llvm-project/clang/lib/Sema/SemaFunctionEffects.cpp
Kazu Hirata 286f8423c5
[Sema] Migrate away from PointerUnion::dyn_cast (NFC) (#123158)
Note that PointerUnion::dyn_cast has been soft deprecated in
PointerUnion.h:

  // FIXME: Replace the uses of is(), get() and dyn_cast() with
  //        isa<T>, cast<T> and the llvm::dyn_cast<T>

Literal migration would result in dyn_cast_if_present (see the
definition of PointerUnion::dyn_cast), but this patch uses dyn_cast
because we expect AP to be nonnull.
2025-01-16 08:45:03 -08:00

1642 lines
60 KiB
C++

//=== SemaFunctionEffects.cpp - Sema handling of function effects ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements Sema handling of function effects.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DynamicRecursiveASTVisitor.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/Type.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Sema/SemaInternal.h"
#define DEBUG_TYPE "effectanalysis"
using namespace clang;
namespace {
enum class ViolationID : uint8_t {
None = 0, // Sentinel for an empty Violation.
// These first 5 map to a %select{} in one of several FunctionEffects
// diagnostics, e.g. warn_func_effect_violation.
BaseDiagnosticIndex,
AllocatesMemory = BaseDiagnosticIndex,
ThrowsOrCatchesExceptions,
HasStaticLocalVariable,
AccessesThreadLocalVariable,
AccessesObjCMethodOrProperty,
// These only apply to callees, where the analysis stops at the Decl.
DeclDisallowsInference,
// These both apply to indirect calls. The difference is that sometimes
// we have an actual Decl (generally a variable) which is the function
// pointer being called, and sometimes, typically due to a cast, we only
// have an expression.
CallsDeclWithoutEffect,
CallsExprWithoutEffect,
};
// Information about the AST context in which a violation was found, so
// that diagnostics can point to the correct source.
class ViolationSite {
public:
enum class Kind : uint8_t {
Default, // Function body.
MemberInitializer,
DefaultArgExpr
};
private:
llvm::PointerIntPair<CXXDefaultArgExpr *, 2, Kind> Impl;
public:
ViolationSite() = default;
explicit ViolationSite(CXXDefaultArgExpr *E)
: Impl(E, Kind::DefaultArgExpr) {}
Kind kind() const { return static_cast<Kind>(Impl.getInt()); }
CXXDefaultArgExpr *defaultArgExpr() const { return Impl.getPointer(); }
void setKind(Kind K) { Impl.setPointerAndInt(nullptr, K); }
};
// Represents a violation of the rules, potentially for the entire duration of
// the analysis phase, in order to refer to it when explaining why a caller has
// been made unsafe by a callee. Can be transformed into either a Diagnostic
// (warning or a note), depending on whether the violation pertains to a
// function failing to be verifed as holding an effect vs. a function failing to
// be inferred as holding that effect.
struct Violation {
FunctionEffect Effect;
std::optional<FunctionEffect>
CalleeEffectPreventingInference; // Only for certain IDs; can be nullopt.
ViolationID ID = ViolationID::None;
ViolationSite Site;
SourceLocation Loc;
const Decl *Callee =
nullptr; // Only valid for ViolationIDs Calls{Decl,Expr}WithoutEffect.
Violation(FunctionEffect Effect, ViolationID ID, ViolationSite VS,
SourceLocation Loc, const Decl *Callee = nullptr,
std::optional<FunctionEffect> CalleeEffect = std::nullopt)
: Effect(Effect), CalleeEffectPreventingInference(CalleeEffect), ID(ID),
Site(VS), Loc(Loc), Callee(Callee) {}
unsigned diagnosticSelectIndex() const {
return unsigned(ID) - unsigned(ViolationID::BaseDiagnosticIndex);
}
};
enum class SpecialFuncType : uint8_t { None, OperatorNew, OperatorDelete };
enum class CallableType : uint8_t {
// Unknown: probably function pointer.
Unknown,
Function,
Virtual,
Block
};
// Return whether a function's effects CAN be verified.
// The question of whether it SHOULD be verified is independent.
static bool functionIsVerifiable(const FunctionDecl *FD) {
if (FD->isTrivial()) {
// Otherwise `struct x { int a; };` would have an unverifiable default
// constructor.
return true;
}
return FD->hasBody();
}
static bool isNoexcept(const FunctionDecl *FD) {
const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
return FPT && (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>());
}
// This list is probably incomplete.
// FIXME: Investigate:
// __builtin_eh_return?
// __builtin_allow_runtime_check?
// __builtin_unwind_init and other similar things that sound exception-related.
// va_copy?
// coroutines?
static FunctionEffectKindSet getBuiltinFunctionEffects(unsigned BuiltinID) {
FunctionEffectKindSet Result;
switch (BuiltinID) {
case 0: // Not builtin.
default: // By default, builtins have no known effects.
break;
// These allocate/deallocate heap memory.
case Builtin::ID::BI__builtin_calloc:
case Builtin::ID::BI__builtin_malloc:
case Builtin::ID::BI__builtin_realloc:
case Builtin::ID::BI__builtin_free:
case Builtin::ID::BI__builtin_operator_delete:
case Builtin::ID::BI__builtin_operator_new:
case Builtin::ID::BIaligned_alloc:
case Builtin::ID::BIcalloc:
case Builtin::ID::BImalloc:
case Builtin::ID::BImemalign:
case Builtin::ID::BIrealloc:
case Builtin::ID::BIfree:
case Builtin::ID::BIfopen:
case Builtin::ID::BIpthread_create:
case Builtin::ID::BI_Block_object_dispose:
Result.insert(FunctionEffect(FunctionEffect::Kind::Allocating));
break;
// These block in some other way than allocating memory.
// longjmp() and friends are presumed unsafe because they are the moral
// equivalent of throwing a C++ exception, which is unsafe.
case Builtin::ID::BIlongjmp:
case Builtin::ID::BI_longjmp:
case Builtin::ID::BIsiglongjmp:
case Builtin::ID::BI__builtin_longjmp:
case Builtin::ID::BIobjc_exception_throw:
// Objective-C runtime.
case Builtin::ID::BIobjc_msgSend:
case Builtin::ID::BIobjc_msgSend_fpret:
case Builtin::ID::BIobjc_msgSend_fp2ret:
case Builtin::ID::BIobjc_msgSend_stret:
case Builtin::ID::BIobjc_msgSendSuper:
case Builtin::ID::BIobjc_getClass:
case Builtin::ID::BIobjc_getMetaClass:
case Builtin::ID::BIobjc_enumerationMutation:
case Builtin::ID::BIobjc_assign_ivar:
case Builtin::ID::BIobjc_assign_global:
case Builtin::ID::BIobjc_sync_enter:
case Builtin::ID::BIobjc_sync_exit:
case Builtin::ID::BINSLog:
case Builtin::ID::BINSLogv:
// stdio.h
case Builtin::ID::BIfread:
case Builtin::ID::BIfwrite:
// stdio.h: printf family.
case Builtin::ID::BIprintf:
case Builtin::ID::BI__builtin_printf:
case Builtin::ID::BIfprintf:
case Builtin::ID::BIsnprintf:
case Builtin::ID::BIsprintf:
case Builtin::ID::BIvprintf:
case Builtin::ID::BIvfprintf:
case Builtin::ID::BIvsnprintf:
case Builtin::ID::BIvsprintf:
// stdio.h: scanf family.
case Builtin::ID::BIscanf:
case Builtin::ID::BIfscanf:
case Builtin::ID::BIsscanf:
case Builtin::ID::BIvscanf:
case Builtin::ID::BIvfscanf:
case Builtin::ID::BIvsscanf:
Result.insert(FunctionEffect(FunctionEffect::Kind::Blocking));
break;
}
return Result;
}
// Transitory, more extended information about a callable, which can be a
// function, block, or function pointer.
struct CallableInfo {
// CDecl holds the function's definition, if any.
// FunctionDecl if CallableType::Function or Virtual
// BlockDecl if CallableType::Block
const Decl *CDecl;
// Remember whether the callable is a function, block, virtual method,
// or (presumed) function pointer.
CallableType CType = CallableType::Unknown;
// Remember whether the callable is an operator new or delete function,
// so that calls to them are reported more meaningfully, as memory
// allocations.
SpecialFuncType FuncType = SpecialFuncType::None;
// We inevitably want to know the callable's declared effects, so cache them.
FunctionEffectKindSet Effects;
CallableInfo(const Decl &CD, SpecialFuncType FT = SpecialFuncType::None)
: CDecl(&CD), FuncType(FT) {
FunctionEffectsRef DeclEffects;
if (auto *FD = dyn_cast<FunctionDecl>(CDecl)) {
// Use the function's definition, if any.
if (const FunctionDecl *Def = FD->getDefinition())
CDecl = FD = Def;
CType = CallableType::Function;
if (auto *Method = dyn_cast<CXXMethodDecl>(FD);
Method && Method->isVirtual())
CType = CallableType::Virtual;
DeclEffects = FD->getFunctionEffects();
} else if (auto *BD = dyn_cast<BlockDecl>(CDecl)) {
CType = CallableType::Block;
DeclEffects = BD->getFunctionEffects();
} else if (auto *VD = dyn_cast<ValueDecl>(CDecl)) {
// ValueDecl is function, enum, or variable, so just look at its type.
DeclEffects = FunctionEffectsRef::get(VD->getType());
}
Effects = FunctionEffectKindSet(DeclEffects);
}
CallableType type() const { return CType; }
bool isCalledDirectly() const {
return CType == CallableType::Function || CType == CallableType::Block;
}
bool isVerifiable() const {
switch (CType) {
case CallableType::Unknown:
case CallableType::Virtual:
return false;
case CallableType::Block:
return true;
case CallableType::Function:
return functionIsVerifiable(dyn_cast<FunctionDecl>(CDecl));
}
llvm_unreachable("undefined CallableType");
}
/// Generate a name for logging and diagnostics.
std::string getNameForDiagnostic(Sema &S) const {
std::string Name;
llvm::raw_string_ostream OS(Name);
if (auto *FD = dyn_cast<FunctionDecl>(CDecl))
FD->getNameForDiagnostic(OS, S.getPrintingPolicy(),
/*Qualified=*/true);
else if (auto *BD = dyn_cast<BlockDecl>(CDecl))
OS << "(block " << BD->getBlockManglingNumber() << ")";
else if (auto *VD = dyn_cast<NamedDecl>(CDecl))
VD->printQualifiedName(OS);
return Name;
}
};
// ----------
// Map effects to single Violations, to hold the first (of potentially many)
// violations pertaining to an effect, per function.
class EffectToViolationMap {
// Since we currently only have a tiny number of effects (typically no more
// than 1), use a SmallVector with an inline capacity of 1. Since it
// is often empty, use a unique_ptr to the SmallVector.
// Note that Violation itself contains a FunctionEffect which is the key.
// FIXME: Is there a way to simplify this using existing data structures?
using ImplVec = llvm::SmallVector<Violation, 1>;
std::unique_ptr<ImplVec> Impl;
public:
// Insert a new Violation if we do not already have one for its effect.
void maybeInsert(const Violation &Viol) {
if (Impl == nullptr)
Impl = std::make_unique<ImplVec>();
else if (lookup(Viol.Effect) != nullptr)
return;
Impl->push_back(Viol);
}
const Violation *lookup(FunctionEffect Key) {
if (Impl == nullptr)
return nullptr;
auto *Iter = llvm::find_if(
*Impl, [&](const auto &Item) { return Item.Effect == Key; });
return Iter != Impl->end() ? &*Iter : nullptr;
}
size_t size() const { return Impl ? Impl->size() : 0; }
};
// ----------
// State pertaining to a function whose AST is walked and whose effect analysis
// is dependent on a subsequent analysis of other functions.
class PendingFunctionAnalysis {
friend class CompleteFunctionAnalysis;
public:
struct DirectCall {
const Decl *Callee;
SourceLocation CallLoc;
// Not all recursive calls are detected, just enough
// to break cycles.
bool Recursed = false;
ViolationSite VSite;
DirectCall(const Decl *D, SourceLocation CallLoc, ViolationSite VSite)
: Callee(D), CallLoc(CallLoc), VSite(VSite) {}
};
// We always have two disjoint sets of effects to verify:
// 1. Effects declared explicitly by this function.
// 2. All other inferrable effects needing verification.
FunctionEffectKindSet DeclaredVerifiableEffects;
FunctionEffectKindSet EffectsToInfer;
private:
// Violations pertaining to the function's explicit effects.
SmallVector<Violation, 0> ViolationsForExplicitEffects;
// Violations pertaining to other, non-explicit, inferrable effects.
EffectToViolationMap InferrableEffectToFirstViolation;
// These unverified direct calls are what keeps the analysis "pending",
// until the callees can be verified.
SmallVector<DirectCall, 0> UnverifiedDirectCalls;
public:
PendingFunctionAnalysis(Sema &S, const CallableInfo &CInfo,
FunctionEffectKindSet AllInferrableEffectsToVerify)
: DeclaredVerifiableEffects(CInfo.Effects) {
// Check for effects we are not allowed to infer.
FunctionEffectKindSet InferrableEffects;
for (FunctionEffect effect : AllInferrableEffectsToVerify) {
std::optional<FunctionEffect> ProblemCalleeEffect =
effect.effectProhibitingInference(*CInfo.CDecl, CInfo.Effects);
if (!ProblemCalleeEffect)
InferrableEffects.insert(effect);
else {
// Add a Violation for this effect if a caller were to
// try to infer it.
InferrableEffectToFirstViolation.maybeInsert(Violation(
effect, ViolationID::DeclDisallowsInference, ViolationSite{},
CInfo.CDecl->getLocation(), nullptr, ProblemCalleeEffect));
}
}
// InferrableEffects is now the set of inferrable effects which are not
// prohibited.
EffectsToInfer = FunctionEffectKindSet::difference(
InferrableEffects, DeclaredVerifiableEffects);
}
// Hide the way that Violations for explicitly required effects vs. inferred
// ones are handled differently.
void checkAddViolation(bool Inferring, const Violation &NewViol) {
if (!Inferring)
ViolationsForExplicitEffects.push_back(NewViol);
else
InferrableEffectToFirstViolation.maybeInsert(NewViol);
}
void addUnverifiedDirectCall(const Decl *D, SourceLocation CallLoc,
ViolationSite VSite) {
UnverifiedDirectCalls.emplace_back(D, CallLoc, VSite);
}
// Analysis is complete when there are no unverified direct calls.
bool isComplete() const { return UnverifiedDirectCalls.empty(); }
const Violation *violationForInferrableEffect(FunctionEffect effect) {
return InferrableEffectToFirstViolation.lookup(effect);
}
// Mutable because caller may need to set a DirectCall's Recursing flag.
MutableArrayRef<DirectCall> unverifiedCalls() {
assert(!isComplete());
return UnverifiedDirectCalls;
}
ArrayRef<Violation> getSortedViolationsForExplicitEffects(SourceManager &SM) {
if (!ViolationsForExplicitEffects.empty())
llvm::sort(ViolationsForExplicitEffects,
[&SM](const Violation &LHS, const Violation &RHS) {
return SM.isBeforeInTranslationUnit(LHS.Loc, RHS.Loc);
});
return ViolationsForExplicitEffects;
}
void dump(Sema &SemaRef, llvm::raw_ostream &OS) const {
OS << "Pending: Declared ";
DeclaredVerifiableEffects.dump(OS);
OS << ", " << ViolationsForExplicitEffects.size() << " violations; ";
OS << " Infer ";
EffectsToInfer.dump(OS);
OS << ", " << InferrableEffectToFirstViolation.size() << " violations";
if (!UnverifiedDirectCalls.empty()) {
OS << "; Calls: ";
for (const DirectCall &Call : UnverifiedDirectCalls) {
CallableInfo CI(*Call.Callee);
OS << " " << CI.getNameForDiagnostic(SemaRef);
}
}
OS << "\n";
}
};
// ----------
class CompleteFunctionAnalysis {
// Current size: 2 pointers
public:
// Has effects which are both the declared ones -- not to be inferred -- plus
// ones which have been successfully inferred. These are all considered
// "verified" for the purposes of callers; any issue with verifying declared
// effects has already been reported and is not the problem of any caller.
FunctionEffectKindSet VerifiedEffects;
private:
// This is used to generate notes about failed inference.
EffectToViolationMap InferrableEffectToFirstViolation;
public:
// The incoming Pending analysis is consumed (member(s) are moved-from).
CompleteFunctionAnalysis(ASTContext &Ctx, PendingFunctionAnalysis &&Pending,
FunctionEffectKindSet DeclaredEffects,
FunctionEffectKindSet AllInferrableEffectsToVerify)
: VerifiedEffects(DeclaredEffects) {
for (FunctionEffect effect : AllInferrableEffectsToVerify)
if (Pending.violationForInferrableEffect(effect) == nullptr)
VerifiedEffects.insert(effect);
InferrableEffectToFirstViolation =
std::move(Pending.InferrableEffectToFirstViolation);
}
const Violation *firstViolationForEffect(FunctionEffect Effect) {
return InferrableEffectToFirstViolation.lookup(Effect);
}
void dump(llvm::raw_ostream &OS) const {
OS << "Complete: Verified ";
VerifiedEffects.dump(OS);
OS << "; Infer ";
OS << InferrableEffectToFirstViolation.size() << " violations\n";
}
};
// ==========
class Analyzer {
Sema &S;
// Subset of Sema.AllEffectsToVerify
FunctionEffectKindSet AllInferrableEffectsToVerify;
using FuncAnalysisPtr =
llvm::PointerUnion<PendingFunctionAnalysis *, CompleteFunctionAnalysis *>;
// Map all Decls analyzed to FuncAnalysisPtr. Pending state is larger
// than complete state, so use different objects to represent them.
// The state pointers are owned by the container.
class AnalysisMap : llvm::DenseMap<const Decl *, FuncAnalysisPtr> {
using Base = llvm::DenseMap<const Decl *, FuncAnalysisPtr>;
public:
~AnalysisMap();
// Use non-public inheritance in order to maintain the invariant
// that lookups and insertions are via the canonical Decls.
FuncAnalysisPtr lookup(const Decl *Key) const {
return Base::lookup(Key->getCanonicalDecl());
}
FuncAnalysisPtr &operator[](const Decl *Key) {
return Base::operator[](Key->getCanonicalDecl());
}
/// Shortcut for the case where we only care about completed analysis.
CompleteFunctionAnalysis *completedAnalysisForDecl(const Decl *D) const {
if (FuncAnalysisPtr AP = lookup(D);
isa_and_nonnull<CompleteFunctionAnalysis *>(AP))
return cast<CompleteFunctionAnalysis *>(AP);
return nullptr;
}
void dump(Sema &SemaRef, llvm::raw_ostream &OS) {
OS << "\nAnalysisMap:\n";
for (const auto &item : *this) {
CallableInfo CI(*item.first);
const auto AP = item.second;
OS << item.first << " " << CI.getNameForDiagnostic(SemaRef) << " : ";
if (AP.isNull()) {
OS << "null\n";
} else if (auto *CFA = dyn_cast<CompleteFunctionAnalysis *>(AP)) {
OS << CFA << " ";
CFA->dump(OS);
} else if (auto *PFA = dyn_cast<PendingFunctionAnalysis *>(AP)) {
OS << PFA << " ";
PFA->dump(SemaRef, OS);
} else
llvm_unreachable("never");
}
OS << "---\n";
}
};
AnalysisMap DeclAnalysis;
public:
Analyzer(Sema &S) : S(S) {}
void run(const TranslationUnitDecl &TU) {
// Gather all of the effects to be verified to see what operations need to
// be checked, and to see which ones are inferrable.
for (FunctionEffect Effect : S.AllEffectsToVerify) {
const FunctionEffect::Flags Flags = Effect.flags();
if (Flags & FunctionEffect::FE_InferrableOnCallees)
AllInferrableEffectsToVerify.insert(Effect);
}
LLVM_DEBUG(llvm::dbgs() << "AllInferrableEffectsToVerify: ";
AllInferrableEffectsToVerify.dump(llvm::dbgs());
llvm::dbgs() << "\n";);
// We can use DeclsWithEffectsToVerify as a stack for a
// depth-first traversal; there's no need for a second container. But first,
// reverse it, so when working from the end, Decls are verified in the order
// they are declared.
SmallVector<const Decl *> &VerificationQueue = S.DeclsWithEffectsToVerify;
std::reverse(VerificationQueue.begin(), VerificationQueue.end());
while (!VerificationQueue.empty()) {
const Decl *D = VerificationQueue.back();
if (FuncAnalysisPtr AP = DeclAnalysis.lookup(D)) {
if (auto *Pending = dyn_cast<PendingFunctionAnalysis *>(AP)) {
// All children have been traversed; finish analysis.
finishPendingAnalysis(D, Pending);
}
VerificationQueue.pop_back();
continue;
}
// Not previously visited; begin a new analysis for this Decl.
PendingFunctionAnalysis *Pending = verifyDecl(D);
if (Pending == nullptr) {
// Completed now.
VerificationQueue.pop_back();
continue;
}
// Analysis remains pending because there are direct callees to be
// verified first. Push them onto the queue.
for (PendingFunctionAnalysis::DirectCall &Call :
Pending->unverifiedCalls()) {
FuncAnalysisPtr AP = DeclAnalysis.lookup(Call.Callee);
if (AP.isNull()) {
VerificationQueue.push_back(Call.Callee);
continue;
}
// This indicates recursion (not necessarily direct). For the
// purposes of effect analysis, we can just ignore it since
// no effects forbid recursion.
assert(isa<PendingFunctionAnalysis *>(AP));
Call.Recursed = true;
}
}
}
private:
// Verify a single Decl. Return the pending structure if that was the result,
// else null. This method must not recurse.
PendingFunctionAnalysis *verifyDecl(const Decl *D) {
CallableInfo CInfo(*D);
bool isExternC = false;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
isExternC = FD->getCanonicalDecl()->isExternCContext();
// For C++, with non-extern "C" linkage only - if any of the Decl's declared
// effects forbid throwing (e.g. nonblocking) then the function should also
// be declared noexcept.
if (S.getLangOpts().CPlusPlus && !isExternC) {
for (FunctionEffect Effect : CInfo.Effects) {
if (!(Effect.flags() & FunctionEffect::FE_ExcludeThrow))
continue;
bool IsNoexcept = false;
if (auto *FD = D->getAsFunction()) {
IsNoexcept = isNoexcept(FD);
} else if (auto *BD = dyn_cast<BlockDecl>(D)) {
if (auto *TSI = BD->getSignatureAsWritten()) {
auto *FPT = TSI->getType()->castAs<FunctionProtoType>();
IsNoexcept = FPT->isNothrow() || BD->hasAttr<NoThrowAttr>();
}
}
if (!IsNoexcept)
S.Diag(D->getBeginLoc(), diag::warn_perf_constraint_implies_noexcept)
<< GetCallableDeclKind(D, nullptr) << Effect.name();
break;
}
}
// Build a PendingFunctionAnalysis on the stack. If it turns out to be
// complete, we'll have avoided a heap allocation; if it's incomplete, it's
// a fairly trivial move to a heap-allocated object.
PendingFunctionAnalysis FAnalysis(S, CInfo, AllInferrableEffectsToVerify);
LLVM_DEBUG(llvm::dbgs()
<< "\nVerifying " << CInfo.getNameForDiagnostic(S) << " ";
FAnalysis.dump(S, llvm::dbgs()););
FunctionBodyASTVisitor Visitor(*this, FAnalysis, CInfo);
Visitor.run();
if (FAnalysis.isComplete()) {
completeAnalysis(CInfo, std::move(FAnalysis));
return nullptr;
}
// Move the pending analysis to the heap and save it in the map.
PendingFunctionAnalysis *PendingPtr =
new PendingFunctionAnalysis(std::move(FAnalysis));
DeclAnalysis[D] = PendingPtr;
LLVM_DEBUG(llvm::dbgs() << "inserted pending " << PendingPtr << "\n";
DeclAnalysis.dump(S, llvm::dbgs()););
return PendingPtr;
}
// Consume PendingFunctionAnalysis, create with it a CompleteFunctionAnalysis,
// inserted in the container.
void completeAnalysis(const CallableInfo &CInfo,
PendingFunctionAnalysis &&Pending) {
if (ArrayRef<Violation> Viols =
Pending.getSortedViolationsForExplicitEffects(S.getSourceManager());
!Viols.empty())
emitDiagnostics(Viols, CInfo);
CompleteFunctionAnalysis *CompletePtr = new CompleteFunctionAnalysis(
S.getASTContext(), std::move(Pending), CInfo.Effects,
AllInferrableEffectsToVerify);
DeclAnalysis[CInfo.CDecl] = CompletePtr;
LLVM_DEBUG(llvm::dbgs() << "inserted complete " << CompletePtr << "\n";
DeclAnalysis.dump(S, llvm::dbgs()););
}
// Called after all direct calls requiring inference have been found -- or
// not. Repeats calls to FunctionBodyASTVisitor::followCall() but without
// the possibility of inference. Deletes Pending.
void finishPendingAnalysis(const Decl *D, PendingFunctionAnalysis *Pending) {
CallableInfo Caller(*D);
LLVM_DEBUG(llvm::dbgs() << "finishPendingAnalysis for "
<< Caller.getNameForDiagnostic(S) << " : ";
Pending->dump(S, llvm::dbgs()); llvm::dbgs() << "\n";);
for (const PendingFunctionAnalysis::DirectCall &Call :
Pending->unverifiedCalls()) {
if (Call.Recursed)
continue;
CallableInfo Callee(*Call.Callee);
followCall(Caller, *Pending, Callee, Call.CallLoc,
/*AssertNoFurtherInference=*/true, Call.VSite);
}
completeAnalysis(Caller, std::move(*Pending));
delete Pending;
}
// Here we have a call to a Decl, either explicitly via a CallExpr or some
// other AST construct. PFA pertains to the caller.
void followCall(const CallableInfo &Caller, PendingFunctionAnalysis &PFA,
const CallableInfo &Callee, SourceLocation CallLoc,
bool AssertNoFurtherInference, ViolationSite VSite) {
const bool DirectCall = Callee.isCalledDirectly();
// Initially, the declared effects; inferred effects will be added.
FunctionEffectKindSet CalleeEffects = Callee.Effects;
bool IsInferencePossible = DirectCall;
if (DirectCall)
if (CompleteFunctionAnalysis *CFA =
DeclAnalysis.completedAnalysisForDecl(Callee.CDecl)) {
// Combine declared effects with those which may have been inferred.
CalleeEffects.insert(CFA->VerifiedEffects);
IsInferencePossible = false; // We've already traversed it.
}
if (AssertNoFurtherInference) {
assert(!IsInferencePossible);
}
if (!Callee.isVerifiable())
IsInferencePossible = false;
LLVM_DEBUG(llvm::dbgs()
<< "followCall from " << Caller.getNameForDiagnostic(S)
<< " to " << Callee.getNameForDiagnostic(S)
<< "; verifiable: " << Callee.isVerifiable() << "; callee ";
CalleeEffects.dump(llvm::dbgs()); llvm::dbgs() << "\n";
llvm::dbgs() << " callee " << Callee.CDecl << " canonical "
<< Callee.CDecl->getCanonicalDecl() << "\n";);
auto Check1Effect = [&](FunctionEffect Effect, bool Inferring) {
if (!Effect.shouldDiagnoseFunctionCall(DirectCall, CalleeEffects))
return;
// If inference is not allowed, or the target is indirect (virtual
// method/function ptr?), generate a Violation now.
if (!IsInferencePossible ||
!(Effect.flags() & FunctionEffect::FE_InferrableOnCallees)) {
if (Callee.FuncType == SpecialFuncType::None)
PFA.checkAddViolation(Inferring,
{Effect, ViolationID::CallsDeclWithoutEffect,
VSite, CallLoc, Callee.CDecl});
else
PFA.checkAddViolation(
Inferring,
{Effect, ViolationID::AllocatesMemory, VSite, CallLoc});
} else {
// Inference is allowed and necessary; defer it.
PFA.addUnverifiedDirectCall(Callee.CDecl, CallLoc, VSite);
}
};
for (FunctionEffect Effect : PFA.DeclaredVerifiableEffects)
Check1Effect(Effect, false);
for (FunctionEffect Effect : PFA.EffectsToInfer)
Check1Effect(Effect, true);
}
// Describe a callable Decl for a diagnostic.
// (Not an enum class because the value is always converted to an integer for
// use in a diagnostic.)
enum CallableDeclKind {
CDK_Function,
CDK_Constructor,
CDK_Destructor,
CDK_Lambda,
CDK_Block,
CDK_MemberInitializer,
};
// Describe a call site or target using an enum mapping to a %select{}
// in a diagnostic, e.g. warn_func_effect_violation,
// warn_perf_constraint_implies_noexcept, and others.
static CallableDeclKind GetCallableDeclKind(const Decl *D,
const Violation *V) {
if (V != nullptr &&
V->Site.kind() == ViolationSite::Kind::MemberInitializer)
return CDK_MemberInitializer;
if (isa<BlockDecl>(D))
return CDK_Block;
if (auto *Method = dyn_cast<CXXMethodDecl>(D)) {
if (isa<CXXConstructorDecl>(D))
return CDK_Constructor;
if (isa<CXXDestructorDecl>(D))
return CDK_Destructor;
const CXXRecordDecl *Rec = Method->getParent();
if (Rec->isLambda())
return CDK_Lambda;
}
return CDK_Function;
};
// Should only be called when function's analysis is determined to be
// complete.
void emitDiagnostics(ArrayRef<Violation> Viols, const CallableInfo &CInfo) {
if (Viols.empty())
return;
auto MaybeAddTemplateNote = [&](const Decl *D) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
while (FD != nullptr && FD->isTemplateInstantiation() &&
FD->getPointOfInstantiation().isValid()) {
S.Diag(FD->getPointOfInstantiation(),
diag::note_func_effect_from_template);
FD = FD->getTemplateInstantiationPattern();
}
}
};
// For note_func_effect_call_indirect.
enum { Indirect_VirtualMethod, Indirect_FunctionPtr };
auto MaybeAddSiteContext = [&](const Decl *D, const Violation &V) {
// If a violation site is a member initializer, add a note pointing to
// the constructor which invoked it.
if (V.Site.kind() == ViolationSite::Kind::MemberInitializer) {
unsigned ImplicitCtor = 0;
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D);
Ctor && Ctor->isImplicit())
ImplicitCtor = 1;
S.Diag(D->getLocation(), diag::note_func_effect_in_constructor)
<< ImplicitCtor;
}
// If a violation site is a default argument expression, add a note
// pointing to the call site using the default argument.
else if (V.Site.kind() == ViolationSite::Kind::DefaultArgExpr)
S.Diag(V.Site.defaultArgExpr()->getUsedLocation(),
diag::note_in_evaluating_default_argument);
};
// Top-level violations are warnings.
for (const Violation &Viol1 : Viols) {
StringRef effectName = Viol1.Effect.name();
switch (Viol1.ID) {
case ViolationID::None:
case ViolationID::DeclDisallowsInference: // Shouldn't happen
// here.
llvm_unreachable("Unexpected violation kind");
break;
case ViolationID::AllocatesMemory:
case ViolationID::ThrowsOrCatchesExceptions:
case ViolationID::HasStaticLocalVariable:
case ViolationID::AccessesThreadLocalVariable:
case ViolationID::AccessesObjCMethodOrProperty:
S.Diag(Viol1.Loc, diag::warn_func_effect_violation)
<< GetCallableDeclKind(CInfo.CDecl, &Viol1) << effectName
<< Viol1.diagnosticSelectIndex();
MaybeAddSiteContext(CInfo.CDecl, Viol1);
MaybeAddTemplateNote(CInfo.CDecl);
break;
case ViolationID::CallsExprWithoutEffect:
S.Diag(Viol1.Loc, diag::warn_func_effect_calls_expr_without_effect)
<< GetCallableDeclKind(CInfo.CDecl, &Viol1) << effectName;
MaybeAddSiteContext(CInfo.CDecl, Viol1);
MaybeAddTemplateNote(CInfo.CDecl);
break;
case ViolationID::CallsDeclWithoutEffect: {
CallableInfo CalleeInfo(*Viol1.Callee);
std::string CalleeName = CalleeInfo.getNameForDiagnostic(S);
S.Diag(Viol1.Loc, diag::warn_func_effect_calls_func_without_effect)
<< GetCallableDeclKind(CInfo.CDecl, &Viol1) << effectName
<< GetCallableDeclKind(CalleeInfo.CDecl, nullptr) << CalleeName;
MaybeAddSiteContext(CInfo.CDecl, Viol1);
MaybeAddTemplateNote(CInfo.CDecl);
// Emit notes explaining the transitive chain of inferences: Why isn't
// the callee safe?
for (const Decl *Callee = Viol1.Callee; Callee != nullptr;) {
std::optional<CallableInfo> MaybeNextCallee;
CompleteFunctionAnalysis *Completed =
DeclAnalysis.completedAnalysisForDecl(CalleeInfo.CDecl);
if (Completed == nullptr) {
// No result - could be
// - non-inline and extern
// - indirect (virtual or through function pointer)
// - effect has been explicitly disclaimed (e.g. "blocking")
CallableType CType = CalleeInfo.type();
if (CType == CallableType::Virtual)
S.Diag(Callee->getLocation(),
diag::note_func_effect_call_indirect)
<< Indirect_VirtualMethod << effectName;
else if (CType == CallableType::Unknown)
S.Diag(Callee->getLocation(),
diag::note_func_effect_call_indirect)
<< Indirect_FunctionPtr << effectName;
else if (CalleeInfo.Effects.contains(Viol1.Effect.oppositeKind()))
S.Diag(Callee->getLocation(),
diag::note_func_effect_call_disallows_inference)
<< GetCallableDeclKind(CInfo.CDecl, nullptr) << effectName
<< FunctionEffect(Viol1.Effect.oppositeKind()).name();
else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee);
FD == nullptr || FD->getBuiltinID() == 0) {
// A builtin callee generally doesn't have a useful source
// location at which to insert a note.
S.Diag(Callee->getLocation(), diag::note_func_effect_call_extern)
<< effectName;
}
break;
}
const Violation *PtrViol2 =
Completed->firstViolationForEffect(Viol1.Effect);
if (PtrViol2 == nullptr)
break;
const Violation &Viol2 = *PtrViol2;
switch (Viol2.ID) {
case ViolationID::None:
llvm_unreachable("Unexpected violation kind");
break;
case ViolationID::DeclDisallowsInference:
S.Diag(Viol2.Loc, diag::note_func_effect_call_disallows_inference)
<< GetCallableDeclKind(CalleeInfo.CDecl, nullptr) << effectName
<< Viol2.CalleeEffectPreventingInference->name();
break;
case ViolationID::CallsExprWithoutEffect:
S.Diag(Viol2.Loc, diag::note_func_effect_call_indirect)
<< Indirect_FunctionPtr << effectName;
break;
case ViolationID::AllocatesMemory:
case ViolationID::ThrowsOrCatchesExceptions:
case ViolationID::HasStaticLocalVariable:
case ViolationID::AccessesThreadLocalVariable:
case ViolationID::AccessesObjCMethodOrProperty:
S.Diag(Viol2.Loc, diag::note_func_effect_violation)
<< GetCallableDeclKind(CalleeInfo.CDecl, &Viol2) << effectName
<< Viol2.diagnosticSelectIndex();
MaybeAddSiteContext(CalleeInfo.CDecl, Viol2);
break;
case ViolationID::CallsDeclWithoutEffect:
MaybeNextCallee.emplace(*Viol2.Callee);
S.Diag(Viol2.Loc, diag::note_func_effect_calls_func_without_effect)
<< GetCallableDeclKind(CalleeInfo.CDecl, &Viol2) << effectName
<< GetCallableDeclKind(Viol2.Callee, nullptr)
<< MaybeNextCallee->getNameForDiagnostic(S);
break;
}
MaybeAddTemplateNote(Callee);
Callee = Viol2.Callee;
if (MaybeNextCallee) {
CalleeInfo = *MaybeNextCallee;
CalleeName = CalleeInfo.getNameForDiagnostic(S);
}
}
} break;
}
}
}
// ----------
// This AST visitor is used to traverse the body of a function during effect
// verification. This happens in 2 situations:
// [1] The function has declared effects which need to be validated.
// [2] The function has not explicitly declared an effect in question, and is
// being checked for implicit conformance.
//
// Violations are always routed to a PendingFunctionAnalysis.
struct FunctionBodyASTVisitor : DynamicRecursiveASTVisitor {
Analyzer &Outer;
PendingFunctionAnalysis &CurrentFunction;
CallableInfo &CurrentCaller;
ViolationSite VSite;
const Expr *TrailingRequiresClause = nullptr;
const Expr *NoexceptExpr = nullptr;
FunctionBodyASTVisitor(Analyzer &Outer,
PendingFunctionAnalysis &CurrentFunction,
CallableInfo &CurrentCaller)
: Outer(Outer), CurrentFunction(CurrentFunction),
CurrentCaller(CurrentCaller) {
ShouldVisitImplicitCode = true;
ShouldWalkTypesOfTypeLocs = false;
}
// -- Entry point --
void run() {
// The target function may have implicit code paths beyond the
// body: member and base destructors. Visit these first.
if (auto *Dtor = dyn_cast<CXXDestructorDecl>(CurrentCaller.CDecl))
followDestructor(dyn_cast<CXXRecordDecl>(Dtor->getParent()), Dtor);
if (auto *FD = dyn_cast<FunctionDecl>(CurrentCaller.CDecl)) {
TrailingRequiresClause = FD->getTrailingRequiresClause();
// Note that FD->getType->getAs<FunctionProtoType>() can yield a
// noexcept Expr which has been boiled down to a constant expression.
// Going through the TypeSourceInfo obtains the actual expression which
// will be traversed as part of the function -- unless we capture it
// here and have TraverseStmt skip it.
if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) {
if (FunctionProtoTypeLoc TL =
TSI->getTypeLoc().getAs<FunctionProtoTypeLoc>())
if (const FunctionProtoType *FPT = TL.getTypePtr())
NoexceptExpr = FPT->getNoexceptExpr();
}
}
// Do an AST traversal of the function/block body
TraverseDecl(const_cast<Decl *>(CurrentCaller.CDecl));
}
// -- Methods implementing common logic --
// Handle a language construct forbidden by some effects. Only effects whose
// flags include the specified flag receive a violation. \p Flag describes
// the construct.
void diagnoseLanguageConstruct(FunctionEffect::FlagBit Flag,
ViolationID VID, SourceLocation Loc,
const Decl *Callee = nullptr) {
// If there are any declared verifiable effects which forbid the construct
// represented by the flag, store just one violation.
for (FunctionEffect Effect : CurrentFunction.DeclaredVerifiableEffects) {
if (Effect.flags() & Flag) {
addViolation(/*inferring=*/false, Effect, VID, Loc, Callee);
break;
}
}
// For each inferred effect which forbids the construct, store a
// violation, if we don't already have a violation for that effect.
for (FunctionEffect Effect : CurrentFunction.EffectsToInfer)
if (Effect.flags() & Flag)
addViolation(/*inferring=*/true, Effect, VID, Loc, Callee);
}
void addViolation(bool Inferring, FunctionEffect Effect, ViolationID VID,
SourceLocation Loc, const Decl *Callee = nullptr) {
CurrentFunction.checkAddViolation(
Inferring, Violation(Effect, VID, VSite, Loc, Callee));
}
// Here we have a call to a Decl, either explicitly via a CallExpr or some
// other AST construct. CallableInfo pertains to the callee.
void followCall(CallableInfo &CI, SourceLocation CallLoc) {
// Check for a call to a builtin function, whose effects are
// handled specially.
if (const auto *FD = dyn_cast<FunctionDecl>(CI.CDecl)) {
if (unsigned BuiltinID = FD->getBuiltinID()) {
CI.Effects = getBuiltinFunctionEffects(BuiltinID);
if (CI.Effects.empty()) {
// A builtin with no known effects is assumed safe.
return;
}
// A builtin WITH effects doesn't get any special treatment for
// being noreturn/noexcept, e.g. longjmp(), so we skip the check
// below.
} else {
// If the callee is both `noreturn` and `noexcept`, it presumably
// terminates. Ignore it for the purposes of effect analysis.
// If not C++, `noreturn` alone is sufficient.
if (FD->isNoReturn() &&
(!Outer.S.getLangOpts().CPlusPlus || isNoexcept(FD)))
return;
}
}
Outer.followCall(CurrentCaller, CurrentFunction, CI, CallLoc,
/*AssertNoFurtherInference=*/false, VSite);
}
void checkIndirectCall(CallExpr *Call, QualType CalleeType) {
FunctionEffectKindSet CalleeEffects;
if (FunctionEffectsRef Effects = FunctionEffectsRef::get(CalleeType);
!Effects.empty())
CalleeEffects.insert(Effects);
auto Check1Effect = [&](FunctionEffect Effect, bool Inferring) {
if (Effect.shouldDiagnoseFunctionCall(
/*direct=*/false, CalleeEffects))
addViolation(Inferring, Effect, ViolationID::CallsExprWithoutEffect,
Call->getBeginLoc());
};
for (FunctionEffect Effect : CurrentFunction.DeclaredVerifiableEffects)
Check1Effect(Effect, false);
for (FunctionEffect Effect : CurrentFunction.EffectsToInfer)
Check1Effect(Effect, true);
}
// This destructor's body should be followed by the caller, but here we
// follow the field and base destructors.
void followDestructor(const CXXRecordDecl *Rec,
const CXXDestructorDecl *Dtor) {
SourceLocation DtorLoc = Dtor->getLocation();
for (const FieldDecl *Field : Rec->fields())
followTypeDtor(Field->getType(), DtorLoc);
if (const auto *Class = dyn_cast<CXXRecordDecl>(Rec))
for (const CXXBaseSpecifier &Base : Class->bases())
followTypeDtor(Base.getType(), DtorLoc);
}
void followTypeDtor(QualType QT, SourceLocation CallSite) {
const Type *Ty = QT.getTypePtr();
while (Ty->isArrayType()) {
const ArrayType *Arr = Ty->getAsArrayTypeUnsafe();
QT = Arr->getElementType();
Ty = QT.getTypePtr();
}
if (Ty->isRecordType()) {
if (const CXXRecordDecl *Class = Ty->getAsCXXRecordDecl()) {
if (CXXDestructorDecl *Dtor = Class->getDestructor();
Dtor && !Dtor->isDeleted()) {
CallableInfo CI(*Dtor);
followCall(CI, CallSite);
}
}
}
}
// -- Methods for use of RecursiveASTVisitor --
bool VisitCXXThrowExpr(CXXThrowExpr *Throw) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeThrow,
ViolationID::ThrowsOrCatchesExceptions,
Throw->getThrowLoc());
return true;
}
bool VisitCXXCatchStmt(CXXCatchStmt *Catch) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
ViolationID::ThrowsOrCatchesExceptions,
Catch->getCatchLoc());
return true;
}
bool VisitObjCAtThrowStmt(ObjCAtThrowStmt *Throw) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeThrow,
ViolationID::ThrowsOrCatchesExceptions,
Throw->getThrowLoc());
return true;
}
bool VisitObjCAtCatchStmt(ObjCAtCatchStmt *Catch) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
ViolationID::ThrowsOrCatchesExceptions,
Catch->getAtCatchLoc());
return true;
}
bool VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *Finally) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
ViolationID::ThrowsOrCatchesExceptions,
Finally->getAtFinallyLoc());
return true;
}
bool VisitObjCMessageExpr(ObjCMessageExpr *Msg) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeObjCMessageSend,
ViolationID::AccessesObjCMethodOrProperty,
Msg->getBeginLoc());
return true;
}
bool VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *ARP) override {
// Under the hood, @autorelease (potentially?) allocates memory and
// invokes ObjC methods. We don't currently have memory allocation as
// a "language construct" but we do have ObjC messaging, so diagnose that.
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeObjCMessageSend,
ViolationID::AccessesObjCMethodOrProperty,
ARP->getBeginLoc());
return true;
}
bool VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *Sync) override {
// Under the hood, this calls objc_sync_enter and objc_sync_exit, wrapped
// in a @try/@finally block. Diagnose this generically as "ObjC
// messaging".
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeObjCMessageSend,
ViolationID::AccessesObjCMethodOrProperty,
Sync->getBeginLoc());
return true;
}
bool VisitSEHExceptStmt(SEHExceptStmt *Exc) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
ViolationID::ThrowsOrCatchesExceptions,
Exc->getExceptLoc());
return true;
}
bool VisitCallExpr(CallExpr *Call) override {
LLVM_DEBUG(llvm::dbgs()
<< "VisitCallExpr : "
<< Call->getBeginLoc().printToString(Outer.S.SourceMgr)
<< "\n";);
Expr *CalleeExpr = Call->getCallee();
if (const Decl *Callee = CalleeExpr->getReferencedDeclOfCallee()) {
CallableInfo CI(*Callee);
followCall(CI, Call->getBeginLoc());
return true;
}
if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
// Just destroying a scalar, fine.
return true;
}
// No Decl, just an Expr. Just check based on its type.
checkIndirectCall(Call, CalleeExpr->getType());
return true;
}
bool VisitVarDecl(VarDecl *Var) override {
LLVM_DEBUG(llvm::dbgs()
<< "VisitVarDecl : "
<< Var->getBeginLoc().printToString(Outer.S.SourceMgr)
<< "\n";);
if (Var->isStaticLocal())
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeStaticLocalVars,
ViolationID::HasStaticLocalVariable,
Var->getLocation());
const QualType::DestructionKind DK =
Var->needsDestruction(Outer.S.getASTContext());
if (DK == QualType::DK_cxx_destructor)
followTypeDtor(Var->getType(), Var->getLocation());
return true;
}
bool VisitCXXNewExpr(CXXNewExpr *New) override {
// RecursiveASTVisitor does not visit the implicit call to operator new.
if (FunctionDecl *FD = New->getOperatorNew()) {
CallableInfo CI(*FD, SpecialFuncType::OperatorNew);
followCall(CI, New->getBeginLoc());
}
// It's a bit excessive to check operator delete here, since it's
// just a fallback for operator new followed by a failed constructor.
// We could check it via New->getOperatorDelete().
// It DOES however visit the called constructor
return true;
}
bool VisitCXXDeleteExpr(CXXDeleteExpr *Delete) override {
// RecursiveASTVisitor does not visit the implicit call to operator
// delete.
if (FunctionDecl *FD = Delete->getOperatorDelete()) {
CallableInfo CI(*FD, SpecialFuncType::OperatorDelete);
followCall(CI, Delete->getBeginLoc());
}
// It DOES however visit the called destructor
return true;
}
bool VisitCXXConstructExpr(CXXConstructExpr *Construct) override {
LLVM_DEBUG(llvm::dbgs() << "VisitCXXConstructExpr : "
<< Construct->getBeginLoc().printToString(
Outer.S.SourceMgr)
<< "\n";);
// RecursiveASTVisitor does not visit the implicit call to the
// constructor.
const CXXConstructorDecl *Ctor = Construct->getConstructor();
CallableInfo CI(*Ctor);
followCall(CI, Construct->getLocation());
return true;
}
bool TraverseStmt(Stmt *Statement) override {
// If this statement is a `requires` clause from the top-level function
// being traversed, ignore it, since it's not generating runtime code.
// We skip the traversal of lambdas (beyond their captures, see
// TraverseLambdaExpr below), so just caching this from our constructor
// should suffice.
if (Statement != TrailingRequiresClause && Statement != NoexceptExpr)
return DynamicRecursiveASTVisitor::TraverseStmt(Statement);
return true;
}
bool TraverseConstructorInitializer(CXXCtorInitializer *Init) override {
ViolationSite PrevVS = VSite;
if (Init->isAnyMemberInitializer())
VSite.setKind(ViolationSite::Kind::MemberInitializer);
bool Result =
DynamicRecursiveASTVisitor::TraverseConstructorInitializer(Init);
VSite = PrevVS;
return Result;
}
bool TraverseCXXDefaultArgExpr(CXXDefaultArgExpr *E) override {
LLVM_DEBUG(llvm::dbgs()
<< "TraverseCXXDefaultArgExpr : "
<< E->getUsedLocation().printToString(Outer.S.SourceMgr)
<< "\n";);
ViolationSite PrevVS = VSite;
if (VSite.kind() == ViolationSite::Kind::Default)
VSite = ViolationSite{E};
bool Result = DynamicRecursiveASTVisitor::TraverseCXXDefaultArgExpr(E);
VSite = PrevVS;
return Result;
}
bool TraverseLambdaExpr(LambdaExpr *Lambda) override {
// We override this so as to be able to skip traversal of the lambda's
// body. We have to explicitly traverse the captures. Why not return
// false from shouldVisitLambdaBody()? Because we need to visit a lambda's
// body when we are verifying the lambda itself; we only want to skip it
// in the context of the outer function.
for (unsigned I = 0, N = Lambda->capture_size(); I < N; ++I)
TraverseLambdaCapture(Lambda, Lambda->capture_begin() + I,
Lambda->capture_init_begin()[I]);
return true;
}
bool TraverseBlockExpr(BlockExpr * /*unused*/) override {
// As with lambdas, don't traverse the block's body.
// TODO: are the capture expressions (ctor call?) safe?
return true;
}
bool VisitDeclRefExpr(DeclRefExpr *E) override {
const ValueDecl *Val = E->getDecl();
if (const auto *Var = dyn_cast<VarDecl>(Val)) {
if (Var->getTLSKind() != VarDecl::TLS_None) {
// At least on macOS, thread-local variables are initialized on
// first access, including a heap allocation.
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeThreadLocalVars,
ViolationID::AccessesThreadLocalVariable,
E->getLocation());
}
}
return true;
}
bool TraverseGenericSelectionExpr(GenericSelectionExpr *Node) override {
return TraverseStmt(Node->getResultExpr());
}
bool
TraverseUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *Node) override {
return true;
}
bool TraverseTypeOfExprTypeLoc(TypeOfExprTypeLoc Node) override {
return true;
}
bool TraverseDecltypeTypeLoc(DecltypeTypeLoc Node) override { return true; }
bool TraverseCXXNoexceptExpr(CXXNoexceptExpr *Node) override {
return true;
}
bool TraverseCXXTypeidExpr(CXXTypeidExpr *Node) override { return true; }
// Skip concept requirements since they don't generate code.
bool TraverseConceptRequirement(concepts::Requirement *R) override {
return true;
}
};
};
Analyzer::AnalysisMap::~AnalysisMap() {
for (const auto &Item : *this) {
FuncAnalysisPtr AP = Item.second;
if (auto *PFA = dyn_cast<PendingFunctionAnalysis *>(AP))
delete PFA;
else
delete cast<CompleteFunctionAnalysis *>(AP);
}
}
} // anonymous namespace
namespace clang {
bool Sema::diagnoseConflictingFunctionEffect(
const FunctionEffectsRef &FX, const FunctionEffectWithCondition &NewEC,
SourceLocation NewAttrLoc) {
// If the new effect has a condition, we can't detect conflicts until the
// condition is resolved.
if (NewEC.Cond.getCondition() != nullptr)
return false;
// Diagnose the new attribute as incompatible with a previous one.
auto Incompatible = [&](const FunctionEffectWithCondition &PrevEC) {
Diag(NewAttrLoc, diag::err_attributes_are_not_compatible)
<< ("'" + NewEC.description() + "'")
<< ("'" + PrevEC.description() + "'") << false;
// We don't necessarily have the location of the previous attribute,
// so no note.
return true;
};
// Compare against previous attributes.
FunctionEffect::Kind NewKind = NewEC.Effect.kind();
for (const FunctionEffectWithCondition &PrevEC : FX) {
// Again, can't check yet when the effect is conditional.
if (PrevEC.Cond.getCondition() != nullptr)
continue;
FunctionEffect::Kind PrevKind = PrevEC.Effect.kind();
// Note that we allow PrevKind == NewKind; it's redundant and ignored.
if (PrevEC.Effect.oppositeKind() == NewKind)
return Incompatible(PrevEC);
// A new allocating is incompatible with a previous nonblocking.
if (PrevKind == FunctionEffect::Kind::NonBlocking &&
NewKind == FunctionEffect::Kind::Allocating)
return Incompatible(PrevEC);
// A new nonblocking is incompatible with a previous allocating.
if (PrevKind == FunctionEffect::Kind::Allocating &&
NewKind == FunctionEffect::Kind::NonBlocking)
return Incompatible(PrevEC);
}
return false;
}
void Sema::diagnoseFunctionEffectMergeConflicts(
const FunctionEffectSet::Conflicts &Errs, SourceLocation NewLoc,
SourceLocation OldLoc) {
for (const FunctionEffectSet::Conflict &Conflict : Errs) {
Diag(NewLoc, diag::warn_conflicting_func_effects)
<< Conflict.Kept.description() << Conflict.Rejected.description();
Diag(OldLoc, diag::note_previous_declaration);
}
}
// Decl should be a FunctionDecl or BlockDecl.
void Sema::maybeAddDeclWithEffects(const Decl *D,
const FunctionEffectsRef &FX) {
if (!D->hasBody()) {
if (const auto *FD = D->getAsFunction(); FD && !FD->willHaveBody())
return;
}
if (Diags.getIgnoreAllWarnings() ||
(Diags.getSuppressSystemWarnings() &&
SourceMgr.isInSystemHeader(D->getLocation())))
return;
if (hasUncompilableErrorOccurred())
return;
// For code in dependent contexts, we'll do this at instantiation time.
// Without this check, we would analyze the function based on placeholder
// template parameters, and potentially generate spurious diagnostics.
if (cast<DeclContext>(D)->isDependentContext())
return;
addDeclWithEffects(D, FX);
}
void Sema::addDeclWithEffects(const Decl *D, const FunctionEffectsRef &FX) {
// To avoid the possibility of conflict, don't add effects which are
// not FE_InferrableOnCallees and therefore not verified; this removes
// blocking/allocating but keeps nonblocking/nonallocating.
// Also, ignore any conditions when building the list of effects.
bool AnyVerifiable = false;
for (const FunctionEffectWithCondition &EC : FX)
if (EC.Effect.flags() & FunctionEffect::FE_InferrableOnCallees) {
AllEffectsToVerify.insert(EC.Effect);
AnyVerifiable = true;
}
// Record the declaration for later analysis.
if (AnyVerifiable)
DeclsWithEffectsToVerify.push_back(D);
}
void Sema::performFunctionEffectAnalysis(TranslationUnitDecl *TU) {
if (hasUncompilableErrorOccurred() || Diags.getIgnoreAllWarnings())
return;
if (TU == nullptr)
return;
Analyzer{*this}.run(*TU);
}
Sema::FunctionEffectDiffVector::FunctionEffectDiffVector(
const FunctionEffectsRef &Old, const FunctionEffectsRef &New) {
FunctionEffectsRef::iterator POld = Old.begin();
FunctionEffectsRef::iterator OldEnd = Old.end();
FunctionEffectsRef::iterator PNew = New.begin();
FunctionEffectsRef::iterator NewEnd = New.end();
while (true) {
int cmp = 0;
if (POld == OldEnd) {
if (PNew == NewEnd)
break;
cmp = 1;
} else if (PNew == NewEnd)
cmp = -1;
else {
FunctionEffectWithCondition Old = *POld;
FunctionEffectWithCondition New = *PNew;
if (Old.Effect.kind() < New.Effect.kind())
cmp = -1;
else if (New.Effect.kind() < Old.Effect.kind())
cmp = 1;
else {
cmp = 0;
if (Old.Cond.getCondition() != New.Cond.getCondition()) {
// FIXME: Cases where the expressions are equivalent but
// don't have the same identity.
push_back(FunctionEffectDiff{
Old.Effect.kind(), FunctionEffectDiff::Kind::ConditionMismatch,
Old, New});
}
}
}
if (cmp < 0) {
// removal
FunctionEffectWithCondition Old = *POld;
push_back(FunctionEffectDiff{Old.Effect.kind(),
FunctionEffectDiff::Kind::Removed, Old,
std::nullopt});
++POld;
} else if (cmp > 0) {
// addition
FunctionEffectWithCondition New = *PNew;
push_back(FunctionEffectDiff{New.Effect.kind(),
FunctionEffectDiff::Kind::Added,
std::nullopt, New});
++PNew;
} else {
++POld;
++PNew;
}
}
}
bool Sema::FunctionEffectDiff::shouldDiagnoseConversion(
QualType SrcType, const FunctionEffectsRef &SrcFX, QualType DstType,
const FunctionEffectsRef &DstFX) const {
switch (EffectKind) {
case FunctionEffect::Kind::NonAllocating:
// nonallocating can't be added (spoofed) during a conversion, unless we
// have nonblocking.
if (DiffKind == Kind::Added) {
for (const auto &CFE : SrcFX) {
if (CFE.Effect.kind() == FunctionEffect::Kind::NonBlocking)
return false;
}
}
[[fallthrough]];
case FunctionEffect::Kind::NonBlocking:
// nonblocking can't be added (spoofed) during a conversion.
switch (DiffKind) {
case Kind::Added:
return true;
case Kind::Removed:
return false;
case Kind::ConditionMismatch:
// FIXME: Condition mismatches are too coarse right now -- expressions
// which are equivalent but don't have the same identity are detected as
// mismatches. We're going to diagnose those anyhow until expression
// matching is better.
return true;
}
break;
case FunctionEffect::Kind::Blocking:
case FunctionEffect::Kind::Allocating:
return false;
}
llvm_unreachable("unknown effect kind");
}
bool Sema::FunctionEffectDiff::shouldDiagnoseRedeclaration(
const FunctionDecl &OldFunction, const FunctionEffectsRef &OldFX,
const FunctionDecl &NewFunction, const FunctionEffectsRef &NewFX) const {
switch (EffectKind) {
case FunctionEffect::Kind::NonAllocating:
case FunctionEffect::Kind::NonBlocking:
// nonblocking/nonallocating can't be removed in a redeclaration.
switch (DiffKind) {
case Kind::Added:
return false; // No diagnostic.
case Kind::Removed:
return true; // Issue diagnostic.
case Kind::ConditionMismatch:
// All these forms of mismatches are diagnosed.
return true;
}
break;
case FunctionEffect::Kind::Blocking:
case FunctionEffect::Kind::Allocating:
return false;
}
llvm_unreachable("unknown effect kind");
}
Sema::FunctionEffectDiff::OverrideResult
Sema::FunctionEffectDiff::shouldDiagnoseMethodOverride(
const CXXMethodDecl &OldMethod, const FunctionEffectsRef &OldFX,
const CXXMethodDecl &NewMethod, const FunctionEffectsRef &NewFX) const {
switch (EffectKind) {
case FunctionEffect::Kind::NonAllocating:
case FunctionEffect::Kind::NonBlocking:
switch (DiffKind) {
// If added on an override, that's fine and not diagnosed.
case Kind::Added:
return OverrideResult::NoAction;
// If missing from an override (removed), propagate from base to derived.
case Kind::Removed:
return OverrideResult::Merge;
// If there's a mismatch involving the effect's polarity or condition,
// issue a warning.
case Kind::ConditionMismatch:
return OverrideResult::Warn;
}
break;
case FunctionEffect::Kind::Blocking:
case FunctionEffect::Kind::Allocating:
return OverrideResult::NoAction;
}
llvm_unreachable("unknown effect kind");
}
} // namespace clang