 2;
break;
case 'h':
ElementBitwidth /= 2;
break;
case 'q':
ElementBitwidth /= 4;
break;
case 'b':
Kind = UInt;
ElementBitwidth /= 4;
break;
case 'o':
ElementBitwidth *= 4;
break;
case 'P':
Kind = Predicate;
Bitwidth = 16;
ElementBitwidth = 1;
break;
case '{':
IsScalable = false;
Bitwidth = 128;
NumVectors = 1;
break;
case 's':
case 'a':
Bitwidth = ElementBitwidth;
NumVectors = 0;
break;
case 'R':
ElementBitwidth /= 2;
NumVectors = 0;
break;
case 'r':
ElementBitwidth /= 4;
NumVectors = 0;
break;
case '@':
Kind = UInt;
ElementBitwidth /= 4;
NumVectors = 0;
break;
case 'K':
Kind = SInt;
Bitwidth = ElementBitwidth;
NumVectors = 0;
break;
case 'L':
Kind = UInt;
Bitwidth = ElementBitwidth;
NumVectors = 0;
break;
case 'u':
Kind = UInt;
break;
case 'x':
Kind = SInt;
break;
case 'i':
Kind = UInt;
ElementBitwidth = Bitwidth = 64;
NumVectors = 0;
Immediate = true;
break;
case 'I':
Kind = PredicatePattern;
ElementBitwidth = Bitwidth = 32;
NumVectors = 0;
Immediate = true;
break;
case 'J':
Kind = PrefetchOp;
ElementBitwidth = Bitwidth = 32;
NumVectors = 0;
Immediate = true;
break;
case 'k':
Kind = SInt;
ElementBitwidth = Bitwidth = 32;
NumVectors = 0;
break;
case 'l':
Kind = SInt;
ElementBitwidth = Bitwidth = 64;
NumVectors = 0;
break;
case 'm':
Kind = UInt;
ElementBitwidth = Bitwidth = 32;
NumVectors = 0;
break;
case '>':
Kind = Fpm;
ElementBitwidth = Bitwidth = 64;
NumVectors = 0;
break;
case 'n':
Kind = UInt;
ElementBitwidth = Bitwidth = 64;
NumVectors = 0;
break;
case 'w':
ElementBitwidth = 64;
break;
case 'j':
ElementBitwidth = Bitwidth = 64;
NumVectors = 0;
break;
case 'f':
Kind = UInt;
ElementBitwidth = Bitwidth = 64;
NumVectors = 0;
break;
case 'g':
Kind = UInt;
ElementBitwidth = 64;
break;
case '#':
Kind = SInt;
ElementBitwidth = 64;
break;
case '[':
Kind = UInt;
ElementBitwidth = 8;
break;
case 't':
Kind = SInt;
ElementBitwidth = 32;
break;
case 'z':
Kind = UInt;
ElementBitwidth = 32;
break;
case 'O':
Kind = Float;
ElementBitwidth = 16;
break;
case 'M':
Kind = Float;
ElementBitwidth = 32;
break;
case 'N':
Kind = Float;
ElementBitwidth = 64;
break;
case 'Q':
Kind = Void;
Constant = true;
Pointer = true;
NumVectors = 0;
break;
case 'S':
Kind = SInt;
Constant = true;
Pointer = true;
ElementBitwidth = Bitwidth = 8;
NumVectors = 0;
break;
case 'W':
Kind = UInt;
Constant = true;
Pointer = true;
ElementBitwidth = Bitwidth = 8;
NumVectors = 0;
break;
case 'T':
Kind = SInt;
Constant = true;
Pointer = true;
ElementBitwidth = Bitwidth = 16;
NumVectors = 0;
break;
case 'X':
Kind = UInt;
Constant = true;
Pointer = true;
ElementBitwidth = Bitwidth = 16;
NumVectors = 0;
break;
case 'Y':
Kind = UInt;
Constant = true;
Pointer = true;
ElementBitwidth = Bitwidth = 32;
NumVectors = 0;
break;
case 'U':
Kind = SInt;
Constant = true;
Pointer = true;
ElementBitwidth = Bitwidth = 32;
NumVectors = 0;
break;
case '%':
Kind = Void;
Pointer = true;
NumVectors = 0;
break;
case 'A':
Kind = SInt;
Pointer = true;
ElementBitwidth = Bitwidth = 8;
NumVectors = 0;
break;
case 'B':
Kind = SInt;
Pointer = true;
ElementBitwidth = Bitwidth = 16;
NumVectors = 0;
break;
case 'C':
Kind = SInt;
Pointer = true;
ElementBitwidth = Bitwidth = 32;
NumVectors = 0;
break;
case 'D':
Kind = SInt;
Pointer = true;
ElementBitwidth = Bitwidth = 64;
NumVectors = 0;
break;
case 'E':
Kind = UInt;
Pointer = true;
ElementBitwidth = Bitwidth = 8;
NumVectors = 0;
break;
case 'F':
Kind = UInt;
Pointer = true;
ElementBitwidth = Bitwidth = 16;
NumVectors = 0;
break;
case 'G':
Kind = UInt;
Pointer = true;
ElementBitwidth = Bitwidth = 32;
NumVectors = 0;
break;
case '$':
Kind = BFloat16;
ElementBitwidth = 16;
break;
case '}':
Kind = Svcount;
NumVectors = 0;
break;
case '~':
Kind = MFloat8;
ElementBitwidth = 8;
break;
case '!':
Kind = MFloat8;
Bitwidth = ElementBitwidth = 8;
NumVectors = 0;
break;
case '.':
llvm_unreachable(". is never a type in itself");
break;
default:
llvm_unreachable("Unhandled character!");
}
}
/// Returns the modifier and number of vectors for the given operand \p Op.
std::pair<char, unsigned> getProtoModifier(StringRef Proto, unsigned Op) {
for (unsigned P = 0; !Proto.empty(); ++P) {
unsigned NumVectors = 1;
unsigned CharsToSkip = 1;
char Mod = Proto[0];
if (Mod == '2' || Mod == '3' || Mod == '4') {
NumVectors = Mod - '0';
Mod = 'd';
if (Proto.size() > 1 && Proto[1] == '.') {
Mod = Proto[2];
CharsToSkip = 3;
}
}
if (P == Op)
return {Mod, NumVectors};
Proto = Proto.drop_front(CharsToSkip);
}
llvm_unreachable("Unexpected Op");
}
//===----------------------------------------------------------------------===//
// Intrinsic implementation
//===----------------------------------------------------------------------===//
Intrinsic::Intrinsic(StringRef Name, StringRef Proto, uint64_t MergeTy,
StringRef MergeSuffix, uint64_t MemoryElementTy,
StringRef LLVMName, uint64_t Flags,
ArrayRef<ImmCheck> Checks, TypeSpec BT, ClassKind Class,
SVEEmitter &Emitter, StringRef SVEGuard,
StringRef SMEGuard)
: Name(Name.str()), LLVMName(LLVMName), Proto(Proto.str()),
BaseTypeSpec(BT), Class(Class), MergeSuffix(MergeSuffix.str()),
BaseType(BT, 'd'), Flags(Flags), ImmChecks(Checks) {
auto FormatGuard = [](StringRef Guard, StringRef Base) -> std::string {
if (Guard.contains('|'))
return Base.str() + ",(" + Guard.str() + ")";
if (Guard.empty() || Guard == Base || Guard.starts_with(Base.str() + ","))
return Guard.str();
return Base.str() + "," + Guard.str();
};
this->SVEGuard = FormatGuard(SVEGuard, "sve");
this->SMEGuard = FormatGuard(SMEGuard, "sme");
// Types[0] is the return value.
for (unsigned I = 0; I < (getNumParams() + 1); ++I) {
char Mod;
unsigned NumVectors;
std::tie(Mod, NumVectors) = getProtoModifier(Proto, I);
SVEType T(BaseTypeSpec, Mod, NumVectors);
Types.push_back(T);
SetsFPMR = T.isFpm();
// Add range checks for immediates
if (I > 0) {
if (T.isPredicatePattern())
ImmChecks.emplace_back(
I - 1, Emitter.getEnumValueForImmCheck("ImmCheck0_31"));
else if (T.isPrefetchOp())
ImmChecks.emplace_back(
I - 1, Emitter.getEnumValueForImmCheck("ImmCheck0_13"));
}
}
// Set flags based on properties
this->Flags |= Emitter.encodeTypeFlags(BaseType);
this->Flags |= Emitter.encodeMemoryElementType(MemoryElementTy);
this->Flags |= Emitter.encodeMergeType(MergeTy);
if (hasSplat())
this->Flags |= Emitter.encodeSplatOperand(getSplatIdx());
if (SetsFPMR)
this->Flags |= Emitter.getEnumValueForFlag("SetsFPMR");
}
std::string Intrinsic::getBuiltinTypeStr() {
std::string S = getReturnType().builtin_str();
for (unsigned I = 0; I < getNumParams(); ++I)
S += getParamType(I).builtin_str();
return S;
}
std::string Intrinsic::replaceTemplatedArgs(std::string Name, TypeSpec TS,
std::string Proto) const {
std::string Ret = Name;
while (Ret.find('{') != std::string::npos) {
size_t Pos = Ret.find('{');
size_t End = Ret.find('}');
unsigned NumChars = End - Pos + 1;
assert(NumChars == 3 && "Unexpected template argument");
SVEType T;
char C = Ret[Pos+1];
switch(C) {
default:
llvm_unreachable("Unknown predication specifier");
case 'd':
T = SVEType(TS, 'd');
break;
case '0':
case '1':
case '2':
case '3':
// Extract the modifier before passing to SVEType to handle numeric
// modifiers
auto [Mod, NumVectors] = getProtoModifier(Proto, (C - '0'));
T = SVEType(TS, Mod);
break;
}
// Replace templated arg with the right suffix (e.g. u32)
std::string TypeCode;
if (T.isSignedInteger())
TypeCode = 's';
else if (T.isUnsignedInteger())
TypeCode = 'u';
else if (T.isSvcount())
TypeCode = 'c';
else if (T.isPredicate())
TypeCode = 'b';
else if (T.isBFloat())
TypeCode = "bf";
else if (T.isMFloat())
TypeCode = "mf";
else
TypeCode = 'f';
Ret.replace(Pos, NumChars, TypeCode + utostr(T.getElementSizeInBits()));
}
return Ret;
}
std::string Intrinsic::mangleLLVMName() const {
std::string S = getLLVMName();
// Replace all {d} like expressions with e.g. 'u32'
return replaceTemplatedArgs(S, getBaseTypeSpec(), getProto());
}
std::string Intrinsic::mangleName(ClassKind LocalCK) const {
std::string S = getName();
if (LocalCK == ClassG) {
// Remove the square brackets and everything in between.
while (S.find('[') != std::string::npos) {
auto Start = S.find('[');
auto End = S.find(']');
S.erase(Start, (End-Start)+1);
}
} else {
// Remove the square brackets.
while (S.find('[') != std::string::npos) {
auto BrPos = S.find('[');
if (BrPos != std::string::npos)
S.erase(BrPos, 1);
BrPos = S.find(']');
if (BrPos != std::string::npos)
S.erase(BrPos, 1);
}
}
// Replace all {d} like expressions with e.g. 'u32'
return replaceTemplatedArgs(S, getBaseTypeSpec(), getProto())
.append(getMergeSuffix())
.append(getFPMSuffix());
}
void Intrinsic::emitIntrinsic(raw_ostream &OS, SVEEmitter &Emitter,
ACLEKind Kind) const {
bool IsOverloaded = getClassKind() == ClassG && getProto().size() > 1;
std::string FullName = mangleName(ClassS);
std::string ProtoName = mangleName(getClassKind());
OS << (IsOverloaded ? "__aio " : "__ai ")
<< "__attribute__((__clang_arm_builtin_alias(";
switch (Kind) {
case ACLEKind::SME:
OS << "__builtin_sme_" << FullName << ")";
break;
case ACLEKind::SVE:
OS << "__builtin_sve_" << FullName << ")";
break;
}
OS << "))\n";
OS << getTypes()[0].str() << " " << ProtoName << "(";
for (unsigned I = 0; I < getTypes().size() - 1; ++I) {
if (I != 0)
OS << ", ";
OS << getTypes()[I + 1].str();
}
OS << ");\n";
}
//===----------------------------------------------------------------------===//
// SVEEmitter implementation
//===----------------------------------------------------------------------===//
uint64_t SVEEmitter::encodeTypeFlags(const SVEType &T) {
if (T.isFloat()) {
switch (T.getElementSizeInBits()) {
case 16:
return encodeEltType("EltTyFloat16");
case 32:
return encodeEltType("EltTyFloat32");
case 64:
return encodeEltType("EltTyFloat64");
default:
llvm_unreachable("Unhandled float element bitwidth!");
}
}
if (T.isBFloat()) {
assert(T.getElementSizeInBits() == 16 && "Not a valid BFloat.");
return encodeEltType("EltTyBFloat16");
}
if (T.isMFloat()) {
assert(T.getElementSizeInBits() == 8 && "Not a valid MFloat.");
return encodeEltType("EltTyMFloat8");
}
if (T.isPredicate() || T.isSvcount()) {
switch (T.getElementSizeInBits()) {
case 8:
return encodeEltType("EltTyBool8");
case 16:
return encodeEltType("EltTyBool16");
case 32:
return encodeEltType("EltTyBool32");
case 64:
return encodeEltType("EltTyBool64");
default:
llvm_unreachable("Unhandled predicate element bitwidth!");
}
}
switch (T.getElementSizeInBits()) {
case 8:
return encodeEltType("EltTyInt8");
case 16:
return encodeEltType("EltTyInt16");
case 32:
return encodeEltType("EltTyInt32");
case 64:
return encodeEltType("EltTyInt64");
case 128:
return encodeEltType("EltTyInt128");
default:
llvm_unreachable("Unhandled integer element bitwidth!");
}
}
void SVEEmitter::createIntrinsic(
const Record *R, SmallVectorImpl<std::unique_ptr<Intrinsic>> &Out) {
StringRef Name = R->getValueAsString("Name");
StringRef Proto = R->getValueAsString("Prototype");
StringRef Types = R->getValueAsString("Types");
StringRef SVEGuard = R->getValueAsString("SVETargetGuard");
StringRef SMEGuard = R->getValueAsString("SMETargetGuard");
StringRef LLVMName = R->getValueAsString("LLVMIntrinsic");
uint64_t Merge = R->getValueAsInt("Merge");
StringRef MergeSuffix = R->getValueAsString("MergeSuffix");
uint64_t MemEltType = R->getValueAsInt("MemEltType");
int64_t Flags = 0;
for (const Record *FlagRec : R->getValueAsListOfDefs("Flags"))
Flags |= FlagRec->getValueAsInt("Value");
// Create a dummy TypeSpec for non-overloaded builtins.
if (Types.empty()) {
assert((Flags & getEnumValueForFlag("IsOverloadNone")) &&
"Expect TypeSpec for overloaded builtin!");
Types = "i";
}
// Extract type specs from string
SmallVector<TypeSpec, 8> TypeSpecs;
TypeSpec Acc;
for (char I : Types) {
Acc.push_back(I);
if (islower(I)) {
TypeSpecs.push_back(TypeSpec(Acc));
Acc.clear();
}
}
// Remove duplicate type specs.
sort(TypeSpecs);
TypeSpecs.erase(std::unique(TypeSpecs.begin(), TypeSpecs.end()),
TypeSpecs.end());
// Create an Intrinsic for each type spec.
for (auto TS : TypeSpecs) {
// Collate a list of range/option checks for the immediates.
SmallVector<ImmCheck, 2> ImmChecks;
for (const Record *ImmR : R->getValueAsListOfDefs("ImmChecks")) {
int64_t ArgIdx = ImmR->getValueAsInt("ImmArgIdx");
int64_t EltSizeArgIdx = ImmR->getValueAsInt("TypeContextArgIdx");
int64_t Kind = ImmR->getValueAsDef("Kind")->getValueAsInt("Value");
assert(ArgIdx >= 0 && Kind >= 0 &&
"ImmArgIdx and Kind must be nonnegative");
unsigned ElementSizeInBits = 0;
auto [Mod, NumVectors] = getProtoModifier(Proto, EltSizeArgIdx + 1);
if (EltSizeArgIdx >= 0)
ElementSizeInBits = SVEType(TS, Mod, NumVectors).getElementSizeInBits();
ImmChecks.push_back(ImmCheck(ArgIdx, Kind, ElementSizeInBits));
}
Out.push_back(std::make_unique<Intrinsic>(
Name, Proto, Merge, MergeSuffix, MemEltType, LLVMName, Flags, ImmChecks,
TS, ClassS, *this, SVEGuard, SMEGuard));
// Also generate the short-form (e.g. svadd_m) for the given type-spec.
if (Intrinsic::isOverloadedIntrinsic(Name))
Out.push_back(std::make_unique<Intrinsic>(
Name, Proto, Merge, MergeSuffix, MemEltType, LLVMName, Flags,
ImmChecks, TS, ClassG, *this, SVEGuard, SMEGuard));
}
}
void SVEEmitter::createCoreHeaderIntrinsics(raw_ostream &OS,
SVEEmitter &Emitter,
ACLEKind Kind) {
SmallVector<std::unique_ptr<Intrinsic>, 128> Defs;
std::vector<const Record *> RV = Records.getAllDerivedDefinitions("Inst");
for (auto *R : RV)
createIntrinsic(R, Defs);
// Sort intrinsics in header file by following order/priority:
// - Architectural guard (i.e. does it require SVE2 or SVE2_AES)
// - Class (is intrinsic overloaded or not)
// - Intrinsic name
std::stable_sort(Defs.begin(), Defs.end(),
[](const std::unique_ptr<Intrinsic> &A,
const std::unique_ptr<Intrinsic> &B) {
auto ToTuple = [](const std::unique_ptr<Intrinsic> &I) {
return std::make_tuple(
I->getSVEGuard().str() + I->getSMEGuard().str(),
(unsigned)I->getClassKind(), I->getName());
};
return ToTuple(A) < ToTuple(B);
});
// Actually emit the intrinsic declarations.
for (auto &I : Defs)
I->emitIntrinsic(OS, Emitter, Kind);
}
void SVEEmitter::createHeader(raw_ostream &OS) {
OS << "/*===---- arm_sve.h - ARM SVE intrinsics "
"-----------------------------------===\n"
" *\n"
" *\n"
" * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
"Exceptions.\n"
" * See https://llvm.org/LICENSE.txt for license information.\n"
" * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
" *\n"
" *===-----------------------------------------------------------------"
"------===\n"
" */\n\n";
OS << "#ifndef __ARM_SVE_H\n";
OS << "#define __ARM_SVE_H\n\n";
OS << "#if !defined(__LITTLE_ENDIAN__)\n";
OS << "#error \"Big endian is currently not supported for arm_sve.h\"\n";
OS << "#endif\n";
OS << "#include <stdint.h>\n\n";
OS << "#ifdef __cplusplus\n";
OS << "extern \"C\" {\n";
OS << "#else\n";
OS << "#include <stdbool.h>\n";
OS << "#endif\n\n";
OS << "typedef __fp16 float16_t;\n";
OS << "typedef float float32_t;\n";
OS << "typedef double float64_t;\n";
OS << "typedef __SVInt8_t svint8_t;\n";
OS << "typedef __SVInt16_t svint16_t;\n";
OS << "typedef __SVInt32_t svint32_t;\n";
OS << "typedef __SVInt64_t svint64_t;\n";
OS << "typedef __SVUint8_t svuint8_t;\n";
OS << "typedef __SVUint16_t svuint16_t;\n";
OS << "typedef __SVUint32_t svuint32_t;\n";
OS << "typedef __SVUint64_t svuint64_t;\n";
OS << "typedef __SVFloat16_t svfloat16_t;\n\n";
OS << "typedef __SVBfloat16_t svbfloat16_t;\n";
OS << "#include <arm_bf16.h>\n";
OS << "#include <arm_vector_types.h>\n";
OS << "typedef __SVMfloat8_t svmfloat8_t;\n\n";
OS << "typedef __SVFloat32_t svfloat32_t;\n";
OS << "typedef __SVFloat64_t svfloat64_t;\n";
OS << "typedef __clang_svint8x2_t svint8x2_t;\n";
OS << "typedef __clang_svint16x2_t svint16x2_t;\n";
OS << "typedef __clang_svint32x2_t svint32x2_t;\n";
OS << "typedef __clang_svint64x2_t svint64x2_t;\n";
OS << "typedef __clang_svuint8x2_t svuint8x2_t;\n";
OS << "typedef __clang_svuint16x2_t svuint16x2_t;\n";
OS << "typedef __clang_svuint32x2_t svuint32x2_t;\n";
OS << "typedef __clang_svuint64x2_t svuint64x2_t;\n";
OS << "typedef __clang_svfloat16x2_t svfloat16x2_t;\n";
OS << "typedef __clang_svfloat32x2_t svfloat32x2_t;\n";
OS << "typedef __clang_svfloat64x2_t svfloat64x2_t;\n";
OS << "typedef __clang_svint8x3_t svint8x3_t;\n";
OS << "typedef __clang_svint16x3_t svint16x3_t;\n";
OS << "typedef __clang_svint32x3_t svint32x3_t;\n";
OS << "typedef __clang_svint64x3_t svint64x3_t;\n";
OS << "typedef __clang_svuint8x3_t svuint8x3_t;\n";
OS << "typedef __clang_svuint16x3_t svuint16x3_t;\n";
OS << "typedef __clang_svuint32x3_t svuint32x3_t;\n";
OS << "typedef __clang_svuint64x3_t svuint64x3_t;\n";
OS << "typedef __clang_svfloat16x3_t svfloat16x3_t;\n";
OS << "typedef __clang_svfloat32x3_t svfloat32x3_t;\n";
OS << "typedef __clang_svfloat64x3_t svfloat64x3_t;\n";
OS << "typedef __clang_svint8x4_t svint8x4_t;\n";
OS << "typedef __clang_svint16x4_t svint16x4_t;\n";
OS << "typedef __clang_svint32x4_t svint32x4_t;\n";
OS << "typedef __clang_svint64x4_t svint64x4_t;\n";
OS << "typedef __clang_svuint8x4_t svuint8x4_t;\n";
OS << "typedef __clang_svuint16x4_t svuint16x4_t;\n";
OS << "typedef __clang_svuint32x4_t svuint32x4_t;\n";
OS << "typedef __clang_svuint64x4_t svuint64x4_t;\n";
OS << "typedef __clang_svfloat16x4_t svfloat16x4_t;\n";
OS << "typedef __clang_svfloat32x4_t svfloat32x4_t;\n";
OS << "typedef __clang_svfloat64x4_t svfloat64x4_t;\n";
OS << "typedef __SVBool_t svbool_t;\n";
OS << "typedef __clang_svboolx2_t svboolx2_t;\n";
OS << "typedef __clang_svboolx4_t svboolx4_t;\n\n";
OS << "typedef __clang_svbfloat16x2_t svbfloat16x2_t;\n";
OS << "typedef __clang_svbfloat16x3_t svbfloat16x3_t;\n";
OS << "typedef __clang_svbfloat16x4_t svbfloat16x4_t;\n";
OS << "typedef __clang_svmfloat8x2_t svmfloat8x2_t;\n";
OS << "typedef __clang_svmfloat8x3_t svmfloat8x3_t;\n";
OS << "typedef __clang_svmfloat8x4_t svmfloat8x4_t;\n";
OS << "typedef __SVCount_t svcount_t;\n\n";
OS << "enum svpattern\n";
OS << "{\n";
OS << " SV_POW2 = 0,\n";
OS << " SV_VL1 = 1,\n";
OS << " SV_VL2 = 2,\n";
OS << " SV_VL3 = 3,\n";
OS << " SV_VL4 = 4,\n";
OS << " SV_VL5 = 5,\n";
OS << " SV_VL6 = 6,\n";
OS << " SV_VL7 = 7,\n";
OS << " SV_VL8 = 8,\n";
OS << " SV_VL16 = 9,\n";
OS << " SV_VL32 = 10,\n";
OS << " SV_VL64 = 11,\n";
OS << " SV_VL128 = 12,\n";
OS << " SV_VL256 = 13,\n";
OS << " SV_MUL4 = 29,\n";
OS << " SV_MUL3 = 30,\n";
OS << " SV_ALL = 31\n";
OS << "};\n\n";
OS << "enum svprfop\n";
OS << "{\n";
OS << " SV_PLDL1KEEP = 0,\n";
OS << " SV_PLDL1STRM = 1,\n";
OS << " SV_PLDL2KEEP = 2,\n";
OS << " SV_PLDL2STRM = 3,\n";
OS << " SV_PLDL3KEEP = 4,\n";
OS << " SV_PLDL3STRM = 5,\n";
OS << " SV_PSTL1KEEP = 8,\n";
OS << " SV_PSTL1STRM = 9,\n";
OS << " SV_PSTL2KEEP = 10,\n";
OS << " SV_PSTL2STRM = 11,\n";
OS << " SV_PSTL3KEEP = 12,\n";
OS << " SV_PSTL3STRM = 13\n";
OS << "};\n\n";
OS << "/* Function attributes */\n";
OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
"__nodebug__))\n\n";
OS << "#define __aio static __inline__ __attribute__((__always_inline__, "
"__nodebug__, __overloadable__))\n\n";
// Add reinterpret functions.
for (auto [N, Suffix] :
std::initializer_list<std::pair<unsigned, const char *>>{
{1, ""}, {2, "_x2"}, {3, "_x3"}, {4, "_x4"}}) {
for (auto ShortForm : {false, true})
for (const ReinterpretTypeInfo &To : Reinterprets) {
SVEType ToV(To.BaseType, N);
for (const ReinterpretTypeInfo &From : Reinterprets) {
SVEType FromV(From.BaseType, N);
OS << "__aio "
"__attribute__((__clang_arm_builtin_alias(__builtin_sve_"
"reinterpret_"
<< To.Suffix << "_" << From.Suffix << Suffix << ")))\n"
<< ToV.str() << " svreinterpret_" << To.Suffix;
if (!ShortForm)
OS << "_" << From.Suffix << Suffix;
OS << "(" << FromV.str() << " op);\n";
}
}
}
createCoreHeaderIntrinsics(OS, *this, ACLEKind::SVE);
OS << "#define svcvtnt_bf16_x svcvtnt_bf16_m\n";
OS << "#define svcvtnt_bf16_f32_x svcvtnt_bf16_f32_m\n";
OS << "#define svcvtnt_f16_x svcvtnt_f16_m\n";
OS << "#define svcvtnt_f16_f32_x svcvtnt_f16_f32_m\n";
OS << "#define svcvtnt_f32_x svcvtnt_f32_m\n";
OS << "#define svcvtnt_f32_f64_x svcvtnt_f32_f64_m\n\n";
OS << "#define svcvtxnt_f32_x svcvtxnt_f32_m\n";
OS << "#define svcvtxnt_f32_f64_x svcvtxnt_f32_f64_m\n\n";
OS << "#ifdef __cplusplus\n";
OS << "} // extern \"C\"\n";
OS << "#endif\n\n";
OS << "#undef __ai\n\n";
OS << "#undef __aio\n\n";
OS << "#endif /* __ARM_SVE_H */\n";
}
void SVEEmitter::createBuiltins(raw_ostream &OS) {
std::vector<const Record *> RV = Records.getAllDerivedDefinitions("Inst");
SmallVector<std::unique_ptr<Intrinsic>, 128> Defs;
for (auto *R : RV)
createIntrinsic(R, Defs);
// The mappings must be sorted based on BuiltinID.
sort(Defs, [](const std::unique_ptr<Intrinsic> &A,
const std::unique_ptr<Intrinsic> &B) {
return A->getMangledName() < B->getMangledName();
});
llvm::StringToOffsetTable Table;
Table.GetOrAddStringOffset("");
Table.GetOrAddStringOffset("n");
for (const auto &Def : Defs)
if (Def->getClassKind() != ClassG) {
Table.GetOrAddStringOffset(Def->getMangledName());
Table.GetOrAddStringOffset(Def->getBuiltinTypeStr());
Table.GetOrAddStringOffset(Def->getGuard());
}
Table.GetOrAddStringOffset("sme|sve");
SmallVector<std::pair<std::string, std::string>> ReinterpretBuiltins;
for (auto [N, Suffix] :
std::initializer_list<std::pair<unsigned, const char *>>{
{1, ""}, {2, "_x2"}, {3, "_x3"}, {4, "_x4"}}) {
for (const ReinterpretTypeInfo &To : Reinterprets) {
SVEType ToV(To.BaseType, N);
for (const ReinterpretTypeInfo &From : Reinterprets) {
SVEType FromV(From.BaseType, N);
std::string Name =
(Twine("reinterpret_") + To.Suffix + "_" + From.Suffix + Suffix)
.str();
std::string Type = ToV.builtin_str() + FromV.builtin_str();
Table.GetOrAddStringOffset(Name);
Table.GetOrAddStringOffset(Type);
ReinterpretBuiltins.push_back({Name, Type});
}
}
}
OS << "#ifdef GET_SVE_BUILTIN_ENUMERATORS\n";
for (const auto &Def : Defs)
if (Def->getClassKind() != ClassG)
OS << " BI__builtin_sve_" << Def->getMangledName() << ",\n";
for (const auto &[Name, _] : ReinterpretBuiltins)
OS << " BI__builtin_sve_" << Name << ",\n";
OS << "#endif // GET_SVE_BUILTIN_ENUMERATORS\n\n";
OS << "#ifdef GET_SVE_BUILTIN_STR_TABLE\n";
Table.EmitStringTableDef(OS, "BuiltinStrings");
OS << "#endif // GET_SVE_BUILTIN_STR_TABLE\n\n";
OS << "#ifdef GET_SVE_BUILTIN_INFOS\n";
for (const auto &Def : Defs) {
// Only create BUILTINs for non-overloaded intrinsics, as overloaded
// declarations only live in the header file.
if (Def->getClassKind() != ClassG) {
OS << " Builtin::Info{Builtin::Info::StrOffsets{"
<< Table.GetStringOffset(Def->getMangledName()) << " /* "
<< Def->getMangledName() << " */, ";
OS << Table.GetStringOffset(Def->getBuiltinTypeStr()) << " /* "
<< Def->getBuiltinTypeStr() << " */, ";
OS << Table.GetStringOffset("n") << " /* n */, ";
OS << Table.GetStringOffset(Def->getGuard()) << " /* " << Def->getGuard()
<< " */}, ";
OS << "HeaderDesc::NO_HEADER, ALL_LANGUAGES},\n";
}
}
for (const auto &[Name, Type] : ReinterpretBuiltins) {
OS << " Builtin::Info{Builtin::Info::StrOffsets{"
<< Table.GetStringOffset(Name) << " /* " << Name << " */, ";
OS << Table.GetStringOffset(Type) << " /* " << Type << " */, ";
OS << Table.GetStringOffset("n") << " /* n */, ";
OS << Table.GetStringOffset("sme|sve") << " /* sme|sve */}, ";
OS << "HeaderDesc::NO_HEADER, ALL_LANGUAGES},\n";
}
OS << "#endif // GET_SVE_BUILTIN_INFOS\n\n";
}
void SVEEmitter::createCodeGenMap(raw_ostream &OS) {
std::vector<const Record *> RV = Records.getAllDerivedDefinitions("Inst");
SmallVector<std::unique_ptr<Intrinsic>, 128> Defs;
for (auto *R : RV)
createIntrinsic(R, Defs);
// The mappings must be sorted based on BuiltinID.
sort(Defs, [](const std::unique_ptr<Intrinsic> &A,
const std::unique_ptr<Intrinsic> &B) {
return A->getMangledName() < B->getMangledName();
});
OS << "#ifdef GET_SVE_LLVM_INTRINSIC_MAP\n";
for (auto &Def : Defs) {
// Builtins only exist for non-overloaded intrinsics, overloaded
// declarations only live in the header file.
if (Def->getClassKind() == ClassG)
continue;
uint64_t Flags = Def->getFlags();
auto FlagString = std::to_string(Flags);
std::string LLVMName = Def->getMangledLLVMName();
std::string Builtin = Def->getMangledName();
if (!LLVMName.empty())
OS << "SVEMAP1(" << Builtin << ", " << LLVMName << ", " << FlagString
<< "),\n";
else
OS << "SVEMAP2(" << Builtin << ", " << FlagString << "),\n";
}
OS << "#endif\n\n";
}
void SVEEmitter::createRangeChecks(raw_ostream &OS) {
std::vector<const Record *> RV = Records.getAllDerivedDefinitions("Inst");
SmallVector<std::unique_ptr<Intrinsic>, 128> Defs;
for (auto *R : RV)
createIntrinsic(R, Defs);
// The mappings must be sorted based on BuiltinID.
sort(Defs, [](const std::unique_ptr<Intrinsic> &A,
const std::unique_ptr<Intrinsic> &B) {
return A->getMangledName() < B->getMangledName();
});
OS << "#ifdef GET_SVE_IMMEDIATE_CHECK\n";
// Ensure these are only emitted once.
std::set<std::string> Emitted;
for (auto &Def : Defs) {
if (Emitted.find(Def->getMangledName()) != Emitted.end() ||
Def->getImmChecks().empty())
continue;
OS << "case SVE::BI__builtin_sve_" << Def->getMangledName() << ":\n";
for (auto &Check : Def->getImmChecks())
OS << "ImmChecks.emplace_back(" << Check.getImmArgIdx() << ", "
<< Check.getKind() << ", " << Check.getElementSizeInBits() << ");\n";
OS << " break;\n";
Emitted.insert(Def->getMangledName());
}
OS << "#endif\n\n";
}
/// Create the SVETypeFlags used in CGBuiltins
void SVEEmitter::createTypeFlags(raw_ostream &OS) {
OS << "#ifdef LLVM_GET_SVE_TYPEFLAGS\n";
for (auto &KV : FlagTypes)
OS << "const uint64_t " << KV.getKey() << " = " << KV.getValue() << ";\n";
OS << "#endif\n\n";
OS << "#ifdef LLVM_GET_SVE_ELTTYPES\n";
for (auto &KV : EltTypes)
OS << " " << KV.getKey() << " = " << KV.getValue() << ",\n";
OS << "#endif\n\n";
OS << "#ifdef LLVM_GET_SVE_MEMELTTYPES\n";
for (auto &KV : MemEltTypes)
OS << " " << KV.getKey() << " = " << KV.getValue() << ",\n";
OS << "#endif\n\n";
OS << "#ifdef LLVM_GET_SVE_MERGETYPES\n";
for (auto &KV : MergeTypes)
OS << " " << KV.getKey() << " = " << KV.getValue() << ",\n";
OS << "#endif\n\n";
}
void SVEEmitter::createImmCheckTypes(raw_ostream &OS) {
OS << "#ifdef LLVM_GET_ARM_INTRIN_IMMCHECKTYPES\n";
for (auto &KV : ImmCheckTypes)
OS << " " << KV.getKey() << " = " << KV.getValue() << ",\n";
OS << "#endif\n\n";
}
void SVEEmitter::createSMEHeader(raw_ostream &OS) {
OS << "/*===---- arm_sme.h - ARM SME intrinsics "
"------===\n"
" *\n"
" *\n"
" * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
"Exceptions.\n"
" * See https://llvm.org/LICENSE.txt for license information.\n"
" * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
" *\n"
" *===-----------------------------------------------------------------"
"------===\n"
" */\n\n";
OS << "#ifndef __ARM_SME_H\n";
OS << "#define __ARM_SME_H\n\n";
OS << "#if !defined(__LITTLE_ENDIAN__)\n";
OS << "#error \"Big endian is currently not supported for arm_sme.h\"\n";
OS << "#endif\n";
OS << "#include <arm_sve.h>\n\n";
OS << "#include <stddef.h>\n\n";
OS << "/* Function attributes */\n";
OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
"__nodebug__))\n\n";
OS << "#define __aio static __inline__ __attribute__((__always_inline__, "
"__nodebug__, __overloadable__))\n\n";
OS << "#ifdef __cplusplus\n";
OS << "extern \"C\" {\n";
OS << "#endif\n\n";
OS << "void __arm_za_disable(void) __arm_streaming_compatible;\n\n";
OS << "__ai bool __arm_has_sme(void) __arm_streaming_compatible {\n";
OS << " uint64_t x0, x1;\n";
OS << " __builtin_arm_get_sme_state(&x0, &x1);\n";
OS << " return x0 & (1ULL << 63);\n";
OS << "}\n\n";
OS << "void *__arm_sc_memcpy(void *dest, const void *src, size_t n) __arm_streaming_compatible;\n";
OS << "void *__arm_sc_memmove(void *dest, const void *src, size_t n) __arm_streaming_compatible;\n";
OS << "void *__arm_sc_memset(void *s, int c, size_t n) __arm_streaming_compatible;\n";
OS << "void *__arm_sc_memchr(void *s, int c, size_t n) __arm_streaming_compatible;\n\n";
OS << "__ai __attribute__((target(\"sme\"))) void svundef_za(void) "
"__arm_streaming_compatible __arm_out(\"za\") "
"{ }\n\n";
createCoreHeaderIntrinsics(OS, *this, ACLEKind::SME);
OS << "#ifdef __cplusplus\n";
OS << "} // extern \"C\"\n";
OS << "#endif\n\n";
OS << "#undef __ai\n\n";
OS << "#endif /* __ARM_SME_H */\n";
}
void SVEEmitter::createSMEBuiltins(raw_ostream &OS) {
std::vector<const Record *> RV = Records.getAllDerivedDefinitions("Inst");
SmallVector<std::unique_ptr<Intrinsic>, 128> Defs;
for (auto *R : RV) {
createIntrinsic(R, Defs);
}
// The mappings must be sorted based on BuiltinID.
sort(Defs, [](const std::unique_ptr<Intrinsic> &A,
const std::unique_ptr<Intrinsic> &B) {
return A->getMangledName() < B->getMangledName();
});
llvm::StringToOffsetTable Table;
Table.GetOrAddStringOffset("");
Table.GetOrAddStringOffset("n");
for (const auto &Def : Defs)
if (Def->getClassKind() != ClassG) {
Table.GetOrAddStringOffset(Def->getMangledName());
Table.GetOrAddStringOffset(Def->getBuiltinTypeStr());
Table.GetOrAddStringOffset(Def->getGuard());
}
OS << "#ifdef GET_SME_BUILTIN_ENUMERATORS\n";
for (const auto &Def : Defs)
if (Def->getClassKind() != ClassG)
OS << " BI__builtin_sme_" << Def->getMangledName() << ",\n";
OS << "#endif // GET_SME_BUILTIN_ENUMERATORS\n\n";
OS << "#ifdef GET_SME_BUILTIN_STR_TABLE\n";
Table.EmitStringTableDef(OS, "BuiltinStrings");
OS << "#endif // GET_SME_BUILTIN_STR_TABLE\n\n";
OS << "#ifdef GET_SME_BUILTIN_INFOS\n";
for (const auto &Def : Defs) {
// Only create BUILTINs for non-overloaded intrinsics, as overloaded
// declarations only live in the header file.
if (Def->getClassKind() != ClassG) {
OS << " Builtin::Info{Builtin::Info::StrOffsets{"
<< Table.GetStringOffset(Def->getMangledName()) << " /* "
<< Def->getMangledName() << " */, ";
OS << Table.GetStringOffset(Def->getBuiltinTypeStr()) << " /* "
<< Def->getBuiltinTypeStr() << " */, ";
OS << Table.GetStringOffset("n") << " /* n */, ";
OS << Table.GetStringOffset(Def->getGuard()) << " /* " << Def->getGuard()
<< " */}, ";
OS << "HeaderDesc::NO_HEADER, ALL_LANGUAGES},\n";
}
}
OS << "#endif // GET_SME_BUILTIN_INFOS\n\n";
}
void SVEEmitter::createSMECodeGenMap(raw_ostream &OS) {
std::vector<const Record *> RV = Records.getAllDerivedDefinitions("Inst");
SmallVector<std::unique_ptr<Intrinsic>, 128> Defs;
for (auto *R : RV) {
createIntrinsic(R, Defs);
}
// The mappings must be sorted based on BuiltinID.
sort(Defs, [](const std::unique_ptr<Intrinsic> &A,
const std::unique_ptr<Intrinsic> &B) {
return A->getMangledName() < B->getMangledName();
});
OS << "#ifdef GET_SME_LLVM_INTRINSIC_MAP\n";
for (auto &Def : Defs) {
// Builtins only exist for non-overloaded intrinsics, overloaded
// declarations only live in the header file.
if (Def->getClassKind() == ClassG)
continue;
uint64_t Flags = Def->getFlags();
auto FlagString = std::to_string(Flags);
std::string LLVMName = Def->getLLVMName();
std::string Builtin = Def->getMangledName();
if (!LLVMName.empty())
OS << "SMEMAP1(" << Builtin << ", " << LLVMName << ", " << FlagString
<< "),\n";
else
OS << "SMEMAP2(" << Builtin << ", " << FlagString << "),\n";
}
OS << "#endif\n\n";
}
void SVEEmitter::createSMERangeChecks(raw_ostream &OS) {
std::vector<const Record *> RV = Records.getAllDerivedDefinitions("Inst");
SmallVector<std::unique_ptr<Intrinsic>, 128> Defs;
for (auto *R : RV) {
createIntrinsic(R, Defs);
}
// The mappings must be sorted based on BuiltinID.
sort(Defs, [](const std::unique_ptr<Intrinsic> &A,
const std::unique_ptr<Intrinsic> &B) {
return A->getMangledName() < B->getMangledName();
});
OS << "#ifdef GET_SME_IMMEDIATE_CHECK\n";
// Ensure these are only emitted once.
std::set<std::string> Emitted;
for (auto &Def : Defs) {
if (Emitted.find(Def->getMangledName()) != Emitted.end() ||
Def->getImmChecks().empty())
continue;
OS << "case SME::BI__builtin_sme_" << Def->getMangledName() << ":\n";
for (auto &Check : Def->getImmChecks())
OS << "ImmChecks.push_back(std::make_tuple(" << Check.getImmArgIdx()
<< ", " << Check.getKind() << ", " << Check.getElementSizeInBits()
<< "));\n";
OS << " break;\n";
Emitted.insert(Def->getMangledName());
}
OS << "#endif\n\n";
}
void SVEEmitter::createBuiltinZAState(raw_ostream &OS) {
std::vector<const Record *> RV = Records.getAllDerivedDefinitions("Inst");
SmallVector<std::unique_ptr<Intrinsic>, 128> Defs;
for (auto *R : RV)
createIntrinsic(R, Defs);
std::map<std::string, std::set<std::string>> IntrinsicsPerState;
for (auto &Def : Defs) {
std::string Key;
auto AddToKey = [&Key](const std::string &S) -> void {
Key = Key.empty() ? S : (Key + " | " + S);
};
if (Def->isFlagSet(getEnumValueForFlag("IsInZA")))
AddToKey("ArmInZA");
else if (Def->isFlagSet(getEnumValueForFlag("IsOutZA")))
AddToKey("ArmOutZA");
else if (Def->isFlagSet(getEnumValueForFlag("IsInOutZA")))
AddToKey("ArmInOutZA");
if (Def->isFlagSet(getEnumValueForFlag("IsInZT0")))
AddToKey("ArmInZT0");
else if (Def->isFlagSet(getEnumValueForFlag("IsOutZT0")))
AddToKey("ArmOutZT0");
else if (Def->isFlagSet(getEnumValueForFlag("IsInOutZT0")))
AddToKey("ArmInOutZT0");
if (!Key.empty())
IntrinsicsPerState[Key].insert(Def->getMangledName());
}
OS << "#ifdef GET_SME_BUILTIN_GET_STATE\n";
for (auto &KV : IntrinsicsPerState) {
for (StringRef Name : KV.second)
OS << "case SME::BI__builtin_sme_" << Name << ":\n";
OS << " return " << KV.first << ";\n";
}
OS << "#endif\n\n";
}
void SVEEmitter::createStreamingAttrs(raw_ostream &OS, ACLEKind Kind) {
std::vector<const Record *> RV = Records.getAllDerivedDefinitions("Inst");
SmallVector<std::unique_ptr<Intrinsic>, 128> Defs;
for (auto *R : RV)
createIntrinsic(R, Defs);
StringRef ExtensionKind;
switch (Kind) {
case ACLEKind::SME:
ExtensionKind = "SME";
break;
case ACLEKind::SVE:
ExtensionKind = "SVE";
break;
}
OS << "#ifdef GET_" << ExtensionKind << "_STREAMING_ATTRS\n";
StringMap<std::set<std::string>> StreamingMap;
uint64_t IsStreamingFlag = getEnumValueForFlag("IsStreaming");
uint64_t VerifyRuntimeMode = getEnumValueForFlag("VerifyRuntimeMode");
uint64_t IsStreamingCompatibleFlag =
getEnumValueForFlag("IsStreamingCompatible");
for (auto &Def : Defs) {
if (!Def->isFlagSet(VerifyRuntimeMode) && !Def->getSVEGuard().empty() &&
!Def->getSMEGuard().empty())
report_fatal_error("Missing VerifyRuntimeMode flag");
if (Def->isFlagSet(IsStreamingFlag))
StreamingMap["ArmStreaming"].insert(Def->getMangledName());
else if (Def->isFlagSet(VerifyRuntimeMode))
StreamingMap["VerifyRuntimeMode"].insert(Def->getMangledName());
else if (Def->isFlagSet(IsStreamingCompatibleFlag))
StreamingMap["ArmStreamingCompatible"].insert(Def->getMangledName());
else
StreamingMap["ArmNonStreaming"].insert(Def->getMangledName());
}
for (auto BuiltinType : StreamingMap.keys()) {
for (auto Name : StreamingMap[BuiltinType]) {
OS << "case " << ExtensionKind << "::BI__builtin_"
<< ExtensionKind.lower() << "_";
OS << Name << ":\n";
}
OS << " BuiltinType = " << BuiltinType << ";\n";
OS << " break;\n";
}
OS << "#endif\n\n";
}
namespace clang {
void EmitSveHeader(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createHeader(OS);
}
void EmitSveBuiltins(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createBuiltins(OS);
}
void EmitSveBuiltinCG(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createCodeGenMap(OS);
}
void EmitSveRangeChecks(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createRangeChecks(OS);
}
void EmitSveTypeFlags(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createTypeFlags(OS);
}
void EmitImmCheckTypes(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createImmCheckTypes(OS);
}
void EmitSveStreamingAttrs(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createStreamingAttrs(OS, ACLEKind::SVE);
}
void EmitSmeHeader(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createSMEHeader(OS);
}
void EmitSmeBuiltins(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createSMEBuiltins(OS);
}
void EmitSmeBuiltinCG(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createSMECodeGenMap(OS);
}
void EmitSmeRangeChecks(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createSMERangeChecks(OS);
}
void EmitSmeStreamingAttrs(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createStreamingAttrs(OS, ACLEKind::SME);
}
void EmitSmeBuiltinZAState(const RecordKeeper &Records, raw_ostream &OS) {
SVEEmitter(Records).createBuiltinZAState(OS);
}
} // End namespace clang