llvm-project/llvm/lib/IR/StructuralHash.cpp
Kyungwoo Lee 4f41862c5a Reapply "[StructuralHash] Global Variable (#118412)"
This reverts commit 6a0d6fc2e92bcfb7cb01a4c6cdd751a9b4b4c159.
2024-12-03 21:33:03 -08:00

353 lines
12 KiB
C++

//===-- StructuralHash.cpp - IR Hashing -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/StructuralHash.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
using namespace llvm;
namespace {
// Basic hashing mechanism to detect structural change to the IR, used to verify
// pass return status consistency with actual change. In addition to being used
// by the MergeFunctions pass.
class StructuralHashImpl {
stable_hash Hash = 4;
bool DetailedHash;
// This random value acts as a block header, as otherwise the partition of
// opcodes into BBs wouldn't affect the hash, only the order of the opcodes.
static constexpr stable_hash BlockHeaderHash = 45798;
static constexpr stable_hash FunctionHeaderHash = 0x62642d6b6b2d6b72;
static constexpr stable_hash GlobalHeaderHash = 23456;
/// IgnoreOp is a function that returns true if the operand should be ignored.
IgnoreOperandFunc IgnoreOp = nullptr;
/// A mapping from instruction indices to instruction pointers.
/// The index represents the position of an instruction based on the order in
/// which it is first encountered.
std::unique_ptr<IndexInstrMap> IndexInstruction = nullptr;
/// A mapping from pairs of instruction indices and operand indices
/// to the hashes of the operands.
std::unique_ptr<IndexOperandHashMapType> IndexOperandHashMap = nullptr;
/// Assign a unique ID to each Value in the order they are first seen.
DenseMap<const Value *, int> ValueToId;
static stable_hash hashType(Type *ValueType) {
SmallVector<stable_hash> Hashes;
Hashes.emplace_back(ValueType->getTypeID());
if (ValueType->isIntegerTy())
Hashes.emplace_back(ValueType->getIntegerBitWidth());
return stable_hash_combine(Hashes);
}
public:
StructuralHashImpl() = delete;
explicit StructuralHashImpl(bool DetailedHash,
IgnoreOperandFunc IgnoreOp = nullptr)
: DetailedHash(DetailedHash), IgnoreOp(IgnoreOp) {
if (IgnoreOp) {
IndexInstruction = std::make_unique<IndexInstrMap>();
IndexOperandHashMap = std::make_unique<IndexOperandHashMapType>();
}
}
static stable_hash hashAPInt(const APInt &I) {
SmallVector<stable_hash> Hashes;
Hashes.emplace_back(I.getBitWidth());
auto RawVals = ArrayRef<uint64_t>(I.getRawData(), I.getNumWords());
Hashes.append(RawVals.begin(), RawVals.end());
return stable_hash_combine(Hashes);
}
static stable_hash hashAPFloat(const APFloat &F) {
return hashAPInt(F.bitcastToAPInt());
}
static stable_hash hashGlobalVariable(const GlobalVariable &GVar) {
if (!GVar.hasInitializer())
return hashGlobalValue(&GVar);
// Hash the contents of a string.
if (GVar.getName().starts_with(".str")) {
auto *C = GVar.getInitializer();
if (const auto *Seq = dyn_cast<ConstantDataSequential>(C))
if (Seq->isString())
return stable_hash_name(Seq->getAsString());
}
// Hash structural contents of Objective-C metadata in specific sections.
// This can be extended to other metadata if needed.
static constexpr const char *SectionNames[] = {
"__cfstring", "__cstring", "__objc_classrefs",
"__objc_methname", "__objc_selrefs",
};
if (GVar.hasSection()) {
StringRef SectionName = GVar.getSection();
for (const char *Name : SectionNames)
if (SectionName.contains(Name))
return hashConstant(GVar.getInitializer());
}
return hashGlobalValue(&GVar);
}
static stable_hash hashGlobalValue(const GlobalValue *GV) {
if (!GV->hasName())
return 0;
return stable_hash_name(GV->getName());
}
// Compute a hash for a Constant. This function is logically similar to
// FunctionComparator::cmpConstants() in FunctionComparator.cpp, but here
// we're interested in computing a hash rather than comparing two Constants.
// Some of the logic is simplified, e.g, we don't expand GEPOperator.
static stable_hash hashConstant(const Constant *C) {
SmallVector<stable_hash> Hashes;
Type *Ty = C->getType();
Hashes.emplace_back(hashType(Ty));
if (C->isNullValue()) {
Hashes.emplace_back(static_cast<stable_hash>('N'));
return stable_hash_combine(Hashes);
}
if (auto *GVar = dyn_cast<GlobalVariable>(C)) {
Hashes.emplace_back(hashGlobalVariable(*GVar));
return stable_hash_combine(Hashes);
}
if (auto *G = dyn_cast<GlobalValue>(C)) {
Hashes.emplace_back(hashGlobalValue(G));
return stable_hash_combine(Hashes);
}
if (const auto *Seq = dyn_cast<ConstantDataSequential>(C)) {
if (Seq->isString()) {
Hashes.emplace_back(stable_hash_name(Seq->getAsString()));
return stable_hash_combine(Hashes);
}
}
switch (C->getValueID()) {
case Value::ConstantIntVal: {
const APInt &Int = cast<ConstantInt>(C)->getValue();
Hashes.emplace_back(hashAPInt(Int));
return stable_hash_combine(Hashes);
}
case Value::ConstantFPVal: {
const APFloat &APF = cast<ConstantFP>(C)->getValueAPF();
Hashes.emplace_back(hashAPFloat(APF));
return stable_hash_combine(Hashes);
}
case Value::ConstantArrayVal:
case Value::ConstantStructVal:
case Value::ConstantVectorVal:
case Value::ConstantExprVal: {
for (const auto &Op : C->operands()) {
auto H = hashConstant(cast<Constant>(Op));
Hashes.emplace_back(H);
}
return stable_hash_combine(Hashes);
}
case Value::BlockAddressVal: {
const BlockAddress *BA = cast<BlockAddress>(C);
auto H = hashGlobalValue(BA->getFunction());
Hashes.emplace_back(H);
return stable_hash_combine(Hashes);
}
case Value::DSOLocalEquivalentVal: {
const auto *Equiv = cast<DSOLocalEquivalent>(C);
auto H = hashGlobalValue(Equiv->getGlobalValue());
Hashes.emplace_back(H);
return stable_hash_combine(Hashes);
}
default:
// Skip other types of constants for simplicity.
return stable_hash_combine(Hashes);
}
}
stable_hash hashValue(Value *V) {
// Check constant and return its hash.
Constant *C = dyn_cast<Constant>(V);
if (C)
return hashConstant(C);
// Hash argument number.
SmallVector<stable_hash> Hashes;
if (Argument *Arg = dyn_cast<Argument>(V))
Hashes.emplace_back(Arg->getArgNo());
// Get an index (an insertion order) for the non-constant value.
auto [It, WasInserted] = ValueToId.try_emplace(V, ValueToId.size());
Hashes.emplace_back(It->second);
return stable_hash_combine(Hashes);
}
stable_hash hashOperand(Value *Operand) {
SmallVector<stable_hash> Hashes;
Hashes.emplace_back(hashType(Operand->getType()));
Hashes.emplace_back(hashValue(Operand));
return stable_hash_combine(Hashes);
}
stable_hash hashInstruction(const Instruction &Inst) {
SmallVector<stable_hash> Hashes;
Hashes.emplace_back(Inst.getOpcode());
if (!DetailedHash)
return stable_hash_combine(Hashes);
Hashes.emplace_back(hashType(Inst.getType()));
// Handle additional properties of specific instructions that cause
// semantic differences in the IR.
if (const auto *ComparisonInstruction = dyn_cast<CmpInst>(&Inst))
Hashes.emplace_back(ComparisonInstruction->getPredicate());
unsigned InstIdx = 0;
if (IndexInstruction) {
InstIdx = IndexInstruction->size();
IndexInstruction->try_emplace(InstIdx, const_cast<Instruction *>(&Inst));
}
for (const auto [OpndIdx, Op] : enumerate(Inst.operands())) {
auto OpndHash = hashOperand(Op);
if (IgnoreOp && IgnoreOp(&Inst, OpndIdx)) {
assert(IndexOperandHashMap);
IndexOperandHashMap->try_emplace({InstIdx, OpndIdx}, OpndHash);
} else
Hashes.emplace_back(OpndHash);
}
return stable_hash_combine(Hashes);
}
// A function hash is calculated by considering only the number of arguments
// and whether a function is varargs, the order of basic blocks (given by the
// successors of each basic block in depth first order), and the order of
// opcodes of each instruction within each of these basic blocks. This mirrors
// the strategy FunctionComparator::compare() uses to compare functions by
// walking the BBs in depth first order and comparing each instruction in
// sequence. Because this hash currently does not look at the operands, it is
// insensitive to things such as the target of calls and the constants used in
// the function, which makes it useful when possibly merging functions which
// are the same modulo constants and call targets.
//
// Note that different users of StructuralHash will want different behavior
// out of it (i.e., MergeFunctions will want something different from PM
// expensive checks for pass modification status). When modifying this
// function, most changes should be gated behind an option and enabled
// selectively.
void update(const Function &F) {
// Declarations don't affect analyses.
if (F.isDeclaration())
return;
SmallVector<stable_hash> Hashes;
Hashes.emplace_back(Hash);
Hashes.emplace_back(FunctionHeaderHash);
Hashes.emplace_back(F.isVarArg());
Hashes.emplace_back(F.arg_size());
SmallVector<const BasicBlock *, 8> BBs;
SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
// Walk the blocks in the same order as
// FunctionComparator::cmpBasicBlocks(), accumulating the hash of the
// function "structure." (BB and opcode sequence)
BBs.push_back(&F.getEntryBlock());
VisitedBBs.insert(BBs[0]);
while (!BBs.empty()) {
const BasicBlock *BB = BBs.pop_back_val();
Hashes.emplace_back(BlockHeaderHash);
for (auto &Inst : *BB)
Hashes.emplace_back(hashInstruction(Inst));
for (const BasicBlock *Succ : successors(BB))
if (VisitedBBs.insert(Succ).second)
BBs.push_back(Succ);
}
// Update the combined hash in place.
Hash = stable_hash_combine(Hashes);
}
void update(const GlobalVariable &GV) {
// Declarations and used/compiler.used don't affect analyses.
// Since there are several `llvm.*` metadata, like `llvm.embedded.object`,
// we ignore anything with the `.llvm` prefix
if (GV.isDeclaration() || GV.getName().starts_with("llvm."))
return;
SmallVector<stable_hash> Hashes;
Hashes.emplace_back(Hash);
Hashes.emplace_back(GlobalHeaderHash);
Hashes.emplace_back(GV.getValueType()->getTypeID());
// Update the combined hash in place.
Hash = stable_hash_combine(Hashes);
}
void update(const Module &M) {
for (const GlobalVariable &GV : M.globals())
update(GV);
for (const Function &F : M)
update(F);
}
uint64_t getHash() const { return Hash; }
std::unique_ptr<IndexInstrMap> getIndexInstrMap() {
return std::move(IndexInstruction);
}
std::unique_ptr<IndexOperandHashMapType> getIndexPairOpndHashMap() {
return std::move(IndexOperandHashMap);
}
};
} // namespace
stable_hash llvm::StructuralHash(const Function &F, bool DetailedHash) {
StructuralHashImpl H(DetailedHash);
H.update(F);
return H.getHash();
}
stable_hash llvm::StructuralHash(const GlobalVariable &GVar) {
return StructuralHashImpl::hashGlobalVariable(GVar);
}
stable_hash llvm::StructuralHash(const Module &M, bool DetailedHash) {
StructuralHashImpl H(DetailedHash);
H.update(M);
return H.getHash();
}
FunctionHashInfo
llvm::StructuralHashWithDifferences(const Function &F,
IgnoreOperandFunc IgnoreOp) {
StructuralHashImpl H(/*DetailedHash=*/true, IgnoreOp);
H.update(F);
return FunctionHashInfo(H.getHash(), H.getIndexInstrMap(),
H.getIndexPairOpndHashMap());
}