mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-25 17:46:04 +00:00
2721 lines
88 KiB
C++
2721 lines
88 KiB
C++
//===- Attributes.cpp - Implement AttributesList --------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// \file
|
|
// This file implements the Attribute, AttributeImpl, AttrBuilder,
|
|
// AttributeListImpl, and AttributeList classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "AttributeImpl.h"
|
|
#include "LLVMContextImpl.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/AttributeMask.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/ConstantRangeList.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/ModRef.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute Construction Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// allocsize has two integer arguments, but because they're both 32 bits, we can
|
|
// pack them into one 64-bit value, at the cost of making said value
|
|
// nonsensical.
|
|
//
|
|
// In order to do this, we need to reserve one value of the second (optional)
|
|
// allocsize argument to signify "not present."
|
|
static const unsigned AllocSizeNumElemsNotPresent = -1;
|
|
|
|
static uint64_t packAllocSizeArgs(unsigned ElemSizeArg,
|
|
const std::optional<unsigned> &NumElemsArg) {
|
|
assert((!NumElemsArg || *NumElemsArg != AllocSizeNumElemsNotPresent) &&
|
|
"Attempting to pack a reserved value");
|
|
|
|
return uint64_t(ElemSizeArg) << 32 |
|
|
NumElemsArg.value_or(AllocSizeNumElemsNotPresent);
|
|
}
|
|
|
|
static std::pair<unsigned, std::optional<unsigned>>
|
|
unpackAllocSizeArgs(uint64_t Num) {
|
|
unsigned NumElems = Num & std::numeric_limits<unsigned>::max();
|
|
unsigned ElemSizeArg = Num >> 32;
|
|
|
|
std::optional<unsigned> NumElemsArg;
|
|
if (NumElems != AllocSizeNumElemsNotPresent)
|
|
NumElemsArg = NumElems;
|
|
return std::make_pair(ElemSizeArg, NumElemsArg);
|
|
}
|
|
|
|
static uint64_t packVScaleRangeArgs(unsigned MinValue,
|
|
std::optional<unsigned> MaxValue) {
|
|
return uint64_t(MinValue) << 32 | MaxValue.value_or(0);
|
|
}
|
|
|
|
static std::pair<unsigned, std::optional<unsigned>>
|
|
unpackVScaleRangeArgs(uint64_t Value) {
|
|
unsigned MaxValue = Value & std::numeric_limits<unsigned>::max();
|
|
unsigned MinValue = Value >> 32;
|
|
|
|
return std::make_pair(MinValue,
|
|
MaxValue > 0 ? MaxValue : std::optional<unsigned>());
|
|
}
|
|
|
|
Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind,
|
|
uint64_t Val) {
|
|
bool IsIntAttr = Attribute::isIntAttrKind(Kind);
|
|
assert((IsIntAttr || Attribute::isEnumAttrKind(Kind)) &&
|
|
"Not an enum or int attribute");
|
|
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(Kind);
|
|
if (IsIntAttr)
|
|
ID.AddInteger(Val);
|
|
else
|
|
assert(Val == 0 && "Value must be zero for enum attributes");
|
|
|
|
void *InsertPoint;
|
|
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
if (!PA) {
|
|
// If we didn't find any existing attributes of the same shape then create a
|
|
// new one and insert it.
|
|
if (!IsIntAttr)
|
|
PA = new (pImpl->Alloc) EnumAttributeImpl(Kind);
|
|
else
|
|
PA = new (pImpl->Alloc) IntAttributeImpl(Kind, Val);
|
|
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the Attribute that we found or created.
|
|
return Attribute(PA);
|
|
}
|
|
|
|
Attribute Attribute::get(LLVMContext &Context, StringRef Kind, StringRef Val) {
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
FoldingSetNodeID ID;
|
|
ID.AddString(Kind);
|
|
if (!Val.empty()) ID.AddString(Val);
|
|
|
|
void *InsertPoint;
|
|
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
if (!PA) {
|
|
// If we didn't find any existing attributes of the same shape then create a
|
|
// new one and insert it.
|
|
void *Mem =
|
|
pImpl->Alloc.Allocate(StringAttributeImpl::totalSizeToAlloc(Kind, Val),
|
|
alignof(StringAttributeImpl));
|
|
PA = new (Mem) StringAttributeImpl(Kind, Val);
|
|
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the Attribute that we found or created.
|
|
return Attribute(PA);
|
|
}
|
|
|
|
Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind,
|
|
Type *Ty) {
|
|
assert(Attribute::isTypeAttrKind(Kind) && "Not a type attribute");
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(Kind);
|
|
ID.AddPointer(Ty);
|
|
|
|
void *InsertPoint;
|
|
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
if (!PA) {
|
|
// If we didn't find any existing attributes of the same shape then create a
|
|
// new one and insert it.
|
|
PA = new (pImpl->Alloc) TypeAttributeImpl(Kind, Ty);
|
|
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the Attribute that we found or created.
|
|
return Attribute(PA);
|
|
}
|
|
|
|
Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind,
|
|
const ConstantRange &CR) {
|
|
assert(Attribute::isConstantRangeAttrKind(Kind) &&
|
|
"Not a ConstantRange attribute");
|
|
assert(!CR.isFullSet() && "ConstantRange attribute must not be full");
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(Kind);
|
|
CR.getLower().Profile(ID);
|
|
CR.getUpper().Profile(ID);
|
|
|
|
void *InsertPoint;
|
|
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
if (!PA) {
|
|
// If we didn't find any existing attributes of the same shape then create a
|
|
// new one and insert it.
|
|
PA = new (pImpl->ConstantRangeAttributeAlloc.Allocate())
|
|
ConstantRangeAttributeImpl(Kind, CR);
|
|
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the Attribute that we found or created.
|
|
return Attribute(PA);
|
|
}
|
|
|
|
Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind,
|
|
ArrayRef<ConstantRange> Val) {
|
|
assert(Attribute::isConstantRangeListAttrKind(Kind) &&
|
|
"Not a ConstantRangeList attribute");
|
|
LLVMContextImpl *pImpl = Context.pImpl;
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(Kind);
|
|
ID.AddInteger(Val.size());
|
|
for (auto &CR : Val) {
|
|
CR.getLower().Profile(ID);
|
|
CR.getUpper().Profile(ID);
|
|
}
|
|
|
|
void *InsertPoint;
|
|
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
if (!PA) {
|
|
// If we didn't find any existing attributes of the same shape then create a
|
|
// new one and insert it.
|
|
// ConstantRangeListAttributeImpl is a dynamically sized class and cannot
|
|
// use SpecificBumpPtrAllocator. Instead, we use normal Alloc for
|
|
// allocation and record the allocated pointer in
|
|
// `ConstantRangeListAttributes`. LLVMContext destructor will call the
|
|
// destructor of the allocated pointer explicitly.
|
|
void *Mem = pImpl->Alloc.Allocate(
|
|
ConstantRangeListAttributeImpl::totalSizeToAlloc(Val),
|
|
alignof(ConstantRangeListAttributeImpl));
|
|
PA = new (Mem) ConstantRangeListAttributeImpl(Kind, Val);
|
|
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
|
|
pImpl->ConstantRangeListAttributes.push_back(
|
|
reinterpret_cast<ConstantRangeListAttributeImpl *>(PA));
|
|
}
|
|
|
|
// Return the Attribute that we found or created.
|
|
return Attribute(PA);
|
|
}
|
|
|
|
Attribute Attribute::getWithAlignment(LLVMContext &Context, Align A) {
|
|
assert(A <= llvm::Value::MaximumAlignment && "Alignment too large.");
|
|
return get(Context, Alignment, A.value());
|
|
}
|
|
|
|
Attribute Attribute::getWithStackAlignment(LLVMContext &Context, Align A) {
|
|
assert(A <= 0x100 && "Alignment too large.");
|
|
return get(Context, StackAlignment, A.value());
|
|
}
|
|
|
|
Attribute Attribute::getWithDereferenceableBytes(LLVMContext &Context,
|
|
uint64_t Bytes) {
|
|
assert(Bytes && "Bytes must be non-zero.");
|
|
return get(Context, Dereferenceable, Bytes);
|
|
}
|
|
|
|
Attribute Attribute::getWithDereferenceableOrNullBytes(LLVMContext &Context,
|
|
uint64_t Bytes) {
|
|
assert(Bytes && "Bytes must be non-zero.");
|
|
return get(Context, DereferenceableOrNull, Bytes);
|
|
}
|
|
|
|
Attribute Attribute::getWithByValType(LLVMContext &Context, Type *Ty) {
|
|
return get(Context, ByVal, Ty);
|
|
}
|
|
|
|
Attribute Attribute::getWithStructRetType(LLVMContext &Context, Type *Ty) {
|
|
return get(Context, StructRet, Ty);
|
|
}
|
|
|
|
Attribute Attribute::getWithByRefType(LLVMContext &Context, Type *Ty) {
|
|
return get(Context, ByRef, Ty);
|
|
}
|
|
|
|
Attribute Attribute::getWithPreallocatedType(LLVMContext &Context, Type *Ty) {
|
|
return get(Context, Preallocated, Ty);
|
|
}
|
|
|
|
Attribute Attribute::getWithInAllocaType(LLVMContext &Context, Type *Ty) {
|
|
return get(Context, InAlloca, Ty);
|
|
}
|
|
|
|
Attribute Attribute::getWithUWTableKind(LLVMContext &Context,
|
|
UWTableKind Kind) {
|
|
return get(Context, UWTable, uint64_t(Kind));
|
|
}
|
|
|
|
Attribute Attribute::getWithMemoryEffects(LLVMContext &Context,
|
|
MemoryEffects ME) {
|
|
return get(Context, Memory, ME.toIntValue());
|
|
}
|
|
|
|
Attribute Attribute::getWithNoFPClass(LLVMContext &Context,
|
|
FPClassTest ClassMask) {
|
|
return get(Context, NoFPClass, ClassMask);
|
|
}
|
|
|
|
Attribute Attribute::getWithCaptureInfo(LLVMContext &Context, CaptureInfo CI) {
|
|
return get(Context, Captures, CI.toIntValue());
|
|
}
|
|
|
|
Attribute
|
|
Attribute::getWithAllocSizeArgs(LLVMContext &Context, unsigned ElemSizeArg,
|
|
const std::optional<unsigned> &NumElemsArg) {
|
|
assert(!(ElemSizeArg == 0 && NumElemsArg && *NumElemsArg == 0) &&
|
|
"Invalid allocsize arguments -- given allocsize(0, 0)");
|
|
return get(Context, AllocSize, packAllocSizeArgs(ElemSizeArg, NumElemsArg));
|
|
}
|
|
|
|
Attribute Attribute::getWithVScaleRangeArgs(LLVMContext &Context,
|
|
unsigned MinValue,
|
|
unsigned MaxValue) {
|
|
return get(Context, VScaleRange, packVScaleRangeArgs(MinValue, MaxValue));
|
|
}
|
|
|
|
Attribute::AttrKind Attribute::getAttrKindFromName(StringRef AttrName) {
|
|
return StringSwitch<Attribute::AttrKind>(AttrName)
|
|
#define GET_ATTR_NAMES
|
|
#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
|
|
.Case(#DISPLAY_NAME, Attribute::ENUM_NAME)
|
|
#include "llvm/IR/Attributes.inc"
|
|
.Default(Attribute::None);
|
|
}
|
|
|
|
StringRef Attribute::getNameFromAttrKind(Attribute::AttrKind AttrKind) {
|
|
switch (AttrKind) {
|
|
#define GET_ATTR_NAMES
|
|
#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
|
|
case Attribute::ENUM_NAME: \
|
|
return #DISPLAY_NAME;
|
|
#include "llvm/IR/Attributes.inc"
|
|
case Attribute::None:
|
|
return "none";
|
|
default:
|
|
llvm_unreachable("invalid Kind");
|
|
}
|
|
}
|
|
|
|
bool Attribute::isExistingAttribute(StringRef Name) {
|
|
return StringSwitch<bool>(Name)
|
|
#define GET_ATTR_NAMES
|
|
#define ATTRIBUTE_ALL(ENUM_NAME, DISPLAY_NAME) .Case(#DISPLAY_NAME, true)
|
|
#include "llvm/IR/Attributes.inc"
|
|
.Default(false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute Accessor Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool Attribute::isEnumAttribute() const {
|
|
return pImpl && pImpl->isEnumAttribute();
|
|
}
|
|
|
|
bool Attribute::isIntAttribute() const {
|
|
return pImpl && pImpl->isIntAttribute();
|
|
}
|
|
|
|
bool Attribute::isStringAttribute() const {
|
|
return pImpl && pImpl->isStringAttribute();
|
|
}
|
|
|
|
bool Attribute::isTypeAttribute() const {
|
|
return pImpl && pImpl->isTypeAttribute();
|
|
}
|
|
|
|
bool Attribute::isConstantRangeAttribute() const {
|
|
return pImpl && pImpl->isConstantRangeAttribute();
|
|
}
|
|
|
|
bool Attribute::isConstantRangeListAttribute() const {
|
|
return pImpl && pImpl->isConstantRangeListAttribute();
|
|
}
|
|
|
|
Attribute::AttrKind Attribute::getKindAsEnum() const {
|
|
if (!pImpl) return None;
|
|
assert(hasKindAsEnum() &&
|
|
"Invalid attribute type to get the kind as an enum!");
|
|
return pImpl->getKindAsEnum();
|
|
}
|
|
|
|
uint64_t Attribute::getValueAsInt() const {
|
|
if (!pImpl) return 0;
|
|
assert(isIntAttribute() &&
|
|
"Expected the attribute to be an integer attribute!");
|
|
return pImpl->getValueAsInt();
|
|
}
|
|
|
|
bool Attribute::getValueAsBool() const {
|
|
if (!pImpl) return false;
|
|
assert(isStringAttribute() &&
|
|
"Expected the attribute to be a string attribute!");
|
|
return pImpl->getValueAsBool();
|
|
}
|
|
|
|
StringRef Attribute::getKindAsString() const {
|
|
if (!pImpl) return {};
|
|
assert(isStringAttribute() &&
|
|
"Invalid attribute type to get the kind as a string!");
|
|
return pImpl->getKindAsString();
|
|
}
|
|
|
|
StringRef Attribute::getValueAsString() const {
|
|
if (!pImpl) return {};
|
|
assert(isStringAttribute() &&
|
|
"Invalid attribute type to get the value as a string!");
|
|
return pImpl->getValueAsString();
|
|
}
|
|
|
|
Type *Attribute::getValueAsType() const {
|
|
if (!pImpl) return {};
|
|
assert(isTypeAttribute() &&
|
|
"Invalid attribute type to get the value as a type!");
|
|
return pImpl->getValueAsType();
|
|
}
|
|
|
|
const ConstantRange &Attribute::getValueAsConstantRange() const {
|
|
assert(isConstantRangeAttribute() &&
|
|
"Invalid attribute type to get the value as a ConstantRange!");
|
|
return pImpl->getValueAsConstantRange();
|
|
}
|
|
|
|
ArrayRef<ConstantRange> Attribute::getValueAsConstantRangeList() const {
|
|
assert(isConstantRangeListAttribute() &&
|
|
"Invalid attribute type to get the value as a ConstantRangeList!");
|
|
return pImpl->getValueAsConstantRangeList();
|
|
}
|
|
|
|
bool Attribute::hasAttribute(AttrKind Kind) const {
|
|
return (pImpl && pImpl->hasAttribute(Kind)) || (!pImpl && Kind == None);
|
|
}
|
|
|
|
bool Attribute::hasAttribute(StringRef Kind) const {
|
|
if (!isStringAttribute()) return false;
|
|
return pImpl && pImpl->hasAttribute(Kind);
|
|
}
|
|
|
|
MaybeAlign Attribute::getAlignment() const {
|
|
assert(hasAttribute(Attribute::Alignment) &&
|
|
"Trying to get alignment from non-alignment attribute!");
|
|
return MaybeAlign(pImpl->getValueAsInt());
|
|
}
|
|
|
|
MaybeAlign Attribute::getStackAlignment() const {
|
|
assert(hasAttribute(Attribute::StackAlignment) &&
|
|
"Trying to get alignment from non-alignment attribute!");
|
|
return MaybeAlign(pImpl->getValueAsInt());
|
|
}
|
|
|
|
uint64_t Attribute::getDereferenceableBytes() const {
|
|
assert(hasAttribute(Attribute::Dereferenceable) &&
|
|
"Trying to get dereferenceable bytes from "
|
|
"non-dereferenceable attribute!");
|
|
return pImpl->getValueAsInt();
|
|
}
|
|
|
|
uint64_t Attribute::getDereferenceableOrNullBytes() const {
|
|
assert(hasAttribute(Attribute::DereferenceableOrNull) &&
|
|
"Trying to get dereferenceable bytes from "
|
|
"non-dereferenceable attribute!");
|
|
return pImpl->getValueAsInt();
|
|
}
|
|
|
|
std::pair<unsigned, std::optional<unsigned>>
|
|
Attribute::getAllocSizeArgs() const {
|
|
assert(hasAttribute(Attribute::AllocSize) &&
|
|
"Trying to get allocsize args from non-allocsize attribute");
|
|
return unpackAllocSizeArgs(pImpl->getValueAsInt());
|
|
}
|
|
|
|
unsigned Attribute::getVScaleRangeMin() const {
|
|
assert(hasAttribute(Attribute::VScaleRange) &&
|
|
"Trying to get vscale args from non-vscale attribute");
|
|
return unpackVScaleRangeArgs(pImpl->getValueAsInt()).first;
|
|
}
|
|
|
|
std::optional<unsigned> Attribute::getVScaleRangeMax() const {
|
|
assert(hasAttribute(Attribute::VScaleRange) &&
|
|
"Trying to get vscale args from non-vscale attribute");
|
|
return unpackVScaleRangeArgs(pImpl->getValueAsInt()).second;
|
|
}
|
|
|
|
UWTableKind Attribute::getUWTableKind() const {
|
|
assert(hasAttribute(Attribute::UWTable) &&
|
|
"Trying to get unwind table kind from non-uwtable attribute");
|
|
return UWTableKind(pImpl->getValueAsInt());
|
|
}
|
|
|
|
AllocFnKind Attribute::getAllocKind() const {
|
|
assert(hasAttribute(Attribute::AllocKind) &&
|
|
"Trying to get allockind value from non-allockind attribute");
|
|
return AllocFnKind(pImpl->getValueAsInt());
|
|
}
|
|
|
|
MemoryEffects Attribute::getMemoryEffects() const {
|
|
assert(hasAttribute(Attribute::Memory) &&
|
|
"Can only call getMemoryEffects() on memory attribute");
|
|
return MemoryEffects::createFromIntValue(pImpl->getValueAsInt());
|
|
}
|
|
|
|
CaptureInfo Attribute::getCaptureInfo() const {
|
|
assert(hasAttribute(Attribute::Captures) &&
|
|
"Can only call getCaptureInfo() on captures attribute");
|
|
return CaptureInfo::createFromIntValue(pImpl->getValueAsInt());
|
|
}
|
|
|
|
FPClassTest Attribute::getNoFPClass() const {
|
|
assert(hasAttribute(Attribute::NoFPClass) &&
|
|
"Can only call getNoFPClass() on nofpclass attribute");
|
|
return static_cast<FPClassTest>(pImpl->getValueAsInt());
|
|
}
|
|
|
|
const ConstantRange &Attribute::getRange() const {
|
|
assert(hasAttribute(Attribute::Range) &&
|
|
"Trying to get range args from non-range attribute");
|
|
return pImpl->getValueAsConstantRange();
|
|
}
|
|
|
|
ArrayRef<ConstantRange> Attribute::getInitializes() const {
|
|
assert(hasAttribute(Attribute::Initializes) &&
|
|
"Trying to get initializes attr from non-ConstantRangeList attribute");
|
|
return pImpl->getValueAsConstantRangeList();
|
|
}
|
|
|
|
static const char *getModRefStr(ModRefInfo MR) {
|
|
switch (MR) {
|
|
case ModRefInfo::NoModRef:
|
|
return "none";
|
|
case ModRefInfo::Ref:
|
|
return "read";
|
|
case ModRefInfo::Mod:
|
|
return "write";
|
|
case ModRefInfo::ModRef:
|
|
return "readwrite";
|
|
}
|
|
llvm_unreachable("Invalid ModRefInfo");
|
|
}
|
|
|
|
std::string Attribute::getAsString(bool InAttrGrp) const {
|
|
if (!pImpl) return {};
|
|
|
|
if (isEnumAttribute())
|
|
return getNameFromAttrKind(getKindAsEnum()).str();
|
|
|
|
if (isTypeAttribute()) {
|
|
std::string Result = getNameFromAttrKind(getKindAsEnum()).str();
|
|
Result += '(';
|
|
raw_string_ostream OS(Result);
|
|
getValueAsType()->print(OS, false, true);
|
|
OS.flush();
|
|
Result += ')';
|
|
return Result;
|
|
}
|
|
|
|
// FIXME: These should be output like this:
|
|
//
|
|
// align=4
|
|
// alignstack=8
|
|
//
|
|
if (hasAttribute(Attribute::Alignment))
|
|
return (InAttrGrp ? "align=" + Twine(getValueAsInt())
|
|
: "align " + Twine(getValueAsInt()))
|
|
.str();
|
|
|
|
auto AttrWithBytesToString = [&](const char *Name) {
|
|
return (InAttrGrp ? Name + ("=" + Twine(getValueAsInt()))
|
|
: Name + ("(" + Twine(getValueAsInt())) + ")")
|
|
.str();
|
|
};
|
|
|
|
if (hasAttribute(Attribute::StackAlignment))
|
|
return AttrWithBytesToString("alignstack");
|
|
|
|
if (hasAttribute(Attribute::Dereferenceable))
|
|
return AttrWithBytesToString("dereferenceable");
|
|
|
|
if (hasAttribute(Attribute::DereferenceableOrNull))
|
|
return AttrWithBytesToString("dereferenceable_or_null");
|
|
|
|
if (hasAttribute(Attribute::AllocSize)) {
|
|
unsigned ElemSize;
|
|
std::optional<unsigned> NumElems;
|
|
std::tie(ElemSize, NumElems) = getAllocSizeArgs();
|
|
|
|
return (NumElems
|
|
? "allocsize(" + Twine(ElemSize) + "," + Twine(*NumElems) + ")"
|
|
: "allocsize(" + Twine(ElemSize) + ")")
|
|
.str();
|
|
}
|
|
|
|
if (hasAttribute(Attribute::VScaleRange)) {
|
|
unsigned MinValue = getVScaleRangeMin();
|
|
std::optional<unsigned> MaxValue = getVScaleRangeMax();
|
|
return ("vscale_range(" + Twine(MinValue) + "," +
|
|
Twine(MaxValue.value_or(0)) + ")")
|
|
.str();
|
|
}
|
|
|
|
if (hasAttribute(Attribute::UWTable)) {
|
|
UWTableKind Kind = getUWTableKind();
|
|
assert(Kind != UWTableKind::None && "uwtable attribute should not be none");
|
|
return Kind == UWTableKind::Default ? "uwtable" : "uwtable(sync)";
|
|
}
|
|
|
|
if (hasAttribute(Attribute::AllocKind)) {
|
|
AllocFnKind Kind = getAllocKind();
|
|
SmallVector<StringRef> parts;
|
|
if ((Kind & AllocFnKind::Alloc) != AllocFnKind::Unknown)
|
|
parts.push_back("alloc");
|
|
if ((Kind & AllocFnKind::Realloc) != AllocFnKind::Unknown)
|
|
parts.push_back("realloc");
|
|
if ((Kind & AllocFnKind::Free) != AllocFnKind::Unknown)
|
|
parts.push_back("free");
|
|
if ((Kind & AllocFnKind::Uninitialized) != AllocFnKind::Unknown)
|
|
parts.push_back("uninitialized");
|
|
if ((Kind & AllocFnKind::Zeroed) != AllocFnKind::Unknown)
|
|
parts.push_back("zeroed");
|
|
if ((Kind & AllocFnKind::Aligned) != AllocFnKind::Unknown)
|
|
parts.push_back("aligned");
|
|
return ("allockind(\"" +
|
|
Twine(llvm::join(parts.begin(), parts.end(), ",")) + "\")")
|
|
.str();
|
|
}
|
|
|
|
if (hasAttribute(Attribute::Memory)) {
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
bool First = true;
|
|
OS << "memory(";
|
|
|
|
MemoryEffects ME = getMemoryEffects();
|
|
|
|
// Print access kind for "other" as the default access kind. This way it
|
|
// will apply to any new location kinds that get split out of "other".
|
|
ModRefInfo OtherMR = ME.getModRef(IRMemLocation::Other);
|
|
if (OtherMR != ModRefInfo::NoModRef || ME.getModRef() == OtherMR) {
|
|
First = false;
|
|
OS << getModRefStr(OtherMR);
|
|
}
|
|
|
|
for (auto Loc : MemoryEffects::locations()) {
|
|
ModRefInfo MR = ME.getModRef(Loc);
|
|
if (MR == OtherMR)
|
|
continue;
|
|
|
|
if (!First)
|
|
OS << ", ";
|
|
First = false;
|
|
|
|
switch (Loc) {
|
|
case IRMemLocation::ArgMem:
|
|
OS << "argmem: ";
|
|
break;
|
|
case IRMemLocation::InaccessibleMem:
|
|
OS << "inaccessiblemem: ";
|
|
break;
|
|
case IRMemLocation::ErrnoMem:
|
|
OS << "errnomem: ";
|
|
break;
|
|
case IRMemLocation::Other:
|
|
llvm_unreachable("This is represented as the default access kind");
|
|
}
|
|
OS << getModRefStr(MR);
|
|
}
|
|
OS << ")";
|
|
OS.flush();
|
|
return Result;
|
|
}
|
|
|
|
if (hasAttribute(Attribute::Captures)) {
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
OS << getCaptureInfo();
|
|
return Result;
|
|
}
|
|
|
|
if (hasAttribute(Attribute::NoFPClass)) {
|
|
std::string Result = "nofpclass";
|
|
raw_string_ostream OS(Result);
|
|
OS << getNoFPClass();
|
|
return Result;
|
|
}
|
|
|
|
if (hasAttribute(Attribute::Range)) {
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
const ConstantRange &CR = getValueAsConstantRange();
|
|
OS << "range(";
|
|
OS << "i" << CR.getBitWidth() << " ";
|
|
OS << CR.getLower() << ", " << CR.getUpper();
|
|
OS << ")";
|
|
OS.flush();
|
|
return Result;
|
|
}
|
|
|
|
if (hasAttribute(Attribute::Initializes)) {
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
ConstantRangeList CRL = getInitializes();
|
|
OS << "initializes(";
|
|
CRL.print(OS);
|
|
OS << ")";
|
|
OS.flush();
|
|
return Result;
|
|
}
|
|
|
|
// Convert target-dependent attributes to strings of the form:
|
|
//
|
|
// "kind"
|
|
// "kind" = "value"
|
|
//
|
|
if (isStringAttribute()) {
|
|
std::string Result;
|
|
{
|
|
raw_string_ostream OS(Result);
|
|
OS << '"' << getKindAsString() << '"';
|
|
|
|
// Since some attribute strings contain special characters that cannot be
|
|
// printable, those have to be escaped to make the attribute value
|
|
// printable as is. e.g. "\01__gnu_mcount_nc"
|
|
const auto &AttrVal = pImpl->getValueAsString();
|
|
if (!AttrVal.empty()) {
|
|
OS << "=\"";
|
|
printEscapedString(AttrVal, OS);
|
|
OS << "\"";
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
llvm_unreachable("Unknown attribute");
|
|
}
|
|
|
|
bool Attribute::hasParentContext(LLVMContext &C) const {
|
|
assert(isValid() && "invalid Attribute doesn't refer to any context");
|
|
FoldingSetNodeID ID;
|
|
pImpl->Profile(ID);
|
|
void *Unused;
|
|
return C.pImpl->AttrsSet.FindNodeOrInsertPos(ID, Unused) == pImpl;
|
|
}
|
|
|
|
int Attribute::cmpKind(Attribute A) const {
|
|
if (!pImpl && !A.pImpl)
|
|
return 0;
|
|
if (!pImpl)
|
|
return 1;
|
|
if (!A.pImpl)
|
|
return -1;
|
|
return pImpl->cmp(*A.pImpl, /*KindOnly=*/true);
|
|
}
|
|
|
|
bool Attribute::operator<(Attribute A) const {
|
|
if (!pImpl && !A.pImpl) return false;
|
|
if (!pImpl) return true;
|
|
if (!A.pImpl) return false;
|
|
return *pImpl < *A.pImpl;
|
|
}
|
|
|
|
void Attribute::Profile(FoldingSetNodeID &ID) const {
|
|
ID.AddPointer(pImpl);
|
|
}
|
|
|
|
enum AttributeProperty {
|
|
FnAttr = (1 << 0),
|
|
ParamAttr = (1 << 1),
|
|
RetAttr = (1 << 2),
|
|
IntersectPreserve = (0 << 3),
|
|
IntersectAnd = (1 << 3),
|
|
IntersectMin = (2 << 3),
|
|
IntersectCustom = (3 << 3),
|
|
IntersectPropertyMask = (3 << 3),
|
|
};
|
|
|
|
#define GET_ATTR_PROP_TABLE
|
|
#include "llvm/IR/Attributes.inc"
|
|
|
|
static unsigned getAttributeProperties(Attribute::AttrKind Kind) {
|
|
unsigned Index = Kind - 1;
|
|
assert(Index < std::size(AttrPropTable) && "Invalid attribute kind");
|
|
return AttrPropTable[Index];
|
|
}
|
|
|
|
static bool hasAttributeProperty(Attribute::AttrKind Kind,
|
|
AttributeProperty Prop) {
|
|
return getAttributeProperties(Kind) & Prop;
|
|
}
|
|
|
|
bool Attribute::canUseAsFnAttr(AttrKind Kind) {
|
|
return hasAttributeProperty(Kind, AttributeProperty::FnAttr);
|
|
}
|
|
|
|
bool Attribute::canUseAsParamAttr(AttrKind Kind) {
|
|
return hasAttributeProperty(Kind, AttributeProperty::ParamAttr);
|
|
}
|
|
|
|
bool Attribute::canUseAsRetAttr(AttrKind Kind) {
|
|
return hasAttributeProperty(Kind, AttributeProperty::RetAttr);
|
|
}
|
|
|
|
static bool hasIntersectProperty(Attribute::AttrKind Kind,
|
|
AttributeProperty Prop) {
|
|
assert((Prop == AttributeProperty::IntersectPreserve ||
|
|
Prop == AttributeProperty::IntersectAnd ||
|
|
Prop == AttributeProperty::IntersectMin ||
|
|
Prop == AttributeProperty::IntersectCustom) &&
|
|
"Unknown intersect property");
|
|
return (getAttributeProperties(Kind) &
|
|
AttributeProperty::IntersectPropertyMask) == Prop;
|
|
}
|
|
|
|
bool Attribute::intersectMustPreserve(AttrKind Kind) {
|
|
return hasIntersectProperty(Kind, AttributeProperty::IntersectPreserve);
|
|
}
|
|
bool Attribute::intersectWithAnd(AttrKind Kind) {
|
|
return hasIntersectProperty(Kind, AttributeProperty::IntersectAnd);
|
|
}
|
|
bool Attribute::intersectWithMin(AttrKind Kind) {
|
|
return hasIntersectProperty(Kind, AttributeProperty::IntersectMin);
|
|
}
|
|
bool Attribute::intersectWithCustom(AttrKind Kind) {
|
|
return hasIntersectProperty(Kind, AttributeProperty::IntersectCustom);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeImpl Definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const {
|
|
if (isStringAttribute()) return false;
|
|
return getKindAsEnum() == A;
|
|
}
|
|
|
|
bool AttributeImpl::hasAttribute(StringRef Kind) const {
|
|
if (!isStringAttribute()) return false;
|
|
return getKindAsString() == Kind;
|
|
}
|
|
|
|
Attribute::AttrKind AttributeImpl::getKindAsEnum() const {
|
|
assert(isEnumAttribute() || isIntAttribute() || isTypeAttribute() ||
|
|
isConstantRangeAttribute() || isConstantRangeListAttribute());
|
|
return static_cast<const EnumAttributeImpl *>(this)->getEnumKind();
|
|
}
|
|
|
|
uint64_t AttributeImpl::getValueAsInt() const {
|
|
assert(isIntAttribute());
|
|
return static_cast<const IntAttributeImpl *>(this)->getValue();
|
|
}
|
|
|
|
bool AttributeImpl::getValueAsBool() const {
|
|
assert(getValueAsString().empty() || getValueAsString() == "false" || getValueAsString() == "true");
|
|
return getValueAsString() == "true";
|
|
}
|
|
|
|
StringRef AttributeImpl::getKindAsString() const {
|
|
assert(isStringAttribute());
|
|
return static_cast<const StringAttributeImpl *>(this)->getStringKind();
|
|
}
|
|
|
|
StringRef AttributeImpl::getValueAsString() const {
|
|
assert(isStringAttribute());
|
|
return static_cast<const StringAttributeImpl *>(this)->getStringValue();
|
|
}
|
|
|
|
Type *AttributeImpl::getValueAsType() const {
|
|
assert(isTypeAttribute());
|
|
return static_cast<const TypeAttributeImpl *>(this)->getTypeValue();
|
|
}
|
|
|
|
const ConstantRange &AttributeImpl::getValueAsConstantRange() const {
|
|
assert(isConstantRangeAttribute());
|
|
return static_cast<const ConstantRangeAttributeImpl *>(this)
|
|
->getConstantRangeValue();
|
|
}
|
|
|
|
ArrayRef<ConstantRange> AttributeImpl::getValueAsConstantRangeList() const {
|
|
assert(isConstantRangeListAttribute());
|
|
return static_cast<const ConstantRangeListAttributeImpl *>(this)
|
|
->getConstantRangeListValue();
|
|
}
|
|
|
|
int AttributeImpl::cmp(const AttributeImpl &AI, bool KindOnly) const {
|
|
if (this == &AI)
|
|
return 0;
|
|
|
|
// This sorts the attributes with Attribute::AttrKinds coming first (sorted
|
|
// relative to their enum value) and then strings.
|
|
if (!isStringAttribute()) {
|
|
if (AI.isStringAttribute())
|
|
return -1;
|
|
|
|
if (getKindAsEnum() != AI.getKindAsEnum())
|
|
return getKindAsEnum() < AI.getKindAsEnum() ? -1 : 1;
|
|
else if (KindOnly)
|
|
return 0;
|
|
|
|
assert(!AI.isEnumAttribute() && "Non-unique attribute");
|
|
assert(!AI.isTypeAttribute() && "Comparison of types would be unstable");
|
|
assert(!AI.isConstantRangeAttribute() && "Unclear how to compare ranges");
|
|
assert(!AI.isConstantRangeListAttribute() &&
|
|
"Unclear how to compare range list");
|
|
// TODO: Is this actually needed?
|
|
assert(AI.isIntAttribute() && "Only possibility left");
|
|
if (getValueAsInt() < AI.getValueAsInt())
|
|
return -1;
|
|
return getValueAsInt() == AI.getValueAsInt() ? 0 : 1;
|
|
}
|
|
if (!AI.isStringAttribute())
|
|
return 1;
|
|
if (KindOnly)
|
|
return getKindAsString().compare(AI.getKindAsString());
|
|
if (getKindAsString() == AI.getKindAsString())
|
|
return getValueAsString().compare(AI.getValueAsString());
|
|
return getKindAsString().compare(AI.getKindAsString());
|
|
}
|
|
|
|
bool AttributeImpl::operator<(const AttributeImpl &AI) const {
|
|
return cmp(AI, /*KindOnly=*/false) < 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeSet Definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AttributeSet AttributeSet::get(LLVMContext &C, const AttrBuilder &B) {
|
|
return AttributeSet(AttributeSetNode::get(C, B));
|
|
}
|
|
|
|
AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<Attribute> Attrs) {
|
|
return AttributeSet(AttributeSetNode::get(C, Attrs));
|
|
}
|
|
|
|
AttributeSet AttributeSet::addAttribute(LLVMContext &C,
|
|
Attribute::AttrKind Kind) const {
|
|
if (hasAttribute(Kind)) return *this;
|
|
AttrBuilder B(C);
|
|
B.addAttribute(Kind);
|
|
return addAttributes(C, AttributeSet::get(C, B));
|
|
}
|
|
|
|
AttributeSet AttributeSet::addAttribute(LLVMContext &C, StringRef Kind,
|
|
StringRef Value) const {
|
|
AttrBuilder B(C);
|
|
B.addAttribute(Kind, Value);
|
|
return addAttributes(C, AttributeSet::get(C, B));
|
|
}
|
|
|
|
AttributeSet AttributeSet::addAttributes(LLVMContext &C,
|
|
const AttributeSet AS) const {
|
|
if (!hasAttributes())
|
|
return AS;
|
|
|
|
if (!AS.hasAttributes())
|
|
return *this;
|
|
|
|
AttrBuilder B(C, *this);
|
|
B.merge(AttrBuilder(C, AS));
|
|
return get(C, B);
|
|
}
|
|
|
|
AttributeSet AttributeSet::removeAttribute(LLVMContext &C,
|
|
Attribute::AttrKind Kind) const {
|
|
if (!hasAttribute(Kind)) return *this;
|
|
AttrBuilder B(C, *this);
|
|
B.removeAttribute(Kind);
|
|
return get(C, B);
|
|
}
|
|
|
|
AttributeSet AttributeSet::removeAttribute(LLVMContext &C,
|
|
StringRef Kind) const {
|
|
if (!hasAttribute(Kind)) return *this;
|
|
AttrBuilder B(C, *this);
|
|
B.removeAttribute(Kind);
|
|
return get(C, B);
|
|
}
|
|
|
|
AttributeSet AttributeSet::removeAttributes(LLVMContext &C,
|
|
const AttributeMask &Attrs) const {
|
|
AttrBuilder B(C, *this);
|
|
// If there is nothing to remove, directly return the original set.
|
|
if (!B.overlaps(Attrs))
|
|
return *this;
|
|
|
|
B.remove(Attrs);
|
|
return get(C, B);
|
|
}
|
|
|
|
std::optional<AttributeSet>
|
|
AttributeSet::intersectWith(LLVMContext &C, AttributeSet Other) const {
|
|
if (*this == Other)
|
|
return *this;
|
|
|
|
AttrBuilder Intersected(C);
|
|
// Iterate over both attr sets at once.
|
|
auto ItBegin0 = begin();
|
|
auto ItEnd0 = end();
|
|
auto ItBegin1 = Other.begin();
|
|
auto ItEnd1 = Other.end();
|
|
|
|
while (ItBegin0 != ItEnd0 || ItBegin1 != ItEnd1) {
|
|
// Loop through all attributes in both this and Other in sorted order. If
|
|
// the attribute is only present in one of the sets, it will be set in
|
|
// Attr0. If it is present in both sets both Attr0 and Attr1 will be set.
|
|
Attribute Attr0, Attr1;
|
|
if (ItBegin1 == ItEnd1)
|
|
Attr0 = *ItBegin0++;
|
|
else if (ItBegin0 == ItEnd0)
|
|
Attr0 = *ItBegin1++;
|
|
else {
|
|
int Cmp = ItBegin0->cmpKind(*ItBegin1);
|
|
if (Cmp == 0) {
|
|
Attr0 = *ItBegin0++;
|
|
Attr1 = *ItBegin1++;
|
|
} else if (Cmp < 0)
|
|
Attr0 = *ItBegin0++;
|
|
else
|
|
Attr0 = *ItBegin1++;
|
|
}
|
|
assert(Attr0.isValid() && "Iteration should always yield a valid attr");
|
|
|
|
auto IntersectEq = [&]() {
|
|
if (!Attr1.isValid())
|
|
return false;
|
|
if (Attr0 != Attr1)
|
|
return false;
|
|
Intersected.addAttribute(Attr0);
|
|
return true;
|
|
};
|
|
|
|
// Non-enum assume we must preserve. Handle early so we can unconditionally
|
|
// use Kind below.
|
|
if (!Attr0.hasKindAsEnum()) {
|
|
if (!IntersectEq())
|
|
return std::nullopt;
|
|
continue;
|
|
}
|
|
|
|
Attribute::AttrKind Kind = Attr0.getKindAsEnum();
|
|
// If we don't have both attributes, then fail if the attribute is
|
|
// must-preserve or drop it otherwise.
|
|
if (!Attr1.isValid()) {
|
|
if (Attribute::intersectMustPreserve(Kind))
|
|
return std::nullopt;
|
|
continue;
|
|
}
|
|
|
|
// We have both attributes so apply the intersection rule.
|
|
assert(Attr1.hasKindAsEnum() && Kind == Attr1.getKindAsEnum() &&
|
|
"Iterator picked up two different attributes in the same iteration");
|
|
|
|
// Attribute we can intersect with "and"
|
|
if (Attribute::intersectWithAnd(Kind)) {
|
|
assert(Attribute::isEnumAttrKind(Kind) &&
|
|
"Invalid attr type of intersectAnd");
|
|
Intersected.addAttribute(Kind);
|
|
continue;
|
|
}
|
|
|
|
// Attribute we can intersect with "min"
|
|
if (Attribute::intersectWithMin(Kind)) {
|
|
assert(Attribute::isIntAttrKind(Kind) &&
|
|
"Invalid attr type of intersectMin");
|
|
uint64_t NewVal = std::min(Attr0.getValueAsInt(), Attr1.getValueAsInt());
|
|
Intersected.addRawIntAttr(Kind, NewVal);
|
|
continue;
|
|
}
|
|
// Attribute we can intersect but need a custom rule for.
|
|
if (Attribute::intersectWithCustom(Kind)) {
|
|
switch (Kind) {
|
|
case Attribute::Alignment:
|
|
// If `byval` is present, alignment become must-preserve. This is
|
|
// handled below if we have `byval`.
|
|
Intersected.addAlignmentAttr(
|
|
std::min(Attr0.getAlignment().valueOrOne(),
|
|
Attr1.getAlignment().valueOrOne()));
|
|
break;
|
|
case Attribute::Memory:
|
|
Intersected.addMemoryAttr(Attr0.getMemoryEffects() |
|
|
Attr1.getMemoryEffects());
|
|
break;
|
|
case Attribute::Captures:
|
|
Intersected.addCapturesAttr(Attr0.getCaptureInfo() |
|
|
Attr1.getCaptureInfo());
|
|
break;
|
|
case Attribute::NoFPClass:
|
|
Intersected.addNoFPClassAttr(Attr0.getNoFPClass() &
|
|
Attr1.getNoFPClass());
|
|
break;
|
|
case Attribute::Range: {
|
|
ConstantRange Range0 = Attr0.getRange();
|
|
ConstantRange Range1 = Attr1.getRange();
|
|
ConstantRange NewRange = Range0.unionWith(Range1);
|
|
if (!NewRange.isFullSet())
|
|
Intersected.addRangeAttr(NewRange);
|
|
} break;
|
|
default:
|
|
llvm_unreachable("Unknown attribute with custom intersection rule");
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Attributes with no intersection rule. Only intersect if they are equal.
|
|
// Otherwise fail.
|
|
if (!IntersectEq())
|
|
return std::nullopt;
|
|
|
|
// Special handling of `byval`. `byval` essentially turns align attr into
|
|
// must-preserve
|
|
if (Kind == Attribute::ByVal &&
|
|
getAttribute(Attribute::Alignment) !=
|
|
Other.getAttribute(Attribute::Alignment))
|
|
return std::nullopt;
|
|
}
|
|
|
|
return get(C, Intersected);
|
|
}
|
|
|
|
unsigned AttributeSet::getNumAttributes() const {
|
|
return SetNode ? SetNode->getNumAttributes() : 0;
|
|
}
|
|
|
|
bool AttributeSet::hasAttribute(Attribute::AttrKind Kind) const {
|
|
return SetNode ? SetNode->hasAttribute(Kind) : false;
|
|
}
|
|
|
|
bool AttributeSet::hasAttribute(StringRef Kind) const {
|
|
return SetNode ? SetNode->hasAttribute(Kind) : false;
|
|
}
|
|
|
|
Attribute AttributeSet::getAttribute(Attribute::AttrKind Kind) const {
|
|
return SetNode ? SetNode->getAttribute(Kind) : Attribute();
|
|
}
|
|
|
|
Attribute AttributeSet::getAttribute(StringRef Kind) const {
|
|
return SetNode ? SetNode->getAttribute(Kind) : Attribute();
|
|
}
|
|
|
|
MaybeAlign AttributeSet::getAlignment() const {
|
|
return SetNode ? SetNode->getAlignment() : std::nullopt;
|
|
}
|
|
|
|
MaybeAlign AttributeSet::getStackAlignment() const {
|
|
return SetNode ? SetNode->getStackAlignment() : std::nullopt;
|
|
}
|
|
|
|
uint64_t AttributeSet::getDereferenceableBytes() const {
|
|
return SetNode ? SetNode->getDereferenceableBytes() : 0;
|
|
}
|
|
|
|
uint64_t AttributeSet::getDereferenceableOrNullBytes() const {
|
|
return SetNode ? SetNode->getDereferenceableOrNullBytes() : 0;
|
|
}
|
|
|
|
Type *AttributeSet::getByRefType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::ByRef) : nullptr;
|
|
}
|
|
|
|
Type *AttributeSet::getByValType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::ByVal) : nullptr;
|
|
}
|
|
|
|
Type *AttributeSet::getStructRetType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::StructRet) : nullptr;
|
|
}
|
|
|
|
Type *AttributeSet::getPreallocatedType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::Preallocated) : nullptr;
|
|
}
|
|
|
|
Type *AttributeSet::getInAllocaType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::InAlloca) : nullptr;
|
|
}
|
|
|
|
Type *AttributeSet::getElementType() const {
|
|
return SetNode ? SetNode->getAttributeType(Attribute::ElementType) : nullptr;
|
|
}
|
|
|
|
std::optional<std::pair<unsigned, std::optional<unsigned>>>
|
|
AttributeSet::getAllocSizeArgs() const {
|
|
if (SetNode)
|
|
return SetNode->getAllocSizeArgs();
|
|
return std::nullopt;
|
|
}
|
|
|
|
unsigned AttributeSet::getVScaleRangeMin() const {
|
|
return SetNode ? SetNode->getVScaleRangeMin() : 1;
|
|
}
|
|
|
|
std::optional<unsigned> AttributeSet::getVScaleRangeMax() const {
|
|
return SetNode ? SetNode->getVScaleRangeMax() : std::nullopt;
|
|
}
|
|
|
|
UWTableKind AttributeSet::getUWTableKind() const {
|
|
return SetNode ? SetNode->getUWTableKind() : UWTableKind::None;
|
|
}
|
|
|
|
AllocFnKind AttributeSet::getAllocKind() const {
|
|
return SetNode ? SetNode->getAllocKind() : AllocFnKind::Unknown;
|
|
}
|
|
|
|
MemoryEffects AttributeSet::getMemoryEffects() const {
|
|
return SetNode ? SetNode->getMemoryEffects() : MemoryEffects::unknown();
|
|
}
|
|
|
|
CaptureInfo AttributeSet::getCaptureInfo() const {
|
|
return SetNode ? SetNode->getCaptureInfo() : CaptureInfo::all();
|
|
}
|
|
|
|
FPClassTest AttributeSet::getNoFPClass() const {
|
|
return SetNode ? SetNode->getNoFPClass() : fcNone;
|
|
}
|
|
|
|
std::string AttributeSet::getAsString(bool InAttrGrp) const {
|
|
return SetNode ? SetNode->getAsString(InAttrGrp) : "";
|
|
}
|
|
|
|
bool AttributeSet::hasParentContext(LLVMContext &C) const {
|
|
assert(hasAttributes() && "empty AttributeSet doesn't refer to any context");
|
|
FoldingSetNodeID ID;
|
|
SetNode->Profile(ID);
|
|
void *Unused;
|
|
return C.pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, Unused) == SetNode;
|
|
}
|
|
|
|
AttributeSet::iterator AttributeSet::begin() const {
|
|
return SetNode ? SetNode->begin() : nullptr;
|
|
}
|
|
|
|
AttributeSet::iterator AttributeSet::end() const {
|
|
return SetNode ? SetNode->end() : nullptr;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void AttributeSet::dump() const {
|
|
dbgs() << "AS =\n";
|
|
dbgs() << " { ";
|
|
dbgs() << getAsString(true) << " }\n";
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeSetNode Definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AttributeSetNode::AttributeSetNode(ArrayRef<Attribute> Attrs)
|
|
: NumAttrs(Attrs.size()) {
|
|
// There's memory after the node where we can store the entries in.
|
|
llvm::copy(Attrs, getTrailingObjects<Attribute>());
|
|
|
|
for (const auto &I : *this) {
|
|
if (I.isStringAttribute())
|
|
StringAttrs.insert({ I.getKindAsString(), I });
|
|
else
|
|
AvailableAttrs.addAttribute(I.getKindAsEnum());
|
|
}
|
|
}
|
|
|
|
AttributeSetNode *AttributeSetNode::get(LLVMContext &C,
|
|
ArrayRef<Attribute> Attrs) {
|
|
SmallVector<Attribute, 8> SortedAttrs(Attrs);
|
|
llvm::sort(SortedAttrs);
|
|
return getSorted(C, SortedAttrs);
|
|
}
|
|
|
|
AttributeSetNode *AttributeSetNode::getSorted(LLVMContext &C,
|
|
ArrayRef<Attribute> SortedAttrs) {
|
|
if (SortedAttrs.empty())
|
|
return nullptr;
|
|
|
|
// Build a key to look up the existing attributes.
|
|
LLVMContextImpl *pImpl = C.pImpl;
|
|
FoldingSetNodeID ID;
|
|
|
|
assert(llvm::is_sorted(SortedAttrs) && "Expected sorted attributes!");
|
|
for (const auto &Attr : SortedAttrs)
|
|
Attr.Profile(ID);
|
|
|
|
void *InsertPoint;
|
|
AttributeSetNode *PA =
|
|
pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
// If we didn't find any existing attributes of the same shape then create a
|
|
// new one and insert it.
|
|
if (!PA) {
|
|
// Coallocate entries after the AttributeSetNode itself.
|
|
void *Mem = ::operator new(totalSizeToAlloc<Attribute>(SortedAttrs.size()));
|
|
PA = new (Mem) AttributeSetNode(SortedAttrs);
|
|
pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the AttributeSetNode that we found or created.
|
|
return PA;
|
|
}
|
|
|
|
AttributeSetNode *AttributeSetNode::get(LLVMContext &C, const AttrBuilder &B) {
|
|
return getSorted(C, B.attrs());
|
|
}
|
|
|
|
bool AttributeSetNode::hasAttribute(StringRef Kind) const {
|
|
return StringAttrs.count(Kind);
|
|
}
|
|
|
|
std::optional<Attribute>
|
|
AttributeSetNode::findEnumAttribute(Attribute::AttrKind Kind) const {
|
|
// Do a quick presence check.
|
|
if (!hasAttribute(Kind))
|
|
return std::nullopt;
|
|
|
|
// Attributes in a set are sorted by enum value, followed by string
|
|
// attributes. Binary search the one we want.
|
|
const Attribute *I =
|
|
std::lower_bound(begin(), end() - StringAttrs.size(), Kind,
|
|
[](Attribute A, Attribute::AttrKind Kind) {
|
|
return A.getKindAsEnum() < Kind;
|
|
});
|
|
assert(I != end() && I->hasAttribute(Kind) && "Presence check failed?");
|
|
return *I;
|
|
}
|
|
|
|
Attribute AttributeSetNode::getAttribute(Attribute::AttrKind Kind) const {
|
|
if (auto A = findEnumAttribute(Kind))
|
|
return *A;
|
|
return {};
|
|
}
|
|
|
|
Attribute AttributeSetNode::getAttribute(StringRef Kind) const {
|
|
return StringAttrs.lookup(Kind);
|
|
}
|
|
|
|
MaybeAlign AttributeSetNode::getAlignment() const {
|
|
if (auto A = findEnumAttribute(Attribute::Alignment))
|
|
return A->getAlignment();
|
|
return std::nullopt;
|
|
}
|
|
|
|
MaybeAlign AttributeSetNode::getStackAlignment() const {
|
|
if (auto A = findEnumAttribute(Attribute::StackAlignment))
|
|
return A->getStackAlignment();
|
|
return std::nullopt;
|
|
}
|
|
|
|
Type *AttributeSetNode::getAttributeType(Attribute::AttrKind Kind) const {
|
|
if (auto A = findEnumAttribute(Kind))
|
|
return A->getValueAsType();
|
|
return nullptr;
|
|
}
|
|
|
|
uint64_t AttributeSetNode::getDereferenceableBytes() const {
|
|
if (auto A = findEnumAttribute(Attribute::Dereferenceable))
|
|
return A->getDereferenceableBytes();
|
|
return 0;
|
|
}
|
|
|
|
uint64_t AttributeSetNode::getDereferenceableOrNullBytes() const {
|
|
if (auto A = findEnumAttribute(Attribute::DereferenceableOrNull))
|
|
return A->getDereferenceableOrNullBytes();
|
|
return 0;
|
|
}
|
|
|
|
std::optional<std::pair<unsigned, std::optional<unsigned>>>
|
|
AttributeSetNode::getAllocSizeArgs() const {
|
|
if (auto A = findEnumAttribute(Attribute::AllocSize))
|
|
return A->getAllocSizeArgs();
|
|
return std::nullopt;
|
|
}
|
|
|
|
unsigned AttributeSetNode::getVScaleRangeMin() const {
|
|
if (auto A = findEnumAttribute(Attribute::VScaleRange))
|
|
return A->getVScaleRangeMin();
|
|
return 1;
|
|
}
|
|
|
|
std::optional<unsigned> AttributeSetNode::getVScaleRangeMax() const {
|
|
if (auto A = findEnumAttribute(Attribute::VScaleRange))
|
|
return A->getVScaleRangeMax();
|
|
return std::nullopt;
|
|
}
|
|
|
|
UWTableKind AttributeSetNode::getUWTableKind() const {
|
|
if (auto A = findEnumAttribute(Attribute::UWTable))
|
|
return A->getUWTableKind();
|
|
return UWTableKind::None;
|
|
}
|
|
|
|
AllocFnKind AttributeSetNode::getAllocKind() const {
|
|
if (auto A = findEnumAttribute(Attribute::AllocKind))
|
|
return A->getAllocKind();
|
|
return AllocFnKind::Unknown;
|
|
}
|
|
|
|
MemoryEffects AttributeSetNode::getMemoryEffects() const {
|
|
if (auto A = findEnumAttribute(Attribute::Memory))
|
|
return A->getMemoryEffects();
|
|
return MemoryEffects::unknown();
|
|
}
|
|
|
|
CaptureInfo AttributeSetNode::getCaptureInfo() const {
|
|
if (auto A = findEnumAttribute(Attribute::Captures))
|
|
return A->getCaptureInfo();
|
|
return CaptureInfo::all();
|
|
}
|
|
|
|
FPClassTest AttributeSetNode::getNoFPClass() const {
|
|
if (auto A = findEnumAttribute(Attribute::NoFPClass))
|
|
return A->getNoFPClass();
|
|
return fcNone;
|
|
}
|
|
|
|
std::string AttributeSetNode::getAsString(bool InAttrGrp) const {
|
|
std::string Str;
|
|
for (iterator I = begin(), E = end(); I != E; ++I) {
|
|
if (I != begin())
|
|
Str += ' ';
|
|
Str += I->getAsString(InAttrGrp);
|
|
}
|
|
return Str;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeListImpl Definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Map from AttributeList index to the internal array index. Adding one happens
|
|
/// to work, because -1 wraps around to 0.
|
|
static unsigned attrIdxToArrayIdx(unsigned Index) {
|
|
return Index + 1;
|
|
}
|
|
|
|
AttributeListImpl::AttributeListImpl(ArrayRef<AttributeSet> Sets)
|
|
: NumAttrSets(Sets.size()) {
|
|
assert(!Sets.empty() && "pointless AttributeListImpl");
|
|
|
|
// There's memory after the node where we can store the entries in.
|
|
llvm::copy(Sets, getTrailingObjects<AttributeSet>());
|
|
|
|
// Initialize AvailableFunctionAttrs and AvailableSomewhereAttrs
|
|
// summary bitsets.
|
|
for (const auto &I : Sets[attrIdxToArrayIdx(AttributeList::FunctionIndex)])
|
|
if (!I.isStringAttribute())
|
|
AvailableFunctionAttrs.addAttribute(I.getKindAsEnum());
|
|
|
|
for (const auto &Set : Sets)
|
|
for (const auto &I : Set)
|
|
if (!I.isStringAttribute())
|
|
AvailableSomewhereAttrs.addAttribute(I.getKindAsEnum());
|
|
}
|
|
|
|
void AttributeListImpl::Profile(FoldingSetNodeID &ID) const {
|
|
Profile(ID, ArrayRef(begin(), end()));
|
|
}
|
|
|
|
void AttributeListImpl::Profile(FoldingSetNodeID &ID,
|
|
ArrayRef<AttributeSet> Sets) {
|
|
for (const auto &Set : Sets)
|
|
ID.AddPointer(Set.SetNode);
|
|
}
|
|
|
|
bool AttributeListImpl::hasAttrSomewhere(Attribute::AttrKind Kind,
|
|
unsigned *Index) const {
|
|
if (!AvailableSomewhereAttrs.hasAttribute(Kind))
|
|
return false;
|
|
|
|
if (Index) {
|
|
for (unsigned I = 0, E = NumAttrSets; I != E; ++I) {
|
|
if (begin()[I].hasAttribute(Kind)) {
|
|
*Index = I - 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void AttributeListImpl::dump() const {
|
|
AttributeList(const_cast<AttributeListImpl *>(this)).dump();
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeList Construction and Mutation Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AttributeList AttributeList::getImpl(LLVMContext &C,
|
|
ArrayRef<AttributeSet> AttrSets) {
|
|
assert(!AttrSets.empty() && "pointless AttributeListImpl");
|
|
|
|
LLVMContextImpl *pImpl = C.pImpl;
|
|
FoldingSetNodeID ID;
|
|
AttributeListImpl::Profile(ID, AttrSets);
|
|
|
|
void *InsertPoint;
|
|
AttributeListImpl *PA =
|
|
pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint);
|
|
|
|
// If we didn't find any existing attributes of the same shape then
|
|
// create a new one and insert it.
|
|
if (!PA) {
|
|
// Coallocate entries after the AttributeListImpl itself.
|
|
void *Mem = pImpl->Alloc.Allocate(
|
|
AttributeListImpl::totalSizeToAlloc<AttributeSet>(AttrSets.size()),
|
|
alignof(AttributeListImpl));
|
|
PA = new (Mem) AttributeListImpl(AttrSets);
|
|
pImpl->AttrsLists.InsertNode(PA, InsertPoint);
|
|
}
|
|
|
|
// Return the AttributesList that we found or created.
|
|
return AttributeList(PA);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::get(LLVMContext &C,
|
|
ArrayRef<std::pair<unsigned, Attribute>> Attrs) {
|
|
// If there are no attributes then return a null AttributesList pointer.
|
|
if (Attrs.empty())
|
|
return {};
|
|
|
|
assert(llvm::is_sorted(Attrs, llvm::less_first()) &&
|
|
"Misordered Attributes list!");
|
|
assert(llvm::all_of(Attrs,
|
|
[](const std::pair<unsigned, Attribute> &Pair) {
|
|
return Pair.second.isValid();
|
|
}) &&
|
|
"Pointless attribute!");
|
|
|
|
// Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes
|
|
// list.
|
|
SmallVector<std::pair<unsigned, AttributeSet>, 8> AttrPairVec;
|
|
for (ArrayRef<std::pair<unsigned, Attribute>>::iterator I = Attrs.begin(),
|
|
E = Attrs.end(); I != E; ) {
|
|
unsigned Index = I->first;
|
|
SmallVector<Attribute, 4> AttrVec;
|
|
while (I != E && I->first == Index) {
|
|
AttrVec.push_back(I->second);
|
|
++I;
|
|
}
|
|
|
|
AttrPairVec.emplace_back(Index, AttributeSet::get(C, AttrVec));
|
|
}
|
|
|
|
return get(C, AttrPairVec);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::get(LLVMContext &C,
|
|
ArrayRef<std::pair<unsigned, AttributeSet>> Attrs) {
|
|
// If there are no attributes then return a null AttributesList pointer.
|
|
if (Attrs.empty())
|
|
return {};
|
|
|
|
assert(llvm::is_sorted(Attrs, llvm::less_first()) &&
|
|
"Misordered Attributes list!");
|
|
assert(llvm::none_of(Attrs,
|
|
[](const std::pair<unsigned, AttributeSet> &Pair) {
|
|
return !Pair.second.hasAttributes();
|
|
}) &&
|
|
"Pointless attribute!");
|
|
|
|
unsigned MaxIndex = Attrs.back().first;
|
|
// If the MaxIndex is FunctionIndex and there are other indices in front
|
|
// of it, we need to use the largest of those to get the right size.
|
|
if (MaxIndex == FunctionIndex && Attrs.size() > 1)
|
|
MaxIndex = Attrs[Attrs.size() - 2].first;
|
|
|
|
SmallVector<AttributeSet, 4> AttrVec(attrIdxToArrayIdx(MaxIndex) + 1);
|
|
for (const auto &Pair : Attrs)
|
|
AttrVec[attrIdxToArrayIdx(Pair.first)] = Pair.second;
|
|
|
|
return getImpl(C, AttrVec);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, AttributeSet FnAttrs,
|
|
AttributeSet RetAttrs,
|
|
ArrayRef<AttributeSet> ArgAttrs) {
|
|
// Scan from the end to find the last argument with attributes. Most
|
|
// arguments don't have attributes, so it's nice if we can have fewer unique
|
|
// AttributeListImpls by dropping empty attribute sets at the end of the list.
|
|
unsigned NumSets = 0;
|
|
for (size_t I = ArgAttrs.size(); I != 0; --I) {
|
|
if (ArgAttrs[I - 1].hasAttributes()) {
|
|
NumSets = I + 2;
|
|
break;
|
|
}
|
|
}
|
|
if (NumSets == 0) {
|
|
// Check function and return attributes if we didn't have argument
|
|
// attributes.
|
|
if (RetAttrs.hasAttributes())
|
|
NumSets = 2;
|
|
else if (FnAttrs.hasAttributes())
|
|
NumSets = 1;
|
|
}
|
|
|
|
// If all attribute sets were empty, we can use the empty attribute list.
|
|
if (NumSets == 0)
|
|
return {};
|
|
|
|
SmallVector<AttributeSet, 8> AttrSets;
|
|
AttrSets.reserve(NumSets);
|
|
// If we have any attributes, we always have function attributes.
|
|
AttrSets.push_back(FnAttrs);
|
|
if (NumSets > 1)
|
|
AttrSets.push_back(RetAttrs);
|
|
if (NumSets > 2) {
|
|
// Drop the empty argument attribute sets at the end.
|
|
ArgAttrs = ArgAttrs.take_front(NumSets - 2);
|
|
llvm::append_range(AttrSets, ArgAttrs);
|
|
}
|
|
|
|
return getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
|
|
AttributeSet Attrs) {
|
|
if (!Attrs.hasAttributes())
|
|
return {};
|
|
Index = attrIdxToArrayIdx(Index);
|
|
SmallVector<AttributeSet, 8> AttrSets(Index + 1);
|
|
AttrSets[Index] = Attrs;
|
|
return getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
|
|
const AttrBuilder &B) {
|
|
return get(C, Index, AttributeSet::get(C, B));
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
|
|
ArrayRef<Attribute::AttrKind> Kinds) {
|
|
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
|
|
for (const auto K : Kinds)
|
|
Attrs.emplace_back(Index, Attribute::get(C, K));
|
|
return get(C, Attrs);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
|
|
ArrayRef<Attribute::AttrKind> Kinds,
|
|
ArrayRef<uint64_t> Values) {
|
|
assert(Kinds.size() == Values.size() && "Mismatched attribute values.");
|
|
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
|
|
auto VI = Values.begin();
|
|
for (const auto K : Kinds)
|
|
Attrs.emplace_back(Index, Attribute::get(C, K, *VI++));
|
|
return get(C, Attrs);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C, unsigned Index,
|
|
ArrayRef<StringRef> Kinds) {
|
|
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
|
|
for (const auto &K : Kinds)
|
|
Attrs.emplace_back(Index, Attribute::get(C, K));
|
|
return get(C, Attrs);
|
|
}
|
|
|
|
AttributeList AttributeList::get(LLVMContext &C,
|
|
ArrayRef<AttributeList> Attrs) {
|
|
if (Attrs.empty())
|
|
return {};
|
|
if (Attrs.size() == 1)
|
|
return Attrs[0];
|
|
|
|
unsigned MaxSize = 0;
|
|
for (const auto &List : Attrs)
|
|
MaxSize = std::max(MaxSize, List.getNumAttrSets());
|
|
|
|
// If every list was empty, there is no point in merging the lists.
|
|
if (MaxSize == 0)
|
|
return {};
|
|
|
|
SmallVector<AttributeSet, 8> NewAttrSets(MaxSize);
|
|
for (unsigned I = 0; I < MaxSize; ++I) {
|
|
AttrBuilder CurBuilder(C);
|
|
for (const auto &List : Attrs)
|
|
CurBuilder.merge(AttrBuilder(C, List.getAttributes(I - 1)));
|
|
NewAttrSets[I] = AttributeSet::get(C, CurBuilder);
|
|
}
|
|
|
|
return getImpl(C, NewAttrSets);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::addAttributeAtIndex(LLVMContext &C, unsigned Index,
|
|
Attribute::AttrKind Kind) const {
|
|
AttributeSet Attrs = getAttributes(Index);
|
|
if (Attrs.hasAttribute(Kind))
|
|
return *this;
|
|
// TODO: Insert at correct position and avoid sort.
|
|
SmallVector<Attribute, 8> NewAttrs(Attrs.begin(), Attrs.end());
|
|
NewAttrs.push_back(Attribute::get(C, Kind));
|
|
return setAttributesAtIndex(C, Index, AttributeSet::get(C, NewAttrs));
|
|
}
|
|
|
|
AttributeList AttributeList::addAttributeAtIndex(LLVMContext &C, unsigned Index,
|
|
StringRef Kind,
|
|
StringRef Value) const {
|
|
AttrBuilder B(C);
|
|
B.addAttribute(Kind, Value);
|
|
return addAttributesAtIndex(C, Index, B);
|
|
}
|
|
|
|
AttributeList AttributeList::addAttributeAtIndex(LLVMContext &C, unsigned Index,
|
|
Attribute A) const {
|
|
AttrBuilder B(C);
|
|
B.addAttribute(A);
|
|
return addAttributesAtIndex(C, Index, B);
|
|
}
|
|
|
|
AttributeList AttributeList::setAttributesAtIndex(LLVMContext &C,
|
|
unsigned Index,
|
|
AttributeSet Attrs) const {
|
|
Index = attrIdxToArrayIdx(Index);
|
|
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
|
|
if (Index >= AttrSets.size())
|
|
AttrSets.resize(Index + 1);
|
|
AttrSets[Index] = Attrs;
|
|
|
|
// Remove trailing empty attribute sets.
|
|
while (!AttrSets.empty() && !AttrSets.back().hasAttributes())
|
|
AttrSets.pop_back();
|
|
if (AttrSets.empty())
|
|
return {};
|
|
return AttributeList::getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList AttributeList::addAttributesAtIndex(LLVMContext &C,
|
|
unsigned Index,
|
|
const AttrBuilder &B) const {
|
|
if (!B.hasAttributes())
|
|
return *this;
|
|
|
|
if (!pImpl)
|
|
return AttributeList::get(C, {{Index, AttributeSet::get(C, B)}});
|
|
|
|
AttrBuilder Merged(C, getAttributes(Index));
|
|
Merged.merge(B);
|
|
return setAttributesAtIndex(C, Index, AttributeSet::get(C, Merged));
|
|
}
|
|
|
|
AttributeList AttributeList::addParamAttribute(LLVMContext &C,
|
|
ArrayRef<unsigned> ArgNos,
|
|
Attribute A) const {
|
|
assert(llvm::is_sorted(ArgNos));
|
|
|
|
SmallVector<AttributeSet, 4> AttrSets(this->begin(), this->end());
|
|
unsigned MaxIndex = attrIdxToArrayIdx(ArgNos.back() + FirstArgIndex);
|
|
if (MaxIndex >= AttrSets.size())
|
|
AttrSets.resize(MaxIndex + 1);
|
|
|
|
for (unsigned ArgNo : ArgNos) {
|
|
unsigned Index = attrIdxToArrayIdx(ArgNo + FirstArgIndex);
|
|
AttrBuilder B(C, AttrSets[Index]);
|
|
B.addAttribute(A);
|
|
AttrSets[Index] = AttributeSet::get(C, B);
|
|
}
|
|
|
|
return getImpl(C, AttrSets);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::removeAttributeAtIndex(LLVMContext &C, unsigned Index,
|
|
Attribute::AttrKind Kind) const {
|
|
AttributeSet Attrs = getAttributes(Index);
|
|
AttributeSet NewAttrs = Attrs.removeAttribute(C, Kind);
|
|
if (Attrs == NewAttrs)
|
|
return *this;
|
|
return setAttributesAtIndex(C, Index, NewAttrs);
|
|
}
|
|
|
|
AttributeList AttributeList::removeAttributeAtIndex(LLVMContext &C,
|
|
unsigned Index,
|
|
StringRef Kind) const {
|
|
AttributeSet Attrs = getAttributes(Index);
|
|
AttributeSet NewAttrs = Attrs.removeAttribute(C, Kind);
|
|
if (Attrs == NewAttrs)
|
|
return *this;
|
|
return setAttributesAtIndex(C, Index, NewAttrs);
|
|
}
|
|
|
|
AttributeList AttributeList::removeAttributesAtIndex(
|
|
LLVMContext &C, unsigned Index, const AttributeMask &AttrsToRemove) const {
|
|
AttributeSet Attrs = getAttributes(Index);
|
|
AttributeSet NewAttrs = Attrs.removeAttributes(C, AttrsToRemove);
|
|
// If nothing was removed, return the original list.
|
|
if (Attrs == NewAttrs)
|
|
return *this;
|
|
return setAttributesAtIndex(C, Index, NewAttrs);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::removeAttributesAtIndex(LLVMContext &C,
|
|
unsigned WithoutIndex) const {
|
|
if (!pImpl)
|
|
return {};
|
|
if (attrIdxToArrayIdx(WithoutIndex) >= getNumAttrSets())
|
|
return *this;
|
|
return setAttributesAtIndex(C, WithoutIndex, AttributeSet());
|
|
}
|
|
|
|
AttributeList AttributeList::addDereferenceableRetAttr(LLVMContext &C,
|
|
uint64_t Bytes) const {
|
|
AttrBuilder B(C);
|
|
B.addDereferenceableAttr(Bytes);
|
|
return addRetAttributes(C, B);
|
|
}
|
|
|
|
AttributeList AttributeList::addDereferenceableParamAttr(LLVMContext &C,
|
|
unsigned Index,
|
|
uint64_t Bytes) const {
|
|
AttrBuilder B(C);
|
|
B.addDereferenceableAttr(Bytes);
|
|
return addParamAttributes(C, Index, B);
|
|
}
|
|
|
|
AttributeList
|
|
AttributeList::addDereferenceableOrNullParamAttr(LLVMContext &C, unsigned Index,
|
|
uint64_t Bytes) const {
|
|
AttrBuilder B(C);
|
|
B.addDereferenceableOrNullAttr(Bytes);
|
|
return addParamAttributes(C, Index, B);
|
|
}
|
|
|
|
AttributeList AttributeList::addRangeRetAttr(LLVMContext &C,
|
|
const ConstantRange &CR) const {
|
|
AttrBuilder B(C);
|
|
B.addRangeAttr(CR);
|
|
return addRetAttributes(C, B);
|
|
}
|
|
|
|
AttributeList AttributeList::addAllocSizeParamAttr(
|
|
LLVMContext &C, unsigned Index, unsigned ElemSizeArg,
|
|
const std::optional<unsigned> &NumElemsArg) const {
|
|
AttrBuilder B(C);
|
|
B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
|
|
return addParamAttributes(C, Index, B);
|
|
}
|
|
|
|
std::optional<AttributeList>
|
|
AttributeList::intersectWith(LLVMContext &C, AttributeList Other) const {
|
|
// Trivial case, the two lists are equal.
|
|
if (*this == Other)
|
|
return *this;
|
|
|
|
SmallVector<std::pair<unsigned, AttributeSet>> IntersectedAttrs;
|
|
auto IndexIt =
|
|
index_iterator(std::max(getNumAttrSets(), Other.getNumAttrSets()));
|
|
for (unsigned Idx : IndexIt) {
|
|
auto IntersectedAS =
|
|
getAttributes(Idx).intersectWith(C, Other.getAttributes(Idx));
|
|
// If any index fails to intersect, fail.
|
|
if (!IntersectedAS)
|
|
return std::nullopt;
|
|
if (!IntersectedAS->hasAttributes())
|
|
continue;
|
|
IntersectedAttrs.push_back(std::make_pair(Idx, *IntersectedAS));
|
|
}
|
|
|
|
llvm::sort(IntersectedAttrs, llvm::less_first());
|
|
return AttributeList::get(C, IntersectedAttrs);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeList Accessor Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AttributeSet AttributeList::getParamAttrs(unsigned ArgNo) const {
|
|
return getAttributes(ArgNo + FirstArgIndex);
|
|
}
|
|
|
|
AttributeSet AttributeList::getRetAttrs() const {
|
|
return getAttributes(ReturnIndex);
|
|
}
|
|
|
|
AttributeSet AttributeList::getFnAttrs() const {
|
|
return getAttributes(FunctionIndex);
|
|
}
|
|
|
|
bool AttributeList::hasAttributeAtIndex(unsigned Index,
|
|
Attribute::AttrKind Kind) const {
|
|
return getAttributes(Index).hasAttribute(Kind);
|
|
}
|
|
|
|
bool AttributeList::hasAttributeAtIndex(unsigned Index, StringRef Kind) const {
|
|
return getAttributes(Index).hasAttribute(Kind);
|
|
}
|
|
|
|
bool AttributeList::hasAttributesAtIndex(unsigned Index) const {
|
|
return getAttributes(Index).hasAttributes();
|
|
}
|
|
|
|
bool AttributeList::hasFnAttr(Attribute::AttrKind Kind) const {
|
|
return pImpl && pImpl->hasFnAttribute(Kind);
|
|
}
|
|
|
|
bool AttributeList::hasFnAttr(StringRef Kind) const {
|
|
return hasAttributeAtIndex(AttributeList::FunctionIndex, Kind);
|
|
}
|
|
|
|
bool AttributeList::hasAttrSomewhere(Attribute::AttrKind Attr,
|
|
unsigned *Index) const {
|
|
return pImpl && pImpl->hasAttrSomewhere(Attr, Index);
|
|
}
|
|
|
|
Attribute AttributeList::getAttributeAtIndex(unsigned Index,
|
|
Attribute::AttrKind Kind) const {
|
|
return getAttributes(Index).getAttribute(Kind);
|
|
}
|
|
|
|
Attribute AttributeList::getAttributeAtIndex(unsigned Index,
|
|
StringRef Kind) const {
|
|
return getAttributes(Index).getAttribute(Kind);
|
|
}
|
|
|
|
MaybeAlign AttributeList::getRetAlignment() const {
|
|
return getAttributes(ReturnIndex).getAlignment();
|
|
}
|
|
|
|
MaybeAlign AttributeList::getParamAlignment(unsigned ArgNo) const {
|
|
return getAttributes(ArgNo + FirstArgIndex).getAlignment();
|
|
}
|
|
|
|
MaybeAlign AttributeList::getParamStackAlignment(unsigned ArgNo) const {
|
|
return getAttributes(ArgNo + FirstArgIndex).getStackAlignment();
|
|
}
|
|
|
|
Type *AttributeList::getParamByValType(unsigned Index) const {
|
|
return getAttributes(Index+FirstArgIndex).getByValType();
|
|
}
|
|
|
|
Type *AttributeList::getParamStructRetType(unsigned Index) const {
|
|
return getAttributes(Index + FirstArgIndex).getStructRetType();
|
|
}
|
|
|
|
Type *AttributeList::getParamByRefType(unsigned Index) const {
|
|
return getAttributes(Index + FirstArgIndex).getByRefType();
|
|
}
|
|
|
|
Type *AttributeList::getParamPreallocatedType(unsigned Index) const {
|
|
return getAttributes(Index + FirstArgIndex).getPreallocatedType();
|
|
}
|
|
|
|
Type *AttributeList::getParamInAllocaType(unsigned Index) const {
|
|
return getAttributes(Index + FirstArgIndex).getInAllocaType();
|
|
}
|
|
|
|
Type *AttributeList::getParamElementType(unsigned Index) const {
|
|
return getAttributes(Index + FirstArgIndex).getElementType();
|
|
}
|
|
|
|
MaybeAlign AttributeList::getFnStackAlignment() const {
|
|
return getFnAttrs().getStackAlignment();
|
|
}
|
|
|
|
MaybeAlign AttributeList::getRetStackAlignment() const {
|
|
return getRetAttrs().getStackAlignment();
|
|
}
|
|
|
|
uint64_t AttributeList::getRetDereferenceableBytes() const {
|
|
return getRetAttrs().getDereferenceableBytes();
|
|
}
|
|
|
|
uint64_t AttributeList::getParamDereferenceableBytes(unsigned Index) const {
|
|
return getParamAttrs(Index).getDereferenceableBytes();
|
|
}
|
|
|
|
uint64_t AttributeList::getRetDereferenceableOrNullBytes() const {
|
|
return getRetAttrs().getDereferenceableOrNullBytes();
|
|
}
|
|
|
|
uint64_t
|
|
AttributeList::getParamDereferenceableOrNullBytes(unsigned Index) const {
|
|
return getParamAttrs(Index).getDereferenceableOrNullBytes();
|
|
}
|
|
|
|
std::optional<ConstantRange>
|
|
AttributeList::getParamRange(unsigned ArgNo) const {
|
|
auto RangeAttr = getParamAttrs(ArgNo).getAttribute(Attribute::Range);
|
|
if (RangeAttr.isValid())
|
|
return RangeAttr.getRange();
|
|
return std::nullopt;
|
|
}
|
|
|
|
FPClassTest AttributeList::getRetNoFPClass() const {
|
|
return getRetAttrs().getNoFPClass();
|
|
}
|
|
|
|
FPClassTest AttributeList::getParamNoFPClass(unsigned Index) const {
|
|
return getParamAttrs(Index).getNoFPClass();
|
|
}
|
|
|
|
UWTableKind AttributeList::getUWTableKind() const {
|
|
return getFnAttrs().getUWTableKind();
|
|
}
|
|
|
|
AllocFnKind AttributeList::getAllocKind() const {
|
|
return getFnAttrs().getAllocKind();
|
|
}
|
|
|
|
MemoryEffects AttributeList::getMemoryEffects() const {
|
|
return getFnAttrs().getMemoryEffects();
|
|
}
|
|
|
|
std::string AttributeList::getAsString(unsigned Index, bool InAttrGrp) const {
|
|
return getAttributes(Index).getAsString(InAttrGrp);
|
|
}
|
|
|
|
AttributeSet AttributeList::getAttributes(unsigned Index) const {
|
|
Index = attrIdxToArrayIdx(Index);
|
|
if (!pImpl || Index >= getNumAttrSets())
|
|
return {};
|
|
return pImpl->begin()[Index];
|
|
}
|
|
|
|
bool AttributeList::hasParentContext(LLVMContext &C) const {
|
|
assert(!isEmpty() && "an empty attribute list has no parent context");
|
|
FoldingSetNodeID ID;
|
|
pImpl->Profile(ID);
|
|
void *Unused;
|
|
return C.pImpl->AttrsLists.FindNodeOrInsertPos(ID, Unused) == pImpl;
|
|
}
|
|
|
|
AttributeList::iterator AttributeList::begin() const {
|
|
return pImpl ? pImpl->begin() : nullptr;
|
|
}
|
|
|
|
AttributeList::iterator AttributeList::end() const {
|
|
return pImpl ? pImpl->end() : nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeList Introspection Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned AttributeList::getNumAttrSets() const {
|
|
return pImpl ? pImpl->NumAttrSets : 0;
|
|
}
|
|
|
|
void AttributeList::print(raw_ostream &O) const {
|
|
O << "AttributeList[\n";
|
|
|
|
for (unsigned i : indexes()) {
|
|
if (!getAttributes(i).hasAttributes())
|
|
continue;
|
|
O << " { ";
|
|
switch (i) {
|
|
case AttrIndex::ReturnIndex:
|
|
O << "return";
|
|
break;
|
|
case AttrIndex::FunctionIndex:
|
|
O << "function";
|
|
break;
|
|
default:
|
|
O << "arg(" << i - AttrIndex::FirstArgIndex << ")";
|
|
}
|
|
O << " => " << getAsString(i) << " }\n";
|
|
}
|
|
|
|
O << "]\n";
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void AttributeList::dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttrBuilder Method Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AttrBuilder::AttrBuilder(LLVMContext &Ctx, AttributeSet AS) : Ctx(Ctx) {
|
|
append_range(Attrs, AS);
|
|
assert(is_sorted(Attrs) && "AttributeSet should be sorted");
|
|
}
|
|
|
|
void AttrBuilder::clear() { Attrs.clear(); }
|
|
|
|
/// Attribute comparator that only compares attribute keys. Enum attributes are
|
|
/// sorted before string attributes.
|
|
struct AttributeComparator {
|
|
bool operator()(Attribute A0, Attribute A1) const {
|
|
bool A0IsString = A0.isStringAttribute();
|
|
bool A1IsString = A1.isStringAttribute();
|
|
if (A0IsString) {
|
|
if (A1IsString)
|
|
return A0.getKindAsString() < A1.getKindAsString();
|
|
else
|
|
return false;
|
|
}
|
|
if (A1IsString)
|
|
return true;
|
|
return A0.getKindAsEnum() < A1.getKindAsEnum();
|
|
}
|
|
bool operator()(Attribute A0, Attribute::AttrKind Kind) const {
|
|
if (A0.isStringAttribute())
|
|
return false;
|
|
return A0.getKindAsEnum() < Kind;
|
|
}
|
|
bool operator()(Attribute A0, StringRef Kind) const {
|
|
if (A0.isStringAttribute())
|
|
return A0.getKindAsString() < Kind;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <typename K>
|
|
static void addAttributeImpl(SmallVectorImpl<Attribute> &Attrs, K Kind,
|
|
Attribute Attr) {
|
|
auto It = lower_bound(Attrs, Kind, AttributeComparator());
|
|
if (It != Attrs.end() && It->hasAttribute(Kind))
|
|
std::swap(*It, Attr);
|
|
else
|
|
Attrs.insert(It, Attr);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAttribute(Attribute Attr) {
|
|
if (Attr.isStringAttribute())
|
|
addAttributeImpl(Attrs, Attr.getKindAsString(), Attr);
|
|
else
|
|
addAttributeImpl(Attrs, Attr.getKindAsEnum(), Attr);
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Kind) {
|
|
addAttributeImpl(Attrs, Kind, Attribute::get(Ctx, Kind));
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAttribute(StringRef A, StringRef V) {
|
|
addAttributeImpl(Attrs, A, Attribute::get(Ctx, A, V));
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) {
|
|
assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!");
|
|
auto It = lower_bound(Attrs, Val, AttributeComparator());
|
|
if (It != Attrs.end() && It->hasAttribute(Val))
|
|
Attrs.erase(It);
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::removeAttribute(StringRef A) {
|
|
auto It = lower_bound(Attrs, A, AttributeComparator());
|
|
if (It != Attrs.end() && It->hasAttribute(A))
|
|
Attrs.erase(It);
|
|
return *this;
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
AttrBuilder::getRawIntAttr(Attribute::AttrKind Kind) const {
|
|
assert(Attribute::isIntAttrKind(Kind) && "Not an int attribute");
|
|
Attribute A = getAttribute(Kind);
|
|
if (A.isValid())
|
|
return A.getValueAsInt();
|
|
return std::nullopt;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addRawIntAttr(Attribute::AttrKind Kind,
|
|
uint64_t Value) {
|
|
return addAttribute(Attribute::get(Ctx, Kind, Value));
|
|
}
|
|
|
|
std::optional<std::pair<unsigned, std::optional<unsigned>>>
|
|
AttrBuilder::getAllocSizeArgs() const {
|
|
Attribute A = getAttribute(Attribute::AllocSize);
|
|
if (A.isValid())
|
|
return A.getAllocSizeArgs();
|
|
return std::nullopt;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAlignmentAttr(MaybeAlign Align) {
|
|
if (!Align)
|
|
return *this;
|
|
|
|
assert(*Align <= llvm::Value::MaximumAlignment && "Alignment too large.");
|
|
return addRawIntAttr(Attribute::Alignment, Align->value());
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addStackAlignmentAttr(MaybeAlign Align) {
|
|
// Default alignment, allow the target to define how to align it.
|
|
if (!Align)
|
|
return *this;
|
|
|
|
assert(*Align <= 0x100 && "Alignment too large.");
|
|
return addRawIntAttr(Attribute::StackAlignment, Align->value());
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addDereferenceableAttr(uint64_t Bytes) {
|
|
if (Bytes == 0) return *this;
|
|
|
|
return addRawIntAttr(Attribute::Dereferenceable, Bytes);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addDereferenceableOrNullAttr(uint64_t Bytes) {
|
|
if (Bytes == 0)
|
|
return *this;
|
|
|
|
return addRawIntAttr(Attribute::DereferenceableOrNull, Bytes);
|
|
}
|
|
|
|
AttrBuilder &
|
|
AttrBuilder::addAllocSizeAttr(unsigned ElemSize,
|
|
const std::optional<unsigned> &NumElems) {
|
|
return addAllocSizeAttrFromRawRepr(packAllocSizeArgs(ElemSize, NumElems));
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAllocSizeAttrFromRawRepr(uint64_t RawArgs) {
|
|
// (0, 0) is our "not present" value, so we need to check for it here.
|
|
assert(RawArgs && "Invalid allocsize arguments -- given allocsize(0, 0)");
|
|
return addRawIntAttr(Attribute::AllocSize, RawArgs);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addVScaleRangeAttr(unsigned MinValue,
|
|
std::optional<unsigned> MaxValue) {
|
|
return addVScaleRangeAttrFromRawRepr(packVScaleRangeArgs(MinValue, MaxValue));
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addVScaleRangeAttrFromRawRepr(uint64_t RawArgs) {
|
|
// (0, 0) is not present hence ignore this case
|
|
if (RawArgs == 0)
|
|
return *this;
|
|
|
|
return addRawIntAttr(Attribute::VScaleRange, RawArgs);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addUWTableAttr(UWTableKind Kind) {
|
|
if (Kind == UWTableKind::None)
|
|
return *this;
|
|
return addRawIntAttr(Attribute::UWTable, uint64_t(Kind));
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addMemoryAttr(MemoryEffects ME) {
|
|
return addRawIntAttr(Attribute::Memory, ME.toIntValue());
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addCapturesAttr(CaptureInfo CI) {
|
|
return addRawIntAttr(Attribute::Captures, CI.toIntValue());
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addNoFPClassAttr(FPClassTest Mask) {
|
|
if (Mask == fcNone)
|
|
return *this;
|
|
|
|
return addRawIntAttr(Attribute::NoFPClass, Mask);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addAllocKindAttr(AllocFnKind Kind) {
|
|
return addRawIntAttr(Attribute::AllocKind, static_cast<uint64_t>(Kind));
|
|
}
|
|
|
|
Type *AttrBuilder::getTypeAttr(Attribute::AttrKind Kind) const {
|
|
assert(Attribute::isTypeAttrKind(Kind) && "Not a type attribute");
|
|
Attribute A = getAttribute(Kind);
|
|
return A.isValid() ? A.getValueAsType() : nullptr;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addTypeAttr(Attribute::AttrKind Kind, Type *Ty) {
|
|
return addAttribute(Attribute::get(Ctx, Kind, Ty));
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addByValAttr(Type *Ty) {
|
|
return addTypeAttr(Attribute::ByVal, Ty);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addStructRetAttr(Type *Ty) {
|
|
return addTypeAttr(Attribute::StructRet, Ty);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addByRefAttr(Type *Ty) {
|
|
return addTypeAttr(Attribute::ByRef, Ty);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addPreallocatedAttr(Type *Ty) {
|
|
return addTypeAttr(Attribute::Preallocated, Ty);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addInAllocaAttr(Type *Ty) {
|
|
return addTypeAttr(Attribute::InAlloca, Ty);
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addConstantRangeAttr(Attribute::AttrKind Kind,
|
|
const ConstantRange &CR) {
|
|
if (CR.isFullSet())
|
|
return *this;
|
|
|
|
return addAttribute(Attribute::get(Ctx, Kind, CR));
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addRangeAttr(const ConstantRange &CR) {
|
|
return addConstantRangeAttr(Attribute::Range, CR);
|
|
}
|
|
|
|
AttrBuilder &
|
|
AttrBuilder::addConstantRangeListAttr(Attribute::AttrKind Kind,
|
|
ArrayRef<ConstantRange> Val) {
|
|
return addAttribute(Attribute::get(Ctx, Kind, Val));
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addInitializesAttr(const ConstantRangeList &CRL) {
|
|
return addConstantRangeListAttr(Attribute::Initializes, CRL.rangesRef());
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::addFromEquivalentMetadata(const Instruction &I) {
|
|
if (I.hasMetadata(LLVMContext::MD_nonnull))
|
|
addAttribute(Attribute::NonNull);
|
|
|
|
if (I.hasMetadata(LLVMContext::MD_noundef))
|
|
addAttribute(Attribute::NoUndef);
|
|
|
|
if (const MDNode *Align = I.getMetadata(LLVMContext::MD_align)) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(Align->getOperand(0));
|
|
addAlignmentAttr(CI->getZExtValue());
|
|
}
|
|
|
|
if (const MDNode *Dereferenceable =
|
|
I.getMetadata(LLVMContext::MD_dereferenceable)) {
|
|
ConstantInt *CI =
|
|
mdconst::extract<ConstantInt>(Dereferenceable->getOperand(0));
|
|
addDereferenceableAttr(CI->getZExtValue());
|
|
}
|
|
|
|
if (const MDNode *DereferenceableOrNull =
|
|
I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
|
|
ConstantInt *CI =
|
|
mdconst::extract<ConstantInt>(DereferenceableOrNull->getOperand(0));
|
|
addDereferenceableAttr(CI->getZExtValue());
|
|
}
|
|
|
|
if (const MDNode *Range = I.getMetadata(LLVMContext::MD_range))
|
|
addRangeAttr(getConstantRangeFromMetadata(*Range));
|
|
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::merge(const AttrBuilder &B) {
|
|
// TODO: Could make this O(n) as we're merging two sorted lists.
|
|
for (const auto &I : B.attrs())
|
|
addAttribute(I);
|
|
|
|
return *this;
|
|
}
|
|
|
|
AttrBuilder &AttrBuilder::remove(const AttributeMask &AM) {
|
|
erase_if(Attrs, [&](Attribute A) { return AM.contains(A); });
|
|
return *this;
|
|
}
|
|
|
|
bool AttrBuilder::overlaps(const AttributeMask &AM) const {
|
|
return any_of(Attrs, [&](Attribute A) { return AM.contains(A); });
|
|
}
|
|
|
|
Attribute AttrBuilder::getAttribute(Attribute::AttrKind A) const {
|
|
assert((unsigned)A < Attribute::EndAttrKinds && "Attribute out of range!");
|
|
auto It = lower_bound(Attrs, A, AttributeComparator());
|
|
if (It != Attrs.end() && It->hasAttribute(A))
|
|
return *It;
|
|
return {};
|
|
}
|
|
|
|
Attribute AttrBuilder::getAttribute(StringRef A) const {
|
|
auto It = lower_bound(Attrs, A, AttributeComparator());
|
|
if (It != Attrs.end() && It->hasAttribute(A))
|
|
return *It;
|
|
return {};
|
|
}
|
|
|
|
std::optional<ConstantRange> AttrBuilder::getRange() const {
|
|
const Attribute RangeAttr = getAttribute(Attribute::Range);
|
|
if (RangeAttr.isValid())
|
|
return RangeAttr.getRange();
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool AttrBuilder::contains(Attribute::AttrKind A) const {
|
|
return getAttribute(A).isValid();
|
|
}
|
|
|
|
bool AttrBuilder::contains(StringRef A) const {
|
|
return getAttribute(A).isValid();
|
|
}
|
|
|
|
bool AttrBuilder::operator==(const AttrBuilder &B) const {
|
|
return Attrs == B.Attrs;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeFuncs Function Defintions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if this is a type legal for the 'nofpclass' attribute. This
|
|
/// follows the same type rules as FPMathOperator.
|
|
bool AttributeFuncs::isNoFPClassCompatibleType(Type *Ty) {
|
|
return FPMathOperator::isSupportedFloatingPointType(Ty);
|
|
}
|
|
|
|
/// Which attributes cannot be applied to a type.
|
|
AttributeMask AttributeFuncs::typeIncompatible(Type *Ty, AttributeSet AS,
|
|
AttributeSafetyKind ASK) {
|
|
AttributeMask Incompatible;
|
|
|
|
if (!Ty->isIntegerTy()) {
|
|
// Attributes that only apply to integers.
|
|
if (ASK & ASK_SAFE_TO_DROP)
|
|
Incompatible.addAttribute(Attribute::AllocAlign);
|
|
if (ASK & ASK_UNSAFE_TO_DROP)
|
|
Incompatible.addAttribute(Attribute::SExt).addAttribute(Attribute::ZExt);
|
|
}
|
|
|
|
if (!Ty->isIntOrIntVectorTy()) {
|
|
// Attributes that only apply to integers or vector of integers.
|
|
if (ASK & ASK_SAFE_TO_DROP)
|
|
Incompatible.addAttribute(Attribute::Range);
|
|
} else {
|
|
Attribute RangeAttr = AS.getAttribute(Attribute::Range);
|
|
if (RangeAttr.isValid() &&
|
|
RangeAttr.getRange().getBitWidth() != Ty->getScalarSizeInBits())
|
|
Incompatible.addAttribute(Attribute::Range);
|
|
}
|
|
|
|
if (!Ty->isPointerTy()) {
|
|
// Attributes that only apply to pointers.
|
|
if (ASK & ASK_SAFE_TO_DROP)
|
|
Incompatible.addAttribute(Attribute::NoAlias)
|
|
.addAttribute(Attribute::NonNull)
|
|
.addAttribute(Attribute::ReadNone)
|
|
.addAttribute(Attribute::ReadOnly)
|
|
.addAttribute(Attribute::Dereferenceable)
|
|
.addAttribute(Attribute::DereferenceableOrNull)
|
|
.addAttribute(Attribute::Writable)
|
|
.addAttribute(Attribute::DeadOnUnwind)
|
|
.addAttribute(Attribute::Initializes)
|
|
.addAttribute(Attribute::Captures);
|
|
if (ASK & ASK_UNSAFE_TO_DROP)
|
|
Incompatible.addAttribute(Attribute::Nest)
|
|
.addAttribute(Attribute::SwiftError)
|
|
.addAttribute(Attribute::Preallocated)
|
|
.addAttribute(Attribute::InAlloca)
|
|
.addAttribute(Attribute::ByVal)
|
|
.addAttribute(Attribute::StructRet)
|
|
.addAttribute(Attribute::ByRef)
|
|
.addAttribute(Attribute::ElementType)
|
|
.addAttribute(Attribute::AllocatedPointer);
|
|
}
|
|
|
|
// Attributes that only apply to pointers or vectors of pointers.
|
|
if (!Ty->isPtrOrPtrVectorTy()) {
|
|
if (ASK & ASK_SAFE_TO_DROP)
|
|
Incompatible.addAttribute(Attribute::Alignment);
|
|
}
|
|
|
|
if (ASK & ASK_SAFE_TO_DROP) {
|
|
if (!isNoFPClassCompatibleType(Ty))
|
|
Incompatible.addAttribute(Attribute::NoFPClass);
|
|
}
|
|
|
|
// Some attributes can apply to all "values" but there are no `void` values.
|
|
if (Ty->isVoidTy()) {
|
|
if (ASK & ASK_SAFE_TO_DROP)
|
|
Incompatible.addAttribute(Attribute::NoUndef);
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
AttributeMask AttributeFuncs::getUBImplyingAttributes() {
|
|
AttributeMask AM;
|
|
AM.addAttribute(Attribute::NoUndef);
|
|
AM.addAttribute(Attribute::Dereferenceable);
|
|
AM.addAttribute(Attribute::DereferenceableOrNull);
|
|
return AM;
|
|
}
|
|
|
|
/// Callees with dynamic denormal modes are compatible with any caller mode.
|
|
static bool denormModeCompatible(DenormalMode CallerMode,
|
|
DenormalMode CalleeMode) {
|
|
if (CallerMode == CalleeMode || CalleeMode == DenormalMode::getDynamic())
|
|
return true;
|
|
|
|
// If they don't exactly match, it's OK if the mismatched component is
|
|
// dynamic.
|
|
if (CalleeMode.Input == CallerMode.Input &&
|
|
CalleeMode.Output == DenormalMode::Dynamic)
|
|
return true;
|
|
|
|
if (CalleeMode.Output == CallerMode.Output &&
|
|
CalleeMode.Input == DenormalMode::Dynamic)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool checkDenormMode(const Function &Caller, const Function &Callee) {
|
|
DenormalMode CallerMode = Caller.getDenormalModeRaw();
|
|
DenormalMode CalleeMode = Callee.getDenormalModeRaw();
|
|
|
|
if (denormModeCompatible(CallerMode, CalleeMode)) {
|
|
DenormalMode CallerModeF32 = Caller.getDenormalModeF32Raw();
|
|
DenormalMode CalleeModeF32 = Callee.getDenormalModeF32Raw();
|
|
if (CallerModeF32 == DenormalMode::getInvalid())
|
|
CallerModeF32 = CallerMode;
|
|
if (CalleeModeF32 == DenormalMode::getInvalid())
|
|
CalleeModeF32 = CalleeMode;
|
|
return denormModeCompatible(CallerModeF32, CalleeModeF32);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool checkStrictFP(const Function &Caller, const Function &Callee) {
|
|
// Do not inline strictfp function into non-strictfp one. It would require
|
|
// conversion of all FP operations in host function to constrained intrinsics.
|
|
return !Callee.getAttributes().hasFnAttr(Attribute::StrictFP) ||
|
|
Caller.getAttributes().hasFnAttr(Attribute::StrictFP);
|
|
}
|
|
|
|
template<typename AttrClass>
|
|
static bool isEqual(const Function &Caller, const Function &Callee) {
|
|
return Caller.getFnAttribute(AttrClass::getKind()) ==
|
|
Callee.getFnAttribute(AttrClass::getKind());
|
|
}
|
|
|
|
static bool isEqual(const Function &Caller, const Function &Callee,
|
|
const StringRef &AttrName) {
|
|
return Caller.getFnAttribute(AttrName) == Callee.getFnAttribute(AttrName);
|
|
}
|
|
|
|
/// Compute the logical AND of the attributes of the caller and the
|
|
/// callee.
|
|
///
|
|
/// This function sets the caller's attribute to false if the callee's attribute
|
|
/// is false.
|
|
template<typename AttrClass>
|
|
static void setAND(Function &Caller, const Function &Callee) {
|
|
if (AttrClass::isSet(Caller, AttrClass::getKind()) &&
|
|
!AttrClass::isSet(Callee, AttrClass::getKind()))
|
|
AttrClass::set(Caller, AttrClass::getKind(), false);
|
|
}
|
|
|
|
/// Compute the logical OR of the attributes of the caller and the
|
|
/// callee.
|
|
///
|
|
/// This function sets the caller's attribute to true if the callee's attribute
|
|
/// is true.
|
|
template<typename AttrClass>
|
|
static void setOR(Function &Caller, const Function &Callee) {
|
|
if (!AttrClass::isSet(Caller, AttrClass::getKind()) &&
|
|
AttrClass::isSet(Callee, AttrClass::getKind()))
|
|
AttrClass::set(Caller, AttrClass::getKind(), true);
|
|
}
|
|
|
|
/// If the inlined function had a higher stack protection level than the
|
|
/// calling function, then bump up the caller's stack protection level.
|
|
static void adjustCallerSSPLevel(Function &Caller, const Function &Callee) {
|
|
// If the calling function has *no* stack protection level (e.g. it was built
|
|
// with Clang's -fno-stack-protector or no_stack_protector attribute), don't
|
|
// change it as that could change the program's semantics.
|
|
if (!Caller.hasStackProtectorFnAttr())
|
|
return;
|
|
|
|
// If upgrading the SSP attribute, clear out the old SSP Attributes first.
|
|
// Having multiple SSP attributes doesn't actually hurt, but it adds useless
|
|
// clutter to the IR.
|
|
AttributeMask OldSSPAttr;
|
|
OldSSPAttr.addAttribute(Attribute::StackProtect)
|
|
.addAttribute(Attribute::StackProtectStrong)
|
|
.addAttribute(Attribute::StackProtectReq);
|
|
|
|
if (Callee.hasFnAttribute(Attribute::StackProtectReq)) {
|
|
Caller.removeFnAttrs(OldSSPAttr);
|
|
Caller.addFnAttr(Attribute::StackProtectReq);
|
|
} else if (Callee.hasFnAttribute(Attribute::StackProtectStrong) &&
|
|
!Caller.hasFnAttribute(Attribute::StackProtectReq)) {
|
|
Caller.removeFnAttrs(OldSSPAttr);
|
|
Caller.addFnAttr(Attribute::StackProtectStrong);
|
|
} else if (Callee.hasFnAttribute(Attribute::StackProtect) &&
|
|
!Caller.hasFnAttribute(Attribute::StackProtectReq) &&
|
|
!Caller.hasFnAttribute(Attribute::StackProtectStrong))
|
|
Caller.addFnAttr(Attribute::StackProtect);
|
|
}
|
|
|
|
/// If the inlined function required stack probes, then ensure that
|
|
/// the calling function has those too.
|
|
static void adjustCallerStackProbes(Function &Caller, const Function &Callee) {
|
|
if (!Caller.hasFnAttribute("probe-stack") &&
|
|
Callee.hasFnAttribute("probe-stack")) {
|
|
Caller.addFnAttr(Callee.getFnAttribute("probe-stack"));
|
|
}
|
|
}
|
|
|
|
/// If the inlined function defines the size of guard region
|
|
/// on the stack, then ensure that the calling function defines a guard region
|
|
/// that is no larger.
|
|
static void
|
|
adjustCallerStackProbeSize(Function &Caller, const Function &Callee) {
|
|
Attribute CalleeAttr = Callee.getFnAttribute("stack-probe-size");
|
|
if (CalleeAttr.isValid()) {
|
|
Attribute CallerAttr = Caller.getFnAttribute("stack-probe-size");
|
|
if (CallerAttr.isValid()) {
|
|
uint64_t CallerStackProbeSize, CalleeStackProbeSize;
|
|
CallerAttr.getValueAsString().getAsInteger(0, CallerStackProbeSize);
|
|
CalleeAttr.getValueAsString().getAsInteger(0, CalleeStackProbeSize);
|
|
|
|
if (CallerStackProbeSize > CalleeStackProbeSize) {
|
|
Caller.addFnAttr(CalleeAttr);
|
|
}
|
|
} else {
|
|
Caller.addFnAttr(CalleeAttr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If the inlined function defines a min legal vector width, then ensure
|
|
/// the calling function has the same or larger min legal vector width. If the
|
|
/// caller has the attribute, but the callee doesn't, we need to remove the
|
|
/// attribute from the caller since we can't make any guarantees about the
|
|
/// caller's requirements.
|
|
/// This function is called after the inlining decision has been made so we have
|
|
/// to merge the attribute this way. Heuristics that would use
|
|
/// min-legal-vector-width to determine inline compatibility would need to be
|
|
/// handled as part of inline cost analysis.
|
|
static void
|
|
adjustMinLegalVectorWidth(Function &Caller, const Function &Callee) {
|
|
Attribute CallerAttr = Caller.getFnAttribute("min-legal-vector-width");
|
|
if (CallerAttr.isValid()) {
|
|
Attribute CalleeAttr = Callee.getFnAttribute("min-legal-vector-width");
|
|
if (CalleeAttr.isValid()) {
|
|
uint64_t CallerVectorWidth, CalleeVectorWidth;
|
|
CallerAttr.getValueAsString().getAsInteger(0, CallerVectorWidth);
|
|
CalleeAttr.getValueAsString().getAsInteger(0, CalleeVectorWidth);
|
|
if (CallerVectorWidth < CalleeVectorWidth)
|
|
Caller.addFnAttr(CalleeAttr);
|
|
} else {
|
|
// If the callee doesn't have the attribute then we don't know anything
|
|
// and must drop the attribute from the caller.
|
|
Caller.removeFnAttr("min-legal-vector-width");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If the inlined function has null_pointer_is_valid attribute,
|
|
/// set this attribute in the caller post inlining.
|
|
static void
|
|
adjustNullPointerValidAttr(Function &Caller, const Function &Callee) {
|
|
if (Callee.nullPointerIsDefined() && !Caller.nullPointerIsDefined()) {
|
|
Caller.addFnAttr(Attribute::NullPointerIsValid);
|
|
}
|
|
}
|
|
|
|
struct EnumAttr {
|
|
static bool isSet(const Function &Fn,
|
|
Attribute::AttrKind Kind) {
|
|
return Fn.hasFnAttribute(Kind);
|
|
}
|
|
|
|
static void set(Function &Fn,
|
|
Attribute::AttrKind Kind, bool Val) {
|
|
if (Val)
|
|
Fn.addFnAttr(Kind);
|
|
else
|
|
Fn.removeFnAttr(Kind);
|
|
}
|
|
};
|
|
|
|
struct StrBoolAttr {
|
|
static bool isSet(const Function &Fn,
|
|
StringRef Kind) {
|
|
auto A = Fn.getFnAttribute(Kind);
|
|
return A.getValueAsString() == "true";
|
|
}
|
|
|
|
static void set(Function &Fn,
|
|
StringRef Kind, bool Val) {
|
|
Fn.addFnAttr(Kind, Val ? "true" : "false");
|
|
}
|
|
};
|
|
|
|
#define GET_ATTR_NAMES
|
|
#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
|
|
struct ENUM_NAME##Attr : EnumAttr { \
|
|
static enum Attribute::AttrKind getKind() { \
|
|
return llvm::Attribute::ENUM_NAME; \
|
|
} \
|
|
};
|
|
#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
|
|
struct ENUM_NAME##Attr : StrBoolAttr { \
|
|
static StringRef getKind() { return #DISPLAY_NAME; } \
|
|
};
|
|
#include "llvm/IR/Attributes.inc"
|
|
|
|
#define GET_ATTR_COMPAT_FUNC
|
|
#include "llvm/IR/Attributes.inc"
|
|
|
|
bool AttributeFuncs::areInlineCompatible(const Function &Caller,
|
|
const Function &Callee) {
|
|
return hasCompatibleFnAttrs(Caller, Callee);
|
|
}
|
|
|
|
bool AttributeFuncs::areOutlineCompatible(const Function &A,
|
|
const Function &B) {
|
|
return hasCompatibleFnAttrs(A, B);
|
|
}
|
|
|
|
void AttributeFuncs::mergeAttributesForInlining(Function &Caller,
|
|
const Function &Callee) {
|
|
mergeFnAttrs(Caller, Callee);
|
|
}
|
|
|
|
void AttributeFuncs::mergeAttributesForOutlining(Function &Base,
|
|
const Function &ToMerge) {
|
|
|
|
// We merge functions so that they meet the most general case.
|
|
// For example, if the NoNansFPMathAttr is set in one function, but not in
|
|
// the other, in the merged function we can say that the NoNansFPMathAttr
|
|
// is not set.
|
|
// However if we have the SpeculativeLoadHardeningAttr set true in one
|
|
// function, but not the other, we make sure that the function retains
|
|
// that aspect in the merged function.
|
|
mergeFnAttrs(Base, ToMerge);
|
|
}
|
|
|
|
void AttributeFuncs::updateMinLegalVectorWidthAttr(Function &Fn,
|
|
uint64_t Width) {
|
|
Attribute Attr = Fn.getFnAttribute("min-legal-vector-width");
|
|
if (Attr.isValid()) {
|
|
uint64_t OldWidth;
|
|
Attr.getValueAsString().getAsInteger(0, OldWidth);
|
|
if (Width > OldWidth)
|
|
Fn.addFnAttr("min-legal-vector-width", llvm::utostr(Width));
|
|
}
|
|
}
|