Joshua Cao 72ffaa9156
[IR][TRE] Support associative intrinsics (#74226)
There is support for intrinsics in Instruction::isCommunative, but there
is no equivalent implementation for isAssociative. This patch builds
support for associative intrinsics with TRE as an application. TRE can
now have associative intrinsics as an accumulator. For example:
```
struct Node {
  Node *next;
  unsigned val;
}

unsigned maxval(struct Node *n) {
  if (!n) return 0;
  return std::max(n->val, maxval(n->next));
}
```
Can be transformed into:
```
unsigned maxval(struct Node *n) {
  struct Node *head = n;
  unsigned max = 0; // Identity of unsigned std::max
  while (true) {
    if (!head) return max;
    max = std::max(max, head->val);
    head = head->next;
  }
  return max;
}
```
This example results in about 5x speedup in local runs.

We conservatively only consider min/max and as associative for this
patch to limit testing scope. There are probably other intrinsics that
could be considered associative. There are a few consumers of
isAssociative() that could be impacted. Testing has only required to
Reassociate pass be updated.
2023-12-04 22:35:59 -08:00
2023-07-25 13:58:49 +02:00
2023-12-04 18:05:55 +08:00
2023-11-01 11:08:26 -07:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.
Readme 5 GiB
Languages
LLVM 39.9%
C++ 32.5%
C 13.5%
Assembly 9.4%
MLIR 1.4%
Other 2.8%