Chandler Carruth ff0e3a1e1c Rework the bitfield access IR generation to address PR13619 and
generally support the C++11 memory model requirements for bitfield
accesses by relying more heavily on LLVM's memory model.

The primary change this introduces is to move from a manually aligned
and strided access pattern across the bits of the bitfield to a much
simpler lump access of all bits in the bitfield followed by math to
extract the bits relevant for the particular field.

This simplifies the code significantly, but relies on LLVM to
intelligently lowering these integers.

I have tested LLVM's lowering both synthetically and in benchmarks. The
lowering appears to be functional, and there are no really significant
performance regressions. Different code patterns accessing bitfields
will vary in how this impacts them. The only real regressions I'm seeing
are a few patterns where the LLVM code generation for loads that feed
directly into a mask operation don't take advantage of the x86 ability
to do a smaller load and a cheap zero-extension. This doesn't regress
any benchmark in the nightly test suite on my box past the noise
threshold, but my box is quite noisy. I'll be watching the LNT numbers,
and will look into further improvements to the LLVM lowering as needed.

llvm-svn: 169489
2012-12-06 11:14:44 +00:00

135 lines
2.4 KiB
C

// RUN: %clang_cc1 -triple i386-unknown-unknown -emit-llvm %s -o - | FileCheck %s
void f1() {
// Scalars in braces.
int a = { 1 };
}
void f2() {
int a[2][2] = { { 1, 2 }, { 3, 4 } };
int b[3][3] = { { 1, 2 }, { 3, 4 } };
int *c[2] = { &a[1][1], &b[2][2] };
int *d[2][2] = { {&a[1][1], &b[2][2]}, {&a[0][0], &b[1][1]} };
int *e[3][3] = { {&a[1][1], &b[2][2]}, {&a[0][0], &b[1][1]} };
char ext[3][3] = {".Y",".U",".V"};
}
typedef void (* F)(void);
extern void foo(void);
struct S { F f; };
void f3() {
struct S a[1] = { { foo } };
}
// Constants
// CHECK: @g3 = constant i32 10
// CHECK: @f4.g4 = internal constant i32 12
const int g3 = 10;
int f4() {
static const int g4 = 12;
return g4;
}
// PR6537
typedef union vec3 {
struct { double x, y, z; };
double component[3];
} vec3;
vec3 f5(vec3 value) {
return (vec3) {{
.x = value.x
}};
}
// rdar://problem/8154689
void f6() {
int x;
long ids[] = { (long) &x };
}
// CHECK: @test7 = global{{.*}}{ i32 0, [4 x i8] c"bar\00" }
// PR8217
struct a7 {
int b;
char v[];
};
struct a7 test7 = { .b = 0, .v = "bar" };
// PR279 comment #3
char test8(int X) {
char str[100000] = "abc"; // tail should be memset.
return str[X];
// CHECK: @test8(
// CHECK: call void @llvm.memset
// CHECK: store i8 97
// CHECK: store i8 98
// CHECK: store i8 99
// CHECK-NOT: getelementptr
// CHECK: load
}
void bar(void*);
// PR279
int test9(int X) {
int Arr[100] = { X }; // Should use memset
bar(Arr);
// CHECK: @test9
// CHECK: call void @llvm.memset
// CHECK-NOT: store i32 0
// CHECK: call void @bar
}
struct a {
int a, b, c, d, e, f, g, h, i, j, k, *p;
};
struct b {
struct a a,b,c,d,e,f,g;
};
int test10(int X) {
struct b S = { .a.a = X, .d.e = X, .f.e = 0, .f.f = 0, .f.p = 0 };
bar(&S);
// CHECK: @test10
// CHECK: call void @llvm.memset
// CHECK-NOT: store i32 0
// CHECK: call void @bar
}
// PR9257
struct test11S {
int A[10];
};
void test11(struct test11S *P) {
*P = (struct test11S) { .A = { [0 ... 3] = 4 } };
// CHECK: @test11
// CHECK: store i32 4
// CHECK: store i32 4
// CHECK: store i32 4
// CHECK: store i32 4
// CHECK: ret void
}
// Verify that we can convert a recursive struct with a memory that returns
// an instance of the struct we're converting.
struct test12 {
struct test12 (*p)(void);
} test12g;
void test13(int x) {
struct X { int a; int b : 10; int c; };
struct X y = {.c = x};
// CHECK: @test13
// CHECK: and i16 {{.*}}, -1024
}