mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-14 18:56:31 +00:00

This relands https://github.com/llvm/llvm-project/pull/135119, after fixing crashes seen in LLDB CI reported here: https://github.com/llvm/llvm-project/pull/135119#issuecomment-2794910840 Fixes https://github.com/llvm/llvm-project/pull/135119 This changes the TemplateArgument representation to hold a flag indicating whether a tempalte argument of expression type is supposed to be canonical or not. This gets one step closer to solving https://github.com/llvm/llvm-project/issues/92292 This still doesn't try to unique as-written TSTs. While this would increase the amount of memory savings and make code dealing with the AST more well-behaved, profiling template argument lists is still too expensive for this to be worthwhile, at least for now. This also fixes the context creation of TSTs, so that they don't in some cases get incorrectly flagged as sugar over their own canonical form. This is captured in the test expectation change of some AST dumps. This fixes some places which were unnecessarily canonicalizing these TSTs.
7176 lines
294 KiB
C++
7176 lines
294 KiB
C++
//===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements C++ template argument deduction.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TreeTransform.h"
|
|
#include "TypeLocBuilder.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclAccessPair.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/DynamicRecursiveASTVisitor.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/TemplateBase.h"
|
|
#include "clang/AST/TemplateName.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeOrdering.h"
|
|
#include "clang/AST/UnresolvedSet.h"
|
|
#include "clang/Basic/AddressSpaces.h"
|
|
#include "clang/Basic/ExceptionSpecificationType.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Sema/EnterExpressionEvaluationContext.h"
|
|
#include "clang/Sema/Ownership.h"
|
|
#include "clang/Sema/Sema.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <optional>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
namespace clang {
|
|
|
|
/// Various flags that control template argument deduction.
|
|
///
|
|
/// These flags can be bitwise-OR'd together.
|
|
enum TemplateDeductionFlags {
|
|
/// No template argument deduction flags, which indicates the
|
|
/// strictest results for template argument deduction (as used for, e.g.,
|
|
/// matching class template partial specializations).
|
|
TDF_None = 0,
|
|
|
|
/// Within template argument deduction from a function call, we are
|
|
/// matching with a parameter type for which the original parameter was
|
|
/// a reference.
|
|
TDF_ParamWithReferenceType = 0x1,
|
|
|
|
/// Within template argument deduction from a function call, we
|
|
/// are matching in a case where we ignore cv-qualifiers.
|
|
TDF_IgnoreQualifiers = 0x02,
|
|
|
|
/// Within template argument deduction from a function call,
|
|
/// we are matching in a case where we can perform template argument
|
|
/// deduction from a template-id of a derived class of the argument type.
|
|
TDF_DerivedClass = 0x04,
|
|
|
|
/// Allow non-dependent types to differ, e.g., when performing
|
|
/// template argument deduction from a function call where conversions
|
|
/// may apply.
|
|
TDF_SkipNonDependent = 0x08,
|
|
|
|
/// Whether we are performing template argument deduction for
|
|
/// parameters and arguments in a top-level template argument
|
|
TDF_TopLevelParameterTypeList = 0x10,
|
|
|
|
/// Within template argument deduction from overload resolution per
|
|
/// C++ [over.over] allow matching function types that are compatible in
|
|
/// terms of noreturn and default calling convention adjustments, or
|
|
/// similarly matching a declared template specialization against a
|
|
/// possible template, per C++ [temp.deduct.decl]. In either case, permit
|
|
/// deduction where the parameter is a function type that can be converted
|
|
/// to the argument type.
|
|
TDF_AllowCompatibleFunctionType = 0x20,
|
|
|
|
/// Within template argument deduction for a conversion function, we are
|
|
/// matching with an argument type for which the original argument was
|
|
/// a reference.
|
|
TDF_ArgWithReferenceType = 0x40,
|
|
};
|
|
}
|
|
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
/// Compare two APSInts, extending and switching the sign as
|
|
/// necessary to compare their values regardless of underlying type.
|
|
static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
|
|
if (Y.getBitWidth() > X.getBitWidth())
|
|
X = X.extend(Y.getBitWidth());
|
|
else if (Y.getBitWidth() < X.getBitWidth())
|
|
Y = Y.extend(X.getBitWidth());
|
|
|
|
// If there is a signedness mismatch, correct it.
|
|
if (X.isSigned() != Y.isSigned()) {
|
|
// If the signed value is negative, then the values cannot be the same.
|
|
if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
|
|
return false;
|
|
|
|
Y.setIsSigned(true);
|
|
X.setIsSigned(true);
|
|
}
|
|
|
|
return X == Y;
|
|
}
|
|
|
|
/// The kind of PartialOrdering we're performing template argument deduction
|
|
/// for (C++11 [temp.deduct.partial]).
|
|
enum class PartialOrderingKind { None, NonCall, Call };
|
|
|
|
static TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch(
|
|
Sema &S, TemplateParameterList *TemplateParams, QualType Param,
|
|
QualType Arg, TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
|
|
PartialOrderingKind POK, bool DeducedFromArrayBound,
|
|
bool *HasDeducedAnyParam);
|
|
|
|
/// What directions packs are allowed to match non-packs.
|
|
enum class PackFold { ParameterToArgument, ArgumentToParameter, Both };
|
|
|
|
static TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
|
|
ArrayRef<TemplateArgument> Ps,
|
|
ArrayRef<TemplateArgument> As,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool NumberOfArgumentsMustMatch, bool PartialOrdering,
|
|
PackFold PackFold, bool *HasDeducedAnyParam);
|
|
|
|
static void MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
const TemplateArgument &TemplateArg,
|
|
bool OnlyDeduced, unsigned Depth,
|
|
llvm::SmallBitVector &Used);
|
|
|
|
static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
|
|
bool OnlyDeduced, unsigned Level,
|
|
llvm::SmallBitVector &Deduced);
|
|
|
|
/// If the given expression is of a form that permits the deduction
|
|
/// of a non-type template parameter, return the declaration of that
|
|
/// non-type template parameter.
|
|
static const NonTypeTemplateParmDecl *
|
|
getDeducedParameterFromExpr(const Expr *E, unsigned Depth) {
|
|
// If we are within an alias template, the expression may have undergone
|
|
// any number of parameter substitutions already.
|
|
while (true) {
|
|
if (const auto *IC = dyn_cast<ImplicitCastExpr>(E))
|
|
E = IC->getSubExpr();
|
|
else if (const auto *CE = dyn_cast<ConstantExpr>(E))
|
|
E = CE->getSubExpr();
|
|
else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
|
|
E = Subst->getReplacement();
|
|
else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) {
|
|
// Look through implicit copy construction from an lvalue of the same type.
|
|
if (CCE->getParenOrBraceRange().isValid())
|
|
break;
|
|
// Note, there could be default arguments.
|
|
assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg");
|
|
E = CCE->getArg(0);
|
|
} else
|
|
break;
|
|
}
|
|
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
|
|
if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
|
|
if (NTTP->getDepth() == Depth)
|
|
return NTTP;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static const NonTypeTemplateParmDecl *
|
|
getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) {
|
|
return getDeducedParameterFromExpr(E, Info.getDeducedDepth());
|
|
}
|
|
|
|
/// Determine whether two declaration pointers refer to the same
|
|
/// declaration.
|
|
static bool isSameDeclaration(Decl *X, Decl *Y) {
|
|
if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
|
|
X = NX->getUnderlyingDecl();
|
|
if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
|
|
Y = NY->getUnderlyingDecl();
|
|
|
|
return X->getCanonicalDecl() == Y->getCanonicalDecl();
|
|
}
|
|
|
|
/// Verify that the given, deduced template arguments are compatible.
|
|
///
|
|
/// \returns The deduced template argument, or a NULL template argument if
|
|
/// the deduced template arguments were incompatible.
|
|
static DeducedTemplateArgument
|
|
checkDeducedTemplateArguments(ASTContext &Context,
|
|
const DeducedTemplateArgument &X,
|
|
const DeducedTemplateArgument &Y,
|
|
bool AggregateCandidateDeduction = false) {
|
|
// We have no deduction for one or both of the arguments; they're compatible.
|
|
if (X.isNull())
|
|
return Y;
|
|
if (Y.isNull())
|
|
return X;
|
|
|
|
// If we have two non-type template argument values deduced for the same
|
|
// parameter, they must both match the type of the parameter, and thus must
|
|
// match each other's type. As we're only keeping one of them, we must check
|
|
// for that now. The exception is that if either was deduced from an array
|
|
// bound, the type is permitted to differ.
|
|
if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
|
|
QualType XType = X.getNonTypeTemplateArgumentType();
|
|
if (!XType.isNull()) {
|
|
QualType YType = Y.getNonTypeTemplateArgumentType();
|
|
if (YType.isNull() || !Context.hasSameType(XType, YType))
|
|
return DeducedTemplateArgument();
|
|
}
|
|
}
|
|
|
|
switch (X.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Non-deduced template arguments handled above");
|
|
|
|
case TemplateArgument::Type: {
|
|
// If two template type arguments have the same type, they're compatible.
|
|
QualType TX = X.getAsType(), TY = Y.getAsType();
|
|
if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(TX, TY))
|
|
return DeducedTemplateArgument(Context.getCommonSugaredType(TX, TY),
|
|
X.wasDeducedFromArrayBound() ||
|
|
Y.wasDeducedFromArrayBound());
|
|
|
|
// If one of the two arguments was deduced from an array bound, the other
|
|
// supersedes it.
|
|
if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
|
|
return X.wasDeducedFromArrayBound() ? Y : X;
|
|
|
|
// The arguments are not compatible.
|
|
return DeducedTemplateArgument();
|
|
}
|
|
|
|
case TemplateArgument::Integral:
|
|
// If we deduced a constant in one case and either a dependent expression or
|
|
// declaration in another case, keep the integral constant.
|
|
// If both are integral constants with the same value, keep that value.
|
|
if (Y.getKind() == TemplateArgument::Expression ||
|
|
Y.getKind() == TemplateArgument::Declaration ||
|
|
(Y.getKind() == TemplateArgument::Integral &&
|
|
hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
|
|
return X.wasDeducedFromArrayBound() ? Y : X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::StructuralValue:
|
|
// If we deduced a value and a dependent expression, keep the value.
|
|
if (Y.getKind() == TemplateArgument::Expression ||
|
|
(Y.getKind() == TemplateArgument::StructuralValue &&
|
|
X.structurallyEquals(Y)))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Template:
|
|
if (Y.getKind() == TemplateArgument::Template &&
|
|
Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::TemplateExpansion:
|
|
if (Y.getKind() == TemplateArgument::TemplateExpansion &&
|
|
Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
|
|
Y.getAsTemplateOrTemplatePattern()))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Expression: {
|
|
if (Y.getKind() != TemplateArgument::Expression)
|
|
return checkDeducedTemplateArguments(Context, Y, X);
|
|
|
|
// Compare the expressions for equality
|
|
llvm::FoldingSetNodeID ID1, ID2;
|
|
X.getAsExpr()->Profile(ID1, Context, true);
|
|
Y.getAsExpr()->Profile(ID2, Context, true);
|
|
if (ID1 == ID2)
|
|
return X.wasDeducedFromArrayBound() ? Y : X;
|
|
|
|
// Differing dependent expressions are incompatible.
|
|
return DeducedTemplateArgument();
|
|
}
|
|
|
|
case TemplateArgument::Declaration:
|
|
assert(!X.wasDeducedFromArrayBound());
|
|
|
|
// If we deduced a declaration and a dependent expression, keep the
|
|
// declaration.
|
|
if (Y.getKind() == TemplateArgument::Expression)
|
|
return X;
|
|
|
|
// If we deduced a declaration and an integral constant, keep the
|
|
// integral constant and whichever type did not come from an array
|
|
// bound.
|
|
if (Y.getKind() == TemplateArgument::Integral) {
|
|
if (Y.wasDeducedFromArrayBound())
|
|
return TemplateArgument(Context, Y.getAsIntegral(),
|
|
X.getParamTypeForDecl());
|
|
return Y;
|
|
}
|
|
|
|
// If we deduced two declarations, make sure that they refer to the
|
|
// same declaration.
|
|
if (Y.getKind() == TemplateArgument::Declaration &&
|
|
isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::NullPtr:
|
|
// If we deduced a null pointer and a dependent expression, keep the
|
|
// null pointer.
|
|
if (Y.getKind() == TemplateArgument::Expression)
|
|
return TemplateArgument(Context.getCommonSugaredType(
|
|
X.getNullPtrType(), Y.getAsExpr()->getType()),
|
|
true);
|
|
|
|
// If we deduced a null pointer and an integral constant, keep the
|
|
// integral constant.
|
|
if (Y.getKind() == TemplateArgument::Integral)
|
|
return Y;
|
|
|
|
// If we deduced two null pointers, they are the same.
|
|
if (Y.getKind() == TemplateArgument::NullPtr)
|
|
return TemplateArgument(
|
|
Context.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()),
|
|
true);
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Pack: {
|
|
if (Y.getKind() != TemplateArgument::Pack ||
|
|
(!AggregateCandidateDeduction && X.pack_size() != Y.pack_size()))
|
|
return DeducedTemplateArgument();
|
|
|
|
llvm::SmallVector<TemplateArgument, 8> NewPack;
|
|
for (TemplateArgument::pack_iterator
|
|
XA = X.pack_begin(),
|
|
XAEnd = X.pack_end(), YA = Y.pack_begin(), YAEnd = Y.pack_end();
|
|
XA != XAEnd; ++XA) {
|
|
if (YA != YAEnd) {
|
|
TemplateArgument Merged = checkDeducedTemplateArguments(
|
|
Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
|
|
DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()));
|
|
if (Merged.isNull() && !(XA->isNull() && YA->isNull()))
|
|
return DeducedTemplateArgument();
|
|
NewPack.push_back(Merged);
|
|
++YA;
|
|
} else {
|
|
NewPack.push_back(*XA);
|
|
}
|
|
}
|
|
|
|
return DeducedTemplateArgument(
|
|
TemplateArgument::CreatePackCopy(Context, NewPack),
|
|
X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
/// Deduce the value of the given non-type template parameter
|
|
/// as the given deduced template argument. All non-type template parameter
|
|
/// deduction is funneled through here.
|
|
static TemplateDeductionResult
|
|
DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams,
|
|
const NonTypeTemplateParmDecl *NTTP,
|
|
const DeducedTemplateArgument &NewDeduced,
|
|
QualType ValueType, TemplateDeductionInfo &Info,
|
|
bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
assert(NTTP->getDepth() == Info.getDeducedDepth() &&
|
|
"deducing non-type template argument with wrong depth");
|
|
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(
|
|
S.Context, Deduced[NTTP->getIndex()], NewDeduced);
|
|
if (Result.isNull()) {
|
|
Info.Param = const_cast<NonTypeTemplateParmDecl*>(NTTP);
|
|
Info.FirstArg = Deduced[NTTP->getIndex()];
|
|
Info.SecondArg = NewDeduced;
|
|
return TemplateDeductionResult::Inconsistent;
|
|
}
|
|
|
|
Deduced[NTTP->getIndex()] = Result;
|
|
if (!S.getLangOpts().CPlusPlus17)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
if (NTTP->isExpandedParameterPack())
|
|
// FIXME: We may still need to deduce parts of the type here! But we
|
|
// don't have any way to find which slice of the type to use, and the
|
|
// type stored on the NTTP itself is nonsense. Perhaps the type of an
|
|
// expanded NTTP should be a pack expansion type?
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Get the type of the parameter for deduction. If it's a (dependent) array
|
|
// or function type, we will not have decayed it yet, so do that now.
|
|
QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType());
|
|
if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
|
|
ParamType = Expansion->getPattern();
|
|
|
|
// FIXME: It's not clear how deduction of a parameter of reference
|
|
// type from an argument (of non-reference type) should be performed.
|
|
// For now, we just make the argument have same reference type as the
|
|
// parameter.
|
|
if (ParamType->isReferenceType() && !ValueType->isReferenceType()) {
|
|
if (ParamType->isRValueReferenceType())
|
|
ValueType = S.Context.getRValueReferenceType(ValueType);
|
|
else
|
|
ValueType = S.Context.getLValueReferenceType(ValueType);
|
|
}
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ParamType, ValueType, Info, Deduced,
|
|
TDF_SkipNonDependent | TDF_IgnoreQualifiers,
|
|
PartialOrdering ? PartialOrderingKind::NonCall
|
|
: PartialOrderingKind::None,
|
|
/*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound(), HasDeducedAnyParam);
|
|
}
|
|
|
|
/// Deduce the value of the given non-type template parameter
|
|
/// from the given integral constant.
|
|
static TemplateDeductionResult DeduceNonTypeTemplateArgument(
|
|
Sema &S, TemplateParameterList *TemplateParams,
|
|
const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value,
|
|
QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
|
|
bool PartialOrdering, SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP,
|
|
DeducedTemplateArgument(S.Context, Value, ValueType,
|
|
DeducedFromArrayBound),
|
|
ValueType, Info, PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
/// Deduce the value of the given non-type template parameter
|
|
/// from the given null pointer template argument type.
|
|
static TemplateDeductionResult
|
|
DeduceNullPtrTemplateArgument(Sema &S, TemplateParameterList *TemplateParams,
|
|
const NonTypeTemplateParmDecl *NTTP,
|
|
QualType NullPtrType, TemplateDeductionInfo &Info,
|
|
bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
Expr *Value = S.ImpCastExprToType(
|
|
new (S.Context) CXXNullPtrLiteralExpr(S.Context.NullPtrTy,
|
|
NTTP->getLocation()),
|
|
NullPtrType,
|
|
NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer
|
|
: CK_NullToPointer)
|
|
.get();
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, TemplateArgument(Value, /*IsCanonical=*/false),
|
|
Value->getType(), Info, PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
/// Deduce the value of the given non-type template parameter
|
|
/// from the given type- or value-dependent expression.
|
|
///
|
|
/// \returns true if deduction succeeded, false otherwise.
|
|
static TemplateDeductionResult
|
|
DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams,
|
|
const NonTypeTemplateParmDecl *NTTP, Expr *Value,
|
|
TemplateDeductionInfo &Info, bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, TemplateArgument(Value, /*IsCanonical=*/false),
|
|
Value->getType(), Info, PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
/// Deduce the value of the given non-type template parameter
|
|
/// from the given declaration.
|
|
///
|
|
/// \returns true if deduction succeeded, false otherwise.
|
|
static TemplateDeductionResult
|
|
DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams,
|
|
const NonTypeTemplateParmDecl *NTTP, ValueDecl *D,
|
|
QualType T, TemplateDeductionInfo &Info,
|
|
bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
TemplateArgument New(D, T);
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info,
|
|
PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
static TemplateDeductionResult DeduceTemplateArguments(
|
|
Sema &S, TemplateParameterList *TemplateParams, TemplateName Param,
|
|
TemplateName Arg, TemplateDeductionInfo &Info,
|
|
ArrayRef<TemplateArgument> DefaultArguments, bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
|
|
if (!ParamDecl) {
|
|
// The parameter type is dependent and is not a template template parameter,
|
|
// so there is nothing that we can deduce.
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
if (auto *TempParam = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
|
|
// If we're not deducing at this depth, there's nothing to deduce.
|
|
if (TempParam->getDepth() != Info.getDeducedDepth())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
ArrayRef<NamedDecl *> Params =
|
|
ParamDecl->getTemplateParameters()->asArray();
|
|
unsigned StartPos = 0;
|
|
for (unsigned I = 0, E = std::min(Params.size(), DefaultArguments.size());
|
|
I < E; ++I) {
|
|
if (Params[I]->isParameterPack()) {
|
|
StartPos = DefaultArguments.size();
|
|
break;
|
|
}
|
|
StartPos = I + 1;
|
|
}
|
|
|
|
// Provisional resolution for CWG2398: If Arg names a template
|
|
// specialization, then we deduce a synthesized template name
|
|
// based on A, but using the TS's extra arguments, relative to P, as
|
|
// defaults.
|
|
DeducedTemplateArgument NewDeduced =
|
|
PartialOrdering
|
|
? TemplateArgument(S.Context.getDeducedTemplateName(
|
|
Arg, {StartPos, DefaultArguments.drop_front(StartPos)}))
|
|
: Arg;
|
|
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(
|
|
S.Context, Deduced[TempParam->getIndex()], NewDeduced);
|
|
if (Result.isNull()) {
|
|
Info.Param = TempParam;
|
|
Info.FirstArg = Deduced[TempParam->getIndex()];
|
|
Info.SecondArg = NewDeduced;
|
|
return TemplateDeductionResult::Inconsistent;
|
|
}
|
|
|
|
Deduced[TempParam->getIndex()] = Result;
|
|
if (HasDeducedAnyParam)
|
|
*HasDeducedAnyParam = true;
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Verify that the two template names are equivalent.
|
|
if (S.Context.hasSameTemplateName(
|
|
Param, Arg, /*IgnoreDeduced=*/DefaultArguments.size() != 0))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Mismatch of non-dependent template parameter to argument.
|
|
Info.FirstArg = TemplateArgument(Param);
|
|
Info.SecondArg = TemplateArgument(Arg);
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
/// Deduce the template arguments by comparing the template parameter
|
|
/// type (which is a template-id) with the template argument type.
|
|
///
|
|
/// \param S the Sema
|
|
///
|
|
/// \param TemplateParams the template parameters that we are deducing
|
|
///
|
|
/// \param P the parameter type
|
|
///
|
|
/// \param A the argument type
|
|
///
|
|
/// \param Info information about the template argument deduction itself
|
|
///
|
|
/// \param Deduced the deduced template arguments
|
|
///
|
|
/// \returns the result of template argument deduction so far. Note that a
|
|
/// "success" result means that template argument deduction has not yet failed,
|
|
/// but it may still fail, later, for other reasons.
|
|
|
|
static const TemplateSpecializationType *getLastTemplateSpecType(QualType QT) {
|
|
const TemplateSpecializationType *LastTST = nullptr;
|
|
for (const Type *T = QT.getTypePtr(); /**/; /**/) {
|
|
const TemplateSpecializationType *TST =
|
|
T->getAs<TemplateSpecializationType>();
|
|
if (!TST)
|
|
return LastTST;
|
|
if (!TST->isSugared())
|
|
return TST;
|
|
LastTST = TST;
|
|
T = TST->desugar().getTypePtr();
|
|
}
|
|
}
|
|
|
|
static TemplateDeductionResult
|
|
DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams,
|
|
const QualType P, QualType A,
|
|
TemplateDeductionInfo &Info, bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
QualType UP = P;
|
|
if (const auto *IP = P->getAs<InjectedClassNameType>())
|
|
UP = IP->getInjectedSpecializationType();
|
|
|
|
assert(isa<TemplateSpecializationType>(UP.getCanonicalType()));
|
|
const TemplateSpecializationType *TP = ::getLastTemplateSpecType(UP);
|
|
TemplateName TNP = TP->getTemplateName();
|
|
|
|
// If the parameter is an alias template, there is nothing to deduce.
|
|
if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// FIXME: To preserve sugar, the TST needs to carry sugared resolved
|
|
// arguments.
|
|
ArrayRef<TemplateArgument> PResolved =
|
|
TP->getCanonicalTypeInternal()
|
|
->castAs<TemplateSpecializationType>()
|
|
->template_arguments();
|
|
|
|
QualType UA = A;
|
|
std::optional<NestedNameSpecifier *> NNS;
|
|
// Treat an injected-class-name as its underlying template-id.
|
|
if (const auto *Elaborated = A->getAs<ElaboratedType>()) {
|
|
NNS = Elaborated->getQualifier();
|
|
} else if (const auto *Injected = A->getAs<InjectedClassNameType>()) {
|
|
UA = Injected->getInjectedSpecializationType();
|
|
NNS = nullptr;
|
|
}
|
|
|
|
// Check whether the template argument is a dependent template-id.
|
|
if (isa<TemplateSpecializationType>(UA.getCanonicalType())) {
|
|
const TemplateSpecializationType *SA = ::getLastTemplateSpecType(UA);
|
|
TemplateName TNA = SA->getTemplateName();
|
|
|
|
// If the argument is an alias template, there is nothing to deduce.
|
|
if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// FIXME: To preserve sugar, the TST needs to carry sugared resolved
|
|
// arguments.
|
|
ArrayRef<TemplateArgument> AResolved =
|
|
SA->getCanonicalTypeInternal()
|
|
->castAs<TemplateSpecializationType>()
|
|
->template_arguments();
|
|
|
|
// Perform template argument deduction for the template name.
|
|
if (auto Result = DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info,
|
|
/*DefaultArguments=*/AResolved,
|
|
PartialOrdering, Deduced,
|
|
HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform template argument deduction on each template
|
|
// argument. Ignore any missing/extra arguments, since they could be
|
|
// filled in by default arguments.
|
|
return DeduceTemplateArguments(
|
|
S, TemplateParams, PResolved, AResolved, Info, Deduced,
|
|
/*NumberOfArgumentsMustMatch=*/false, PartialOrdering,
|
|
PackFold::ParameterToArgument, HasDeducedAnyParam);
|
|
}
|
|
|
|
// If the argument type is a class template specialization, we
|
|
// perform template argument deduction using its template
|
|
// arguments.
|
|
const auto *RA = UA->getAs<RecordType>();
|
|
const auto *SA =
|
|
RA ? dyn_cast<ClassTemplateSpecializationDecl>(RA->getDecl()) : nullptr;
|
|
if (!SA) {
|
|
Info.FirstArg = TemplateArgument(P);
|
|
Info.SecondArg = TemplateArgument(A);
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
TemplateName TNA = TemplateName(SA->getSpecializedTemplate());
|
|
if (NNS)
|
|
TNA = S.Context.getQualifiedTemplateName(
|
|
*NNS, false, TemplateName(SA->getSpecializedTemplate()));
|
|
|
|
// Perform template argument deduction for the template name.
|
|
if (auto Result = DeduceTemplateArguments(
|
|
S, TemplateParams, TNP, TNA, Info,
|
|
/*DefaultArguments=*/SA->getTemplateArgs().asArray(), PartialOrdering,
|
|
Deduced, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform template argument deduction for the template arguments.
|
|
return DeduceTemplateArguments(S, TemplateParams, PResolved,
|
|
SA->getTemplateArgs().asArray(), Info, Deduced,
|
|
/*NumberOfArgumentsMustMatch=*/true,
|
|
PartialOrdering, PackFold::ParameterToArgument,
|
|
HasDeducedAnyParam);
|
|
}
|
|
|
|
static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T) {
|
|
assert(T->isCanonicalUnqualified());
|
|
|
|
switch (T->getTypeClass()) {
|
|
case Type::TypeOfExpr:
|
|
case Type::TypeOf:
|
|
case Type::DependentName:
|
|
case Type::Decltype:
|
|
case Type::PackIndexing:
|
|
case Type::UnresolvedUsing:
|
|
case Type::TemplateTypeParm:
|
|
case Type::Auto:
|
|
return true;
|
|
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
case Type::DependentSizedArray:
|
|
return IsPossiblyOpaquelyQualifiedTypeInternal(
|
|
cast<ArrayType>(T)->getElementType().getTypePtr());
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Determines whether the given type is an opaque type that
|
|
/// might be more qualified when instantiated.
|
|
static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
|
|
return IsPossiblyOpaquelyQualifiedTypeInternal(
|
|
T->getCanonicalTypeInternal().getTypePtr());
|
|
}
|
|
|
|
/// Helper function to build a TemplateParameter when we don't
|
|
/// know its type statically.
|
|
static TemplateParameter makeTemplateParameter(Decl *D) {
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
|
|
return TemplateParameter(TTP);
|
|
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
|
|
return TemplateParameter(NTTP);
|
|
|
|
return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
|
|
}
|
|
|
|
/// A pack that we're currently deducing.
|
|
struct clang::DeducedPack {
|
|
// The index of the pack.
|
|
unsigned Index;
|
|
|
|
// The old value of the pack before we started deducing it.
|
|
DeducedTemplateArgument Saved;
|
|
|
|
// A deferred value of this pack from an inner deduction, that couldn't be
|
|
// deduced because this deduction hadn't happened yet.
|
|
DeducedTemplateArgument DeferredDeduction;
|
|
|
|
// The new value of the pack.
|
|
SmallVector<DeducedTemplateArgument, 4> New;
|
|
|
|
// The outer deduction for this pack, if any.
|
|
DeducedPack *Outer = nullptr;
|
|
|
|
DeducedPack(unsigned Index) : Index(Index) {}
|
|
};
|
|
|
|
namespace {
|
|
|
|
/// A scope in which we're performing pack deduction.
|
|
class PackDeductionScope {
|
|
public:
|
|
/// Prepare to deduce the packs named within Pattern.
|
|
/// \param FinishingDeduction Don't attempt to deduce the pack. Useful when
|
|
/// just checking a previous deduction of the pack.
|
|
PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info, TemplateArgument Pattern,
|
|
bool DeducePackIfNotAlreadyDeduced = false,
|
|
bool FinishingDeduction = false)
|
|
: S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info),
|
|
DeducePackIfNotAlreadyDeduced(DeducePackIfNotAlreadyDeduced),
|
|
FinishingDeduction(FinishingDeduction) {
|
|
unsigned NumNamedPacks = addPacks(Pattern);
|
|
finishConstruction(NumNamedPacks);
|
|
}
|
|
|
|
/// Prepare to directly deduce arguments of the parameter with index \p Index.
|
|
PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info, unsigned Index)
|
|
: S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
|
|
addPack(Index);
|
|
finishConstruction(1);
|
|
}
|
|
|
|
private:
|
|
void addPack(unsigned Index) {
|
|
// Save the deduced template argument for the parameter pack expanded
|
|
// by this pack expansion, then clear out the deduction.
|
|
DeducedFromEarlierParameter = !Deduced[Index].isNull();
|
|
DeducedPack Pack(Index);
|
|
if (!FinishingDeduction) {
|
|
Pack.Saved = Deduced[Index];
|
|
Deduced[Index] = TemplateArgument();
|
|
}
|
|
|
|
// FIXME: What if we encounter multiple packs with different numbers of
|
|
// pre-expanded expansions? (This should already have been diagnosed
|
|
// during substitution.)
|
|
if (UnsignedOrNone ExpandedPackExpansions =
|
|
getExpandedPackSize(TemplateParams->getParam(Index)))
|
|
FixedNumExpansions = ExpandedPackExpansions;
|
|
|
|
Packs.push_back(Pack);
|
|
}
|
|
|
|
unsigned addPacks(TemplateArgument Pattern) {
|
|
// Compute the set of template parameter indices that correspond to
|
|
// parameter packs expanded by the pack expansion.
|
|
llvm::SmallBitVector SawIndices(TemplateParams->size());
|
|
llvm::SmallVector<TemplateArgument, 4> ExtraDeductions;
|
|
|
|
auto AddPack = [&](unsigned Index) {
|
|
if (SawIndices[Index])
|
|
return;
|
|
SawIndices[Index] = true;
|
|
addPack(Index);
|
|
|
|
// Deducing a parameter pack that is a pack expansion also constrains the
|
|
// packs appearing in that parameter to have the same deduced arity. Also,
|
|
// in C++17 onwards, deducing a non-type template parameter deduces its
|
|
// type, so we need to collect the pending deduced values for those packs.
|
|
if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(
|
|
TemplateParams->getParam(Index))) {
|
|
if (!NTTP->isExpandedParameterPack())
|
|
// FIXME: CWG2982 suggests a type-constraint forms a non-deduced
|
|
// context, however it is not yet resolved.
|
|
if (auto *Expansion = dyn_cast<PackExpansionType>(
|
|
S.Context.getUnconstrainedType(NTTP->getType())))
|
|
ExtraDeductions.push_back(Expansion->getPattern());
|
|
}
|
|
// FIXME: Also collect the unexpanded packs in any type and template
|
|
// parameter packs that are pack expansions.
|
|
};
|
|
|
|
auto Collect = [&](TemplateArgument Pattern) {
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
|
|
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
|
|
unsigned Depth, Index;
|
|
std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
|
|
if (Depth == Info.getDeducedDepth())
|
|
AddPack(Index);
|
|
}
|
|
};
|
|
|
|
// Look for unexpanded packs in the pattern.
|
|
Collect(Pattern);
|
|
assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
|
|
|
|
unsigned NumNamedPacks = Packs.size();
|
|
|
|
// Also look for unexpanded packs that are indirectly deduced by deducing
|
|
// the sizes of the packs in this pattern.
|
|
while (!ExtraDeductions.empty())
|
|
Collect(ExtraDeductions.pop_back_val());
|
|
|
|
return NumNamedPacks;
|
|
}
|
|
|
|
void finishConstruction(unsigned NumNamedPacks) {
|
|
// Dig out the partially-substituted pack, if there is one.
|
|
const TemplateArgument *PartialPackArgs = nullptr;
|
|
unsigned NumPartialPackArgs = 0;
|
|
std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
|
|
if (auto *Scope = S.CurrentInstantiationScope)
|
|
if (auto *Partial = Scope->getPartiallySubstitutedPack(
|
|
&PartialPackArgs, &NumPartialPackArgs))
|
|
PartialPackDepthIndex = getDepthAndIndex(Partial);
|
|
|
|
// This pack expansion will have been partially or fully expanded if
|
|
// it only names explicitly-specified parameter packs (including the
|
|
// partially-substituted one, if any).
|
|
bool IsExpanded = true;
|
|
for (unsigned I = 0; I != NumNamedPacks; ++I) {
|
|
if (Packs[I].Index >= Info.getNumExplicitArgs()) {
|
|
IsExpanded = false;
|
|
IsPartiallyExpanded = false;
|
|
break;
|
|
}
|
|
if (PartialPackDepthIndex ==
|
|
std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
|
|
IsPartiallyExpanded = true;
|
|
}
|
|
}
|
|
|
|
// Skip over the pack elements that were expanded into separate arguments.
|
|
// If we partially expanded, this is the number of partial arguments.
|
|
// FIXME: `&& FixedNumExpansions` is a workaround for UB described in
|
|
// https://github.com/llvm/llvm-project/issues/100095
|
|
if (IsPartiallyExpanded)
|
|
PackElements += NumPartialPackArgs;
|
|
else if (IsExpanded && FixedNumExpansions)
|
|
PackElements += *FixedNumExpansions;
|
|
|
|
for (auto &Pack : Packs) {
|
|
if (Info.PendingDeducedPacks.size() > Pack.Index)
|
|
Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
|
|
else
|
|
Info.PendingDeducedPacks.resize(Pack.Index + 1);
|
|
Info.PendingDeducedPacks[Pack.Index] = &Pack;
|
|
|
|
if (PartialPackDepthIndex ==
|
|
std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
|
|
Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
|
|
// We pre-populate the deduced value of the partially-substituted
|
|
// pack with the specified value. This is not entirely correct: the
|
|
// value is supposed to have been substituted, not deduced, but the
|
|
// cases where this is observable require an exact type match anyway.
|
|
//
|
|
// FIXME: If we could represent a "depth i, index j, pack elem k"
|
|
// parameter, we could substitute the partially-substituted pack
|
|
// everywhere and avoid this.
|
|
if (!FinishingDeduction && !IsPartiallyExpanded)
|
|
Deduced[Pack.Index] = Pack.New[PackElements];
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
~PackDeductionScope() {
|
|
for (auto &Pack : Packs)
|
|
Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
|
|
}
|
|
|
|
// Return the size of the saved packs if all of them has the same size.
|
|
UnsignedOrNone getSavedPackSizeIfAllEqual() const {
|
|
unsigned PackSize = Packs[0].Saved.pack_size();
|
|
|
|
if (std::all_of(Packs.begin() + 1, Packs.end(), [&PackSize](const auto &P) {
|
|
return P.Saved.pack_size() == PackSize;
|
|
}))
|
|
return PackSize;
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Determine whether this pack has already been deduced from a previous
|
|
/// argument.
|
|
bool isDeducedFromEarlierParameter() const {
|
|
return DeducedFromEarlierParameter;
|
|
}
|
|
|
|
/// Determine whether this pack has already been partially expanded into a
|
|
/// sequence of (prior) function parameters / template arguments.
|
|
bool isPartiallyExpanded() { return IsPartiallyExpanded; }
|
|
|
|
/// Determine whether this pack expansion scope has a known, fixed arity.
|
|
/// This happens if it involves a pack from an outer template that has
|
|
/// (notionally) already been expanded.
|
|
bool hasFixedArity() { return static_cast<bool>(FixedNumExpansions); }
|
|
|
|
/// Determine whether the next element of the argument is still part of this
|
|
/// pack. This is the case unless the pack is already expanded to a fixed
|
|
/// length.
|
|
bool hasNextElement() {
|
|
return !FixedNumExpansions || *FixedNumExpansions > PackElements;
|
|
}
|
|
|
|
/// Move to deducing the next element in each pack that is being deduced.
|
|
void nextPackElement() {
|
|
// Capture the deduced template arguments for each parameter pack expanded
|
|
// by this pack expansion, add them to the list of arguments we've deduced
|
|
// for that pack, then clear out the deduced argument.
|
|
if (!FinishingDeduction) {
|
|
for (auto &Pack : Packs) {
|
|
DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
|
|
if (!Pack.New.empty() || !DeducedArg.isNull()) {
|
|
while (Pack.New.size() < PackElements)
|
|
Pack.New.push_back(DeducedTemplateArgument());
|
|
if (Pack.New.size() == PackElements)
|
|
Pack.New.push_back(DeducedArg);
|
|
else
|
|
Pack.New[PackElements] = DeducedArg;
|
|
DeducedArg = Pack.New.size() > PackElements + 1
|
|
? Pack.New[PackElements + 1]
|
|
: DeducedTemplateArgument();
|
|
}
|
|
}
|
|
}
|
|
++PackElements;
|
|
}
|
|
|
|
/// Finish template argument deduction for a set of argument packs,
|
|
/// producing the argument packs and checking for consistency with prior
|
|
/// deductions.
|
|
TemplateDeductionResult finish() {
|
|
if (FinishingDeduction)
|
|
return TemplateDeductionResult::Success;
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
for (auto &Pack : Packs) {
|
|
// Put back the old value for this pack.
|
|
if (!FinishingDeduction)
|
|
Deduced[Pack.Index] = Pack.Saved;
|
|
|
|
// Always make sure the size of this pack is correct, even if we didn't
|
|
// deduce any values for it.
|
|
//
|
|
// FIXME: This isn't required by the normative wording, but substitution
|
|
// and post-substitution checking will always fail if the arity of any
|
|
// pack is not equal to the number of elements we processed. (Either that
|
|
// or something else has gone *very* wrong.) We're permitted to skip any
|
|
// hard errors from those follow-on steps by the intent (but not the
|
|
// wording) of C++ [temp.inst]p8:
|
|
//
|
|
// If the function selected by overload resolution can be determined
|
|
// without instantiating a class template definition, it is unspecified
|
|
// whether that instantiation actually takes place
|
|
Pack.New.resize(PackElements);
|
|
|
|
// Build or find a new value for this pack.
|
|
DeducedTemplateArgument NewPack;
|
|
if (Pack.New.empty()) {
|
|
// If we deduced an empty argument pack, create it now.
|
|
NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
|
|
} else {
|
|
TemplateArgument *ArgumentPack =
|
|
new (S.Context) TemplateArgument[Pack.New.size()];
|
|
std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
|
|
NewPack = DeducedTemplateArgument(
|
|
TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())),
|
|
// FIXME: This is wrong, it's possible that some pack elements are
|
|
// deduced from an array bound and others are not:
|
|
// template<typename ...T, T ...V> void g(const T (&...p)[V]);
|
|
// g({1, 2, 3}, {{}, {}});
|
|
// ... should deduce T = {int, size_t (from array bound)}.
|
|
Pack.New[0].wasDeducedFromArrayBound());
|
|
}
|
|
|
|
// Pick where we're going to put the merged pack.
|
|
DeducedTemplateArgument *Loc;
|
|
if (Pack.Outer) {
|
|
if (Pack.Outer->DeferredDeduction.isNull()) {
|
|
// Defer checking this pack until we have a complete pack to compare
|
|
// it against.
|
|
Pack.Outer->DeferredDeduction = NewPack;
|
|
continue;
|
|
}
|
|
Loc = &Pack.Outer->DeferredDeduction;
|
|
} else {
|
|
Loc = &Deduced[Pack.Index];
|
|
}
|
|
|
|
// Check the new pack matches any previous value.
|
|
DeducedTemplateArgument OldPack = *Loc;
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(
|
|
S.Context, OldPack, NewPack, DeducePackIfNotAlreadyDeduced);
|
|
|
|
Info.AggregateDeductionCandidateHasMismatchedArity =
|
|
OldPack.getKind() == TemplateArgument::Pack &&
|
|
NewPack.getKind() == TemplateArgument::Pack &&
|
|
OldPack.pack_size() != NewPack.pack_size() && !Result.isNull();
|
|
|
|
// If we deferred a deduction of this pack, check that one now too.
|
|
if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
|
|
OldPack = Result;
|
|
NewPack = Pack.DeferredDeduction;
|
|
Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
|
|
}
|
|
|
|
NamedDecl *Param = TemplateParams->getParam(Pack.Index);
|
|
if (Result.isNull()) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
Info.FirstArg = OldPack;
|
|
Info.SecondArg = NewPack;
|
|
return TemplateDeductionResult::Inconsistent;
|
|
}
|
|
|
|
// If we have a pre-expanded pack and we didn't deduce enough elements
|
|
// for it, fail deduction.
|
|
if (UnsignedOrNone Expansions = getExpandedPackSize(Param)) {
|
|
if (*Expansions != PackElements) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
Info.FirstArg = Result;
|
|
return TemplateDeductionResult::IncompletePack;
|
|
}
|
|
}
|
|
|
|
*Loc = Result;
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
TemplateParameterList *TemplateParams;
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced;
|
|
TemplateDeductionInfo &Info;
|
|
unsigned PackElements = 0;
|
|
bool IsPartiallyExpanded = false;
|
|
bool DeducePackIfNotAlreadyDeduced = false;
|
|
bool DeducedFromEarlierParameter = false;
|
|
bool FinishingDeduction = false;
|
|
/// The number of expansions, if we have a fully-expanded pack in this scope.
|
|
UnsignedOrNone FixedNumExpansions = std::nullopt;
|
|
|
|
SmallVector<DeducedPack, 2> Packs;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
template <class T>
|
|
static TemplateDeductionResult DeduceForEachType(
|
|
Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params,
|
|
ArrayRef<QualType> Args, TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced, PartialOrderingKind POK,
|
|
bool FinishingDeduction, T &&DeductFunc) {
|
|
// C++0x [temp.deduct.type]p10:
|
|
// Similarly, if P has a form that contains (T), then each parameter type
|
|
// Pi of the respective parameter-type- list of P is compared with the
|
|
// corresponding parameter type Ai of the corresponding parameter-type-list
|
|
// of A. [...]
|
|
unsigned ArgIdx = 0, ParamIdx = 0;
|
|
for (; ParamIdx != Params.size(); ++ParamIdx) {
|
|
// Check argument types.
|
|
const PackExpansionType *Expansion
|
|
= dyn_cast<PackExpansionType>(Params[ParamIdx]);
|
|
if (!Expansion) {
|
|
// Simple case: compare the parameter and argument types at this point.
|
|
|
|
// Make sure we have an argument.
|
|
if (ArgIdx >= Args.size())
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
if (isa<PackExpansionType>(Args[ArgIdx])) {
|
|
// C++0x [temp.deduct.type]p22:
|
|
// If the original function parameter associated with A is a function
|
|
// parameter pack and the function parameter associated with P is not
|
|
// a function parameter pack, then template argument deduction fails.
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
}
|
|
|
|
if (TemplateDeductionResult Result =
|
|
DeductFunc(S, TemplateParams, ParamIdx, ArgIdx,
|
|
Params[ParamIdx].getUnqualifiedType(),
|
|
Args[ArgIdx].getUnqualifiedType(), Info, Deduced, POK);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
++ArgIdx;
|
|
continue;
|
|
}
|
|
|
|
// C++0x [temp.deduct.type]p10:
|
|
// If the parameter-declaration corresponding to Pi is a function
|
|
// parameter pack, then the type of its declarator- id is compared with
|
|
// each remaining parameter type in the parameter-type-list of A. Each
|
|
// comparison deduces template arguments for subsequent positions in the
|
|
// template parameter packs expanded by the function parameter pack.
|
|
|
|
QualType Pattern = Expansion->getPattern();
|
|
PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern,
|
|
/*DeducePackIfNotAlreadyDeduced=*/false,
|
|
FinishingDeduction);
|
|
|
|
// A pack scope with fixed arity is not really a pack any more, so is not
|
|
// a non-deduced context.
|
|
if (ParamIdx + 1 == Params.size() || PackScope.hasFixedArity()) {
|
|
for (; ArgIdx < Args.size() && PackScope.hasNextElement(); ++ArgIdx) {
|
|
// Deduce template arguments from the pattern.
|
|
if (TemplateDeductionResult Result = DeductFunc(
|
|
S, TemplateParams, ParamIdx, ArgIdx,
|
|
Pattern.getUnqualifiedType(), Args[ArgIdx].getUnqualifiedType(),
|
|
Info, Deduced, POK);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
PackScope.nextPackElement();
|
|
}
|
|
} else {
|
|
// C++0x [temp.deduct.type]p5:
|
|
// The non-deduced contexts are:
|
|
// - A function parameter pack that does not occur at the end of the
|
|
// parameter-declaration-clause.
|
|
//
|
|
// FIXME: There is no wording to say what we should do in this case. We
|
|
// choose to resolve this by applying the same rule that is applied for a
|
|
// function call: that is, deduce all contained packs to their
|
|
// explicitly-specified values (or to <> if there is no such value).
|
|
//
|
|
// This is seemingly-arbitrarily different from the case of a template-id
|
|
// with a non-trailing pack-expansion in its arguments, which renders the
|
|
// entire template-argument-list a non-deduced context.
|
|
|
|
// If the parameter type contains an explicitly-specified pack that we
|
|
// could not expand, skip the number of parameters notionally created
|
|
// by the expansion.
|
|
UnsignedOrNone NumExpansions = Expansion->getNumExpansions();
|
|
if (NumExpansions && !PackScope.isPartiallyExpanded()) {
|
|
for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
|
|
++I, ++ArgIdx)
|
|
PackScope.nextPackElement();
|
|
}
|
|
}
|
|
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
if (auto Result = PackScope.finish();
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
// DR692, DR1395
|
|
// C++0x [temp.deduct.type]p10:
|
|
// If the parameter-declaration corresponding to P_i ...
|
|
// During partial ordering, if Ai was originally a function parameter pack:
|
|
// - if P does not contain a function parameter type corresponding to Ai then
|
|
// Ai is ignored;
|
|
if (POK == PartialOrderingKind::Call && ArgIdx + 1 == Args.size() &&
|
|
isa<PackExpansionType>(Args[ArgIdx]))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Make sure we don't have any extra arguments.
|
|
if (ArgIdx < Args.size())
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Deduce the template arguments by comparing the list of parameter
|
|
/// types to the list of argument types, as in the parameter-type-lists of
|
|
/// function types (C++ [temp.deduct.type]p10).
|
|
///
|
|
/// \param S The semantic analysis object within which we are deducing
|
|
///
|
|
/// \param TemplateParams The template parameters that we are deducing
|
|
///
|
|
/// \param Params The list of parameter types
|
|
///
|
|
/// \param Args The list of argument types
|
|
///
|
|
/// \param Info information about the template argument deduction itself
|
|
///
|
|
/// \param Deduced the deduced template arguments
|
|
///
|
|
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
|
|
/// how template argument deduction is performed.
|
|
///
|
|
/// \param PartialOrdering If true, we are performing template argument
|
|
/// deduction for during partial ordering for a call
|
|
/// (C++0x [temp.deduct.partial]).
|
|
///
|
|
/// \param HasDeducedAnyParam If set, the object pointed at will indicate
|
|
/// whether any template parameter was deduced.
|
|
///
|
|
/// \param HasDeducedParam If set, the bit vector will be used to represent
|
|
/// which template parameters were deduced, in order.
|
|
///
|
|
/// \returns the result of template argument deduction so far. Note that a
|
|
/// "success" result means that template argument deduction has not yet failed,
|
|
/// but it may still fail, later, for other reasons.
|
|
static TemplateDeductionResult DeduceTemplateArguments(
|
|
Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params,
|
|
ArrayRef<QualType> Args, TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
|
|
PartialOrderingKind POK, bool *HasDeducedAnyParam,
|
|
llvm::SmallBitVector *HasDeducedParam) {
|
|
return ::DeduceForEachType(
|
|
S, TemplateParams, Params, Args, Info, Deduced, POK,
|
|
/*FinishingDeduction=*/false,
|
|
[&](Sema &S, TemplateParameterList *TemplateParams, int ParamIdx,
|
|
int ArgIdx, QualType P, QualType A, TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
PartialOrderingKind POK) {
|
|
bool HasDeducedAnyParamCopy = false;
|
|
TemplateDeductionResult TDR = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, P, A, Info, Deduced, TDF, POK,
|
|
/*DeducedFromArrayBound=*/false, &HasDeducedAnyParamCopy);
|
|
if (HasDeducedAnyParam && HasDeducedAnyParamCopy)
|
|
*HasDeducedAnyParam = true;
|
|
if (HasDeducedParam && HasDeducedAnyParamCopy)
|
|
(*HasDeducedParam)[ParamIdx] = true;
|
|
return TDR;
|
|
});
|
|
}
|
|
|
|
/// Determine whether the parameter has qualifiers that the argument
|
|
/// lacks. Put another way, determine whether there is no way to add
|
|
/// a deduced set of qualifiers to the ParamType that would result in
|
|
/// its qualifiers matching those of the ArgType.
|
|
static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
|
|
QualType ArgType) {
|
|
Qualifiers ParamQs = ParamType.getQualifiers();
|
|
Qualifiers ArgQs = ArgType.getQualifiers();
|
|
|
|
if (ParamQs == ArgQs)
|
|
return false;
|
|
|
|
// Mismatched (but not missing) Objective-C GC attributes.
|
|
if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
|
|
ParamQs.hasObjCGCAttr())
|
|
return true;
|
|
|
|
// Mismatched (but not missing) address spaces.
|
|
if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
|
|
ParamQs.hasAddressSpace())
|
|
return true;
|
|
|
|
// Mismatched (but not missing) Objective-C lifetime qualifiers.
|
|
if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
|
|
ParamQs.hasObjCLifetime())
|
|
return true;
|
|
|
|
// CVR qualifiers inconsistent or a superset.
|
|
return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
|
|
}
|
|
|
|
bool Sema::isSameOrCompatibleFunctionType(QualType P, QualType A) {
|
|
const FunctionType *PF = P->getAs<FunctionType>(),
|
|
*AF = A->getAs<FunctionType>();
|
|
|
|
// Just compare if not functions.
|
|
if (!PF || !AF)
|
|
return Context.hasSameType(P, A);
|
|
|
|
// Noreturn and noexcept adjustment.
|
|
if (QualType AdjustedParam; IsFunctionConversion(P, A, AdjustedParam))
|
|
P = AdjustedParam;
|
|
|
|
// FIXME: Compatible calling conventions.
|
|
return Context.hasSameFunctionTypeIgnoringExceptionSpec(P, A);
|
|
}
|
|
|
|
/// Get the index of the first template parameter that was originally from the
|
|
/// innermost template-parameter-list. This is 0 except when we concatenate
|
|
/// the template parameter lists of a class template and a constructor template
|
|
/// when forming an implicit deduction guide.
|
|
static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) {
|
|
auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
|
|
if (!Guide || !Guide->isImplicit())
|
|
return 0;
|
|
return Guide->getDeducedTemplate()->getTemplateParameters()->size();
|
|
}
|
|
|
|
/// Determine whether a type denotes a forwarding reference.
|
|
static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
|
|
// C++1z [temp.deduct.call]p3:
|
|
// A forwarding reference is an rvalue reference to a cv-unqualified
|
|
// template parameter that does not represent a template parameter of a
|
|
// class template.
|
|
if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
|
|
if (ParamRef->getPointeeType().getQualifiers())
|
|
return false;
|
|
auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>();
|
|
return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Attempt to deduce the template arguments by checking the base types
|
|
/// according to (C++20 [temp.deduct.call] p4b3.
|
|
///
|
|
/// \param S the semantic analysis object within which we are deducing.
|
|
///
|
|
/// \param RD the top level record object we are deducing against.
|
|
///
|
|
/// \param TemplateParams the template parameters that we are deducing.
|
|
///
|
|
/// \param P the template specialization parameter type.
|
|
///
|
|
/// \param Info information about the template argument deduction itself.
|
|
///
|
|
/// \param Deduced the deduced template arguments.
|
|
///
|
|
/// \returns the result of template argument deduction with the bases. "invalid"
|
|
/// means no matches, "success" found a single item, and the
|
|
/// "MiscellaneousDeductionFailure" result happens when the match is ambiguous.
|
|
static TemplateDeductionResult
|
|
DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD,
|
|
TemplateParameterList *TemplateParams, QualType P,
|
|
TemplateDeductionInfo &Info, bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
// C++14 [temp.deduct.call] p4b3:
|
|
// If P is a class and P has the form simple-template-id, then the
|
|
// transformed A can be a derived class of the deduced A. Likewise if
|
|
// P is a pointer to a class of the form simple-template-id, the
|
|
// transformed A can be a pointer to a derived class pointed to by the
|
|
// deduced A. However, if there is a class C that is a (direct or
|
|
// indirect) base class of D and derived (directly or indirectly) from a
|
|
// class B and that would be a valid deduced A, the deduced A cannot be
|
|
// B or pointer to B, respectively.
|
|
//
|
|
// These alternatives are considered only if type deduction would
|
|
// otherwise fail. If they yield more than one possible deduced A, the
|
|
// type deduction fails.
|
|
|
|
// Use a breadth-first search through the bases to collect the set of
|
|
// successful matches. Visited contains the set of nodes we have already
|
|
// visited, while ToVisit is our stack of records that we still need to
|
|
// visit. Matches contains a list of matches that have yet to be
|
|
// disqualified.
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 8> Visited;
|
|
SmallVector<QualType, 8> ToVisit;
|
|
// We iterate over this later, so we have to use MapVector to ensure
|
|
// determinism.
|
|
struct MatchValue {
|
|
SmallVector<DeducedTemplateArgument, 8> Deduced;
|
|
bool HasDeducedAnyParam;
|
|
};
|
|
llvm::MapVector<const CXXRecordDecl *, MatchValue> Matches;
|
|
|
|
auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) {
|
|
for (const auto &Base : RD->bases()) {
|
|
QualType T = Base.getType();
|
|
assert(T->isRecordType() && "Base class that isn't a record?");
|
|
if (Visited.insert(T->getAsCXXRecordDecl()).second)
|
|
ToVisit.push_back(T);
|
|
}
|
|
};
|
|
|
|
// Set up the loop by adding all the bases.
|
|
AddBases(RD);
|
|
|
|
// Search each path of bases until we either run into a successful match
|
|
// (where all bases of it are invalid), or we run out of bases.
|
|
while (!ToVisit.empty()) {
|
|
QualType NextT = ToVisit.pop_back_val();
|
|
|
|
SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(),
|
|
Deduced.end());
|
|
TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info);
|
|
bool HasDeducedAnyParamCopy = false;
|
|
TemplateDeductionResult BaseResult = DeduceTemplateSpecArguments(
|
|
S, TemplateParams, P, NextT, BaseInfo, PartialOrdering, DeducedCopy,
|
|
&HasDeducedAnyParamCopy);
|
|
|
|
// If this was a successful deduction, add it to the list of matches,
|
|
// otherwise we need to continue searching its bases.
|
|
const CXXRecordDecl *RD = NextT->getAsCXXRecordDecl();
|
|
if (BaseResult == TemplateDeductionResult::Success)
|
|
Matches.insert({RD, {DeducedCopy, HasDeducedAnyParamCopy}});
|
|
else
|
|
AddBases(RD);
|
|
}
|
|
|
|
// At this point, 'Matches' contains a list of seemingly valid bases, however
|
|
// in the event that we have more than 1 match, it is possible that the base
|
|
// of one of the matches might be disqualified for being a base of another
|
|
// valid match. We can count on cyclical instantiations being invalid to
|
|
// simplify the disqualifications. That is, if A & B are both matches, and B
|
|
// inherits from A (disqualifying A), we know that A cannot inherit from B.
|
|
if (Matches.size() > 1) {
|
|
Visited.clear();
|
|
for (const auto &Match : Matches)
|
|
AddBases(Match.first);
|
|
|
|
// We can give up once we have a single item (or have run out of things to
|
|
// search) since cyclical inheritance isn't valid.
|
|
while (Matches.size() > 1 && !ToVisit.empty()) {
|
|
const CXXRecordDecl *RD = ToVisit.pop_back_val()->getAsCXXRecordDecl();
|
|
Matches.erase(RD);
|
|
|
|
// Always add all bases, since the inheritance tree can contain
|
|
// disqualifications for multiple matches.
|
|
AddBases(RD);
|
|
}
|
|
}
|
|
|
|
if (Matches.empty())
|
|
return TemplateDeductionResult::Invalid;
|
|
if (Matches.size() > 1)
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
std::swap(Matches.front().second.Deduced, Deduced);
|
|
if (bool HasDeducedAnyParamCopy = Matches.front().second.HasDeducedAnyParam;
|
|
HasDeducedAnyParamCopy && HasDeducedAnyParam)
|
|
*HasDeducedAnyParam = HasDeducedAnyParamCopy;
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// When propagating a partial ordering kind into a NonCall context,
|
|
/// this is used to downgrade a 'Call' into a 'NonCall', so that
|
|
/// the kind still reflects whether we are in a partial ordering context.
|
|
static PartialOrderingKind
|
|
degradeCallPartialOrderingKind(PartialOrderingKind POK) {
|
|
return std::min(POK, PartialOrderingKind::NonCall);
|
|
}
|
|
|
|
/// Deduce the template arguments by comparing the parameter type and
|
|
/// the argument type (C++ [temp.deduct.type]).
|
|
///
|
|
/// \param S the semantic analysis object within which we are deducing
|
|
///
|
|
/// \param TemplateParams the template parameters that we are deducing
|
|
///
|
|
/// \param P the parameter type
|
|
///
|
|
/// \param A the argument type
|
|
///
|
|
/// \param Info information about the template argument deduction itself
|
|
///
|
|
/// \param Deduced the deduced template arguments
|
|
///
|
|
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
|
|
/// how template argument deduction is performed.
|
|
///
|
|
/// \param PartialOrdering Whether we're performing template argument deduction
|
|
/// in the context of partial ordering (C++0x [temp.deduct.partial]).
|
|
///
|
|
/// \returns the result of template argument deduction so far. Note that a
|
|
/// "success" result means that template argument deduction has not yet failed,
|
|
/// but it may still fail, later, for other reasons.
|
|
static TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch(
|
|
Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
|
|
PartialOrderingKind POK, bool DeducedFromArrayBound,
|
|
bool *HasDeducedAnyParam) {
|
|
|
|
// If the argument type is a pack expansion, look at its pattern.
|
|
// This isn't explicitly called out
|
|
if (const auto *AExp = dyn_cast<PackExpansionType>(A))
|
|
A = AExp->getPattern();
|
|
assert(!isa<PackExpansionType>(A.getCanonicalType()));
|
|
|
|
if (POK == PartialOrderingKind::Call) {
|
|
// C++11 [temp.deduct.partial]p5:
|
|
// Before the partial ordering is done, certain transformations are
|
|
// performed on the types used for partial ordering:
|
|
// - If P is a reference type, P is replaced by the type referred to.
|
|
const ReferenceType *PRef = P->getAs<ReferenceType>();
|
|
if (PRef)
|
|
P = PRef->getPointeeType();
|
|
|
|
// - If A is a reference type, A is replaced by the type referred to.
|
|
const ReferenceType *ARef = A->getAs<ReferenceType>();
|
|
if (ARef)
|
|
A = A->getPointeeType();
|
|
|
|
if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) {
|
|
// C++11 [temp.deduct.partial]p9:
|
|
// If, for a given type, deduction succeeds in both directions (i.e.,
|
|
// the types are identical after the transformations above) and both
|
|
// P and A were reference types [...]:
|
|
// - if [one type] was an lvalue reference and [the other type] was
|
|
// not, [the other type] is not considered to be at least as
|
|
// specialized as [the first type]
|
|
// - if [one type] is more cv-qualified than [the other type],
|
|
// [the other type] is not considered to be at least as specialized
|
|
// as [the first type]
|
|
// Objective-C ARC adds:
|
|
// - [one type] has non-trivial lifetime, [the other type] has
|
|
// __unsafe_unretained lifetime, and the types are otherwise
|
|
// identical
|
|
//
|
|
// A is "considered to be at least as specialized" as P iff deduction
|
|
// succeeds, so we model this as a deduction failure. Note that
|
|
// [the first type] is P and [the other type] is A here; the standard
|
|
// gets this backwards.
|
|
Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers();
|
|
if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) ||
|
|
PQuals.isStrictSupersetOf(AQuals) ||
|
|
(PQuals.hasNonTrivialObjCLifetime() &&
|
|
AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
|
|
PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) {
|
|
Info.FirstArg = TemplateArgument(P);
|
|
Info.SecondArg = TemplateArgument(A);
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
}
|
|
Qualifiers DiscardedQuals;
|
|
// C++11 [temp.deduct.partial]p7:
|
|
// Remove any top-level cv-qualifiers:
|
|
// - If P is a cv-qualified type, P is replaced by the cv-unqualified
|
|
// version of P.
|
|
P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals);
|
|
// - If A is a cv-qualified type, A is replaced by the cv-unqualified
|
|
// version of A.
|
|
A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals);
|
|
} else {
|
|
// C++0x [temp.deduct.call]p4 bullet 1:
|
|
// - If the original P is a reference type, the deduced A (i.e., the type
|
|
// referred to by the reference) can be more cv-qualified than the
|
|
// transformed A.
|
|
if (TDF & TDF_ParamWithReferenceType) {
|
|
Qualifiers Quals;
|
|
QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals);
|
|
Quals.setCVRQualifiers(Quals.getCVRQualifiers() & A.getCVRQualifiers());
|
|
P = S.Context.getQualifiedType(UnqualP, Quals);
|
|
}
|
|
|
|
if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) {
|
|
// C++0x [temp.deduct.type]p10:
|
|
// If P and A are function types that originated from deduction when
|
|
// taking the address of a function template (14.8.2.2) or when deducing
|
|
// template arguments from a function declaration (14.8.2.6) and Pi and
|
|
// Ai are parameters of the top-level parameter-type-list of P and A,
|
|
// respectively, Pi is adjusted if it is a forwarding reference and Ai
|
|
// is an lvalue reference, in
|
|
// which case the type of Pi is changed to be the template parameter
|
|
// type (i.e., T&& is changed to simply T). [ Note: As a result, when
|
|
// Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
|
|
// deduced as X&. - end note ]
|
|
TDF &= ~TDF_TopLevelParameterTypeList;
|
|
if (isForwardingReference(P, /*FirstInnerIndex=*/0) &&
|
|
A->isLValueReferenceType())
|
|
P = P->getPointeeType();
|
|
}
|
|
}
|
|
|
|
// C++ [temp.deduct.type]p9:
|
|
// A template type argument T, a template template argument TT or a
|
|
// template non-type argument i can be deduced if P and A have one of
|
|
// the following forms:
|
|
//
|
|
// T
|
|
// cv-list T
|
|
if (const auto *TTP = P->getAs<TemplateTypeParmType>()) {
|
|
// Just skip any attempts to deduce from a placeholder type or a parameter
|
|
// at a different depth.
|
|
if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
unsigned Index = TTP->getIndex();
|
|
|
|
// If the argument type is an array type, move the qualifiers up to the
|
|
// top level, so they can be matched with the qualifiers on the parameter.
|
|
if (A->isArrayType()) {
|
|
Qualifiers Quals;
|
|
A = S.Context.getUnqualifiedArrayType(A, Quals);
|
|
if (Quals)
|
|
A = S.Context.getQualifiedType(A, Quals);
|
|
}
|
|
|
|
// The argument type can not be less qualified than the parameter
|
|
// type.
|
|
if (!(TDF & TDF_IgnoreQualifiers) &&
|
|
hasInconsistentOrSupersetQualifiersOf(P, A)) {
|
|
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
|
|
Info.FirstArg = TemplateArgument(P);
|
|
Info.SecondArg = TemplateArgument(A);
|
|
return TemplateDeductionResult::Underqualified;
|
|
}
|
|
|
|
// Do not match a function type with a cv-qualified type.
|
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
|
|
if (A->isFunctionType() && P.hasQualifiers())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
assert(TTP->getDepth() == Info.getDeducedDepth() &&
|
|
"saw template type parameter with wrong depth");
|
|
assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy &&
|
|
"Unresolved overloaded function");
|
|
QualType DeducedType = A;
|
|
|
|
// Remove any qualifiers on the parameter from the deduced type.
|
|
// We checked the qualifiers for consistency above.
|
|
Qualifiers DeducedQs = DeducedType.getQualifiers();
|
|
Qualifiers ParamQs = P.getQualifiers();
|
|
DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
|
|
if (ParamQs.hasObjCGCAttr())
|
|
DeducedQs.removeObjCGCAttr();
|
|
if (ParamQs.hasAddressSpace())
|
|
DeducedQs.removeAddressSpace();
|
|
if (ParamQs.hasObjCLifetime())
|
|
DeducedQs.removeObjCLifetime();
|
|
|
|
// Objective-C ARC:
|
|
// If template deduction would produce a lifetime qualifier on a type
|
|
// that is not a lifetime type, template argument deduction fails.
|
|
if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
|
|
!DeducedType->isDependentType()) {
|
|
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
|
|
Info.FirstArg = TemplateArgument(P);
|
|
Info.SecondArg = TemplateArgument(A);
|
|
return TemplateDeductionResult::Underqualified;
|
|
}
|
|
|
|
// Objective-C ARC:
|
|
// If template deduction would produce an argument type with lifetime type
|
|
// but no lifetime qualifier, the __strong lifetime qualifier is inferred.
|
|
if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() &&
|
|
!DeducedQs.hasObjCLifetime())
|
|
DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
|
|
|
|
DeducedType =
|
|
S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs);
|
|
|
|
DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
|
|
DeducedTemplateArgument Result =
|
|
checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced);
|
|
if (Result.isNull()) {
|
|
// We can also get inconsistencies when matching NTTP type.
|
|
switch (NamedDecl *Param = TemplateParams->getParam(Index);
|
|
Param->getKind()) {
|
|
case Decl::TemplateTypeParm:
|
|
Info.Param = cast<TemplateTypeParmDecl>(Param);
|
|
break;
|
|
case Decl::NonTypeTemplateParm:
|
|
Info.Param = cast<NonTypeTemplateParmDecl>(Param);
|
|
break;
|
|
case Decl::TemplateTemplateParm:
|
|
Info.Param = cast<TemplateTemplateParmDecl>(Param);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected kind");
|
|
}
|
|
Info.FirstArg = Deduced[Index];
|
|
Info.SecondArg = NewDeduced;
|
|
return TemplateDeductionResult::Inconsistent;
|
|
}
|
|
|
|
Deduced[Index] = Result;
|
|
if (HasDeducedAnyParam)
|
|
*HasDeducedAnyParam = true;
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Set up the template argument deduction information for a failure.
|
|
Info.FirstArg = TemplateArgument(P);
|
|
Info.SecondArg = TemplateArgument(A);
|
|
|
|
// If the parameter is an already-substituted template parameter
|
|
// pack, do nothing: we don't know which of its arguments to look
|
|
// at, so we have to wait until all of the parameter packs in this
|
|
// expansion have arguments.
|
|
if (P->getAs<SubstTemplateTypeParmPackType>())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Check the cv-qualifiers on the parameter and argument types.
|
|
if (!(TDF & TDF_IgnoreQualifiers)) {
|
|
if (TDF & TDF_ParamWithReferenceType) {
|
|
if (hasInconsistentOrSupersetQualifiersOf(P, A))
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
} else if (TDF & TDF_ArgWithReferenceType) {
|
|
// C++ [temp.deduct.conv]p4:
|
|
// If the original A is a reference type, A can be more cv-qualified
|
|
// than the deduced A
|
|
if (!A.getQualifiers().compatiblyIncludes(P.getQualifiers(),
|
|
S.getASTContext()))
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// Strip out all extra qualifiers from the argument to figure out the
|
|
// type we're converting to, prior to the qualification conversion.
|
|
Qualifiers Quals;
|
|
A = S.Context.getUnqualifiedArrayType(A, Quals);
|
|
A = S.Context.getQualifiedType(A, P.getQualifiers());
|
|
} else if (!IsPossiblyOpaquelyQualifiedType(P)) {
|
|
if (P.getCVRQualifiers() != A.getCVRQualifiers())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
}
|
|
|
|
// If the parameter type is not dependent, there is nothing to deduce.
|
|
if (!P->isDependentType()) {
|
|
if (TDF & TDF_SkipNonDependent)
|
|
return TemplateDeductionResult::Success;
|
|
if ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(P, A)
|
|
: S.Context.hasSameType(P, A))
|
|
return TemplateDeductionResult::Success;
|
|
if (TDF & TDF_AllowCompatibleFunctionType &&
|
|
S.isSameOrCompatibleFunctionType(P, A))
|
|
return TemplateDeductionResult::Success;
|
|
if (!(TDF & TDF_IgnoreQualifiers))
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
// Otherwise, when ignoring qualifiers, the types not having the same
|
|
// unqualified type does not mean they do not match, so in this case we
|
|
// must keep going and analyze with a non-dependent parameter type.
|
|
}
|
|
|
|
switch (P.getCanonicalType()->getTypeClass()) {
|
|
// Non-canonical types cannot appear here.
|
|
#define NON_CANONICAL_TYPE(Class, Base) \
|
|
case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
|
|
#define TYPE(Class, Base)
|
|
#include "clang/AST/TypeNodes.inc"
|
|
|
|
case Type::TemplateTypeParm:
|
|
case Type::SubstTemplateTypeParmPack:
|
|
llvm_unreachable("Type nodes handled above");
|
|
|
|
case Type::Auto:
|
|
// C++23 [temp.deduct.funcaddr]/3:
|
|
// A placeholder type in the return type of a function template is a
|
|
// non-deduced context.
|
|
// There's no corresponding wording for [temp.deduct.decl], but we treat
|
|
// it the same to match other compilers.
|
|
if (P->isDependentType())
|
|
return TemplateDeductionResult::Success;
|
|
[[fallthrough]];
|
|
case Type::Builtin:
|
|
case Type::VariableArray:
|
|
case Type::Vector:
|
|
case Type::FunctionNoProto:
|
|
case Type::Record:
|
|
case Type::Enum:
|
|
case Type::ObjCObject:
|
|
case Type::ObjCInterface:
|
|
case Type::ObjCObjectPointer:
|
|
case Type::BitInt:
|
|
return (TDF & TDF_SkipNonDependent) ||
|
|
((TDF & TDF_IgnoreQualifiers)
|
|
? S.Context.hasSameUnqualifiedType(P, A)
|
|
: S.Context.hasSameType(P, A))
|
|
? TemplateDeductionResult::Success
|
|
: TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// _Complex T [placeholder extension]
|
|
case Type::Complex: {
|
|
const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>();
|
|
if (!CA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, CP->getElementType(), CA->getElementType(), Info,
|
|
Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// _Atomic T [extension]
|
|
case Type::Atomic: {
|
|
const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>();
|
|
if (!AA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, PA->getValueType(), AA->getValueType(), Info,
|
|
Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// T *
|
|
case Type::Pointer: {
|
|
QualType PointeeType;
|
|
if (const auto *PA = A->getAs<PointerType>()) {
|
|
PointeeType = PA->getPointeeType();
|
|
} else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) {
|
|
PointeeType = PA->getPointeeType();
|
|
} else {
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, P->castAs<PointerType>()->getPointeeType(),
|
|
PointeeType, Info, Deduced,
|
|
TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass),
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// T &
|
|
case Type::LValueReference: {
|
|
const auto *RP = P->castAs<LValueReferenceType>(),
|
|
*RA = A->getAs<LValueReferenceType>();
|
|
if (!RA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info,
|
|
Deduced, 0, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// T && [C++0x]
|
|
case Type::RValueReference: {
|
|
const auto *RP = P->castAs<RValueReferenceType>(),
|
|
*RA = A->getAs<RValueReferenceType>();
|
|
if (!RA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info,
|
|
Deduced, 0, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// T [] (implied, but not stated explicitly)
|
|
case Type::IncompleteArray: {
|
|
const auto *IAA = S.Context.getAsIncompleteArrayType(A);
|
|
if (!IAA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
const auto *IAP = S.Context.getAsIncompleteArrayType(P);
|
|
assert(IAP && "Template parameter not of incomplete array type");
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, IAP->getElementType(), IAA->getElementType(), Info,
|
|
Deduced, TDF & TDF_IgnoreQualifiers,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// T [integer-constant]
|
|
case Type::ConstantArray: {
|
|
const auto *CAA = S.Context.getAsConstantArrayType(A),
|
|
*CAP = S.Context.getAsConstantArrayType(P);
|
|
assert(CAP);
|
|
if (!CAA || CAA->getSize() != CAP->getSize())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info,
|
|
Deduced, TDF & TDF_IgnoreQualifiers,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// type [i]
|
|
case Type::DependentSizedArray: {
|
|
const auto *AA = S.Context.getAsArrayType(A);
|
|
if (!AA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// Check the element type of the arrays
|
|
const auto *DAP = S.Context.getAsDependentSizedArrayType(P);
|
|
assert(DAP);
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, DAP->getElementType(), AA->getElementType(),
|
|
Info, Deduced, TDF & TDF_IgnoreQualifiers,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Determine the array bound is something we can deduce.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, DAP->getSizeExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// We can perform template argument deduction for the given non-type
|
|
// template parameter.
|
|
assert(NTTP->getDepth() == Info.getDeducedDepth() &&
|
|
"saw non-type template parameter with wrong depth");
|
|
if (const auto *CAA = dyn_cast<ConstantArrayType>(AA)) {
|
|
llvm::APSInt Size(CAA->getSize());
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, Size, S.Context.getSizeType(),
|
|
/*ArrayBound=*/true, Info, POK != PartialOrderingKind::None,
|
|
Deduced, HasDeducedAnyParam);
|
|
}
|
|
if (const auto *DAA = dyn_cast<DependentSizedArrayType>(AA))
|
|
if (DAA->getSizeExpr())
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, DAA->getSizeExpr(), Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
|
|
// Incomplete type does not match a dependently-sized array type
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
// type(*)(T)
|
|
// T(*)()
|
|
// T(*)(T)
|
|
case Type::FunctionProto: {
|
|
const auto *FPP = P->castAs<FunctionProtoType>(),
|
|
*FPA = A->getAs<FunctionProtoType>();
|
|
if (!FPA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
if (FPP->getMethodQuals() != FPA->getMethodQuals() ||
|
|
FPP->getRefQualifier() != FPA->getRefQualifier() ||
|
|
FPP->isVariadic() != FPA->isVariadic())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// Check return types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(),
|
|
Info, Deduced, 0, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Check parameter types.
|
|
if (auto Result = DeduceTemplateArguments(
|
|
S, TemplateParams, FPP->param_types(), FPA->param_types(), Info,
|
|
Deduced, TDF & TDF_TopLevelParameterTypeList, POK,
|
|
HasDeducedAnyParam,
|
|
/*HasDeducedParam=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
if (TDF & TDF_AllowCompatibleFunctionType)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
|
|
// deducing through the noexcept-specifier if it's part of the canonical
|
|
// type. libstdc++ relies on this.
|
|
Expr *NoexceptExpr = FPP->getNoexceptExpr();
|
|
if (const NonTypeTemplateParmDecl *NTTP =
|
|
NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr)
|
|
: nullptr) {
|
|
assert(NTTP->getDepth() == Info.getDeducedDepth() &&
|
|
"saw non-type template parameter with wrong depth");
|
|
|
|
llvm::APSInt Noexcept(1);
|
|
switch (FPA->canThrow()) {
|
|
case CT_Cannot:
|
|
Noexcept = 1;
|
|
[[fallthrough]];
|
|
|
|
case CT_Can:
|
|
// We give E in noexcept(E) the "deduced from array bound" treatment.
|
|
// FIXME: Should we?
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
|
|
/*DeducedFromArrayBound=*/true, Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
|
|
case CT_Dependent:
|
|
if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr())
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgNoexceptExpr, Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
// Can't deduce anything from throw(T...).
|
|
break;
|
|
}
|
|
}
|
|
// FIXME: Detect non-deduced exception specification mismatches?
|
|
//
|
|
// Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
|
|
// top-level differences in noexcept-specifications.
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
case Type::InjectedClassName:
|
|
// Treat a template's injected-class-name as if the template
|
|
// specialization type had been used.
|
|
|
|
// template-name<T> (where template-name refers to a class template)
|
|
// template-name<i>
|
|
// TT<T>
|
|
// TT<i>
|
|
// TT<>
|
|
case Type::TemplateSpecialization: {
|
|
// When Arg cannot be a derived class, we can just try to deduce template
|
|
// arguments from the template-id.
|
|
if (!(TDF & TDF_DerivedClass) || !A->isRecordType())
|
|
return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info,
|
|
POK != PartialOrderingKind::None,
|
|
Deduced, HasDeducedAnyParam);
|
|
|
|
SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
|
|
Deduced.end());
|
|
|
|
auto Result = DeduceTemplateSpecArguments(
|
|
S, TemplateParams, P, A, Info, POK != PartialOrderingKind::None,
|
|
Deduced, HasDeducedAnyParam);
|
|
if (Result == TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// We cannot inspect base classes as part of deduction when the type
|
|
// is incomplete, so either instantiate any templates necessary to
|
|
// complete the type, or skip over it if it cannot be completed.
|
|
if (!S.isCompleteType(Info.getLocation(), A))
|
|
return Result;
|
|
|
|
const CXXRecordDecl *RD = A->getAsCXXRecordDecl();
|
|
if (RD->isInvalidDecl())
|
|
return Result;
|
|
|
|
// Reset the incorrectly deduced argument from above.
|
|
Deduced = DeducedOrig;
|
|
|
|
// Check bases according to C++14 [temp.deduct.call] p4b3:
|
|
auto BaseResult = DeduceTemplateBases(S, RD, TemplateParams, P, Info,
|
|
POK != PartialOrderingKind::None,
|
|
Deduced, HasDeducedAnyParam);
|
|
return BaseResult != TemplateDeductionResult::Invalid ? BaseResult
|
|
: Result;
|
|
}
|
|
|
|
// T type::*
|
|
// T T::*
|
|
// T (type::*)()
|
|
// type (T::*)()
|
|
// type (type::*)(T)
|
|
// type (T::*)(T)
|
|
// T (type::*)(T)
|
|
// T (T::*)()
|
|
// T (T::*)(T)
|
|
case Type::MemberPointer: {
|
|
const auto *MPP = P->castAs<MemberPointerType>(),
|
|
*MPA = A->getAs<MemberPointerType>();
|
|
if (!MPA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
QualType PPT = MPP->getPointeeType();
|
|
if (PPT->isFunctionType())
|
|
S.adjustMemberFunctionCC(PPT, /*HasThisPointer=*/false,
|
|
/*IsCtorOrDtor=*/false, Info.getLocation());
|
|
QualType APT = MPA->getPointeeType();
|
|
if (APT->isFunctionType())
|
|
S.adjustMemberFunctionCC(APT, /*HasThisPointer=*/false,
|
|
/*IsCtorOrDtor=*/false, Info.getLocation());
|
|
|
|
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, PPT, APT, Info, Deduced, SubTDF,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
QualType TP;
|
|
if (MPP->isSugared()) {
|
|
TP = S.Context.getTypeDeclType(MPP->getMostRecentCXXRecordDecl());
|
|
} else {
|
|
NestedNameSpecifier *QP = MPP->getQualifier();
|
|
if (QP->getKind() == NestedNameSpecifier::Identifier)
|
|
// Skip translation if it's a non-deduced context anyway.
|
|
return TemplateDeductionResult::Success;
|
|
TP = QualType(QP->translateToType(S.Context), 0);
|
|
}
|
|
assert(!TP.isNull() && "member pointer with non-type class");
|
|
|
|
QualType TA;
|
|
if (MPA->isSugared()) {
|
|
TA = S.Context.getTypeDeclType(MPA->getMostRecentCXXRecordDecl());
|
|
} else {
|
|
NestedNameSpecifier *QA = MPA->getQualifier();
|
|
TA = QualType(QA->translateToType(S.Context), 0);
|
|
}
|
|
assert(!TA.isNull() && "member pointer with non-type class");
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, TP, TA, Info, Deduced, SubTDF,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// type(^)(T)
|
|
// T(^)()
|
|
// T(^)(T)
|
|
case Type::BlockPointer: {
|
|
const auto *BPP = P->castAs<BlockPointerType>(),
|
|
*BPA = A->getAs<BlockPointerType>();
|
|
if (!BPA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info,
|
|
Deduced, 0, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// T __attribute__(((ext_vector_type(<integral constant>))))
|
|
case Type::ExtVector: {
|
|
const auto *VP = P->castAs<ExtVectorType>();
|
|
QualType ElementType;
|
|
if (const auto *VA = A->getAs<ExtVectorType>()) {
|
|
// Make sure that the vectors have the same number of elements.
|
|
if (VP->getNumElements() != VA->getNumElements())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
ElementType = VA->getElementType();
|
|
} else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) {
|
|
// We can't check the number of elements, since the argument has a
|
|
// dependent number of elements. This can only occur during partial
|
|
// ordering.
|
|
ElementType = VA->getElementType();
|
|
} else {
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
// Perform deduction on the element types.
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced,
|
|
TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
case Type::DependentVector: {
|
|
const auto *VP = P->castAs<DependentVectorType>();
|
|
|
|
if (const auto *VA = A->getAs<VectorType>()) {
|
|
// Perform deduction on the element types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, VP->getElementType(), VA->getElementType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the vector size, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, VP->getSizeExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
|
|
ArgSize = VA->getNumElements();
|
|
// Note that we use the "array bound" rules here; just like in that
|
|
// case, we don't have any particular type for the vector size, but
|
|
// we can provide one if necessary.
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgSize, S.Context.UnsignedIntTy, true,
|
|
Info, POK != PartialOrderingKind::None, Deduced,
|
|
HasDeducedAnyParam);
|
|
}
|
|
|
|
if (const auto *VA = A->getAs<DependentVectorType>()) {
|
|
// Perform deduction on the element types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, VP->getElementType(), VA->getElementType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the vector size, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, VP->getSizeExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, VA->getSizeExpr(), Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// T __attribute__(((ext_vector_type(N))))
|
|
case Type::DependentSizedExtVector: {
|
|
const auto *VP = P->castAs<DependentSizedExtVectorType>();
|
|
|
|
if (const auto *VA = A->getAs<ExtVectorType>()) {
|
|
// Perform deduction on the element types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, VP->getElementType(), VA->getElementType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the vector size, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, VP->getSizeExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
|
|
ArgSize = VA->getNumElements();
|
|
// Note that we use the "array bound" rules here; just like in that
|
|
// case, we don't have any particular type for the vector size, but
|
|
// we can provide one if necessary.
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) {
|
|
// Perform deduction on the element types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, VP->getElementType(), VA->getElementType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the vector size, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, VP->getSizeExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, VA->getSizeExpr(), Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// T __attribute__((matrix_type(<integral constant>,
|
|
// <integral constant>)))
|
|
case Type::ConstantMatrix: {
|
|
const auto *MP = P->castAs<ConstantMatrixType>(),
|
|
*MA = A->getAs<ConstantMatrixType>();
|
|
if (!MA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// Check that the dimensions are the same
|
|
if (MP->getNumRows() != MA->getNumRows() ||
|
|
MP->getNumColumns() != MA->getNumColumns()) {
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
// Perform deduction on element types.
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, MP->getElementType(), MA->getElementType(), Info,
|
|
Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
case Type::DependentSizedMatrix: {
|
|
const auto *MP = P->castAs<DependentSizedMatrixType>();
|
|
const auto *MA = A->getAs<MatrixType>();
|
|
if (!MA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// Check the element type of the matrixes.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, MP->getElementType(), MA->getElementType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Try to deduce a matrix dimension.
|
|
auto DeduceMatrixArg =
|
|
[&S, &Info, &Deduced, &TemplateParams, &HasDeducedAnyParam, POK](
|
|
Expr *ParamExpr, const MatrixType *A,
|
|
unsigned (ConstantMatrixType::*GetArgDimension)() const,
|
|
Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) {
|
|
const auto *ACM = dyn_cast<ConstantMatrixType>(A);
|
|
const auto *ADM = dyn_cast<DependentSizedMatrixType>(A);
|
|
if (!ParamExpr->isValueDependent()) {
|
|
std::optional<llvm::APSInt> ParamConst =
|
|
ParamExpr->getIntegerConstantExpr(S.Context);
|
|
if (!ParamConst)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
if (ACM) {
|
|
if ((ACM->*GetArgDimension)() == *ParamConst)
|
|
return TemplateDeductionResult::Success;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
Expr *ArgExpr = (ADM->*GetArgDimensionExpr)();
|
|
if (std::optional<llvm::APSInt> ArgConst =
|
|
ArgExpr->getIntegerConstantExpr(S.Context))
|
|
if (*ArgConst == *ParamConst)
|
|
return TemplateDeductionResult::Success;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, ParamExpr);
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
if (ACM) {
|
|
llvm::APSInt ArgConst(
|
|
S.Context.getTypeSize(S.Context.getSizeType()));
|
|
ArgConst = (ACM->*GetArgDimension)();
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(),
|
|
/*ArrayBound=*/true, Info, POK != PartialOrderingKind::None,
|
|
Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, (ADM->*GetArgDimensionExpr)(), Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
};
|
|
|
|
if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA,
|
|
&ConstantMatrixType::getNumRows,
|
|
&DependentSizedMatrixType::getRowExpr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
return DeduceMatrixArg(MP->getColumnExpr(), MA,
|
|
&ConstantMatrixType::getNumColumns,
|
|
&DependentSizedMatrixType::getColumnExpr);
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// T __attribute__(((address_space(N))))
|
|
case Type::DependentAddressSpace: {
|
|
const auto *ASP = P->castAs<DependentAddressSpaceType>();
|
|
|
|
if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) {
|
|
// Perform deduction on the pointer type.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the address space, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
if (isTargetAddressSpace(A.getAddressSpace())) {
|
|
llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
|
|
false);
|
|
ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace());
|
|
|
|
// Perform deduction on the pointer types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ASP->getPointeeType(),
|
|
S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the address space, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgAddressSpace, S.Context.IntTy, true,
|
|
Info, POK != PartialOrderingKind::None, Deduced,
|
|
HasDeducedAnyParam);
|
|
}
|
|
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
case Type::DependentBitInt: {
|
|
const auto *IP = P->castAs<DependentBitIntType>();
|
|
|
|
if (const auto *IA = A->getAs<BitIntType>()) {
|
|
if (IP->isUnsigned() != IA->isUnsigned())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, IP->getNumBitsExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
|
|
ArgSize = IA->getNumBits();
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
if (const auto *IA = A->getAs<DependentBitIntType>()) {
|
|
if (IP->isUnsigned() != IA->isUnsigned())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
case Type::TypeOfExpr:
|
|
case Type::TypeOf:
|
|
case Type::DependentName:
|
|
case Type::UnresolvedUsing:
|
|
case Type::Decltype:
|
|
case Type::UnaryTransform:
|
|
case Type::DeducedTemplateSpecialization:
|
|
case Type::DependentTemplateSpecialization:
|
|
case Type::PackExpansion:
|
|
case Type::Pipe:
|
|
case Type::ArrayParameter:
|
|
case Type::HLSLAttributedResource:
|
|
// No template argument deduction for these types
|
|
return TemplateDeductionResult::Success;
|
|
|
|
case Type::PackIndexing: {
|
|
const PackIndexingType *PIT = P->getAs<PackIndexingType>();
|
|
if (PIT->hasSelectedType()) {
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, PIT->getSelectedType(), A, Info, Deduced, TDF,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
return TemplateDeductionResult::IncompletePack;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Invalid Type Class!");
|
|
}
|
|
|
|
static TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
|
|
const TemplateArgument &P, TemplateArgument A,
|
|
TemplateDeductionInfo &Info, bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
// If the template argument is a pack expansion, perform template argument
|
|
// deduction against the pattern of that expansion. This only occurs during
|
|
// partial ordering.
|
|
if (A.isPackExpansion())
|
|
A = A.getPackExpansionPattern();
|
|
|
|
switch (P.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Null template argument in parameter list");
|
|
|
|
case TemplateArgument::Type:
|
|
if (A.getKind() == TemplateArgument::Type)
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0,
|
|
PartialOrdering ? PartialOrderingKind::NonCall
|
|
: PartialOrderingKind::None,
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::Template:
|
|
// PartialOrdering does not matter here, since template specializations are
|
|
// not being deduced.
|
|
if (A.getKind() == TemplateArgument::Template)
|
|
return DeduceTemplateArguments(
|
|
S, TemplateParams, P.getAsTemplate(), A.getAsTemplate(), Info,
|
|
/*DefaultArguments=*/{}, /*PartialOrdering=*/false, Deduced,
|
|
HasDeducedAnyParam);
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::TemplateExpansion:
|
|
llvm_unreachable("caller should handle pack expansions");
|
|
|
|
case TemplateArgument::Declaration:
|
|
if (A.getKind() == TemplateArgument::Declaration &&
|
|
isSameDeclaration(P.getAsDecl(), A.getAsDecl()))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::NullPtr:
|
|
// 'nullptr' has only one possible value, so it always matches.
|
|
if (A.getKind() == TemplateArgument::NullPtr)
|
|
return TemplateDeductionResult::Success;
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::Integral:
|
|
if (A.getKind() == TemplateArgument::Integral) {
|
|
if (hasSameExtendedValue(P.getAsIntegral(), A.getAsIntegral()))
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::StructuralValue:
|
|
// FIXME: structural equality will also compare types,
|
|
// but they should match iff they have the same value.
|
|
if (A.getKind() == TemplateArgument::StructuralValue &&
|
|
A.structurallyEquals(P))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::Expression:
|
|
if (const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, P.getAsExpr())) {
|
|
switch (A.getKind()) {
|
|
case TemplateArgument::Expression: {
|
|
const Expr *E = A.getAsExpr();
|
|
// When checking NTTP, if either the parameter or the argument is
|
|
// dependent, as there would be otherwise nothing to deduce, we force
|
|
// the argument to the parameter type using this dependent implicit
|
|
// cast, in order to maintain invariants. Now we can deduce the
|
|
// resulting type from the original type, and deduce the original type
|
|
// against the parameter we are checking.
|
|
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
|
|
ICE && ICE->getCastKind() == clang::CK_Dependent) {
|
|
E = ICE->getSubExpr();
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ICE->getType(), E->getType(), Info,
|
|
Deduced, TDF_SkipNonDependent,
|
|
PartialOrdering ? PartialOrderingKind::NonCall
|
|
: PartialOrderingKind::None,
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, DeducedTemplateArgument(A), E->getType(),
|
|
Info, PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
}
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::StructuralValue:
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, DeducedTemplateArgument(A),
|
|
A.getNonTypeTemplateArgumentType(), Info, PartialOrdering, Deduced,
|
|
HasDeducedAnyParam);
|
|
|
|
case TemplateArgument::NullPtr:
|
|
return DeduceNullPtrTemplateArgument(
|
|
S, TemplateParams, NTTP, A.getNullPtrType(), Info, PartialOrdering,
|
|
Deduced, HasDeducedAnyParam);
|
|
|
|
case TemplateArgument::Declaration:
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(),
|
|
Info, PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Type:
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
case TemplateArgument::Pack:
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
llvm_unreachable("Unknown template argument kind");
|
|
}
|
|
|
|
// Can't deduce anything, but that's okay.
|
|
return TemplateDeductionResult::Success;
|
|
case TemplateArgument::Pack:
|
|
llvm_unreachable("Argument packs should be expanded by the caller!");
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
/// Determine whether there is a template argument to be used for
|
|
/// deduction.
|
|
///
|
|
/// This routine "expands" argument packs in-place, overriding its input
|
|
/// parameters so that \c Args[ArgIdx] will be the available template argument.
|
|
///
|
|
/// \returns true if there is another template argument (which will be at
|
|
/// \c Args[ArgIdx]), false otherwise.
|
|
static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args,
|
|
unsigned &ArgIdx) {
|
|
if (ArgIdx == Args.size())
|
|
return false;
|
|
|
|
const TemplateArgument &Arg = Args[ArgIdx];
|
|
if (Arg.getKind() != TemplateArgument::Pack)
|
|
return true;
|
|
|
|
assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
|
|
Args = Arg.pack_elements();
|
|
ArgIdx = 0;
|
|
return ArgIdx < Args.size();
|
|
}
|
|
|
|
/// Determine whether the given set of template arguments has a pack
|
|
/// expansion that is not the last template argument.
|
|
static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) {
|
|
bool FoundPackExpansion = false;
|
|
for (const auto &A : Args) {
|
|
if (FoundPackExpansion)
|
|
return true;
|
|
|
|
if (A.getKind() == TemplateArgument::Pack)
|
|
return hasPackExpansionBeforeEnd(A.pack_elements());
|
|
|
|
// FIXME: If this is a fixed-arity pack expansion from an outer level of
|
|
// templates, it should not be treated as a pack expansion.
|
|
if (A.isPackExpansion())
|
|
FoundPackExpansion = true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
|
|
ArrayRef<TemplateArgument> Ps,
|
|
ArrayRef<TemplateArgument> As,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool NumberOfArgumentsMustMatch, bool PartialOrdering,
|
|
PackFold PackFold, bool *HasDeducedAnyParam) {
|
|
bool FoldPackParameter = PackFold == PackFold::ParameterToArgument ||
|
|
PackFold == PackFold::Both,
|
|
FoldPackArgument = PackFold == PackFold::ArgumentToParameter ||
|
|
PackFold == PackFold::Both;
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If the template argument list of P contains a pack expansion that is not
|
|
// the last template argument, the entire template argument list is a
|
|
// non-deduced context.
|
|
if (FoldPackParameter && hasPackExpansionBeforeEnd(Ps))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If P has a form that contains <T> or <i>, then each argument Pi of the
|
|
// respective template argument list P is compared with the corresponding
|
|
// argument Ai of the corresponding template argument list of A.
|
|
for (unsigned ArgIdx = 0, ParamIdx = 0; /**/; /**/) {
|
|
if (!hasTemplateArgumentForDeduction(Ps, ParamIdx))
|
|
return !FoldPackParameter && hasTemplateArgumentForDeduction(As, ArgIdx)
|
|
? TemplateDeductionResult::MiscellaneousDeductionFailure
|
|
: TemplateDeductionResult::Success;
|
|
|
|
if (!Ps[ParamIdx].isPackExpansion()) {
|
|
// The simple case: deduce template arguments by matching Pi and Ai.
|
|
|
|
// Check whether we have enough arguments.
|
|
if (!hasTemplateArgumentForDeduction(As, ArgIdx))
|
|
return !FoldPackArgument && NumberOfArgumentsMustMatch
|
|
? TemplateDeductionResult::MiscellaneousDeductionFailure
|
|
: TemplateDeductionResult::Success;
|
|
|
|
if (As[ArgIdx].isPackExpansion()) {
|
|
// C++1z [temp.deduct.type]p9:
|
|
// During partial ordering, if Ai was originally a pack expansion
|
|
// [and] Pi is not a pack expansion, template argument deduction
|
|
// fails.
|
|
if (!FoldPackArgument)
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
TemplateArgument Pattern = As[ArgIdx].getPackExpansionPattern();
|
|
for (;;) {
|
|
// Deduce template parameters from the pattern.
|
|
if (auto Result = DeduceTemplateArguments(
|
|
S, TemplateParams, Ps[ParamIdx], Pattern, Info,
|
|
PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
++ParamIdx;
|
|
if (!hasTemplateArgumentForDeduction(Ps, ParamIdx))
|
|
return TemplateDeductionResult::Success;
|
|
if (Ps[ParamIdx].isPackExpansion())
|
|
break;
|
|
}
|
|
} else {
|
|
// Perform deduction for this Pi/Ai pair.
|
|
if (auto Result = DeduceTemplateArguments(
|
|
S, TemplateParams, Ps[ParamIdx], As[ArgIdx], Info,
|
|
PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
++ArgIdx;
|
|
++ParamIdx;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// The parameter is a pack expansion.
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If Pi is a pack expansion, then the pattern of Pi is compared with
|
|
// each remaining argument in the template argument list of A. Each
|
|
// comparison deduces template arguments for subsequent positions in the
|
|
// template parameter packs expanded by Pi.
|
|
TemplateArgument Pattern = Ps[ParamIdx].getPackExpansionPattern();
|
|
|
|
// Prepare to deduce the packs within the pattern.
|
|
PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
|
|
|
|
// Keep track of the deduced template arguments for each parameter pack
|
|
// expanded by this pack expansion (the outer index) and for each
|
|
// template argument (the inner SmallVectors).
|
|
for (; hasTemplateArgumentForDeduction(As, ArgIdx) &&
|
|
PackScope.hasNextElement();
|
|
++ArgIdx) {
|
|
if (!As[ArgIdx].isPackExpansion()) {
|
|
if (!FoldPackParameter)
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
if (FoldPackArgument)
|
|
Info.setStrictPackMatch();
|
|
}
|
|
// Deduce template arguments from the pattern.
|
|
if (auto Result = DeduceTemplateArguments(
|
|
S, TemplateParams, Pattern, As[ArgIdx], Info, PartialOrdering,
|
|
Deduced, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
PackScope.nextPackElement();
|
|
}
|
|
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
return PackScope.finish();
|
|
}
|
|
}
|
|
|
|
TemplateDeductionResult Sema::DeduceTemplateArguments(
|
|
TemplateParameterList *TemplateParams, ArrayRef<TemplateArgument> Ps,
|
|
ArrayRef<TemplateArgument> As, sema::TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool NumberOfArgumentsMustMatch) {
|
|
return ::DeduceTemplateArguments(
|
|
*this, TemplateParams, Ps, As, Info, Deduced, NumberOfArgumentsMustMatch,
|
|
/*PartialOrdering=*/false, PackFold::ParameterToArgument,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
}
|
|
|
|
/// Determine whether two template arguments are the same.
|
|
static bool isSameTemplateArg(ASTContext &Context, const TemplateArgument &X,
|
|
const TemplateArgument &Y) {
|
|
if (X.getKind() != Y.getKind())
|
|
return false;
|
|
|
|
switch (X.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Comparing NULL template argument");
|
|
|
|
case TemplateArgument::Type:
|
|
return Context.getCanonicalType(X.getAsType()) ==
|
|
Context.getCanonicalType(Y.getAsType());
|
|
|
|
case TemplateArgument::Declaration:
|
|
return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
|
|
|
|
case TemplateArgument::NullPtr:
|
|
return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
return Context.getCanonicalTemplateName(
|
|
X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
|
|
Context.getCanonicalTemplateName(
|
|
Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
|
|
|
|
case TemplateArgument::Integral:
|
|
return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral());
|
|
|
|
case TemplateArgument::StructuralValue:
|
|
return X.structurallyEquals(Y);
|
|
|
|
case TemplateArgument::Expression: {
|
|
llvm::FoldingSetNodeID XID, YID;
|
|
X.getAsExpr()->Profile(XID, Context, true);
|
|
Y.getAsExpr()->Profile(YID, Context, true);
|
|
return XID == YID;
|
|
}
|
|
|
|
case TemplateArgument::Pack: {
|
|
unsigned PackIterationSize = X.pack_size();
|
|
if (X.pack_size() != Y.pack_size())
|
|
return false;
|
|
ArrayRef<TemplateArgument> XP = X.pack_elements();
|
|
ArrayRef<TemplateArgument> YP = Y.pack_elements();
|
|
for (unsigned i = 0; i < PackIterationSize; ++i)
|
|
if (!isSameTemplateArg(Context, XP[i], YP[i]))
|
|
return false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
TemplateArgumentLoc
|
|
Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
|
|
QualType NTTPType, SourceLocation Loc,
|
|
NamedDecl *TemplateParam) {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Can't get a NULL template argument here");
|
|
|
|
case TemplateArgument::Type:
|
|
return TemplateArgumentLoc(
|
|
Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
|
|
|
|
case TemplateArgument::Declaration: {
|
|
if (NTTPType.isNull())
|
|
NTTPType = Arg.getParamTypeForDecl();
|
|
Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc,
|
|
TemplateParam)
|
|
.getAs<Expr>();
|
|
return TemplateArgumentLoc(TemplateArgument(E, /*IsCanonical=*/false), E);
|
|
}
|
|
|
|
case TemplateArgument::NullPtr: {
|
|
if (NTTPType.isNull())
|
|
NTTPType = Arg.getNullPtrType();
|
|
Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
|
|
.getAs<Expr>();
|
|
return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
|
|
E);
|
|
}
|
|
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::StructuralValue: {
|
|
Expr *E = BuildExpressionFromNonTypeTemplateArgument(Arg, Loc).get();
|
|
return TemplateArgumentLoc(TemplateArgument(E, /*IsCanonical=*/false), E);
|
|
}
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion: {
|
|
NestedNameSpecifierLocBuilder Builder;
|
|
TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
|
|
Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
|
|
else if (QualifiedTemplateName *QTN =
|
|
Template.getAsQualifiedTemplateName())
|
|
Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);
|
|
|
|
if (Arg.getKind() == TemplateArgument::Template)
|
|
return TemplateArgumentLoc(Context, Arg,
|
|
Builder.getWithLocInContext(Context), Loc);
|
|
|
|
return TemplateArgumentLoc(
|
|
Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc);
|
|
}
|
|
|
|
case TemplateArgument::Expression:
|
|
return TemplateArgumentLoc(Arg, Arg.getAsExpr());
|
|
|
|
case TemplateArgument::Pack:
|
|
return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
TemplateArgumentLoc
|
|
Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm,
|
|
SourceLocation Location) {
|
|
return getTrivialTemplateArgumentLoc(
|
|
Context.getInjectedTemplateArg(TemplateParm), QualType(), Location);
|
|
}
|
|
|
|
/// Convert the given deduced template argument and add it to the set of
|
|
/// fully-converted template arguments.
|
|
static bool
|
|
ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
|
|
DeducedTemplateArgument Arg, NamedDecl *Template,
|
|
TemplateDeductionInfo &Info, bool IsDeduced,
|
|
Sema::CheckTemplateArgumentInfo &CTAI) {
|
|
auto ConvertArg = [&](DeducedTemplateArgument Arg,
|
|
unsigned ArgumentPackIndex) {
|
|
// Convert the deduced template argument into a template
|
|
// argument that we can check, almost as if the user had written
|
|
// the template argument explicitly.
|
|
TemplateArgumentLoc ArgLoc = S.getTrivialTemplateArgumentLoc(
|
|
Arg, QualType(), Info.getLocation(), Param);
|
|
|
|
SaveAndRestore _1(CTAI.MatchingTTP, false);
|
|
SaveAndRestore _2(CTAI.StrictPackMatch, false);
|
|
// Check the template argument, converting it as necessary.
|
|
auto Res = S.CheckTemplateArgument(
|
|
Param, ArgLoc, Template, Template->getLocation(),
|
|
Template->getSourceRange().getEnd(), ArgumentPackIndex, CTAI,
|
|
IsDeduced
|
|
? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound
|
|
: Sema::CTAK_Deduced)
|
|
: Sema::CTAK_Specified);
|
|
if (CTAI.StrictPackMatch)
|
|
Info.setStrictPackMatch();
|
|
return Res;
|
|
};
|
|
|
|
if (Arg.getKind() == TemplateArgument::Pack) {
|
|
// This is a template argument pack, so check each of its arguments against
|
|
// the template parameter.
|
|
SmallVector<TemplateArgument, 2> SugaredPackedArgsBuilder,
|
|
CanonicalPackedArgsBuilder;
|
|
for (const auto &P : Arg.pack_elements()) {
|
|
// When converting the deduced template argument, append it to the
|
|
// general output list. We need to do this so that the template argument
|
|
// checking logic has all of the prior template arguments available.
|
|
DeducedTemplateArgument InnerArg(P);
|
|
InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
|
|
assert(InnerArg.getKind() != TemplateArgument::Pack &&
|
|
"deduced nested pack");
|
|
if (P.isNull()) {
|
|
// We deduced arguments for some elements of this pack, but not for
|
|
// all of them. This happens if we get a conditionally-non-deduced
|
|
// context in a pack expansion (such as an overload set in one of the
|
|
// arguments).
|
|
S.Diag(Param->getLocation(),
|
|
diag::err_template_arg_deduced_incomplete_pack)
|
|
<< Arg << Param;
|
|
return true;
|
|
}
|
|
if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size()))
|
|
return true;
|
|
|
|
// Move the converted template argument into our argument pack.
|
|
SugaredPackedArgsBuilder.push_back(CTAI.SugaredConverted.pop_back_val());
|
|
CanonicalPackedArgsBuilder.push_back(
|
|
CTAI.CanonicalConverted.pop_back_val());
|
|
}
|
|
|
|
// If the pack is empty, we still need to substitute into the parameter
|
|
// itself, in case that substitution fails.
|
|
if (SugaredPackedArgsBuilder.empty()) {
|
|
LocalInstantiationScope Scope(S);
|
|
MultiLevelTemplateArgumentList Args(Template, CTAI.SugaredConverted,
|
|
/*Final=*/true);
|
|
|
|
if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
|
|
NTTP, CTAI.SugaredConverted,
|
|
Template->getSourceRange());
|
|
if (Inst.isInvalid() ||
|
|
S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
|
|
NTTP->getDeclName()).isNull())
|
|
return true;
|
|
} else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
|
|
Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
|
|
TTP, CTAI.SugaredConverted,
|
|
Template->getSourceRange());
|
|
if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
|
|
return true;
|
|
}
|
|
// For type parameters, no substitution is ever required.
|
|
}
|
|
|
|
// Create the resulting argument pack.
|
|
CTAI.SugaredConverted.push_back(
|
|
TemplateArgument::CreatePackCopy(S.Context, SugaredPackedArgsBuilder));
|
|
CTAI.CanonicalConverted.push_back(TemplateArgument::CreatePackCopy(
|
|
S.Context, CanonicalPackedArgsBuilder));
|
|
return false;
|
|
}
|
|
|
|
return ConvertArg(Arg, 0);
|
|
}
|
|
|
|
/// \param IsIncomplete When used, we only consider template parameters that
|
|
/// were deduced, disregarding any default arguments. After the function
|
|
/// finishes, the object pointed at will contain a value indicating if the
|
|
/// conversion was actually incomplete.
|
|
static TemplateDeductionResult ConvertDeducedTemplateArguments(
|
|
Sema &S, NamedDecl *Template, TemplateParameterList *TemplateParams,
|
|
bool IsDeduced, SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info, Sema::CheckTemplateArgumentInfo &CTAI,
|
|
LocalInstantiationScope *CurrentInstantiationScope,
|
|
unsigned NumAlreadyConverted, bool *IsIncomplete) {
|
|
for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
|
|
NamedDecl *Param = TemplateParams->getParam(I);
|
|
|
|
// C++0x [temp.arg.explicit]p3:
|
|
// A trailing template parameter pack (14.5.3) not otherwise deduced will
|
|
// be deduced to an empty sequence of template arguments.
|
|
// FIXME: Where did the word "trailing" come from?
|
|
if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
|
|
if (auto Result =
|
|
PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish();
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
if (!Deduced[I].isNull()) {
|
|
if (I < NumAlreadyConverted) {
|
|
// We may have had explicitly-specified template arguments for a
|
|
// template parameter pack (that may or may not have been extended
|
|
// via additional deduced arguments).
|
|
if (Param->isParameterPack() && CurrentInstantiationScope &&
|
|
CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
|
|
// Forget the partially-substituted pack; its substitution is now
|
|
// complete.
|
|
CurrentInstantiationScope->ResetPartiallySubstitutedPack();
|
|
// We still need to check the argument in case it was extended by
|
|
// deduction.
|
|
} else {
|
|
// We have already fully type-checked and converted this
|
|
// argument, because it was explicitly-specified. Just record the
|
|
// presence of this argument.
|
|
CTAI.SugaredConverted.push_back(Deduced[I]);
|
|
CTAI.CanonicalConverted.push_back(
|
|
S.Context.getCanonicalTemplateArgument(Deduced[I]));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We may have deduced this argument, so it still needs to be
|
|
// checked and converted.
|
|
if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
|
|
IsDeduced, CTAI)) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted),
|
|
TemplateArgumentList::CreateCopy(S.Context,
|
|
CTAI.CanonicalConverted));
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// [C++26][temp.deduct.partial]p12 - When partial ordering, it's ok for
|
|
// template parameters to remain not deduced. As a provisional fix for a
|
|
// core issue that does not exist yet, which may be related to CWG2160, only
|
|
// consider template parameters that were deduced, disregarding any default
|
|
// arguments.
|
|
if (IsIncomplete) {
|
|
*IsIncomplete = true;
|
|
CTAI.SugaredConverted.push_back({});
|
|
CTAI.CanonicalConverted.push_back({});
|
|
continue;
|
|
}
|
|
|
|
// Substitute into the default template argument, if available.
|
|
bool HasDefaultArg = false;
|
|
TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
|
|
if (!TD) {
|
|
assert(isa<ClassTemplatePartialSpecializationDecl>(Template) ||
|
|
isa<VarTemplatePartialSpecializationDecl>(Template));
|
|
return TemplateDeductionResult::Incomplete;
|
|
}
|
|
|
|
TemplateArgumentLoc DefArg;
|
|
{
|
|
Qualifiers ThisTypeQuals;
|
|
CXXRecordDecl *ThisContext = nullptr;
|
|
if (auto *Rec = dyn_cast<CXXRecordDecl>(TD->getDeclContext()))
|
|
if (Rec->isLambda())
|
|
if (auto *Method = dyn_cast<CXXMethodDecl>(Rec->getDeclContext())) {
|
|
ThisContext = Method->getParent();
|
|
ThisTypeQuals = Method->getMethodQualifiers();
|
|
}
|
|
|
|
Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals,
|
|
S.getLangOpts().CPlusPlus17);
|
|
|
|
DefArg = S.SubstDefaultTemplateArgumentIfAvailable(
|
|
TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param,
|
|
CTAI.SugaredConverted, CTAI.CanonicalConverted, HasDefaultArg);
|
|
}
|
|
|
|
// If there was no default argument, deduction is incomplete.
|
|
if (DefArg.getArgument().isNull()) {
|
|
Info.Param = makeTemplateParameter(
|
|
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
|
|
Info.reset(
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted),
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted));
|
|
|
|
return HasDefaultArg ? TemplateDeductionResult::SubstitutionFailure
|
|
: TemplateDeductionResult::Incomplete;
|
|
}
|
|
|
|
SaveAndRestore _1(CTAI.PartialOrdering, false);
|
|
SaveAndRestore _2(CTAI.MatchingTTP, false);
|
|
SaveAndRestore _3(CTAI.StrictPackMatch, false);
|
|
// Check whether we can actually use the default argument.
|
|
if (S.CheckTemplateArgument(
|
|
Param, DefArg, TD, TD->getLocation(), TD->getSourceRange().getEnd(),
|
|
/*ArgumentPackIndex=*/0, CTAI, Sema::CTAK_Specified)) {
|
|
Info.Param = makeTemplateParameter(
|
|
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted),
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted));
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
// If we get here, we successfully used the default template argument.
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
static DeclContext *getAsDeclContextOrEnclosing(Decl *D) {
|
|
if (auto *DC = dyn_cast<DeclContext>(D))
|
|
return DC;
|
|
return D->getDeclContext();
|
|
}
|
|
|
|
template<typename T> struct IsPartialSpecialization {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<>
|
|
struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> {
|
|
static constexpr bool value = true;
|
|
};
|
|
template<>
|
|
struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> {
|
|
static constexpr bool value = true;
|
|
};
|
|
|
|
static TemplateDeductionResult
|
|
CheckDeducedArgumentConstraints(Sema &S, NamedDecl *Template,
|
|
ArrayRef<TemplateArgument> SugaredDeducedArgs,
|
|
ArrayRef<TemplateArgument> CanonicalDeducedArgs,
|
|
TemplateDeductionInfo &Info) {
|
|
llvm::SmallVector<AssociatedConstraint, 3> AssociatedConstraints;
|
|
bool DeducedArgsNeedReplacement = false;
|
|
if (auto *TD = dyn_cast<ClassTemplatePartialSpecializationDecl>(Template)) {
|
|
TD->getAssociatedConstraints(AssociatedConstraints);
|
|
DeducedArgsNeedReplacement = !TD->isClassScopeExplicitSpecialization();
|
|
} else if (auto *TD =
|
|
dyn_cast<VarTemplatePartialSpecializationDecl>(Template)) {
|
|
TD->getAssociatedConstraints(AssociatedConstraints);
|
|
DeducedArgsNeedReplacement = !TD->isClassScopeExplicitSpecialization();
|
|
} else {
|
|
cast<TemplateDecl>(Template)->getAssociatedConstraints(
|
|
AssociatedConstraints);
|
|
}
|
|
|
|
std::optional<ArrayRef<TemplateArgument>> Innermost;
|
|
// If we don't need to replace the deduced template arguments,
|
|
// we can add them immediately as the inner-most argument list.
|
|
if (!DeducedArgsNeedReplacement)
|
|
Innermost = CanonicalDeducedArgs;
|
|
|
|
MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
|
|
Template, Template->getDeclContext(), /*Final=*/false, Innermost,
|
|
/*RelativeToPrimary=*/true, /*Pattern=*/
|
|
nullptr, /*ForConstraintInstantiation=*/true);
|
|
|
|
// getTemplateInstantiationArgs picks up the non-deduced version of the
|
|
// template args when this is a variable template partial specialization and
|
|
// not class-scope explicit specialization, so replace with Deduced Args
|
|
// instead of adding to inner-most.
|
|
if (!Innermost)
|
|
MLTAL.replaceInnermostTemplateArguments(Template, CanonicalDeducedArgs);
|
|
|
|
if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL,
|
|
Info.getLocation(),
|
|
Info.AssociatedConstraintsSatisfaction) ||
|
|
!Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
|
|
Info.reset(
|
|
TemplateArgumentList::CreateCopy(S.Context, SugaredDeducedArgs),
|
|
TemplateArgumentList::CreateCopy(S.Context, CanonicalDeducedArgs));
|
|
return TemplateDeductionResult::ConstraintsNotSatisfied;
|
|
}
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Complete template argument deduction.
|
|
static TemplateDeductionResult FinishTemplateArgumentDeduction(
|
|
Sema &S, NamedDecl *Entity, TemplateParameterList *EntityTPL,
|
|
TemplateDecl *Template, bool PartialOrdering,
|
|
ArrayRef<TemplateArgumentLoc> Ps, ArrayRef<TemplateArgument> As,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info, bool CopyDeducedArgs) {
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Entity));
|
|
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
Sema::CheckTemplateArgumentInfo CTAI(PartialOrdering);
|
|
if (auto Result = ConvertDeducedTemplateArguments(
|
|
S, Entity, EntityTPL, /*IsDeduced=*/PartialOrdering, Deduced, Info,
|
|
CTAI,
|
|
/*CurrentInstantiationScope=*/nullptr,
|
|
/*NumAlreadyConverted=*/0U, /*IsIncomplete=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
if (CopyDeducedArgs) {
|
|
// Form the template argument list from the deduced template arguments.
|
|
TemplateArgumentList *SugaredDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted);
|
|
TemplateArgumentList *CanonicalDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted);
|
|
Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
|
|
}
|
|
|
|
TemplateParameterList *TPL = Template->getTemplateParameters();
|
|
TemplateArgumentListInfo InstArgs(TPL->getLAngleLoc(), TPL->getRAngleLoc());
|
|
MultiLevelTemplateArgumentList MLTAL(Entity, CTAI.SugaredConverted,
|
|
/*Final=*/true);
|
|
MLTAL.addOuterRetainedLevels(TPL->getDepth());
|
|
|
|
if (S.SubstTemplateArguments(Ps, MLTAL, InstArgs)) {
|
|
unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
|
|
if (ParamIdx >= TPL->size())
|
|
ParamIdx = TPL->size() - 1;
|
|
|
|
Decl *Param = const_cast<NamedDecl *>(TPL->getParam(ParamIdx));
|
|
Info.Param = makeTemplateParameter(Param);
|
|
Info.FirstArg = Ps[ArgIdx].getArgument();
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
bool ConstraintsNotSatisfied;
|
|
Sema::CheckTemplateArgumentInfo InstCTAI;
|
|
if (S.CheckTemplateArgumentList(Template, Template->getLocation(), InstArgs,
|
|
/*DefaultArgs=*/{}, false, InstCTAI,
|
|
/*UpdateArgsWithConversions=*/true,
|
|
&ConstraintsNotSatisfied))
|
|
return ConstraintsNotSatisfied
|
|
? TemplateDeductionResult::ConstraintsNotSatisfied
|
|
: TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
// Check that we produced the correct argument list.
|
|
SmallVector<ArrayRef<TemplateArgument>, 4> PsStack{InstCTAI.SugaredConverted},
|
|
AsStack{As};
|
|
for (;;) {
|
|
auto take = [](SmallVectorImpl<ArrayRef<TemplateArgument>> &Stack)
|
|
-> std::tuple<ArrayRef<TemplateArgument> &, TemplateArgument> {
|
|
while (!Stack.empty()) {
|
|
auto &Xs = Stack.back();
|
|
if (Xs.empty()) {
|
|
Stack.pop_back();
|
|
continue;
|
|
}
|
|
auto &X = Xs.front();
|
|
if (X.getKind() == TemplateArgument::Pack) {
|
|
Stack.emplace_back(X.getPackAsArray());
|
|
Xs = Xs.drop_front();
|
|
continue;
|
|
}
|
|
assert(!X.isNull());
|
|
return {Xs, X};
|
|
}
|
|
static constexpr ArrayRef<TemplateArgument> None;
|
|
return {const_cast<ArrayRef<TemplateArgument> &>(None),
|
|
TemplateArgument()};
|
|
};
|
|
auto [Ps, P] = take(PsStack);
|
|
auto [As, A] = take(AsStack);
|
|
if (P.isNull() && A.isNull())
|
|
break;
|
|
TemplateArgument PP = P.isPackExpansion() ? P.getPackExpansionPattern() : P,
|
|
PA = A.isPackExpansion() ? A.getPackExpansionPattern() : A;
|
|
if (!isSameTemplateArg(S.Context, PP, PA)) {
|
|
if (!P.isPackExpansion() && !A.isPackExpansion()) {
|
|
Info.Param = makeTemplateParameter(TPL->getParam(
|
|
(AsStack.empty() ? As.end() : AsStack.back().begin()) -
|
|
As.begin()));
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
if (P.isPackExpansion()) {
|
|
Ps = Ps.drop_front();
|
|
continue;
|
|
}
|
|
if (A.isPackExpansion()) {
|
|
As = As.drop_front();
|
|
continue;
|
|
}
|
|
}
|
|
Ps = Ps.drop_front(P.isPackExpansion() ? 0 : 1);
|
|
As = As.drop_front(A.isPackExpansion() && !P.isPackExpansion() ? 0 : 1);
|
|
}
|
|
assert(PsStack.empty());
|
|
assert(AsStack.empty());
|
|
|
|
if (!PartialOrdering) {
|
|
if (auto Result = CheckDeducedArgumentConstraints(
|
|
S, Entity, CTAI.SugaredConverted, CTAI.CanonicalConverted, Info);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
static TemplateDeductionResult FinishTemplateArgumentDeduction(
|
|
Sema &S, NamedDecl *Entity, TemplateParameterList *EntityTPL,
|
|
TemplateDecl *Template, bool PartialOrdering, ArrayRef<TemplateArgument> Ps,
|
|
ArrayRef<TemplateArgument> As,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info, bool CopyDeducedArgs) {
|
|
TemplateParameterList *TPL = Template->getTemplateParameters();
|
|
SmallVector<TemplateArgumentLoc, 8> PsLoc(Ps.size());
|
|
for (unsigned I = 0, N = Ps.size(); I != N; ++I)
|
|
PsLoc[I] = S.getTrivialTemplateArgumentLoc(Ps[I], QualType(),
|
|
TPL->getParam(I)->getLocation());
|
|
return FinishTemplateArgumentDeduction(S, Entity, EntityTPL, Template,
|
|
PartialOrdering, PsLoc, As, Deduced,
|
|
Info, CopyDeducedArgs);
|
|
}
|
|
|
|
/// Complete template argument deduction for DeduceTemplateArgumentsFromType.
|
|
/// FIXME: this is mostly duplicated with the above two versions. Deduplicate
|
|
/// the three implementations.
|
|
static TemplateDeductionResult FinishTemplateArgumentDeduction(
|
|
Sema &S, TemplateDecl *TD,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info) {
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(TD));
|
|
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
Sema::CheckTemplateArgumentInfo CTAI;
|
|
if (auto Result = ConvertDeducedTemplateArguments(
|
|
S, TD, TD->getTemplateParameters(), /*IsDeduced=*/false, Deduced,
|
|
Info, CTAI,
|
|
/*CurrentInstantiationScope=*/nullptr, /*NumAlreadyConverted=*/0,
|
|
/*IsIncomplete=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
return ::CheckDeducedArgumentConstraints(S, TD, CTAI.SugaredConverted,
|
|
CTAI.CanonicalConverted, Info);
|
|
}
|
|
|
|
/// Perform template argument deduction to determine whether the given template
|
|
/// arguments match the given class or variable template partial specialization
|
|
/// per C++ [temp.class.spec.match].
|
|
template <typename T>
|
|
static std::enable_if_t<IsPartialSpecialization<T>::value,
|
|
TemplateDeductionResult>
|
|
DeduceTemplateArguments(Sema &S, T *Partial,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
TemplateDeductionInfo &Info) {
|
|
if (Partial->isInvalidDecl())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
// C++ [temp.class.spec.match]p2:
|
|
// A partial specialization matches a given actual template
|
|
// argument list if the template arguments of the partial
|
|
// specialization can be deduced from the actual template argument
|
|
// list (14.8.2).
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
Sema::SFINAETrap Trap(S);
|
|
|
|
// This deduction has no relation to any outer instantiation we might be
|
|
// performing.
|
|
LocalInstantiationScope InstantiationScope(S);
|
|
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
Deduced.resize(Partial->getTemplateParameters()->size());
|
|
if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
|
|
S, Partial->getTemplateParameters(),
|
|
Partial->getTemplateArgs().asArray(), TemplateArgs, Info, Deduced,
|
|
/*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/false,
|
|
PackFold::ParameterToArgument,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
Sema::InstantiatingTemplate Inst(S, Info.getLocation(), Partial, DeducedArgs,
|
|
Info);
|
|
if (Inst.isInvalid())
|
|
return TemplateDeductionResult::InstantiationDepth;
|
|
|
|
TemplateDeductionResult Result;
|
|
S.runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = ::FinishTemplateArgumentDeduction(
|
|
S, Partial, Partial->getTemplateParameters(),
|
|
Partial->getSpecializedTemplate(),
|
|
/*IsPartialOrdering=*/false,
|
|
Partial->getTemplateArgsAsWritten()->arguments(), TemplateArgs, Deduced,
|
|
Info, /*CopyDeducedArgs=*/true);
|
|
});
|
|
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
TemplateDeductionInfo &Info) {
|
|
return ::DeduceTemplateArguments(*this, Partial, TemplateArgs, Info);
|
|
}
|
|
TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
TemplateDeductionInfo &Info) {
|
|
return ::DeduceTemplateArguments(*this, Partial, TemplateArgs, Info);
|
|
}
|
|
|
|
TemplateDeductionResult
|
|
Sema::DeduceTemplateArgumentsFromType(TemplateDecl *TD, QualType FromType,
|
|
sema::TemplateDeductionInfo &Info) {
|
|
if (TD->isInvalidDecl())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
QualType PType;
|
|
if (const auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
|
|
// Use the InjectedClassNameType.
|
|
PType = Context.getTypeDeclType(CTD->getTemplatedDecl());
|
|
} else if (const auto *AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(TD)) {
|
|
PType = AliasTemplate->getTemplatedDecl()->getUnderlyingType();
|
|
} else {
|
|
assert(false && "Expected a class or alias template");
|
|
}
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// This deduction has no relation to any outer instantiation we might be
|
|
// performing.
|
|
LocalInstantiationScope InstantiationScope(*this);
|
|
|
|
SmallVector<DeducedTemplateArgument> Deduced(
|
|
TD->getTemplateParameters()->size());
|
|
SmallVector<TemplateArgument> PArgs = {TemplateArgument(PType)};
|
|
SmallVector<TemplateArgument> AArgs = {TemplateArgument(FromType)};
|
|
if (auto DeducedResult = DeduceTemplateArguments(
|
|
TD->getTemplateParameters(), PArgs, AArgs, Info, Deduced, false);
|
|
DeducedResult != TemplateDeductionResult::Success) {
|
|
return DeducedResult;
|
|
}
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
InstantiatingTemplate Inst(*this, Info.getLocation(), TD, DeducedArgs, Info);
|
|
if (Inst.isInvalid())
|
|
return TemplateDeductionResult::InstantiationDepth;
|
|
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = ::FinishTemplateArgumentDeduction(*this, TD, Deduced, Info);
|
|
});
|
|
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Determine whether the given type T is a simple-template-id type.
|
|
static bool isSimpleTemplateIdType(QualType T) {
|
|
if (const TemplateSpecializationType *Spec
|
|
= T->getAs<TemplateSpecializationType>())
|
|
return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
|
|
|
|
// C++17 [temp.local]p2:
|
|
// the injected-class-name [...] is equivalent to the template-name followed
|
|
// by the template-arguments of the class template specialization or partial
|
|
// specialization enclosed in <>
|
|
// ... which means it's equivalent to a simple-template-id.
|
|
//
|
|
// This only arises during class template argument deduction for a copy
|
|
// deduction candidate, where it permits slicing.
|
|
if (T->getAs<InjectedClassNameType>())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
TemplateDeductionResult Sema::SubstituteExplicitTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo &ExplicitTemplateArgs,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
|
|
TemplateDeductionInfo &Info) {
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
|
|
if (ExplicitTemplateArgs.size() == 0) {
|
|
// No arguments to substitute; just copy over the parameter types and
|
|
// fill in the function type.
|
|
for (auto *P : Function->parameters())
|
|
ParamTypes.push_back(P->getType());
|
|
|
|
if (FunctionType)
|
|
*FunctionType = Function->getType();
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// C++ [temp.arg.explicit]p3:
|
|
// Template arguments that are present shall be specified in the
|
|
// declaration order of their corresponding template-parameters. The
|
|
// template argument list shall not specify more template-arguments than
|
|
// there are corresponding template-parameters.
|
|
|
|
// Enter a new template instantiation context where we check the
|
|
// explicitly-specified template arguments against this function template,
|
|
// and then substitute them into the function parameter types.
|
|
SmallVector<TemplateArgument, 4> DeducedArgs;
|
|
InstantiatingTemplate Inst(
|
|
*this, Info.getLocation(), FunctionTemplate, DeducedArgs,
|
|
CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
|
|
if (Inst.isInvalid())
|
|
return TemplateDeductionResult::InstantiationDepth;
|
|
|
|
CheckTemplateArgumentInfo CTAI;
|
|
if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(),
|
|
ExplicitTemplateArgs, /*DefaultArgs=*/{},
|
|
/*PartialTemplateArgs=*/true, CTAI,
|
|
/*UpdateArgsWithConversions=*/false) ||
|
|
Trap.hasErrorOccurred()) {
|
|
unsigned Index = CTAI.SugaredConverted.size();
|
|
if (Index >= TemplateParams->size())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
|
|
return TemplateDeductionResult::InvalidExplicitArguments;
|
|
}
|
|
|
|
// Form the template argument list from the explicitly-specified
|
|
// template arguments.
|
|
TemplateArgumentList *SugaredExplicitArgumentList =
|
|
TemplateArgumentList::CreateCopy(Context, CTAI.SugaredConverted);
|
|
TemplateArgumentList *CanonicalExplicitArgumentList =
|
|
TemplateArgumentList::CreateCopy(Context, CTAI.CanonicalConverted);
|
|
Info.setExplicitArgs(SugaredExplicitArgumentList,
|
|
CanonicalExplicitArgumentList);
|
|
|
|
// Template argument deduction and the final substitution should be
|
|
// done in the context of the templated declaration. Explicit
|
|
// argument substitution, on the other hand, needs to happen in the
|
|
// calling context.
|
|
ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
|
|
|
|
// If we deduced template arguments for a template parameter pack,
|
|
// note that the template argument pack is partially substituted and record
|
|
// the explicit template arguments. They'll be used as part of deduction
|
|
// for this template parameter pack.
|
|
unsigned PartiallySubstitutedPackIndex = -1u;
|
|
if (!CTAI.SugaredConverted.empty()) {
|
|
const TemplateArgument &Arg = CTAI.SugaredConverted.back();
|
|
if (Arg.getKind() == TemplateArgument::Pack) {
|
|
auto *Param = TemplateParams->getParam(CTAI.SugaredConverted.size() - 1);
|
|
// If this is a fully-saturated fixed-size pack, it should be
|
|
// fully-substituted, not partially-substituted.
|
|
UnsignedOrNone Expansions = getExpandedPackSize(Param);
|
|
if (!Expansions || Arg.pack_size() < *Expansions) {
|
|
PartiallySubstitutedPackIndex = CTAI.SugaredConverted.size() - 1;
|
|
CurrentInstantiationScope->SetPartiallySubstitutedPack(
|
|
Param, Arg.pack_begin(), Arg.pack_size());
|
|
}
|
|
}
|
|
}
|
|
|
|
const FunctionProtoType *Proto
|
|
= Function->getType()->getAs<FunctionProtoType>();
|
|
assert(Proto && "Function template does not have a prototype?");
|
|
|
|
// Isolate our substituted parameters from our caller.
|
|
LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
|
|
|
|
ExtParameterInfoBuilder ExtParamInfos;
|
|
|
|
MultiLevelTemplateArgumentList MLTAL(FunctionTemplate,
|
|
SugaredExplicitArgumentList->asArray(),
|
|
/*Final=*/true);
|
|
|
|
// Instantiate the types of each of the function parameters given the
|
|
// explicitly-specified template arguments. If the function has a trailing
|
|
// return type, substitute it after the arguments to ensure we substitute
|
|
// in lexical order.
|
|
if (Proto->hasTrailingReturn()) {
|
|
if (SubstParmTypes(Function->getLocation(), Function->parameters(),
|
|
Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes,
|
|
/*params=*/nullptr, ExtParamInfos))
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
// Instantiate the return type.
|
|
QualType ResultType;
|
|
{
|
|
// C++11 [expr.prim.general]p3:
|
|
// If a declaration declares a member function or member function
|
|
// template of a class X, the expression this is a prvalue of type
|
|
// "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
|
|
// and the end of the function-definition, member-declarator, or
|
|
// declarator.
|
|
Qualifiers ThisTypeQuals;
|
|
CXXRecordDecl *ThisContext = nullptr;
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
|
|
ThisContext = Method->getParent();
|
|
ThisTypeQuals = Method->getMethodQualifiers();
|
|
}
|
|
|
|
CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
|
|
getLangOpts().CPlusPlus11);
|
|
|
|
ResultType =
|
|
SubstType(Proto->getReturnType(), MLTAL,
|
|
Function->getTypeSpecStartLoc(), Function->getDeclName());
|
|
if (ResultType.isNull() || Trap.hasErrorOccurred())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
// CUDA: Kernel function must have 'void' return type.
|
|
if (getLangOpts().CUDA)
|
|
if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
|
|
Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
|
|
<< Function->getType() << Function->getSourceRange();
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
}
|
|
|
|
// Instantiate the types of each of the function parameters given the
|
|
// explicitly-specified template arguments if we didn't do so earlier.
|
|
if (!Proto->hasTrailingReturn() &&
|
|
SubstParmTypes(Function->getLocation(), Function->parameters(),
|
|
Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes,
|
|
/*params*/ nullptr, ExtParamInfos))
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
if (FunctionType) {
|
|
auto EPI = Proto->getExtProtoInfo();
|
|
EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
|
|
*FunctionType = BuildFunctionType(ResultType, ParamTypes,
|
|
Function->getLocation(),
|
|
Function->getDeclName(),
|
|
EPI);
|
|
if (FunctionType->isNull() || Trap.hasErrorOccurred())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
// C++ [temp.arg.explicit]p2:
|
|
// Trailing template arguments that can be deduced (14.8.2) may be
|
|
// omitted from the list of explicit template-arguments. If all of the
|
|
// template arguments can be deduced, they may all be omitted; in this
|
|
// case, the empty template argument list <> itself may also be omitted.
|
|
//
|
|
// Take all of the explicitly-specified arguments and put them into
|
|
// the set of deduced template arguments. The partially-substituted
|
|
// parameter pack, however, will be set to NULL since the deduction
|
|
// mechanism handles the partially-substituted argument pack directly.
|
|
Deduced.reserve(TemplateParams->size());
|
|
for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) {
|
|
const TemplateArgument &Arg = SugaredExplicitArgumentList->get(I);
|
|
if (I == PartiallySubstitutedPackIndex)
|
|
Deduced.push_back(DeducedTemplateArgument());
|
|
else
|
|
Deduced.push_back(Arg);
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Check whether the deduced argument type for a call to a function
|
|
/// template matches the actual argument type per C++ [temp.deduct.call]p4.
|
|
static TemplateDeductionResult
|
|
CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info,
|
|
Sema::OriginalCallArg OriginalArg,
|
|
QualType DeducedA) {
|
|
ASTContext &Context = S.Context;
|
|
|
|
auto Failed = [&]() -> TemplateDeductionResult {
|
|
Info.FirstArg = TemplateArgument(DeducedA);
|
|
Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
|
|
Info.CallArgIndex = OriginalArg.ArgIdx;
|
|
return OriginalArg.DecomposedParam
|
|
? TemplateDeductionResult::DeducedMismatchNested
|
|
: TemplateDeductionResult::DeducedMismatch;
|
|
};
|
|
|
|
QualType A = OriginalArg.OriginalArgType;
|
|
QualType OriginalParamType = OriginalArg.OriginalParamType;
|
|
|
|
// Check for type equality (top-level cv-qualifiers are ignored).
|
|
if (Context.hasSameUnqualifiedType(A, DeducedA))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Strip off references on the argument types; they aren't needed for
|
|
// the following checks.
|
|
if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
|
|
DeducedA = DeducedARef->getPointeeType();
|
|
if (const ReferenceType *ARef = A->getAs<ReferenceType>())
|
|
A = ARef->getPointeeType();
|
|
|
|
// C++ [temp.deduct.call]p4:
|
|
// [...] However, there are three cases that allow a difference:
|
|
// - If the original P is a reference type, the deduced A (i.e., the
|
|
// type referred to by the reference) can be more cv-qualified than
|
|
// the transformed A.
|
|
if (const ReferenceType *OriginalParamRef
|
|
= OriginalParamType->getAs<ReferenceType>()) {
|
|
// We don't want to keep the reference around any more.
|
|
OriginalParamType = OriginalParamRef->getPointeeType();
|
|
|
|
// FIXME: Resolve core issue (no number yet): if the original P is a
|
|
// reference type and the transformed A is function type "noexcept F",
|
|
// the deduced A can be F.
|
|
QualType Tmp;
|
|
if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
Qualifiers AQuals = A.getQualifiers();
|
|
Qualifiers DeducedAQuals = DeducedA.getQualifiers();
|
|
|
|
// Under Objective-C++ ARC, the deduced type may have implicitly
|
|
// been given strong or (when dealing with a const reference)
|
|
// unsafe_unretained lifetime. If so, update the original
|
|
// qualifiers to include this lifetime.
|
|
if (S.getLangOpts().ObjCAutoRefCount &&
|
|
((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
|
|
AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
|
|
(DeducedAQuals.hasConst() &&
|
|
DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
|
|
AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
|
|
}
|
|
|
|
if (AQuals == DeducedAQuals) {
|
|
// Qualifiers match; there's nothing to do.
|
|
} else if (!DeducedAQuals.compatiblyIncludes(AQuals, S.getASTContext())) {
|
|
return Failed();
|
|
} else {
|
|
// Qualifiers are compatible, so have the argument type adopt the
|
|
// deduced argument type's qualifiers as if we had performed the
|
|
// qualification conversion.
|
|
A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
|
|
}
|
|
}
|
|
|
|
// - The transformed A can be another pointer or pointer to member
|
|
// type that can be converted to the deduced A via a function pointer
|
|
// conversion and/or a qualification conversion.
|
|
//
|
|
// Also allow conversions which merely strip __attribute__((noreturn)) from
|
|
// function types (recursively).
|
|
bool ObjCLifetimeConversion = false;
|
|
QualType ResultTy;
|
|
if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
|
|
(S.IsQualificationConversion(A, DeducedA, false,
|
|
ObjCLifetimeConversion) ||
|
|
S.IsFunctionConversion(A, DeducedA, ResultTy)))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// - If P is a class and P has the form simple-template-id, then the
|
|
// transformed A can be a derived class of the deduced A. [...]
|
|
// [...] Likewise, if P is a pointer to a class of the form
|
|
// simple-template-id, the transformed A can be a pointer to a
|
|
// derived class pointed to by the deduced A.
|
|
if (const PointerType *OriginalParamPtr
|
|
= OriginalParamType->getAs<PointerType>()) {
|
|
if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
|
|
if (const PointerType *APtr = A->getAs<PointerType>()) {
|
|
if (A->getPointeeType()->isRecordType()) {
|
|
OriginalParamType = OriginalParamPtr->getPointeeType();
|
|
DeducedA = DeducedAPtr->getPointeeType();
|
|
A = APtr->getPointeeType();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Context.hasSameUnqualifiedType(A, DeducedA))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
|
|
S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return Failed();
|
|
}
|
|
|
|
/// Find the pack index for a particular parameter index in an instantiation of
|
|
/// a function template with specific arguments.
|
|
///
|
|
/// \return The pack index for whichever pack produced this parameter, or -1
|
|
/// if this was not produced by a parameter. Intended to be used as the
|
|
/// ArgumentPackSubstitutionIndex for further substitutions.
|
|
// FIXME: We should track this in OriginalCallArgs so we don't need to
|
|
// reconstruct it here.
|
|
static UnsignedOrNone
|
|
getPackIndexForParam(Sema &S, FunctionTemplateDecl *FunctionTemplate,
|
|
const MultiLevelTemplateArgumentList &Args,
|
|
unsigned ParamIdx) {
|
|
unsigned Idx = 0;
|
|
for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
|
|
if (PD->isParameterPack()) {
|
|
UnsignedOrNone NumArgs =
|
|
S.getNumArgumentsInExpansion(PD->getType(), Args);
|
|
unsigned NumExpansions = NumArgs ? *NumArgs : 1;
|
|
if (Idx + NumExpansions > ParamIdx)
|
|
return ParamIdx - Idx;
|
|
Idx += NumExpansions;
|
|
} else {
|
|
if (Idx == ParamIdx)
|
|
return std::nullopt; // Not a pack expansion
|
|
++Idx;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("parameter index would not be produced from template");
|
|
}
|
|
|
|
// if `Specialization` is a `CXXConstructorDecl` or `CXXConversionDecl`,
|
|
// we'll try to instantiate and update its explicit specifier after constraint
|
|
// checking.
|
|
static TemplateDeductionResult instantiateExplicitSpecifierDeferred(
|
|
Sema &S, FunctionDecl *Specialization,
|
|
const MultiLevelTemplateArgumentList &SubstArgs,
|
|
TemplateDeductionInfo &Info, FunctionTemplateDecl *FunctionTemplate,
|
|
ArrayRef<TemplateArgument> DeducedArgs) {
|
|
auto GetExplicitSpecifier = [](FunctionDecl *D) {
|
|
return isa<CXXConstructorDecl>(D)
|
|
? cast<CXXConstructorDecl>(D)->getExplicitSpecifier()
|
|
: cast<CXXConversionDecl>(D)->getExplicitSpecifier();
|
|
};
|
|
auto SetExplicitSpecifier = [](FunctionDecl *D, ExplicitSpecifier ES) {
|
|
isa<CXXConstructorDecl>(D)
|
|
? cast<CXXConstructorDecl>(D)->setExplicitSpecifier(ES)
|
|
: cast<CXXConversionDecl>(D)->setExplicitSpecifier(ES);
|
|
};
|
|
|
|
ExplicitSpecifier ES = GetExplicitSpecifier(Specialization);
|
|
Expr *ExplicitExpr = ES.getExpr();
|
|
if (!ExplicitExpr)
|
|
return TemplateDeductionResult::Success;
|
|
if (!ExplicitExpr->isValueDependent())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
Sema::InstantiatingTemplate Inst(
|
|
S, Info.getLocation(), FunctionTemplate, DeducedArgs,
|
|
Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
|
|
if (Inst.isInvalid())
|
|
return TemplateDeductionResult::InstantiationDepth;
|
|
Sema::SFINAETrap Trap(S);
|
|
const ExplicitSpecifier InstantiatedES =
|
|
S.instantiateExplicitSpecifier(SubstArgs, ES);
|
|
if (InstantiatedES.isInvalid() || Trap.hasErrorOccurred()) {
|
|
Specialization->setInvalidDecl(true);
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
SetExplicitSpecifier(Specialization, InstantiatedES);
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
TemplateDeductionResult Sema::FinishTemplateArgumentDeduction(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
|
|
bool PartialOverloading, bool PartialOrdering,
|
|
llvm::function_ref<bool()> CheckNonDependent) {
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// Enter a new template instantiation context while we instantiate the
|
|
// actual function declaration.
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
InstantiatingTemplate Inst(
|
|
*this, Info.getLocation(), FunctionTemplate, DeducedArgs,
|
|
CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
|
|
if (Inst.isInvalid())
|
|
return TemplateDeductionResult::InstantiationDepth;
|
|
|
|
ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
|
|
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
bool IsIncomplete = false;
|
|
CheckTemplateArgumentInfo CTAI(PartialOrdering);
|
|
if (auto Result = ConvertDeducedTemplateArguments(
|
|
*this, FunctionTemplate, FunctionTemplate->getTemplateParameters(),
|
|
/*IsDeduced=*/true, Deduced, Info, CTAI, CurrentInstantiationScope,
|
|
NumExplicitlySpecified, PartialOverloading ? &IsIncomplete : nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// C++ [temp.deduct.call]p10: [DR1391]
|
|
// If deduction succeeds for all parameters that contain
|
|
// template-parameters that participate in template argument deduction,
|
|
// and all template arguments are explicitly specified, deduced, or
|
|
// obtained from default template arguments, remaining parameters are then
|
|
// compared with the corresponding arguments. For each remaining parameter
|
|
// P with a type that was non-dependent before substitution of any
|
|
// explicitly-specified template arguments, if the corresponding argument
|
|
// A cannot be implicitly converted to P, deduction fails.
|
|
if (CheckNonDependent())
|
|
return TemplateDeductionResult::NonDependentConversionFailure;
|
|
|
|
// Form the template argument list from the deduced template arguments.
|
|
TemplateArgumentList *SugaredDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(Context, CTAI.SugaredConverted);
|
|
TemplateArgumentList *CanonicalDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(Context, CTAI.CanonicalConverted);
|
|
Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
|
|
|
|
// Substitute the deduced template arguments into the function template
|
|
// declaration to produce the function template specialization.
|
|
DeclContext *Owner = FunctionTemplate->getDeclContext();
|
|
if (FunctionTemplate->getFriendObjectKind())
|
|
Owner = FunctionTemplate->getLexicalDeclContext();
|
|
FunctionDecl *FD = FunctionTemplate->getTemplatedDecl();
|
|
|
|
MultiLevelTemplateArgumentList SubstArgs(
|
|
FunctionTemplate, CanonicalDeducedArgumentList->asArray(),
|
|
/*Final=*/false);
|
|
Specialization = cast_or_null<FunctionDecl>(
|
|
SubstDecl(FD, Owner, SubstArgs));
|
|
if (!Specialization || Specialization->isInvalidDecl())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
assert(isSameDeclaration(Specialization->getPrimaryTemplate(),
|
|
FunctionTemplate));
|
|
|
|
// If the template argument list is owned by the function template
|
|
// specialization, release it.
|
|
if (Specialization->getTemplateSpecializationArgs() ==
|
|
CanonicalDeducedArgumentList &&
|
|
!Trap.hasErrorOccurred())
|
|
Info.takeCanonical();
|
|
|
|
// There may have been an error that did not prevent us from constructing a
|
|
// declaration. Mark the declaration invalid and return with a substitution
|
|
// failure.
|
|
if (Trap.hasErrorOccurred()) {
|
|
Specialization->setInvalidDecl(true);
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
// C++2a [temp.deduct]p5
|
|
// [...] When all template arguments have been deduced [...] all uses of
|
|
// template parameters [...] are replaced with the corresponding deduced
|
|
// or default argument values.
|
|
// [...] If the function template has associated constraints
|
|
// ([temp.constr.decl]), those constraints are checked for satisfaction
|
|
// ([temp.constr.constr]). If the constraints are not satisfied, type
|
|
// deduction fails.
|
|
if (!IsIncomplete) {
|
|
if (CheckInstantiatedFunctionTemplateConstraints(
|
|
Info.getLocation(), Specialization, CTAI.CanonicalConverted,
|
|
Info.AssociatedConstraintsSatisfaction))
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
|
|
Info.reset(Info.takeSugared(), TemplateArgumentList::CreateCopy(
|
|
Context, CTAI.CanonicalConverted));
|
|
return TemplateDeductionResult::ConstraintsNotSatisfied;
|
|
}
|
|
}
|
|
|
|
// We skipped the instantiation of the explicit-specifier during the
|
|
// substitution of `FD` before. So, we try to instantiate it back if
|
|
// `Specialization` is either a constructor or a conversion function.
|
|
if (isa<CXXConstructorDecl, CXXConversionDecl>(Specialization)) {
|
|
if (TemplateDeductionResult::Success !=
|
|
instantiateExplicitSpecifierDeferred(*this, Specialization, SubstArgs,
|
|
Info, FunctionTemplate,
|
|
DeducedArgs)) {
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
}
|
|
|
|
if (OriginalCallArgs) {
|
|
// C++ [temp.deduct.call]p4:
|
|
// In general, the deduction process attempts to find template argument
|
|
// values that will make the deduced A identical to A (after the type A
|
|
// is transformed as described above). [...]
|
|
llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
|
|
for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
|
|
OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
|
|
|
|
auto ParamIdx = OriginalArg.ArgIdx;
|
|
unsigned ExplicitOffset =
|
|
Specialization->hasCXXExplicitFunctionObjectParameter() ? 1 : 0;
|
|
if (ParamIdx >= Specialization->getNumParams() - ExplicitOffset)
|
|
// FIXME: This presumably means a pack ended up smaller than we
|
|
// expected while deducing. Should this not result in deduction
|
|
// failure? Can it even happen?
|
|
continue;
|
|
|
|
QualType DeducedA;
|
|
if (!OriginalArg.DecomposedParam) {
|
|
// P is one of the function parameters, just look up its substituted
|
|
// type.
|
|
DeducedA =
|
|
Specialization->getParamDecl(ParamIdx + ExplicitOffset)->getType();
|
|
} else {
|
|
// P is a decomposed element of a parameter corresponding to a
|
|
// braced-init-list argument. Substitute back into P to find the
|
|
// deduced A.
|
|
QualType &CacheEntry =
|
|
DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
|
|
if (CacheEntry.isNull()) {
|
|
ArgPackSubstIndexRAII PackIndex(
|
|
*this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
|
|
ParamIdx));
|
|
CacheEntry =
|
|
SubstType(OriginalArg.OriginalParamType, SubstArgs,
|
|
Specialization->getTypeSpecStartLoc(),
|
|
Specialization->getDeclName());
|
|
}
|
|
DeducedA = CacheEntry;
|
|
}
|
|
|
|
if (auto TDK =
|
|
CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA);
|
|
TDK != TemplateDeductionResult::Success)
|
|
return TDK;
|
|
}
|
|
}
|
|
|
|
// If we suppressed any diagnostics while performing template argument
|
|
// deduction, and if we haven't already instantiated this declaration,
|
|
// keep track of these diagnostics. They'll be emitted if this specialization
|
|
// is actually used.
|
|
if (Info.diag_begin() != Info.diag_end()) {
|
|
auto [Pos, Inserted] =
|
|
SuppressedDiagnostics.try_emplace(Specialization->getCanonicalDecl());
|
|
if (Inserted)
|
|
Pos->second.append(Info.diag_begin(), Info.diag_end());
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Gets the type of a function for template-argument-deducton
|
|
/// purposes when it's considered as part of an overload set.
|
|
static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
|
|
FunctionDecl *Fn) {
|
|
// We may need to deduce the return type of the function now.
|
|
if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
|
|
S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
|
|
return {};
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
|
|
if (Method->isImplicitObjectMemberFunction()) {
|
|
// An instance method that's referenced in a form that doesn't
|
|
// look like a member pointer is just invalid.
|
|
if (!R.HasFormOfMemberPointer)
|
|
return {};
|
|
|
|
return S.Context.getMemberPointerType(
|
|
Fn->getType(), /*Qualifier=*/nullptr, Method->getParent());
|
|
}
|
|
|
|
if (!R.IsAddressOfOperand) return Fn->getType();
|
|
return S.Context.getPointerType(Fn->getType());
|
|
}
|
|
|
|
/// Apply the deduction rules for overload sets.
|
|
///
|
|
/// \return the null type if this argument should be treated as an
|
|
/// undeduced context
|
|
static QualType
|
|
ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
|
|
Expr *Arg, QualType ParamType,
|
|
bool ParamWasReference,
|
|
TemplateSpecCandidateSet *FailedTSC = nullptr) {
|
|
|
|
OverloadExpr::FindResult R = OverloadExpr::find(Arg);
|
|
|
|
OverloadExpr *Ovl = R.Expression;
|
|
|
|
// C++0x [temp.deduct.call]p4
|
|
unsigned TDF = 0;
|
|
if (ParamWasReference)
|
|
TDF |= TDF_ParamWithReferenceType;
|
|
if (R.IsAddressOfOperand)
|
|
TDF |= TDF_IgnoreQualifiers;
|
|
|
|
// C++0x [temp.deduct.call]p6:
|
|
// When P is a function type, pointer to function type, or pointer
|
|
// to member function type:
|
|
|
|
if (!ParamType->isFunctionType() &&
|
|
!ParamType->isFunctionPointerType() &&
|
|
!ParamType->isMemberFunctionPointerType()) {
|
|
if (Ovl->hasExplicitTemplateArgs()) {
|
|
// But we can still look for an explicit specialization.
|
|
if (FunctionDecl *ExplicitSpec =
|
|
S.ResolveSingleFunctionTemplateSpecialization(
|
|
Ovl, /*Complain=*/false,
|
|
/*Found=*/nullptr, FailedTSC,
|
|
/*ForTypeDeduction=*/true))
|
|
return GetTypeOfFunction(S, R, ExplicitSpec);
|
|
}
|
|
|
|
DeclAccessPair DAP;
|
|
if (FunctionDecl *Viable =
|
|
S.resolveAddressOfSingleOverloadCandidate(Arg, DAP))
|
|
return GetTypeOfFunction(S, R, Viable);
|
|
|
|
return {};
|
|
}
|
|
|
|
// Gather the explicit template arguments, if any.
|
|
TemplateArgumentListInfo ExplicitTemplateArgs;
|
|
if (Ovl->hasExplicitTemplateArgs())
|
|
Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
|
|
QualType Match;
|
|
for (UnresolvedSetIterator I = Ovl->decls_begin(),
|
|
E = Ovl->decls_end(); I != E; ++I) {
|
|
NamedDecl *D = (*I)->getUnderlyingDecl();
|
|
|
|
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
|
|
// - If the argument is an overload set containing one or more
|
|
// function templates, the parameter is treated as a
|
|
// non-deduced context.
|
|
if (!Ovl->hasExplicitTemplateArgs())
|
|
return {};
|
|
|
|
// Otherwise, see if we can resolve a function type
|
|
FunctionDecl *Specialization = nullptr;
|
|
TemplateDeductionInfo Info(Ovl->getNameLoc());
|
|
if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
|
|
Specialization,
|
|
Info) != TemplateDeductionResult::Success)
|
|
continue;
|
|
|
|
D = Specialization;
|
|
}
|
|
|
|
FunctionDecl *Fn = cast<FunctionDecl>(D);
|
|
QualType ArgType = GetTypeOfFunction(S, R, Fn);
|
|
if (ArgType.isNull()) continue;
|
|
|
|
// Function-to-pointer conversion.
|
|
if (!ParamWasReference && ParamType->isPointerType() &&
|
|
ArgType->isFunctionType())
|
|
ArgType = S.Context.getPointerType(ArgType);
|
|
|
|
// - If the argument is an overload set (not containing function
|
|
// templates), trial argument deduction is attempted using each
|
|
// of the members of the set. If deduction succeeds for only one
|
|
// of the overload set members, that member is used as the
|
|
// argument value for the deduction. If deduction succeeds for
|
|
// more than one member of the overload set the parameter is
|
|
// treated as a non-deduced context.
|
|
|
|
// We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
|
|
// Type deduction is done independently for each P/A pair, and
|
|
// the deduced template argument values are then combined.
|
|
// So we do not reject deductions which were made elsewhere.
|
|
SmallVector<DeducedTemplateArgument, 8>
|
|
Deduced(TemplateParams->size());
|
|
TemplateDeductionInfo Info(Ovl->getNameLoc());
|
|
TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF,
|
|
PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
if (Result != TemplateDeductionResult::Success)
|
|
continue;
|
|
// C++ [temp.deduct.call]p6:
|
|
// [...] If all successful deductions yield the same deduced A, that
|
|
// deduced A is the result of deduction; otherwise, the parameter is
|
|
// treated as a non-deduced context. [...]
|
|
if (!Match.isNull() && !S.isSameOrCompatibleFunctionType(Match, ArgType))
|
|
return {};
|
|
Match = ArgType;
|
|
}
|
|
|
|
return Match;
|
|
}
|
|
|
|
/// Perform the adjustments to the parameter and argument types
|
|
/// described in C++ [temp.deduct.call].
|
|
///
|
|
/// \returns true if the caller should not attempt to perform any template
|
|
/// argument deduction based on this P/A pair because the argument is an
|
|
/// overloaded function set that could not be resolved.
|
|
static bool AdjustFunctionParmAndArgTypesForDeduction(
|
|
Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
|
|
QualType &ParamType, QualType &ArgType,
|
|
Expr::Classification ArgClassification, Expr *Arg, unsigned &TDF,
|
|
TemplateSpecCandidateSet *FailedTSC = nullptr) {
|
|
// C++0x [temp.deduct.call]p3:
|
|
// If P is a cv-qualified type, the top level cv-qualifiers of P's type
|
|
// are ignored for type deduction.
|
|
if (ParamType.hasQualifiers())
|
|
ParamType = ParamType.getUnqualifiedType();
|
|
|
|
// [...] If P is a reference type, the type referred to by P is
|
|
// used for type deduction.
|
|
const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
|
|
if (ParamRefType)
|
|
ParamType = ParamRefType->getPointeeType();
|
|
|
|
// Overload sets usually make this parameter an undeduced context,
|
|
// but there are sometimes special circumstances. Typically
|
|
// involving a template-id-expr.
|
|
if (ArgType == S.Context.OverloadTy) {
|
|
assert(Arg && "expected a non-null arg expression");
|
|
ArgType = ResolveOverloadForDeduction(S, TemplateParams, Arg, ParamType,
|
|
ParamRefType != nullptr, FailedTSC);
|
|
if (ArgType.isNull())
|
|
return true;
|
|
}
|
|
|
|
if (ParamRefType) {
|
|
// If the argument has incomplete array type, try to complete its type.
|
|
if (ArgType->isIncompleteArrayType()) {
|
|
assert(Arg && "expected a non-null arg expression");
|
|
ArgType = S.getCompletedType(Arg);
|
|
}
|
|
|
|
// C++1z [temp.deduct.call]p3:
|
|
// If P is a forwarding reference and the argument is an lvalue, the type
|
|
// "lvalue reference to A" is used in place of A for type deduction.
|
|
if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
|
|
ArgClassification.isLValue()) {
|
|
if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace())
|
|
ArgType = S.Context.getAddrSpaceQualType(
|
|
ArgType, S.Context.getDefaultOpenCLPointeeAddrSpace());
|
|
ArgType = S.Context.getLValueReferenceType(ArgType);
|
|
}
|
|
} else {
|
|
// C++ [temp.deduct.call]p2:
|
|
// If P is not a reference type:
|
|
// - If A is an array type, the pointer type produced by the
|
|
// array-to-pointer standard conversion (4.2) is used in place of
|
|
// A for type deduction; otherwise,
|
|
// - If A is a function type, the pointer type produced by the
|
|
// function-to-pointer standard conversion (4.3) is used in place
|
|
// of A for type deduction; otherwise,
|
|
if (ArgType->canDecayToPointerType())
|
|
ArgType = S.Context.getDecayedType(ArgType);
|
|
else {
|
|
// - If A is a cv-qualified type, the top level cv-qualifiers of A's
|
|
// type are ignored for type deduction.
|
|
ArgType = ArgType.getUnqualifiedType();
|
|
}
|
|
}
|
|
|
|
// C++0x [temp.deduct.call]p4:
|
|
// In general, the deduction process attempts to find template argument
|
|
// values that will make the deduced A identical to A (after the type A
|
|
// is transformed as described above). [...]
|
|
TDF = TDF_SkipNonDependent;
|
|
|
|
// - If the original P is a reference type, the deduced A (i.e., the
|
|
// type referred to by the reference) can be more cv-qualified than
|
|
// the transformed A.
|
|
if (ParamRefType)
|
|
TDF |= TDF_ParamWithReferenceType;
|
|
// - The transformed A can be another pointer or pointer to member
|
|
// type that can be converted to the deduced A via a qualification
|
|
// conversion (4.4).
|
|
if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
|
|
ArgType->isObjCObjectPointerType())
|
|
TDF |= TDF_IgnoreQualifiers;
|
|
// - If P is a class and P has the form simple-template-id, then the
|
|
// transformed A can be a derived class of the deduced A. Likewise,
|
|
// if P is a pointer to a class of the form simple-template-id, the
|
|
// transformed A can be a pointer to a derived class pointed to by
|
|
// the deduced A.
|
|
if (isSimpleTemplateIdType(ParamType) ||
|
|
(ParamType->getAs<PointerType>() &&
|
|
isSimpleTemplateIdType(
|
|
ParamType->castAs<PointerType>()->getPointeeType())))
|
|
TDF |= TDF_DerivedClass;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
|
|
QualType T);
|
|
|
|
static TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
|
|
Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
|
|
QualType ParamType, QualType ArgType,
|
|
Expr::Classification ArgClassification, Expr *Arg,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
|
|
bool DecomposedParam, unsigned ArgIdx, unsigned TDF,
|
|
TemplateSpecCandidateSet *FailedTSC = nullptr);
|
|
|
|
/// Attempt template argument deduction from an initializer list
|
|
/// deemed to be an argument in a function call.
|
|
static TemplateDeductionResult DeduceFromInitializerList(
|
|
Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
|
|
InitListExpr *ILE, TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
|
|
unsigned TDF) {
|
|
// C++ [temp.deduct.call]p1: (CWG 1591)
|
|
// If removing references and cv-qualifiers from P gives
|
|
// std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
|
|
// a non-empty initializer list, then deduction is performed instead for
|
|
// each element of the initializer list, taking P0 as a function template
|
|
// parameter type and the initializer element as its argument
|
|
//
|
|
// We've already removed references and cv-qualifiers here.
|
|
if (!ILE->getNumInits())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
QualType ElTy;
|
|
auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
|
|
if (ArrTy)
|
|
ElTy = ArrTy->getElementType();
|
|
else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
|
|
// Otherwise, an initializer list argument causes the parameter to be
|
|
// considered a non-deduced context
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Resolving a core issue: a braced-init-list containing any designators is
|
|
// a non-deduced context.
|
|
for (Expr *E : ILE->inits())
|
|
if (isa<DesignatedInitExpr>(E))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Deduction only needs to be done for dependent types.
|
|
if (ElTy->isDependentType()) {
|
|
for (Expr *E : ILE->inits()) {
|
|
if (auto Result = DeduceTemplateArgumentsFromCallArgument(
|
|
S, TemplateParams, 0, ElTy, E->getType(),
|
|
E->Classify(S.getASTContext()), E, Info, Deduced,
|
|
OriginalCallArgs, true, ArgIdx, TDF);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// in the P0[N] case, if N is a non-type template parameter, N is deduced
|
|
// from the length of the initializer list.
|
|
if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
|
|
// Determine the array bound is something we can deduce.
|
|
if (const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) {
|
|
// We can perform template argument deduction for the given non-type
|
|
// template parameter.
|
|
// C++ [temp.deduct.type]p13:
|
|
// The type of N in the type T[N] is std::size_t.
|
|
QualType T = S.Context.getSizeType();
|
|
llvm::APInt Size(S.Context.getIntWidth(T),
|
|
ILE->getNumInitsWithEmbedExpanded());
|
|
if (auto Result = DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, llvm::APSInt(Size), T,
|
|
/*ArrayBound=*/true, Info, /*PartialOrdering=*/false, Deduced,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Perform template argument deduction per [temp.deduct.call] for a
|
|
/// single parameter / argument pair.
|
|
static TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
|
|
Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
|
|
QualType ParamType, QualType ArgType,
|
|
Expr::Classification ArgClassification, Expr *Arg,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
|
|
bool DecomposedParam, unsigned ArgIdx, unsigned TDF,
|
|
TemplateSpecCandidateSet *FailedTSC) {
|
|
|
|
QualType OrigParamType = ParamType;
|
|
|
|
// If P is a reference type [...]
|
|
// If P is a cv-qualified type [...]
|
|
if (AdjustFunctionParmAndArgTypesForDeduction(
|
|
S, TemplateParams, FirstInnerIndex, ParamType, ArgType,
|
|
ArgClassification, Arg, TDF, FailedTSC))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// If [...] the argument is a non-empty initializer list [...]
|
|
if (InitListExpr *ILE = dyn_cast_if_present<InitListExpr>(Arg))
|
|
return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
|
|
Deduced, OriginalCallArgs, ArgIdx, TDF);
|
|
|
|
// [...] the deduction process attempts to find template argument values
|
|
// that will make the deduced A identical to A
|
|
//
|
|
// Keep track of the argument type and corresponding parameter index,
|
|
// so we can check for compatibility between the deduced A and A.
|
|
if (Arg)
|
|
OriginalCallArgs.push_back(
|
|
Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF,
|
|
PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
}
|
|
|
|
TemplateDeductionResult Sema::DeduceTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
|
|
FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
|
|
bool PartialOverloading, bool AggregateDeductionCandidate,
|
|
bool PartialOrdering, QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) {
|
|
if (FunctionTemplate->isInvalidDecl())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
unsigned NumParams = Function->getNumParams();
|
|
bool HasExplicitObject = false;
|
|
int ExplicitObjectOffset = 0;
|
|
if (Function->hasCXXExplicitFunctionObjectParameter()) {
|
|
HasExplicitObject = true;
|
|
ExplicitObjectOffset = 1;
|
|
}
|
|
|
|
unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
|
|
|
|
// C++ [temp.deduct.call]p1:
|
|
// Template argument deduction is done by comparing each function template
|
|
// parameter type (call it P) with the type of the corresponding argument
|
|
// of the call (call it A) as described below.
|
|
if (Args.size() < Function->getMinRequiredExplicitArguments() &&
|
|
!PartialOverloading)
|
|
return TemplateDeductionResult::TooFewArguments;
|
|
else if (TooManyArguments(NumParams, Args.size() + ExplicitObjectOffset,
|
|
PartialOverloading)) {
|
|
const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
|
|
if (Proto->isTemplateVariadic())
|
|
/* Do nothing */;
|
|
else if (!Proto->isVariadic())
|
|
return TemplateDeductionResult::TooManyArguments;
|
|
}
|
|
|
|
// The types of the parameters from which we will perform template argument
|
|
// deduction.
|
|
LocalInstantiationScope InstScope(*this);
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
SmallVector<QualType, 8> ParamTypes;
|
|
unsigned NumExplicitlySpecified = 0;
|
|
if (ExplicitTemplateArgs) {
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = SubstituteExplicitTemplateArguments(
|
|
FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr,
|
|
Info);
|
|
});
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
NumExplicitlySpecified = Deduced.size();
|
|
} else {
|
|
// Just fill in the parameter types from the function declaration.
|
|
for (unsigned I = 0; I != NumParams; ++I)
|
|
ParamTypes.push_back(Function->getParamDecl(I)->getType());
|
|
}
|
|
|
|
SmallVector<OriginalCallArg, 8> OriginalCallArgs;
|
|
|
|
// Deduce an argument of type ParamType from an expression with index ArgIdx.
|
|
auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx,
|
|
bool ExplicitObjectArgument) {
|
|
// C++ [demp.deduct.call]p1: (DR1391)
|
|
// Template argument deduction is done by comparing each function template
|
|
// parameter that contains template-parameters that participate in
|
|
// template argument deduction ...
|
|
if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
if (ExplicitObjectArgument) {
|
|
// ... with the type of the corresponding argument
|
|
return DeduceTemplateArgumentsFromCallArgument(
|
|
*this, TemplateParams, FirstInnerIndex, ParamType, ObjectType,
|
|
ObjectClassification,
|
|
/*Arg=*/nullptr, Info, Deduced, OriginalCallArgs,
|
|
/*Decomposed*/ false, ArgIdx, /*TDF*/ 0);
|
|
}
|
|
|
|
// ... with the type of the corresponding argument
|
|
return DeduceTemplateArgumentsFromCallArgument(
|
|
*this, TemplateParams, FirstInnerIndex, ParamType,
|
|
Args[ArgIdx]->getType(), Args[ArgIdx]->Classify(getASTContext()),
|
|
Args[ArgIdx], Info, Deduced, OriginalCallArgs, /*Decomposed*/ false,
|
|
ArgIdx, /*TDF*/ 0);
|
|
};
|
|
|
|
// Deduce template arguments from the function parameters.
|
|
Deduced.resize(TemplateParams->size());
|
|
SmallVector<QualType, 8> ParamTypesForArgChecking;
|
|
for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
|
|
ParamIdx != NumParamTypes; ++ParamIdx) {
|
|
QualType ParamType = ParamTypes[ParamIdx];
|
|
|
|
const PackExpansionType *ParamExpansion =
|
|
dyn_cast<PackExpansionType>(ParamType);
|
|
if (!ParamExpansion) {
|
|
// Simple case: matching a function parameter to a function argument.
|
|
if (ArgIdx >= Args.size() && !(HasExplicitObject && ParamIdx == 0))
|
|
break;
|
|
|
|
ParamTypesForArgChecking.push_back(ParamType);
|
|
|
|
if (ParamIdx == 0 && HasExplicitObject) {
|
|
if (ObjectType.isNull())
|
|
return TemplateDeductionResult::InvalidExplicitArguments;
|
|
|
|
if (auto Result = DeduceCallArgument(ParamType, 0,
|
|
/*ExplicitObjectArgument=*/true);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
continue;
|
|
}
|
|
|
|
if (auto Result = DeduceCallArgument(ParamType, ArgIdx++,
|
|
/*ExplicitObjectArgument=*/false);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
continue;
|
|
}
|
|
|
|
bool IsTrailingPack = ParamIdx + 1 == NumParamTypes;
|
|
|
|
QualType ParamPattern = ParamExpansion->getPattern();
|
|
PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
|
|
ParamPattern,
|
|
AggregateDeductionCandidate && IsTrailingPack);
|
|
|
|
// C++0x [temp.deduct.call]p1:
|
|
// For a function parameter pack that occurs at the end of the
|
|
// parameter-declaration-list, the type A of each remaining argument of
|
|
// the call is compared with the type P of the declarator-id of the
|
|
// function parameter pack. Each comparison deduces template arguments
|
|
// for subsequent positions in the template parameter packs expanded by
|
|
// the function parameter pack. When a function parameter pack appears
|
|
// in a non-deduced context [not at the end of the list], the type of
|
|
// that parameter pack is never deduced.
|
|
//
|
|
// FIXME: The above rule allows the size of the parameter pack to change
|
|
// after we skip it (in the non-deduced case). That makes no sense, so
|
|
// we instead notionally deduce the pack against N arguments, where N is
|
|
// the length of the explicitly-specified pack if it's expanded by the
|
|
// parameter pack and 0 otherwise, and we treat each deduction as a
|
|
// non-deduced context.
|
|
if (IsTrailingPack || PackScope.hasFixedArity()) {
|
|
for (; ArgIdx < Args.size() && PackScope.hasNextElement();
|
|
PackScope.nextPackElement(), ++ArgIdx) {
|
|
ParamTypesForArgChecking.push_back(ParamPattern);
|
|
if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx,
|
|
/*ExplicitObjectArgument=*/false);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
} else {
|
|
// If the parameter type contains an explicitly-specified pack that we
|
|
// could not expand, skip the number of parameters notionally created
|
|
// by the expansion.
|
|
UnsignedOrNone NumExpansions = ParamExpansion->getNumExpansions();
|
|
if (NumExpansions && !PackScope.isPartiallyExpanded()) {
|
|
for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
|
|
++I, ++ArgIdx) {
|
|
ParamTypesForArgChecking.push_back(ParamPattern);
|
|
// FIXME: Should we add OriginalCallArgs for these? What if the
|
|
// corresponding argument is a list?
|
|
PackScope.nextPackElement();
|
|
}
|
|
} else if (!IsTrailingPack && !PackScope.isPartiallyExpanded() &&
|
|
PackScope.isDeducedFromEarlierParameter()) {
|
|
// [temp.deduct.general#3]
|
|
// When all template arguments have been deduced
|
|
// or obtained from default template arguments, all uses of template
|
|
// parameters in the template parameter list of the template are
|
|
// replaced with the corresponding deduced or default argument values
|
|
//
|
|
// If we have a trailing parameter pack, that has been deduced
|
|
// previously we substitute the pack here in a similar fashion as
|
|
// above with the trailing parameter packs. The main difference here is
|
|
// that, in this case we are not processing all of the remaining
|
|
// arguments. We are only process as many arguments as we have in
|
|
// the already deduced parameter.
|
|
UnsignedOrNone ArgPosAfterSubstitution =
|
|
PackScope.getSavedPackSizeIfAllEqual();
|
|
if (!ArgPosAfterSubstitution)
|
|
continue;
|
|
|
|
unsigned PackArgEnd = ArgIdx + *ArgPosAfterSubstitution;
|
|
for (; ArgIdx < PackArgEnd && ArgIdx < Args.size(); ArgIdx++) {
|
|
ParamTypesForArgChecking.push_back(ParamPattern);
|
|
if (auto Result =
|
|
DeduceCallArgument(ParamPattern, ArgIdx,
|
|
/*ExplicitObjectArgument=*/false);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
PackScope.nextPackElement();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
if (auto Result = PackScope.finish();
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
// Capture the context in which the function call is made. This is the context
|
|
// that is needed when the accessibility of template arguments is checked.
|
|
DeclContext *CallingCtx = CurContext;
|
|
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = FinishTemplateArgumentDeduction(
|
|
FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
|
|
&OriginalCallArgs, PartialOverloading, PartialOrdering,
|
|
[&, CallingCtx]() {
|
|
ContextRAII SavedContext(*this, CallingCtx);
|
|
return CheckNonDependent(ParamTypesForArgChecking);
|
|
});
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
|
|
QualType FunctionType,
|
|
bool AdjustExceptionSpec) {
|
|
if (ArgFunctionType.isNull())
|
|
return ArgFunctionType;
|
|
|
|
const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
|
|
const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
|
|
FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
|
|
bool Rebuild = false;
|
|
|
|
CallingConv CC = FunctionTypeP->getCallConv();
|
|
if (EPI.ExtInfo.getCC() != CC) {
|
|
EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
|
|
Rebuild = true;
|
|
}
|
|
|
|
bool NoReturn = FunctionTypeP->getNoReturnAttr();
|
|
if (EPI.ExtInfo.getNoReturn() != NoReturn) {
|
|
EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
|
|
Rebuild = true;
|
|
}
|
|
|
|
if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
|
|
ArgFunctionTypeP->hasExceptionSpec())) {
|
|
EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
|
|
Rebuild = true;
|
|
}
|
|
|
|
if (!Rebuild)
|
|
return ArgFunctionType;
|
|
|
|
return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
|
|
ArgFunctionTypeP->getParamTypes(), EPI);
|
|
}
|
|
|
|
TemplateDeductionResult Sema::DeduceTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
|
|
FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
|
|
bool IsAddressOfFunction) {
|
|
if (FunctionTemplate->isInvalidDecl())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
QualType FunctionType = Function->getType();
|
|
|
|
// Substitute any explicit template arguments.
|
|
LocalInstantiationScope InstScope(*this);
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
unsigned NumExplicitlySpecified = 0;
|
|
SmallVector<QualType, 4> ParamTypes;
|
|
if (ExplicitTemplateArgs) {
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = SubstituteExplicitTemplateArguments(
|
|
FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes,
|
|
&FunctionType, Info);
|
|
});
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
NumExplicitlySpecified = Deduced.size();
|
|
}
|
|
|
|
// When taking the address of a function, we require convertibility of
|
|
// the resulting function type. Otherwise, we allow arbitrary mismatches
|
|
// of calling convention and noreturn.
|
|
if (!IsAddressOfFunction)
|
|
ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
|
|
/*AdjustExceptionSpec*/false);
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
Deduced.resize(TemplateParams->size());
|
|
|
|
// If the function has a deduced return type, substitute it for a dependent
|
|
// type so that we treat it as a non-deduced context in what follows.
|
|
bool HasDeducedReturnType = false;
|
|
if (getLangOpts().CPlusPlus14 &&
|
|
Function->getReturnType()->getContainedAutoType()) {
|
|
FunctionType = SubstAutoTypeDependent(FunctionType);
|
|
HasDeducedReturnType = true;
|
|
}
|
|
|
|
if (!ArgFunctionType.isNull() && !FunctionType.isNull()) {
|
|
unsigned TDF =
|
|
TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType;
|
|
// Deduce template arguments from the function type.
|
|
if (TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch(
|
|
*this, TemplateParams, FunctionType, ArgFunctionType, Info, Deduced,
|
|
TDF, PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = FinishTemplateArgumentDeduction(
|
|
FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
|
|
/*OriginalCallArgs=*/nullptr, /*PartialOverloading=*/false,
|
|
/*PartialOrdering=*/true);
|
|
});
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// If the function has a deduced return type, deduce it now, so we can check
|
|
// that the deduced function type matches the requested type.
|
|
if (HasDeducedReturnType && IsAddressOfFunction &&
|
|
Specialization->getReturnType()->isUndeducedType() &&
|
|
DeduceReturnType(Specialization, Info.getLocation(), false))
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
// [C++26][expr.const]/p17
|
|
// An expression or conversion is immediate-escalating if it is not initially
|
|
// in an immediate function context and it is [...]
|
|
// a potentially-evaluated id-expression that denotes an immediate function.
|
|
if (IsAddressOfFunction && getLangOpts().CPlusPlus20 &&
|
|
Specialization->isImmediateEscalating() &&
|
|
parentEvaluationContext().isPotentiallyEvaluated() &&
|
|
CheckIfFunctionSpecializationIsImmediate(Specialization,
|
|
Info.getLocation()))
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
// Adjust the exception specification of the argument to match the
|
|
// substituted and resolved type we just formed. (Calling convention and
|
|
// noreturn can't be dependent, so we don't actually need this for them
|
|
// right now.)
|
|
QualType SpecializationType = Specialization->getType();
|
|
if (!IsAddressOfFunction) {
|
|
ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
|
|
/*AdjustExceptionSpec*/true);
|
|
|
|
// Revert placeholder types in the return type back to undeduced types so
|
|
// that the comparison below compares the declared return types.
|
|
if (HasDeducedReturnType) {
|
|
SpecializationType = SubstAutoType(SpecializationType, QualType());
|
|
ArgFunctionType = SubstAutoType(ArgFunctionType, QualType());
|
|
}
|
|
}
|
|
|
|
// If the requested function type does not match the actual type of the
|
|
// specialization with respect to arguments of compatible pointer to function
|
|
// types, template argument deduction fails.
|
|
if (!ArgFunctionType.isNull()) {
|
|
if (IsAddressOfFunction ? !isSameOrCompatibleFunctionType(
|
|
SpecializationType, ArgFunctionType)
|
|
: !Context.hasSameFunctionTypeIgnoringExceptionSpec(
|
|
SpecializationType, ArgFunctionType)) {
|
|
Info.FirstArg = TemplateArgument(SpecializationType);
|
|
Info.SecondArg = TemplateArgument(ArgFunctionType);
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
TemplateDeductionResult Sema::DeduceTemplateArguments(
|
|
FunctionTemplateDecl *ConversionTemplate, QualType ObjectType,
|
|
Expr::Classification ObjectClassification, QualType A,
|
|
CXXConversionDecl *&Specialization, TemplateDeductionInfo &Info) {
|
|
if (ConversionTemplate->isInvalidDecl())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
CXXConversionDecl *ConversionGeneric
|
|
= cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
|
|
|
|
QualType P = ConversionGeneric->getConversionType();
|
|
bool IsReferenceP = P->isReferenceType();
|
|
bool IsReferenceA = A->isReferenceType();
|
|
|
|
// C++0x [temp.deduct.conv]p2:
|
|
// If P is a reference type, the type referred to by P is used for
|
|
// type deduction.
|
|
if (const ReferenceType *PRef = P->getAs<ReferenceType>())
|
|
P = PRef->getPointeeType();
|
|
|
|
// C++0x [temp.deduct.conv]p4:
|
|
// [...] If A is a reference type, the type referred to by A is used
|
|
// for type deduction.
|
|
if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
|
|
A = ARef->getPointeeType();
|
|
// We work around a defect in the standard here: cv-qualifiers are also
|
|
// removed from P and A in this case, unless P was a reference type. This
|
|
// seems to mostly match what other compilers are doing.
|
|
if (!IsReferenceP) {
|
|
A = A.getUnqualifiedType();
|
|
P = P.getUnqualifiedType();
|
|
}
|
|
|
|
// C++ [temp.deduct.conv]p3:
|
|
//
|
|
// If A is not a reference type:
|
|
} else {
|
|
assert(!A->isReferenceType() && "Reference types were handled above");
|
|
|
|
// - If P is an array type, the pointer type produced by the
|
|
// array-to-pointer standard conversion (4.2) is used in place
|
|
// of P for type deduction; otherwise,
|
|
if (P->isArrayType())
|
|
P = Context.getArrayDecayedType(P);
|
|
// - If P is a function type, the pointer type produced by the
|
|
// function-to-pointer standard conversion (4.3) is used in
|
|
// place of P for type deduction; otherwise,
|
|
else if (P->isFunctionType())
|
|
P = Context.getPointerType(P);
|
|
// - If P is a cv-qualified type, the top level cv-qualifiers of
|
|
// P's type are ignored for type deduction.
|
|
else
|
|
P = P.getUnqualifiedType();
|
|
|
|
// C++0x [temp.deduct.conv]p4:
|
|
// If A is a cv-qualified type, the top level cv-qualifiers of A's
|
|
// type are ignored for type deduction. If A is a reference type, the type
|
|
// referred to by A is used for type deduction.
|
|
A = A.getUnqualifiedType();
|
|
}
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// C++ [temp.deduct.conv]p1:
|
|
// Template argument deduction is done by comparing the return
|
|
// type of the template conversion function (call it P) with the
|
|
// type that is required as the result of the conversion (call it
|
|
// A) as described in 14.8.2.4.
|
|
TemplateParameterList *TemplateParams
|
|
= ConversionTemplate->getTemplateParameters();
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
Deduced.resize(TemplateParams->size());
|
|
|
|
// C++0x [temp.deduct.conv]p4:
|
|
// In general, the deduction process attempts to find template
|
|
// argument values that will make the deduced A identical to
|
|
// A. However, there are two cases that allow a difference:
|
|
unsigned TDF = 0;
|
|
// - If the original A is a reference type, A can be more
|
|
// cv-qualified than the deduced A (i.e., the type referred to
|
|
// by the reference)
|
|
if (IsReferenceA)
|
|
TDF |= TDF_ArgWithReferenceType;
|
|
// - The deduced A can be another pointer or pointer to member
|
|
// type that can be converted to A via a qualification
|
|
// conversion.
|
|
//
|
|
// (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
|
|
// both P and A are pointers or member pointers. In this case, we
|
|
// just ignore cv-qualifiers completely).
|
|
if ((P->isPointerType() && A->isPointerType()) ||
|
|
(P->isMemberPointerType() && A->isMemberPointerType()))
|
|
TDF |= TDF_IgnoreQualifiers;
|
|
|
|
SmallVector<Sema::OriginalCallArg, 1> OriginalCallArgs;
|
|
if (ConversionGeneric->isExplicitObjectMemberFunction()) {
|
|
QualType ParamType = ConversionGeneric->getParamDecl(0)->getType();
|
|
if (TemplateDeductionResult Result =
|
|
DeduceTemplateArgumentsFromCallArgument(
|
|
*this, TemplateParams, getFirstInnerIndex(ConversionTemplate),
|
|
ParamType, ObjectType, ObjectClassification,
|
|
/*Arg=*/nullptr, Info, Deduced, OriginalCallArgs,
|
|
/*Decomposed*/ false, 0, /*TDF*/ 0);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
if (TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch(
|
|
*this, TemplateParams, P, A, Info, Deduced, TDF,
|
|
PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Create an Instantiation Scope for finalizing the operator.
|
|
LocalInstantiationScope InstScope(*this);
|
|
// Finish template argument deduction.
|
|
FunctionDecl *ConversionSpecialized = nullptr;
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = FinishTemplateArgumentDeduction(
|
|
ConversionTemplate, Deduced, 0, ConversionSpecialized, Info,
|
|
&OriginalCallArgs, /*PartialOverloading=*/false,
|
|
/*PartialOrdering=*/false);
|
|
});
|
|
Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
|
|
return Result;
|
|
}
|
|
|
|
TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
FunctionDecl *&Specialization,
|
|
TemplateDeductionInfo &Info,
|
|
bool IsAddressOfFunction) {
|
|
return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
|
|
QualType(), Specialization, Info,
|
|
IsAddressOfFunction);
|
|
}
|
|
|
|
namespace {
|
|
struct DependentAuto { bool IsPack; };
|
|
|
|
/// Substitute the 'auto' specifier or deduced template specialization type
|
|
/// specifier within a type for a given replacement type.
|
|
class SubstituteDeducedTypeTransform :
|
|
public TreeTransform<SubstituteDeducedTypeTransform> {
|
|
QualType Replacement;
|
|
bool ReplacementIsPack;
|
|
bool UseTypeSugar;
|
|
using inherited = TreeTransform<SubstituteDeducedTypeTransform>;
|
|
|
|
public:
|
|
SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
|
|
: TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
|
|
ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
|
|
|
|
SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
|
|
bool UseTypeSugar = true)
|
|
: TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
|
|
Replacement(Replacement), ReplacementIsPack(false),
|
|
UseTypeSugar(UseTypeSugar) {}
|
|
|
|
QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
|
|
assert(isa<TemplateTypeParmType>(Replacement) &&
|
|
"unexpected unsugared replacement kind");
|
|
QualType Result = Replacement;
|
|
TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
return Result;
|
|
}
|
|
|
|
QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
|
|
// If we're building the type pattern to deduce against, don't wrap the
|
|
// substituted type in an AutoType. Certain template deduction rules
|
|
// apply only when a template type parameter appears directly (and not if
|
|
// the parameter is found through desugaring). For instance:
|
|
// auto &&lref = lvalue;
|
|
// must transform into "rvalue reference to T" not "rvalue reference to
|
|
// auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
|
|
//
|
|
// FIXME: Is this still necessary?
|
|
if (!UseTypeSugar)
|
|
return TransformDesugared(TLB, TL);
|
|
|
|
QualType Result = SemaRef.Context.getAutoType(
|
|
Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
|
|
ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(),
|
|
TL.getTypePtr()->getTypeConstraintArguments());
|
|
auto NewTL = TLB.push<AutoTypeLoc>(Result);
|
|
NewTL.copy(TL);
|
|
return Result;
|
|
}
|
|
|
|
QualType TransformDeducedTemplateSpecializationType(
|
|
TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
|
|
if (!UseTypeSugar)
|
|
return TransformDesugared(TLB, TL);
|
|
|
|
QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
|
|
TL.getTypePtr()->getTemplateName(),
|
|
Replacement, Replacement.isNull());
|
|
auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
return Result;
|
|
}
|
|
|
|
ExprResult TransformLambdaExpr(LambdaExpr *E) {
|
|
// Lambdas never need to be transformed.
|
|
return E;
|
|
}
|
|
bool TransformExceptionSpec(SourceLocation Loc,
|
|
FunctionProtoType::ExceptionSpecInfo &ESI,
|
|
SmallVectorImpl<QualType> &Exceptions,
|
|
bool &Changed) {
|
|
if (ESI.Type == EST_Uninstantiated) {
|
|
ESI.instantiate();
|
|
Changed = true;
|
|
}
|
|
return inherited::TransformExceptionSpec(Loc, ESI, Exceptions, Changed);
|
|
}
|
|
|
|
QualType Apply(TypeLoc TL) {
|
|
// Create some scratch storage for the transformed type locations.
|
|
// FIXME: We're just going to throw this information away. Don't build it.
|
|
TypeLocBuilder TLB;
|
|
TLB.reserve(TL.getFullDataSize());
|
|
return TransformType(TLB, TL);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type,
|
|
AutoTypeLoc TypeLoc,
|
|
QualType Deduced) {
|
|
ConstraintSatisfaction Satisfaction;
|
|
ConceptDecl *Concept = Type.getTypeConstraintConcept();
|
|
TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(),
|
|
TypeLoc.getRAngleLoc());
|
|
TemplateArgs.addArgument(
|
|
TemplateArgumentLoc(TemplateArgument(Deduced),
|
|
S.Context.getTrivialTypeSourceInfo(
|
|
Deduced, TypeLoc.getNameLoc())));
|
|
for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I)
|
|
TemplateArgs.addArgument(TypeLoc.getArgLoc(I));
|
|
|
|
Sema::CheckTemplateArgumentInfo CTAI;
|
|
if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs,
|
|
/*DefaultArgs=*/{},
|
|
/*PartialTemplateArgs=*/false, CTAI))
|
|
return true;
|
|
MultiLevelTemplateArgumentList MLTAL(Concept, CTAI.CanonicalConverted,
|
|
/*Final=*/false);
|
|
// Build up an EvaluationContext with an ImplicitConceptSpecializationDecl so
|
|
// that the template arguments of the constraint can be preserved. For
|
|
// example:
|
|
//
|
|
// template <class T>
|
|
// concept C = []<D U = void>() { return true; }();
|
|
//
|
|
// We need the argument for T while evaluating type constraint D in
|
|
// building the CallExpr to the lambda.
|
|
EnterExpressionEvaluationContext EECtx(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated,
|
|
ImplicitConceptSpecializationDecl::Create(
|
|
S.getASTContext(), Concept->getDeclContext(), Concept->getLocation(),
|
|
CTAI.CanonicalConverted));
|
|
if (S.CheckConstraintSatisfaction(
|
|
Concept, AssociatedConstraint(Concept->getConstraintExpr()), MLTAL,
|
|
TypeLoc.getLocalSourceRange(), Satisfaction))
|
|
return true;
|
|
if (!Satisfaction.IsSatisfied) {
|
|
std::string Buf;
|
|
llvm::raw_string_ostream OS(Buf);
|
|
OS << "'" << Concept->getName();
|
|
if (TypeLoc.hasExplicitTemplateArgs()) {
|
|
printTemplateArgumentList(
|
|
OS, Type.getTypeConstraintArguments(), S.getPrintingPolicy(),
|
|
Type.getTypeConstraintConcept()->getTemplateParameters());
|
|
}
|
|
OS << "'";
|
|
S.Diag(TypeLoc.getConceptNameLoc(),
|
|
diag::err_placeholder_constraints_not_satisfied)
|
|
<< Deduced << Buf << TypeLoc.getLocalSourceRange();
|
|
S.DiagnoseUnsatisfiedConstraint(Satisfaction);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
TemplateDeductionResult
|
|
Sema::DeduceAutoType(TypeLoc Type, Expr *Init, QualType &Result,
|
|
TemplateDeductionInfo &Info, bool DependentDeduction,
|
|
bool IgnoreConstraints,
|
|
TemplateSpecCandidateSet *FailedTSC) {
|
|
assert(DependentDeduction || Info.getDeducedDepth() == 0);
|
|
if (Init->containsErrors())
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
|
|
const AutoType *AT = Type.getType()->getContainedAutoType();
|
|
assert(AT);
|
|
|
|
if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) {
|
|
ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
|
|
if (NonPlaceholder.isInvalid())
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
Init = NonPlaceholder.get();
|
|
}
|
|
|
|
DependentAuto DependentResult = {
|
|
/*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
|
|
|
|
if (!DependentDeduction &&
|
|
(Type.getType()->isDependentType() || Init->isTypeDependent() ||
|
|
Init->containsUnexpandedParameterPack())) {
|
|
Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
|
|
assert(!Result.isNull() && "substituting DependentTy can't fail");
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Make sure that we treat 'char[]' equaly as 'char*' in C23 mode.
|
|
auto *String = dyn_cast<StringLiteral>(Init);
|
|
if (getLangOpts().C23 && String && Type.getType()->isArrayType()) {
|
|
Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier);
|
|
TypeLoc TL = TypeLoc(Init->getType(), Type.getOpaqueData());
|
|
Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(TL);
|
|
assert(!Result.isNull() && "substituting DependentTy can't fail");
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Emit a warning if 'auto*' is used in pedantic and in C23 mode.
|
|
if (getLangOpts().C23 && Type.getType()->isPointerType()) {
|
|
Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier);
|
|
}
|
|
|
|
auto *InitList = dyn_cast<InitListExpr>(Init);
|
|
if (!getLangOpts().CPlusPlus && InitList) {
|
|
Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c)
|
|
<< (int)AT->getKeyword() << getLangOpts().C23;
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
}
|
|
|
|
// Deduce type of TemplParam in Func(Init)
|
|
SmallVector<DeducedTemplateArgument, 1> Deduced;
|
|
Deduced.resize(1);
|
|
|
|
// If deduction failed, don't diagnose if the initializer is dependent; it
|
|
// might acquire a matching type in the instantiation.
|
|
auto DeductionFailed = [&](TemplateDeductionResult TDK) {
|
|
if (Init->isTypeDependent()) {
|
|
Result =
|
|
SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
|
|
assert(!Result.isNull() && "substituting DependentTy can't fail");
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
return TDK;
|
|
};
|
|
|
|
SmallVector<OriginalCallArg, 4> OriginalCallArgs;
|
|
|
|
QualType DeducedType;
|
|
// If this is a 'decltype(auto)' specifier, do the decltype dance.
|
|
if (AT->isDecltypeAuto()) {
|
|
if (InitList) {
|
|
Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
}
|
|
|
|
DeducedType = getDecltypeForExpr(Init);
|
|
assert(!DeducedType.isNull());
|
|
} else {
|
|
LocalInstantiationScope InstScope(*this);
|
|
|
|
// Build template<class TemplParam> void Func(FuncParam);
|
|
SourceLocation Loc = Init->getExprLoc();
|
|
TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create(
|
|
Context, nullptr, SourceLocation(), Loc, Info.getDeducedDepth(), 0,
|
|
nullptr, false, false, false);
|
|
QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
|
|
NamedDecl *TemplParamPtr = TemplParam;
|
|
FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt(
|
|
Context, Loc, Loc, TemplParamPtr, Loc, nullptr);
|
|
|
|
if (InitList) {
|
|
// Notionally, we substitute std::initializer_list<T> for 'auto' and
|
|
// deduce against that. Such deduction only succeeds if removing
|
|
// cv-qualifiers and references results in std::initializer_list<T>.
|
|
if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
SourceRange DeducedFromInitRange;
|
|
for (Expr *Init : InitList->inits()) {
|
|
// Resolving a core issue: a braced-init-list containing any designators
|
|
// is a non-deduced context.
|
|
if (isa<DesignatedInitExpr>(Init))
|
|
return TemplateDeductionResult::Invalid;
|
|
if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
|
|
*this, TemplateParamsSt.get(), 0, TemplArg, Init->getType(),
|
|
Init->Classify(getASTContext()), Init, Info, Deduced,
|
|
OriginalCallArgs,
|
|
/*Decomposed=*/true,
|
|
/*ArgIdx=*/0, /*TDF=*/0);
|
|
TDK != TemplateDeductionResult::Success) {
|
|
if (TDK == TemplateDeductionResult::Inconsistent) {
|
|
Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction)
|
|
<< Info.FirstArg << Info.SecondArg << DeducedFromInitRange
|
|
<< Init->getSourceRange();
|
|
return DeductionFailed(TemplateDeductionResult::AlreadyDiagnosed);
|
|
}
|
|
return DeductionFailed(TDK);
|
|
}
|
|
|
|
if (DeducedFromInitRange.isInvalid() &&
|
|
Deduced[0].getKind() != TemplateArgument::Null)
|
|
DeducedFromInitRange = Init->getSourceRange();
|
|
}
|
|
} else {
|
|
if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
|
|
Diag(Loc, diag::err_auto_bitfield);
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
}
|
|
QualType FuncParam =
|
|
SubstituteDeducedTypeTransform(*this, TemplArg).Apply(Type);
|
|
assert(!FuncParam.isNull() &&
|
|
"substituting template parameter for 'auto' failed");
|
|
if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
|
|
*this, TemplateParamsSt.get(), 0, FuncParam, Init->getType(),
|
|
Init->Classify(getASTContext()), Init, Info, Deduced,
|
|
OriginalCallArgs,
|
|
/*Decomposed=*/false, /*ArgIdx=*/0, /*TDF=*/0, FailedTSC);
|
|
TDK != TemplateDeductionResult::Success)
|
|
return DeductionFailed(TDK);
|
|
}
|
|
|
|
// Could be null if somehow 'auto' appears in a non-deduced context.
|
|
if (Deduced[0].getKind() != TemplateArgument::Type)
|
|
return DeductionFailed(TemplateDeductionResult::Incomplete);
|
|
DeducedType = Deduced[0].getAsType();
|
|
|
|
if (InitList) {
|
|
DeducedType = BuildStdInitializerList(DeducedType, Loc);
|
|
if (DeducedType.isNull())
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
}
|
|
}
|
|
|
|
if (!Result.isNull()) {
|
|
if (!Context.hasSameType(DeducedType, Result)) {
|
|
Info.FirstArg = Result;
|
|
Info.SecondArg = DeducedType;
|
|
return DeductionFailed(TemplateDeductionResult::Inconsistent);
|
|
}
|
|
DeducedType = Context.getCommonSugaredType(Result, DeducedType);
|
|
}
|
|
|
|
if (AT->isConstrained() && !IgnoreConstraints &&
|
|
CheckDeducedPlaceholderConstraints(
|
|
*this, *AT, Type.getContainedAutoTypeLoc(), DeducedType))
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
|
|
Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
|
|
if (Result.isNull())
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
|
|
// Check that the deduced argument type is compatible with the original
|
|
// argument type per C++ [temp.deduct.call]p4.
|
|
QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
|
|
for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
|
|
assert((bool)InitList == OriginalArg.DecomposedParam &&
|
|
"decomposed non-init-list in auto deduction?");
|
|
if (auto TDK =
|
|
CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA);
|
|
TDK != TemplateDeductionResult::Success) {
|
|
Result = QualType();
|
|
return DeductionFailed(TDK);
|
|
}
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
QualType Sema::SubstAutoType(QualType TypeWithAuto,
|
|
QualType TypeToReplaceAuto) {
|
|
assert(TypeToReplaceAuto != Context.DependentTy);
|
|
return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
|
|
QualType TypeToReplaceAuto) {
|
|
assert(TypeToReplaceAuto != Context.DependentTy);
|
|
return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
QualType Sema::SubstAutoTypeDependent(QualType TypeWithAuto) {
|
|
return SubstituteDeducedTypeTransform(*this, DependentAuto{false})
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
TypeSourceInfo *
|
|
Sema::SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto) {
|
|
return SubstituteDeducedTypeTransform(*this, DependentAuto{false})
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
QualType Sema::ReplaceAutoType(QualType TypeWithAuto,
|
|
QualType TypeToReplaceAuto) {
|
|
return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
|
|
/*UseTypeSugar*/ false)
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
TypeSourceInfo *Sema::ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
|
|
QualType TypeToReplaceAuto) {
|
|
return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
|
|
/*UseTypeSugar*/ false)
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
void Sema::DiagnoseAutoDeductionFailure(const VarDecl *VDecl,
|
|
const Expr *Init) {
|
|
if (isa<InitListExpr>(Init))
|
|
Diag(VDecl->getLocation(),
|
|
VDecl->isInitCapture()
|
|
? diag::err_init_capture_deduction_failure_from_init_list
|
|
: diag::err_auto_var_deduction_failure_from_init_list)
|
|
<< VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
|
|
else
|
|
Diag(VDecl->getLocation(),
|
|
VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
|
|
: diag::err_auto_var_deduction_failure)
|
|
<< VDecl->getDeclName() << VDecl->getType() << Init->getType()
|
|
<< Init->getSourceRange();
|
|
}
|
|
|
|
bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
|
|
bool Diagnose) {
|
|
assert(FD->getReturnType()->isUndeducedType());
|
|
|
|
// For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
|
|
// within the return type from the call operator's type.
|
|
if (isLambdaConversionOperator(FD)) {
|
|
CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
|
|
FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
|
|
|
|
// For a generic lambda, instantiate the call operator if needed.
|
|
if (auto *Args = FD->getTemplateSpecializationArgs()) {
|
|
CallOp = InstantiateFunctionDeclaration(
|
|
CallOp->getDescribedFunctionTemplate(), Args, Loc);
|
|
if (!CallOp || CallOp->isInvalidDecl())
|
|
return true;
|
|
|
|
// We might need to deduce the return type by instantiating the definition
|
|
// of the operator() function.
|
|
if (CallOp->getReturnType()->isUndeducedType()) {
|
|
runWithSufficientStackSpace(Loc, [&] {
|
|
InstantiateFunctionDefinition(Loc, CallOp);
|
|
});
|
|
}
|
|
}
|
|
|
|
if (CallOp->isInvalidDecl())
|
|
return true;
|
|
assert(!CallOp->getReturnType()->isUndeducedType() &&
|
|
"failed to deduce lambda return type");
|
|
|
|
// Build the new return type from scratch.
|
|
CallingConv RetTyCC = FD->getReturnType()
|
|
->getPointeeType()
|
|
->castAs<FunctionType>()
|
|
->getCallConv();
|
|
QualType RetType = getLambdaConversionFunctionResultType(
|
|
CallOp->getType()->castAs<FunctionProtoType>(), RetTyCC);
|
|
if (FD->getReturnType()->getAs<PointerType>())
|
|
RetType = Context.getPointerType(RetType);
|
|
else {
|
|
assert(FD->getReturnType()->getAs<BlockPointerType>());
|
|
RetType = Context.getBlockPointerType(RetType);
|
|
}
|
|
Context.adjustDeducedFunctionResultType(FD, RetType);
|
|
return false;
|
|
}
|
|
|
|
if (FD->getTemplateInstantiationPattern()) {
|
|
runWithSufficientStackSpace(Loc, [&] {
|
|
InstantiateFunctionDefinition(Loc, FD);
|
|
});
|
|
}
|
|
|
|
bool StillUndeduced = FD->getReturnType()->isUndeducedType();
|
|
if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
|
|
Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
|
|
Diag(FD->getLocation(), diag::note_callee_decl) << FD;
|
|
}
|
|
|
|
return StillUndeduced;
|
|
}
|
|
|
|
bool Sema::CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD,
|
|
SourceLocation Loc) {
|
|
assert(FD->isImmediateEscalating());
|
|
|
|
if (isLambdaConversionOperator(FD)) {
|
|
CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
|
|
FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
|
|
|
|
// For a generic lambda, instantiate the call operator if needed.
|
|
if (auto *Args = FD->getTemplateSpecializationArgs()) {
|
|
CallOp = InstantiateFunctionDeclaration(
|
|
CallOp->getDescribedFunctionTemplate(), Args, Loc);
|
|
if (!CallOp || CallOp->isInvalidDecl())
|
|
return true;
|
|
runWithSufficientStackSpace(
|
|
Loc, [&] { InstantiateFunctionDefinition(Loc, CallOp); });
|
|
}
|
|
return CallOp->isInvalidDecl();
|
|
}
|
|
|
|
if (FD->getTemplateInstantiationPattern()) {
|
|
runWithSufficientStackSpace(
|
|
Loc, [&] { InstantiateFunctionDefinition(Loc, FD); });
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static QualType GetImplicitObjectParameterType(ASTContext &Context,
|
|
const CXXMethodDecl *Method,
|
|
QualType RawType,
|
|
bool IsOtherRvr) {
|
|
// C++20 [temp.func.order]p3.1, p3.2:
|
|
// - The type X(M) is "rvalue reference to cv A" if the optional
|
|
// ref-qualifier of M is && or if M has no ref-qualifier and the
|
|
// positionally-corresponding parameter of the other transformed template
|
|
// has rvalue reference type; if this determination depends recursively
|
|
// upon whether X(M) is an rvalue reference type, it is not considered to
|
|
// have rvalue reference type.
|
|
//
|
|
// - Otherwise, X(M) is "lvalue reference to cv A".
|
|
assert(Method && !Method->isExplicitObjectMemberFunction() &&
|
|
"expected a member function with no explicit object parameter");
|
|
|
|
RawType = Context.getQualifiedType(RawType, Method->getMethodQualifiers());
|
|
if (Method->getRefQualifier() == RQ_RValue ||
|
|
(IsOtherRvr && Method->getRefQualifier() == RQ_None))
|
|
return Context.getRValueReferenceType(RawType);
|
|
return Context.getLValueReferenceType(RawType);
|
|
}
|
|
|
|
static TemplateDeductionResult CheckDeductionConsistency(
|
|
Sema &S, FunctionTemplateDecl *FTD, UnsignedOrNone ArgIdx, QualType P,
|
|
QualType A, ArrayRef<TemplateArgument> DeducedArgs, bool CheckConsistency) {
|
|
MultiLevelTemplateArgumentList MLTAL(FTD, DeducedArgs,
|
|
/*Final=*/true);
|
|
Sema::ArgPackSubstIndexRAII PackIndex(
|
|
S,
|
|
ArgIdx ? ::getPackIndexForParam(S, FTD, MLTAL, *ArgIdx) : std::nullopt);
|
|
bool IsIncompleteSubstitution = false;
|
|
// FIXME: A substitution can be incomplete on a non-structural part of the
|
|
// type. Use the canonical type for now, until the TemplateInstantiator can
|
|
// deal with that.
|
|
QualType InstP = S.SubstType(P.getCanonicalType(), MLTAL, FTD->getLocation(),
|
|
FTD->getDeclName(), &IsIncompleteSubstitution);
|
|
if (InstP.isNull() && !IsIncompleteSubstitution)
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
if (!CheckConsistency)
|
|
return TemplateDeductionResult::Success;
|
|
if (IsIncompleteSubstitution)
|
|
return TemplateDeductionResult::Incomplete;
|
|
|
|
// [temp.deduct.call]/4 - Check we produced a consistent deduction.
|
|
// This handles just the cases that can appear when partial ordering.
|
|
if (auto *PA = dyn_cast<PackExpansionType>(A);
|
|
PA && !isa<PackExpansionType>(InstP))
|
|
A = PA->getPattern();
|
|
if (!S.Context.hasSameType(
|
|
S.Context.getUnqualifiedArrayType(InstP.getNonReferenceType()),
|
|
S.Context.getUnqualifiedArrayType(A.getNonReferenceType())))
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
template <class T>
|
|
static TemplateDeductionResult FinishTemplateArgumentDeduction(
|
|
Sema &S, FunctionTemplateDecl *FTD,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info, T &&CheckDeductionConsistency) {
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
Sema::SFINAETrap Trap(S);
|
|
|
|
Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(FTD));
|
|
|
|
// C++26 [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
bool IsIncomplete = false;
|
|
Sema::CheckTemplateArgumentInfo CTAI(/*PartialOrdering=*/true);
|
|
if (auto Result = ConvertDeducedTemplateArguments(
|
|
S, FTD, FTD->getTemplateParameters(), /*IsDeduced=*/true, Deduced,
|
|
Info, CTAI,
|
|
/*CurrentInstantiationScope=*/nullptr,
|
|
/*NumAlreadyConverted=*/0, &IsIncomplete);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Form the template argument list from the deduced template arguments.
|
|
TemplateArgumentList *SugaredDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted);
|
|
TemplateArgumentList *CanonicalDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted);
|
|
|
|
Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
|
|
|
|
// Substitute the deduced template arguments into the argument
|
|
// and verify that the instantiated argument is both valid
|
|
// and equivalent to the parameter.
|
|
LocalInstantiationScope InstScope(S);
|
|
|
|
if (auto TDR = CheckDeductionConsistency(S, FTD, CTAI.SugaredConverted);
|
|
TDR != TemplateDeductionResult::Success)
|
|
return TDR;
|
|
|
|
return Trap.hasErrorOccurred() ? TemplateDeductionResult::SubstitutionFailure
|
|
: TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Determine whether the function template \p FT1 is at least as
|
|
/// specialized as \p FT2.
|
|
static bool isAtLeastAsSpecializedAs(
|
|
Sema &S, SourceLocation Loc, FunctionTemplateDecl *FT1,
|
|
FunctionTemplateDecl *FT2, TemplatePartialOrderingContext TPOC,
|
|
ArrayRef<QualType> Args1, ArrayRef<QualType> Args2, bool Args1Offset) {
|
|
FunctionDecl *FD1 = FT1->getTemplatedDecl();
|
|
FunctionDecl *FD2 = FT2->getTemplatedDecl();
|
|
const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
|
|
const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
|
|
assert(Proto1 && Proto2 && "Function templates must have prototypes");
|
|
|
|
// C++26 [temp.deduct.partial]p3:
|
|
// The types used to determine the ordering depend on the context in which
|
|
// the partial ordering is done:
|
|
// - In the context of a function call, the types used are those function
|
|
// parameter types for which the function call has arguments.
|
|
// - In the context of a call to a conversion operator, the return types
|
|
// of the conversion function templates are used.
|
|
// - In other contexts (14.6.6.2) the function template's function type
|
|
// is used.
|
|
|
|
if (TPOC == TPOC_Other) {
|
|
// We wouldn't be partial ordering these candidates if these didn't match.
|
|
assert(Proto1->getMethodQuals() == Proto2->getMethodQuals() &&
|
|
Proto1->getRefQualifier() == Proto2->getRefQualifier() &&
|
|
Proto1->isVariadic() == Proto2->isVariadic() &&
|
|
"shouldn't partial order functions with different qualifiers in a "
|
|
"context where the function type is used");
|
|
|
|
assert(Args1.empty() && Args2.empty() &&
|
|
"Only call context should have arguments");
|
|
Args1 = Proto1->getParamTypes();
|
|
Args2 = Proto2->getParamTypes();
|
|
}
|
|
|
|
TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced(TemplateParams->size());
|
|
TemplateDeductionInfo Info(Loc);
|
|
|
|
bool HasDeducedAnyParamFromReturnType = false;
|
|
if (TPOC != TPOC_Call) {
|
|
if (DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
|
|
Info, Deduced, TDF_None, PartialOrderingKind::Call,
|
|
/*DeducedFromArrayBound=*/false,
|
|
&HasDeducedAnyParamFromReturnType) !=
|
|
TemplateDeductionResult::Success)
|
|
return false;
|
|
}
|
|
|
|
llvm::SmallBitVector HasDeducedParam;
|
|
if (TPOC != TPOC_Conversion) {
|
|
HasDeducedParam.resize(Args2.size());
|
|
if (DeduceTemplateArguments(S, TemplateParams, Args2, Args1, Info, Deduced,
|
|
TDF_None, PartialOrderingKind::Call,
|
|
/*HasDeducedAnyParam=*/nullptr,
|
|
&HasDeducedParam) !=
|
|
TemplateDeductionResult::Success)
|
|
return false;
|
|
}
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
Sema::InstantiatingTemplate Inst(
|
|
S, Info.getLocation(), FT2, DeducedArgs,
|
|
Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
|
|
if (Inst.isInvalid())
|
|
return false;
|
|
|
|
bool AtLeastAsSpecialized;
|
|
S.runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
AtLeastAsSpecialized =
|
|
::FinishTemplateArgumentDeduction(
|
|
S, FT2, Deduced, Info,
|
|
[&](Sema &S, FunctionTemplateDecl *FTD,
|
|
ArrayRef<TemplateArgument> DeducedArgs) {
|
|
// As a provisional fix for a core issue that does not
|
|
// exist yet, which may be related to CWG2160, only check the
|
|
// consistency of parameters and return types which participated
|
|
// in deduction. We will still try to substitute them though.
|
|
if (TPOC != TPOC_Call) {
|
|
if (auto TDR = ::CheckDeductionConsistency(
|
|
S, FTD, /*ArgIdx=*/std::nullopt,
|
|
Proto2->getReturnType(), Proto1->getReturnType(),
|
|
DeducedArgs,
|
|
/*CheckConsistency=*/HasDeducedAnyParamFromReturnType);
|
|
TDR != TemplateDeductionResult::Success)
|
|
return TDR;
|
|
}
|
|
|
|
if (TPOC == TPOC_Conversion)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return ::DeduceForEachType(
|
|
S, TemplateParams, Args2, Args1, Info, Deduced,
|
|
PartialOrderingKind::Call, /*FinishingDeduction=*/true,
|
|
[&](Sema &S, TemplateParameterList *, int ParamIdx,
|
|
UnsignedOrNone ArgIdx, QualType P, QualType A,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
PartialOrderingKind) {
|
|
if (ArgIdx && *ArgIdx >= static_cast<unsigned>(Args1Offset))
|
|
ArgIdx = *ArgIdx - Args1Offset;
|
|
else
|
|
ArgIdx = std::nullopt;
|
|
return ::CheckDeductionConsistency(
|
|
S, FTD, ArgIdx, P, A, DeducedArgs,
|
|
/*CheckConsistency=*/HasDeducedParam[ParamIdx]);
|
|
});
|
|
}) == TemplateDeductionResult::Success;
|
|
});
|
|
if (!AtLeastAsSpecialized)
|
|
return false;
|
|
|
|
// C++0x [temp.deduct.partial]p11:
|
|
// In most cases, all template parameters must have values in order for
|
|
// deduction to succeed, but for partial ordering purposes a template
|
|
// parameter may remain without a value provided it is not used in the
|
|
// types being used for partial ordering. [ Note: a template parameter used
|
|
// in a non-deduced context is considered used. -end note]
|
|
unsigned ArgIdx = 0, NumArgs = Deduced.size();
|
|
for (; ArgIdx != NumArgs; ++ArgIdx)
|
|
if (Deduced[ArgIdx].isNull())
|
|
break;
|
|
|
|
if (ArgIdx == NumArgs) {
|
|
// All template arguments were deduced. FT1 is at least as specialized
|
|
// as FT2.
|
|
return true;
|
|
}
|
|
|
|
// Figure out which template parameters were used.
|
|
llvm::SmallBitVector UsedParameters(TemplateParams->size());
|
|
switch (TPOC) {
|
|
case TPOC_Call:
|
|
for (unsigned I = 0, N = Args2.size(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(S.Context, Args2[I], /*OnlyDeduced=*/false,
|
|
TemplateParams->getDepth(), UsedParameters);
|
|
break;
|
|
|
|
case TPOC_Conversion:
|
|
::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(),
|
|
/*OnlyDeduced=*/false,
|
|
TemplateParams->getDepth(), UsedParameters);
|
|
break;
|
|
|
|
case TPOC_Other:
|
|
// We do not deduce template arguments from the exception specification
|
|
// when determining the primary template of a function template
|
|
// specialization or when taking the address of a function template.
|
|
// Therefore, we do not mark template parameters in the exception
|
|
// specification as used during partial ordering to prevent the following
|
|
// from being ambiguous:
|
|
//
|
|
// template<typename T, typename U>
|
|
// void f(U) noexcept(noexcept(T())); // #1
|
|
//
|
|
// template<typename T>
|
|
// void f(T*) noexcept; // #2
|
|
//
|
|
// template<>
|
|
// void f<int>(int*) noexcept; // explicit specialization of #2
|
|
//
|
|
// Although there is no corresponding wording in the standard, this seems
|
|
// to be the intended behavior given the definition of
|
|
// 'deduction substitution loci' in [temp.deduct].
|
|
::MarkUsedTemplateParameters(
|
|
S.Context,
|
|
S.Context.getFunctionTypeWithExceptionSpec(FD2->getType(), EST_None),
|
|
/*OnlyDeduced=*/false, TemplateParams->getDepth(), UsedParameters);
|
|
break;
|
|
}
|
|
|
|
for (; ArgIdx != NumArgs; ++ArgIdx)
|
|
// If this argument had no value deduced but was used in one of the types
|
|
// used for partial ordering, then deduction fails.
|
|
if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
enum class MoreSpecializedTrailingPackTieBreakerResult { Equal, Less, More };
|
|
|
|
// This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that
|
|
// there is no wording or even resolution for this issue.
|
|
static MoreSpecializedTrailingPackTieBreakerResult
|
|
getMoreSpecializedTrailingPackTieBreaker(
|
|
const TemplateSpecializationType *TST1,
|
|
const TemplateSpecializationType *TST2) {
|
|
ArrayRef<TemplateArgument> As1 = TST1->template_arguments(),
|
|
As2 = TST2->template_arguments();
|
|
const TemplateArgument &TA1 = As1.back(), &TA2 = As2.back();
|
|
bool IsPack = TA1.getKind() == TemplateArgument::Pack;
|
|
assert(IsPack == (TA2.getKind() == TemplateArgument::Pack));
|
|
if (!IsPack)
|
|
return MoreSpecializedTrailingPackTieBreakerResult::Equal;
|
|
assert(As1.size() == As2.size());
|
|
|
|
unsigned PackSize1 = TA1.pack_size(), PackSize2 = TA2.pack_size();
|
|
bool IsPackExpansion1 =
|
|
PackSize1 && TA1.pack_elements().back().isPackExpansion();
|
|
bool IsPackExpansion2 =
|
|
PackSize2 && TA2.pack_elements().back().isPackExpansion();
|
|
if (PackSize1 == PackSize2 && IsPackExpansion1 == IsPackExpansion2)
|
|
return MoreSpecializedTrailingPackTieBreakerResult::Equal;
|
|
if (PackSize1 > PackSize2 && IsPackExpansion1)
|
|
return MoreSpecializedTrailingPackTieBreakerResult::More;
|
|
if (PackSize1 < PackSize2 && IsPackExpansion2)
|
|
return MoreSpecializedTrailingPackTieBreakerResult::Less;
|
|
return MoreSpecializedTrailingPackTieBreakerResult::Equal;
|
|
}
|
|
|
|
FunctionTemplateDecl *Sema::getMoreSpecializedTemplate(
|
|
FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
|
|
TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
|
|
QualType RawObj1Ty, QualType RawObj2Ty, bool Reversed,
|
|
bool PartialOverloading) {
|
|
SmallVector<QualType> Args1;
|
|
SmallVector<QualType> Args2;
|
|
const FunctionDecl *FD1 = FT1->getTemplatedDecl();
|
|
const FunctionDecl *FD2 = FT2->getTemplatedDecl();
|
|
bool ShouldConvert1 = false;
|
|
bool ShouldConvert2 = false;
|
|
bool Args1Offset = false;
|
|
bool Args2Offset = false;
|
|
QualType Obj1Ty;
|
|
QualType Obj2Ty;
|
|
if (TPOC == TPOC_Call) {
|
|
const FunctionProtoType *Proto1 =
|
|
FD1->getType()->castAs<FunctionProtoType>();
|
|
const FunctionProtoType *Proto2 =
|
|
FD2->getType()->castAs<FunctionProtoType>();
|
|
|
|
// - In the context of a function call, the function parameter types are
|
|
// used.
|
|
const CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
|
|
const CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
|
|
// C++20 [temp.func.order]p3
|
|
// [...] Each function template M that is a member function is
|
|
// considered to have a new first parameter of type
|
|
// X(M), described below, inserted in its function parameter list.
|
|
//
|
|
// Note that we interpret "that is a member function" as
|
|
// "that is a member function with no expicit object argument".
|
|
// Otherwise the ordering rules for methods with expicit objet arguments
|
|
// against anything else make no sense.
|
|
|
|
bool NonStaticMethod1 = Method1 && !Method1->isStatic(),
|
|
NonStaticMethod2 = Method2 && !Method2->isStatic();
|
|
|
|
auto Params1Begin = Proto1->param_type_begin(),
|
|
Params2Begin = Proto2->param_type_begin();
|
|
|
|
size_t NumComparedArguments = NumCallArguments1;
|
|
|
|
if (auto OO = FD1->getOverloadedOperator();
|
|
(NonStaticMethod1 && NonStaticMethod2) ||
|
|
(OO != OO_None && OO != OO_Call && OO != OO_Subscript)) {
|
|
ShouldConvert1 =
|
|
NonStaticMethod1 && !Method1->hasCXXExplicitFunctionObjectParameter();
|
|
ShouldConvert2 =
|
|
NonStaticMethod2 && !Method2->hasCXXExplicitFunctionObjectParameter();
|
|
NumComparedArguments += 1;
|
|
|
|
if (ShouldConvert1) {
|
|
bool IsRValRef2 =
|
|
ShouldConvert2
|
|
? Method2->getRefQualifier() == RQ_RValue
|
|
: Proto2->param_type_begin()[0]->isRValueReferenceType();
|
|
// Compare 'this' from Method1 against first parameter from Method2.
|
|
Obj1Ty = GetImplicitObjectParameterType(this->Context, Method1,
|
|
RawObj1Ty, IsRValRef2);
|
|
Args1.push_back(Obj1Ty);
|
|
Args1Offset = true;
|
|
}
|
|
if (ShouldConvert2) {
|
|
bool IsRValRef1 =
|
|
ShouldConvert1
|
|
? Method1->getRefQualifier() == RQ_RValue
|
|
: Proto1->param_type_begin()[0]->isRValueReferenceType();
|
|
// Compare 'this' from Method2 against first parameter from Method1.
|
|
Obj2Ty = GetImplicitObjectParameterType(this->Context, Method2,
|
|
RawObj2Ty, IsRValRef1);
|
|
Args2.push_back(Obj2Ty);
|
|
Args2Offset = true;
|
|
}
|
|
} else {
|
|
if (NonStaticMethod1 && Method1->hasCXXExplicitFunctionObjectParameter())
|
|
Params1Begin += 1;
|
|
if (NonStaticMethod2 && Method2->hasCXXExplicitFunctionObjectParameter())
|
|
Params2Begin += 1;
|
|
}
|
|
Args1.insert(Args1.end(), Params1Begin, Proto1->param_type_end());
|
|
Args2.insert(Args2.end(), Params2Begin, Proto2->param_type_end());
|
|
|
|
// C++ [temp.func.order]p5:
|
|
// The presence of unused ellipsis and default arguments has no effect on
|
|
// the partial ordering of function templates.
|
|
Args1.resize(std::min(Args1.size(), NumComparedArguments));
|
|
Args2.resize(std::min(Args2.size(), NumComparedArguments));
|
|
|
|
if (Reversed)
|
|
std::reverse(Args2.begin(), Args2.end());
|
|
} else {
|
|
assert(!Reversed && "Only call context could have reversed arguments");
|
|
}
|
|
bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, Args1,
|
|
Args2, Args2Offset);
|
|
bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, Args2,
|
|
Args1, Args1Offset);
|
|
// C++ [temp.deduct.partial]p10:
|
|
// F is more specialized than G if F is at least as specialized as G and G
|
|
// is not at least as specialized as F.
|
|
if (Better1 != Better2) // We have a clear winner
|
|
return Better1 ? FT1 : FT2;
|
|
|
|
if (!Better1 && !Better2) // Neither is better than the other
|
|
return nullptr;
|
|
|
|
// C++ [temp.deduct.partial]p11:
|
|
// ... and if G has a trailing function parameter pack for which F does not
|
|
// have a corresponding parameter, and if F does not have a trailing
|
|
// function parameter pack, then F is more specialized than G.
|
|
|
|
SmallVector<QualType> Param1;
|
|
Param1.reserve(FD1->param_size() + ShouldConvert1);
|
|
if (ShouldConvert1)
|
|
Param1.push_back(Obj1Ty);
|
|
for (const auto &P : FD1->parameters())
|
|
Param1.push_back(P->getType());
|
|
|
|
SmallVector<QualType> Param2;
|
|
Param2.reserve(FD2->param_size() + ShouldConvert2);
|
|
if (ShouldConvert2)
|
|
Param2.push_back(Obj2Ty);
|
|
for (const auto &P : FD2->parameters())
|
|
Param2.push_back(P->getType());
|
|
|
|
unsigned NumParams1 = Param1.size();
|
|
unsigned NumParams2 = Param2.size();
|
|
|
|
bool Variadic1 =
|
|
FD1->param_size() && FD1->parameters().back()->isParameterPack();
|
|
bool Variadic2 =
|
|
FD2->param_size() && FD2->parameters().back()->isParameterPack();
|
|
if (Variadic1 != Variadic2) {
|
|
if (Variadic1 && NumParams1 > NumParams2)
|
|
return FT2;
|
|
if (Variadic2 && NumParams2 > NumParams1)
|
|
return FT1;
|
|
}
|
|
|
|
// Skip this tie breaker if we are performing overload resolution with partial
|
|
// arguments, as this breaks some assumptions about how closely related the
|
|
// candidates are.
|
|
for (int i = 0, e = std::min(NumParams1, NumParams2);
|
|
!PartialOverloading && i < e; ++i) {
|
|
QualType T1 = Param1[i].getCanonicalType();
|
|
QualType T2 = Param2[i].getCanonicalType();
|
|
auto *TST1 = dyn_cast<TemplateSpecializationType>(T1);
|
|
auto *TST2 = dyn_cast<TemplateSpecializationType>(T2);
|
|
if (!TST1 || !TST2)
|
|
continue;
|
|
switch (getMoreSpecializedTrailingPackTieBreaker(TST1, TST2)) {
|
|
case MoreSpecializedTrailingPackTieBreakerResult::Less:
|
|
return FT1;
|
|
case MoreSpecializedTrailingPackTieBreakerResult::More:
|
|
return FT2;
|
|
case MoreSpecializedTrailingPackTieBreakerResult::Equal:
|
|
continue;
|
|
}
|
|
llvm_unreachable(
|
|
"unknown MoreSpecializedTrailingPackTieBreakerResult value");
|
|
}
|
|
|
|
if (!Context.getLangOpts().CPlusPlus20)
|
|
return nullptr;
|
|
|
|
// Match GCC on not implementing [temp.func.order]p6.2.1.
|
|
|
|
// C++20 [temp.func.order]p6:
|
|
// If deduction against the other template succeeds for both transformed
|
|
// templates, constraints can be considered as follows:
|
|
|
|
// C++20 [temp.func.order]p6.1:
|
|
// If their template-parameter-lists (possibly including template-parameters
|
|
// invented for an abbreviated function template ([dcl.fct])) or function
|
|
// parameter lists differ in length, neither template is more specialized
|
|
// than the other.
|
|
TemplateParameterList *TPL1 = FT1->getTemplateParameters();
|
|
TemplateParameterList *TPL2 = FT2->getTemplateParameters();
|
|
if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2)
|
|
return nullptr;
|
|
|
|
// C++20 [temp.func.order]p6.2.2:
|
|
// Otherwise, if the corresponding template-parameters of the
|
|
// template-parameter-lists are not equivalent ([temp.over.link]) or if the
|
|
// function parameters that positionally correspond between the two
|
|
// templates are not of the same type, neither template is more specialized
|
|
// than the other.
|
|
if (!TemplateParameterListsAreEqual(TPL1, TPL2, false,
|
|
Sema::TPL_TemplateParamsEquivalent))
|
|
return nullptr;
|
|
|
|
// [dcl.fct]p5:
|
|
// Any top-level cv-qualifiers modifying a parameter type are deleted when
|
|
// forming the function type.
|
|
for (unsigned i = 0; i < NumParams1; ++i)
|
|
if (!Context.hasSameUnqualifiedType(Param1[i], Param2[i]))
|
|
return nullptr;
|
|
|
|
// C++20 [temp.func.order]p6.3:
|
|
// Otherwise, if the context in which the partial ordering is done is
|
|
// that of a call to a conversion function and the return types of the
|
|
// templates are not the same, then neither template is more specialized
|
|
// than the other.
|
|
if (TPOC == TPOC_Conversion &&
|
|
!Context.hasSameType(FD1->getReturnType(), FD2->getReturnType()))
|
|
return nullptr;
|
|
|
|
llvm::SmallVector<AssociatedConstraint, 3> AC1, AC2;
|
|
FT1->getAssociatedConstraints(AC1);
|
|
FT2->getAssociatedConstraints(AC2);
|
|
bool AtLeastAsConstrained1, AtLeastAsConstrained2;
|
|
if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1))
|
|
return nullptr;
|
|
if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2))
|
|
return nullptr;
|
|
if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
|
|
return nullptr;
|
|
return AtLeastAsConstrained1 ? FT1 : FT2;
|
|
}
|
|
|
|
UnresolvedSetIterator Sema::getMostSpecialized(
|
|
UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
|
|
TemplateSpecCandidateSet &FailedCandidates,
|
|
SourceLocation Loc, const PartialDiagnostic &NoneDiag,
|
|
const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
|
|
bool Complain, QualType TargetType) {
|
|
if (SpecBegin == SpecEnd) {
|
|
if (Complain) {
|
|
Diag(Loc, NoneDiag);
|
|
FailedCandidates.NoteCandidates(*this, Loc);
|
|
}
|
|
return SpecEnd;
|
|
}
|
|
|
|
if (SpecBegin + 1 == SpecEnd)
|
|
return SpecBegin;
|
|
|
|
// Find the function template that is better than all of the templates it
|
|
// has been compared to.
|
|
UnresolvedSetIterator Best = SpecBegin;
|
|
FunctionTemplateDecl *BestTemplate
|
|
= cast<FunctionDecl>(*Best)->getPrimaryTemplate();
|
|
assert(BestTemplate && "Not a function template specialization?");
|
|
for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
|
|
FunctionTemplateDecl *Challenger
|
|
= cast<FunctionDecl>(*I)->getPrimaryTemplate();
|
|
assert(Challenger && "Not a function template specialization?");
|
|
if (declaresSameEntity(getMoreSpecializedTemplate(BestTemplate, Challenger,
|
|
Loc, TPOC_Other, 0),
|
|
Challenger)) {
|
|
Best = I;
|
|
BestTemplate = Challenger;
|
|
}
|
|
}
|
|
|
|
// Make sure that the "best" function template is more specialized than all
|
|
// of the others.
|
|
bool Ambiguous = false;
|
|
for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
|
|
FunctionTemplateDecl *Challenger
|
|
= cast<FunctionDecl>(*I)->getPrimaryTemplate();
|
|
if (I != Best &&
|
|
!declaresSameEntity(getMoreSpecializedTemplate(BestTemplate, Challenger,
|
|
Loc, TPOC_Other, 0),
|
|
BestTemplate)) {
|
|
Ambiguous = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Ambiguous) {
|
|
// We found an answer. Return it.
|
|
return Best;
|
|
}
|
|
|
|
// Diagnose the ambiguity.
|
|
if (Complain) {
|
|
Diag(Loc, AmbigDiag);
|
|
|
|
// FIXME: Can we order the candidates in some sane way?
|
|
for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
|
|
PartialDiagnostic PD = CandidateDiag;
|
|
const auto *FD = cast<FunctionDecl>(*I);
|
|
PD << FD << getTemplateArgumentBindingsText(
|
|
FD->getPrimaryTemplate()->getTemplateParameters(),
|
|
*FD->getTemplateSpecializationArgs());
|
|
if (!TargetType.isNull())
|
|
HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
|
|
Diag((*I)->getLocation(), PD);
|
|
}
|
|
}
|
|
|
|
return SpecEnd;
|
|
}
|
|
|
|
FunctionDecl *Sema::getMoreConstrainedFunction(FunctionDecl *FD1,
|
|
FunctionDecl *FD2) {
|
|
assert(!FD1->getDescribedTemplate() && !FD2->getDescribedTemplate() &&
|
|
"not for function templates");
|
|
assert(!FD1->isFunctionTemplateSpecialization() ||
|
|
isa<CXXConversionDecl>(FD1));
|
|
assert(!FD2->isFunctionTemplateSpecialization() ||
|
|
isa<CXXConversionDecl>(FD2));
|
|
|
|
FunctionDecl *F1 = FD1;
|
|
if (FunctionDecl *P = FD1->getTemplateInstantiationPattern(false))
|
|
F1 = P;
|
|
|
|
FunctionDecl *F2 = FD2;
|
|
if (FunctionDecl *P = FD2->getTemplateInstantiationPattern(false))
|
|
F2 = P;
|
|
|
|
llvm::SmallVector<AssociatedConstraint, 1> AC1, AC2;
|
|
F1->getAssociatedConstraints(AC1);
|
|
F2->getAssociatedConstraints(AC2);
|
|
bool AtLeastAsConstrained1, AtLeastAsConstrained2;
|
|
if (IsAtLeastAsConstrained(F1, AC1, F2, AC2, AtLeastAsConstrained1))
|
|
return nullptr;
|
|
if (IsAtLeastAsConstrained(F2, AC2, F1, AC1, AtLeastAsConstrained2))
|
|
return nullptr;
|
|
if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
|
|
return nullptr;
|
|
return AtLeastAsConstrained1 ? FD1 : FD2;
|
|
}
|
|
|
|
/// Determine whether one template specialization, P1, is at least as
|
|
/// specialized than another, P2.
|
|
///
|
|
/// \tparam TemplateLikeDecl The kind of P2, which must be a
|
|
/// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
|
|
/// \param T1 The injected-class-name of P1 (faked for a variable template).
|
|
/// \param T2 The injected-class-name of P2 (faked for a variable template).
|
|
/// \param Template The primary template of P2, in case it is a partial
|
|
/// specialization, the same as P2 otherwise.
|
|
template <typename TemplateLikeDecl>
|
|
static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2,
|
|
TemplateLikeDecl *P2,
|
|
TemplateDecl *Template,
|
|
TemplateDeductionInfo &Info) {
|
|
// C++ [temp.class.order]p1:
|
|
// For two class template partial specializations, the first is at least as
|
|
// specialized as the second if, given the following rewrite to two
|
|
// function templates, the first function template is at least as
|
|
// specialized as the second according to the ordering rules for function
|
|
// templates (14.6.6.2):
|
|
// - the first function template has the same template parameters as the
|
|
// first partial specialization and has a single function parameter
|
|
// whose type is a class template specialization with the template
|
|
// arguments of the first partial specialization, and
|
|
// - the second function template has the same template parameters as the
|
|
// second partial specialization and has a single function parameter
|
|
// whose type is a class template specialization with the template
|
|
// arguments of the second partial specialization.
|
|
//
|
|
// Rather than synthesize function templates, we merely perform the
|
|
// equivalent partial ordering by performing deduction directly on
|
|
// the template arguments of the class template partial
|
|
// specializations. This computation is slightly simpler than the
|
|
// general problem of function template partial ordering, because
|
|
// class template partial specializations are more constrained. We
|
|
// know that every template parameter is deducible from the class
|
|
// template partial specialization's template arguments, for
|
|
// example.
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
|
|
// Determine whether P1 is at least as specialized as P2.
|
|
Deduced.resize(P2->getTemplateParameters()->size());
|
|
if (DeduceTemplateArgumentsByTypeMatch(
|
|
S, P2->getTemplateParameters(), T2, T1, Info, Deduced, TDF_None,
|
|
PartialOrderingKind::Call, /*DeducedFromArrayBound=*/false,
|
|
/*HasDeducedAnyParam=*/nullptr) != TemplateDeductionResult::Success)
|
|
return false;
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
|
|
Deduced.end());
|
|
Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
|
|
Info);
|
|
if (Inst.isInvalid())
|
|
return false;
|
|
|
|
ArrayRef<TemplateArgument>
|
|
Ps = cast<TemplateSpecializationType>(T2)->template_arguments(),
|
|
As = cast<TemplateSpecializationType>(T1)->template_arguments();
|
|
|
|
Sema::SFINAETrap Trap(S);
|
|
|
|
TemplateDeductionResult Result;
|
|
S.runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = ::FinishTemplateArgumentDeduction(
|
|
S, P2, P2->getTemplateParameters(), Template,
|
|
/*IsPartialOrdering=*/true, Ps, As, Deduced, Info,
|
|
/*CopyDeducedArgs=*/false);
|
|
});
|
|
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return false;
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
// A dummy class to return nullptr instead of P2 when performing "more
|
|
// specialized than primary" check.
|
|
struct GetP2 {
|
|
template <typename T1, typename T2,
|
|
std::enable_if_t<std::is_same_v<T1, T2>, bool> = true>
|
|
T2 *operator()(T1 *, T2 *P2) {
|
|
return P2;
|
|
}
|
|
template <typename T1, typename T2,
|
|
std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true>
|
|
T1 *operator()(T1 *, T2 *) {
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
// The assumption is that two template argument lists have the same size.
|
|
struct TemplateArgumentListAreEqual {
|
|
ASTContext &Ctx;
|
|
TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {}
|
|
|
|
template <typename T1, typename T2,
|
|
std::enable_if_t<std::is_same_v<T1, T2>, bool> = true>
|
|
bool operator()(T1 *PS1, T2 *PS2) {
|
|
ArrayRef<TemplateArgument> Args1 = PS1->getTemplateArgs().asArray(),
|
|
Args2 = PS2->getTemplateArgs().asArray();
|
|
|
|
for (unsigned I = 0, E = Args1.size(); I < E; ++I) {
|
|
// We use profile, instead of structural comparison of the arguments,
|
|
// because canonicalization can't do the right thing for dependent
|
|
// expressions.
|
|
llvm::FoldingSetNodeID IDA, IDB;
|
|
Args1[I].Profile(IDA, Ctx);
|
|
Args2[I].Profile(IDB, Ctx);
|
|
if (IDA != IDB)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename T1, typename T2,
|
|
std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true>
|
|
bool operator()(T1 *Spec, T2 *Primary) {
|
|
ArrayRef<TemplateArgument> Args1 = Spec->getTemplateArgs().asArray(),
|
|
Args2 = Primary->getInjectedTemplateArgs(Ctx);
|
|
|
|
for (unsigned I = 0, E = Args1.size(); I < E; ++I) {
|
|
// We use profile, instead of structural comparison of the arguments,
|
|
// because canonicalization can't do the right thing for dependent
|
|
// expressions.
|
|
llvm::FoldingSetNodeID IDA, IDB;
|
|
Args1[I].Profile(IDA, Ctx);
|
|
// Unlike the specialization arguments, the injected arguments are not
|
|
// always canonical.
|
|
Ctx.getCanonicalTemplateArgument(Args2[I]).Profile(IDB, Ctx);
|
|
if (IDA != IDB)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Returns the more specialized template specialization between T1/P1 and
|
|
/// T2/P2.
|
|
/// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial
|
|
/// specialization and T2/P2 is the primary template.
|
|
/// - otherwise, both T1/P1 and T2/P2 are the partial specialization.
|
|
///
|
|
/// \param T1 the type of the first template partial specialization
|
|
///
|
|
/// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second
|
|
/// template partial specialization; otherwise, the type of the
|
|
/// primary template.
|
|
///
|
|
/// \param P1 the first template partial specialization
|
|
///
|
|
/// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template
|
|
/// partial specialization; otherwise, the primary template.
|
|
///
|
|
/// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is
|
|
/// more specialized, returns nullptr if P1 is not more specialized.
|
|
/// - otherwise, returns the more specialized template partial
|
|
/// specialization. If neither partial specialization is more
|
|
/// specialized, returns NULL.
|
|
template <typename TemplateLikeDecl, typename PrimaryDel>
|
|
static TemplateLikeDecl *
|
|
getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1,
|
|
PrimaryDel *P2, TemplateDeductionInfo &Info) {
|
|
constexpr bool IsMoreSpecialThanPrimaryCheck =
|
|
!std::is_same_v<TemplateLikeDecl, PrimaryDel>;
|
|
|
|
TemplateDecl *P2T;
|
|
if constexpr (IsMoreSpecialThanPrimaryCheck)
|
|
P2T = P2;
|
|
else
|
|
P2T = P2->getSpecializedTemplate();
|
|
|
|
bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, P2T, Info);
|
|
if (IsMoreSpecialThanPrimaryCheck && !Better1)
|
|
return nullptr;
|
|
|
|
bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1,
|
|
P1->getSpecializedTemplate(), Info);
|
|
if (IsMoreSpecialThanPrimaryCheck && !Better2)
|
|
return P1;
|
|
|
|
// C++ [temp.deduct.partial]p10:
|
|
// F is more specialized than G if F is at least as specialized as G and G
|
|
// is not at least as specialized as F.
|
|
if (Better1 != Better2) // We have a clear winner
|
|
return Better1 ? P1 : GetP2()(P1, P2);
|
|
|
|
if (!Better1 && !Better2)
|
|
return nullptr;
|
|
|
|
switch (getMoreSpecializedTrailingPackTieBreaker(
|
|
cast<TemplateSpecializationType>(T1),
|
|
cast<TemplateSpecializationType>(T2))) {
|
|
case MoreSpecializedTrailingPackTieBreakerResult::Less:
|
|
return P1;
|
|
case MoreSpecializedTrailingPackTieBreakerResult::More:
|
|
return GetP2()(P1, P2);
|
|
case MoreSpecializedTrailingPackTieBreakerResult::Equal:
|
|
break;
|
|
}
|
|
|
|
if (!S.Context.getLangOpts().CPlusPlus20)
|
|
return nullptr;
|
|
|
|
// Match GCC on not implementing [temp.func.order]p6.2.1.
|
|
|
|
// C++20 [temp.func.order]p6:
|
|
// If deduction against the other template succeeds for both transformed
|
|
// templates, constraints can be considered as follows:
|
|
|
|
TemplateParameterList *TPL1 = P1->getTemplateParameters();
|
|
TemplateParameterList *TPL2 = P2->getTemplateParameters();
|
|
if (TPL1->size() != TPL2->size())
|
|
return nullptr;
|
|
|
|
// C++20 [temp.func.order]p6.2.2:
|
|
// Otherwise, if the corresponding template-parameters of the
|
|
// template-parameter-lists are not equivalent ([temp.over.link]) or if the
|
|
// function parameters that positionally correspond between the two
|
|
// templates are not of the same type, neither template is more specialized
|
|
// than the other.
|
|
if (!S.TemplateParameterListsAreEqual(TPL1, TPL2, false,
|
|
Sema::TPL_TemplateParamsEquivalent))
|
|
return nullptr;
|
|
|
|
if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2))
|
|
return nullptr;
|
|
|
|
llvm::SmallVector<AssociatedConstraint, 3> AC1, AC2;
|
|
P1->getAssociatedConstraints(AC1);
|
|
P2->getAssociatedConstraints(AC2);
|
|
bool AtLeastAsConstrained1, AtLeastAsConstrained2;
|
|
if (S.IsAtLeastAsConstrained(P1, AC1, P2, AC2, AtLeastAsConstrained1) ||
|
|
(IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1))
|
|
return nullptr;
|
|
if (S.IsAtLeastAsConstrained(P2, AC2, P1, AC1, AtLeastAsConstrained2))
|
|
return nullptr;
|
|
if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
|
|
return nullptr;
|
|
return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2);
|
|
}
|
|
|
|
ClassTemplatePartialSpecializationDecl *
|
|
Sema::getMoreSpecializedPartialSpecialization(
|
|
ClassTemplatePartialSpecializationDecl *PS1,
|
|
ClassTemplatePartialSpecializationDecl *PS2,
|
|
SourceLocation Loc) {
|
|
QualType PT1 = PS1->getInjectedSpecializationType().getCanonicalType();
|
|
QualType PT2 = PS2->getInjectedSpecializationType().getCanonicalType();
|
|
|
|
TemplateDeductionInfo Info(Loc);
|
|
return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info);
|
|
}
|
|
|
|
bool Sema::isMoreSpecializedThanPrimary(
|
|
ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
|
|
ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
|
|
QualType PrimaryT =
|
|
Primary->getInjectedClassNameSpecialization().getCanonicalType();
|
|
QualType PartialT = Spec->getInjectedSpecializationType().getCanonicalType();
|
|
|
|
ClassTemplatePartialSpecializationDecl *MaybeSpec =
|
|
getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info);
|
|
if (MaybeSpec)
|
|
Info.clearSFINAEDiagnostic();
|
|
return MaybeSpec;
|
|
}
|
|
|
|
VarTemplatePartialSpecializationDecl *
|
|
Sema::getMoreSpecializedPartialSpecialization(
|
|
VarTemplatePartialSpecializationDecl *PS1,
|
|
VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
|
|
// Pretend the variable template specializations are class template
|
|
// specializations and form a fake injected class name type for comparison.
|
|
assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
|
|
"the partial specializations being compared should specialize"
|
|
" the same template.");
|
|
TemplateName Name(PS1->getSpecializedTemplate()->getCanonicalDecl());
|
|
QualType PT1 = Context.getCanonicalTemplateSpecializationType(
|
|
Name, PS1->getTemplateArgs().asArray());
|
|
QualType PT2 = Context.getCanonicalTemplateSpecializationType(
|
|
Name, PS2->getTemplateArgs().asArray());
|
|
|
|
TemplateDeductionInfo Info(Loc);
|
|
return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info);
|
|
}
|
|
|
|
bool Sema::isMoreSpecializedThanPrimary(
|
|
VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
|
|
VarTemplateDecl *Primary = Spec->getSpecializedTemplate();
|
|
TemplateName Name(Primary->getCanonicalDecl());
|
|
|
|
SmallVector<TemplateArgument, 8> PrimaryCanonArgs(
|
|
Primary->getInjectedTemplateArgs(Context));
|
|
Context.canonicalizeTemplateArguments(PrimaryCanonArgs);
|
|
|
|
QualType PrimaryT =
|
|
Context.getCanonicalTemplateSpecializationType(Name, PrimaryCanonArgs);
|
|
QualType PartialT = Context.getCanonicalTemplateSpecializationType(
|
|
Name, Spec->getTemplateArgs().asArray());
|
|
|
|
VarTemplatePartialSpecializationDecl *MaybeSpec =
|
|
getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info);
|
|
if (MaybeSpec)
|
|
Info.clearSFINAEDiagnostic();
|
|
return MaybeSpec;
|
|
}
|
|
|
|
bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs(
|
|
TemplateParameterList *P, TemplateDecl *PArg, TemplateDecl *AArg,
|
|
const DefaultArguments &DefaultArgs, SourceLocation ArgLoc,
|
|
bool PartialOrdering, bool *StrictPackMatch) {
|
|
// C++1z [temp.arg.template]p4: (DR 150)
|
|
// A template template-parameter P is at least as specialized as a
|
|
// template template-argument A if, given the following rewrite to two
|
|
// function templates...
|
|
|
|
// Rather than synthesize function templates, we merely perform the
|
|
// equivalent partial ordering by performing deduction directly on
|
|
// the template parameter lists of the template template parameters.
|
|
//
|
|
TemplateParameterList *A = AArg->getTemplateParameters();
|
|
|
|
Sema::InstantiatingTemplate Inst(
|
|
*this, ArgLoc, Sema::InstantiatingTemplate::PartialOrderingTTP(), PArg,
|
|
SourceRange(P->getTemplateLoc(), P->getRAngleLoc()));
|
|
if (Inst.isInvalid())
|
|
return false;
|
|
|
|
// Given an invented class template X with the template parameter list of
|
|
// A (including default arguments):
|
|
// - Each function template has a single function parameter whose type is
|
|
// a specialization of X with template arguments corresponding to the
|
|
// template parameters from the respective function template
|
|
SmallVector<TemplateArgument, 8> AArgs(A->getInjectedTemplateArgs(Context));
|
|
|
|
// Check P's arguments against A's parameter list. This will fill in default
|
|
// template arguments as needed. AArgs are already correct by construction.
|
|
// We can't just use CheckTemplateIdType because that will expand alias
|
|
// templates.
|
|
SmallVector<TemplateArgument, 4> PArgs(P->getInjectedTemplateArgs(Context));
|
|
{
|
|
TemplateArgumentListInfo PArgList(P->getLAngleLoc(),
|
|
P->getRAngleLoc());
|
|
for (unsigned I = 0, N = P->size(); I != N; ++I) {
|
|
// Unwrap packs that getInjectedTemplateArgs wrapped around pack
|
|
// expansions, to form an "as written" argument list.
|
|
TemplateArgument Arg = PArgs[I];
|
|
if (Arg.getKind() == TemplateArgument::Pack) {
|
|
assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
|
|
Arg = *Arg.pack_begin();
|
|
}
|
|
PArgList.addArgument(getTrivialTemplateArgumentLoc(
|
|
Arg, QualType(), P->getParam(I)->getLocation()));
|
|
}
|
|
PArgs.clear();
|
|
|
|
// C++1z [temp.arg.template]p3:
|
|
// If the rewrite produces an invalid type, then P is not at least as
|
|
// specialized as A.
|
|
CheckTemplateArgumentInfo CTAI(
|
|
/*PartialOrdering=*/false, /*MatchingTTP=*/true);
|
|
CTAI.SugaredConverted = std::move(PArgs);
|
|
if (CheckTemplateArgumentList(AArg, ArgLoc, PArgList, DefaultArgs,
|
|
/*PartialTemplateArgs=*/false, CTAI,
|
|
/*UpdateArgsWithConversions=*/true,
|
|
/*ConstraintsNotSatisfied=*/nullptr))
|
|
return false;
|
|
PArgs = std::move(CTAI.SugaredConverted);
|
|
if (StrictPackMatch)
|
|
*StrictPackMatch |= CTAI.StrictPackMatch;
|
|
}
|
|
|
|
// Determine whether P1 is at least as specialized as P2.
|
|
TemplateDeductionInfo Info(ArgLoc, A->getDepth());
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
Deduced.resize(A->size());
|
|
|
|
// ... the function template corresponding to P is at least as specialized
|
|
// as the function template corresponding to A according to the partial
|
|
// ordering rules for function templates.
|
|
|
|
// Provisional resolution for CWG2398: Regarding temp.arg.template]p4, when
|
|
// applying the partial ordering rules for function templates on
|
|
// the rewritten template template parameters:
|
|
// - In a deduced context, the matching of packs versus fixed-size needs to
|
|
// be inverted between Ps and As. On non-deduced context, matching needs to
|
|
// happen both ways, according to [temp.arg.template]p3, but this is
|
|
// currently implemented as a special case elsewhere.
|
|
switch (::DeduceTemplateArguments(
|
|
*this, A, AArgs, PArgs, Info, Deduced,
|
|
/*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/true,
|
|
PartialOrdering ? PackFold::ArgumentToParameter : PackFold::Both,
|
|
/*HasDeducedAnyParam=*/nullptr)) {
|
|
case clang::TemplateDeductionResult::Success:
|
|
if (StrictPackMatch && Info.hasStrictPackMatch())
|
|
*StrictPackMatch = true;
|
|
break;
|
|
|
|
case TemplateDeductionResult::MiscellaneousDeductionFailure:
|
|
Diag(AArg->getLocation(), diag::err_template_param_list_different_arity)
|
|
<< (A->size() > P->size()) << /*isTemplateTemplateParameter=*/true
|
|
<< SourceRange(A->getTemplateLoc(), P->getRAngleLoc());
|
|
return false;
|
|
case TemplateDeductionResult::NonDeducedMismatch:
|
|
Diag(AArg->getLocation(), diag::err_non_deduced_mismatch)
|
|
<< Info.FirstArg << Info.SecondArg;
|
|
return false;
|
|
case TemplateDeductionResult::Inconsistent:
|
|
Diag(getAsNamedDecl(Info.Param)->getLocation(),
|
|
diag::err_inconsistent_deduction)
|
|
<< Info.FirstArg << Info.SecondArg;
|
|
return false;
|
|
case TemplateDeductionResult::AlreadyDiagnosed:
|
|
return false;
|
|
|
|
// None of these should happen for a plain deduction.
|
|
case TemplateDeductionResult::Invalid:
|
|
case TemplateDeductionResult::InstantiationDepth:
|
|
case TemplateDeductionResult::Incomplete:
|
|
case TemplateDeductionResult::IncompletePack:
|
|
case TemplateDeductionResult::Underqualified:
|
|
case TemplateDeductionResult::SubstitutionFailure:
|
|
case TemplateDeductionResult::DeducedMismatch:
|
|
case TemplateDeductionResult::DeducedMismatchNested:
|
|
case TemplateDeductionResult::TooManyArguments:
|
|
case TemplateDeductionResult::TooFewArguments:
|
|
case TemplateDeductionResult::InvalidExplicitArguments:
|
|
case TemplateDeductionResult::NonDependentConversionFailure:
|
|
case TemplateDeductionResult::ConstraintsNotSatisfied:
|
|
case TemplateDeductionResult::CUDATargetMismatch:
|
|
llvm_unreachable("Unexpected Result");
|
|
}
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
|
|
TemplateDeductionResult TDK;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
TDK = ::FinishTemplateArgumentDeduction(
|
|
*this, AArg, AArg->getTemplateParameters(), AArg, PartialOrdering,
|
|
AArgs, PArgs, Deduced, Info, /*CopyDeducedArgs=*/false);
|
|
});
|
|
switch (TDK) {
|
|
case TemplateDeductionResult::Success:
|
|
return true;
|
|
|
|
// It doesn't seem possible to get a non-deduced mismatch when partial
|
|
// ordering TTPs, except with an invalid template parameter list which has
|
|
// a parameter after a pack.
|
|
case TemplateDeductionResult::NonDeducedMismatch:
|
|
assert(PArg->isInvalidDecl() && "Unexpected NonDeducedMismatch");
|
|
return false;
|
|
|
|
// Substitution failures should have already been diagnosed.
|
|
case TemplateDeductionResult::AlreadyDiagnosed:
|
|
case TemplateDeductionResult::SubstitutionFailure:
|
|
case TemplateDeductionResult::InstantiationDepth:
|
|
return false;
|
|
|
|
// None of these should happen when just converting deduced arguments.
|
|
case TemplateDeductionResult::Invalid:
|
|
case TemplateDeductionResult::Incomplete:
|
|
case TemplateDeductionResult::IncompletePack:
|
|
case TemplateDeductionResult::Inconsistent:
|
|
case TemplateDeductionResult::Underqualified:
|
|
case TemplateDeductionResult::DeducedMismatch:
|
|
case TemplateDeductionResult::DeducedMismatchNested:
|
|
case TemplateDeductionResult::TooManyArguments:
|
|
case TemplateDeductionResult::TooFewArguments:
|
|
case TemplateDeductionResult::InvalidExplicitArguments:
|
|
case TemplateDeductionResult::NonDependentConversionFailure:
|
|
case TemplateDeductionResult::ConstraintsNotSatisfied:
|
|
case TemplateDeductionResult::MiscellaneousDeductionFailure:
|
|
case TemplateDeductionResult::CUDATargetMismatch:
|
|
llvm_unreachable("Unexpected Result");
|
|
}
|
|
llvm_unreachable("Unexpected TDK");
|
|
}
|
|
|
|
namespace {
|
|
struct MarkUsedTemplateParameterVisitor : DynamicRecursiveASTVisitor {
|
|
llvm::SmallBitVector &Used;
|
|
unsigned Depth;
|
|
|
|
MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used,
|
|
unsigned Depth)
|
|
: Used(Used), Depth(Depth) { }
|
|
|
|
bool VisitTemplateTypeParmType(TemplateTypeParmType *T) override {
|
|
if (T->getDepth() == Depth)
|
|
Used[T->getIndex()] = true;
|
|
return true;
|
|
}
|
|
|
|
bool TraverseTemplateName(TemplateName Template) override {
|
|
if (auto *TTP = llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
|
|
Template.getAsTemplateDecl()))
|
|
if (TTP->getDepth() == Depth)
|
|
Used[TTP->getIndex()] = true;
|
|
DynamicRecursiveASTVisitor::TraverseTemplateName(Template);
|
|
return true;
|
|
}
|
|
|
|
bool VisitDeclRefExpr(DeclRefExpr *E) override {
|
|
if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
|
|
if (NTTP->getDepth() == Depth)
|
|
Used[NTTP->getIndex()] = true;
|
|
return true;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Mark the template parameters that are used by the given
|
|
/// expression.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
const Expr *E,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (!OnlyDeduced) {
|
|
MarkUsedTemplateParameterVisitor(Used, Depth)
|
|
.TraverseStmt(const_cast<Expr *>(E));
|
|
return;
|
|
}
|
|
|
|
// We can deduce from a pack expansion.
|
|
if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
|
|
E = Expansion->getPattern();
|
|
|
|
const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(E, Depth);
|
|
if (!NTTP)
|
|
return;
|
|
|
|
if (NTTP->getDepth() == Depth)
|
|
Used[NTTP->getIndex()] = true;
|
|
|
|
// In C++17 mode, additional arguments may be deduced from the type of a
|
|
// non-type argument.
|
|
if (Ctx.getLangOpts().CPlusPlus17)
|
|
MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used);
|
|
}
|
|
|
|
/// Mark the template parameters that are used by the given
|
|
/// nested name specifier.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
NestedNameSpecifier *NNS,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (!NNS)
|
|
return;
|
|
|
|
MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
|
|
Used);
|
|
MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
|
|
OnlyDeduced, Depth, Used);
|
|
}
|
|
|
|
/// Mark the template parameters that are used by the given
|
|
/// template name.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
TemplateName Name,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
|
|
if (TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(Template)) {
|
|
if (TTP->getDepth() == Depth)
|
|
Used[TTP->getIndex()] = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
|
|
MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
|
|
Depth, Used);
|
|
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
|
|
MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
|
|
Depth, Used);
|
|
}
|
|
|
|
/// Mark the template parameters that are used by the given
|
|
/// type.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (T.isNull())
|
|
return;
|
|
|
|
// Non-dependent types have nothing deducible
|
|
if (!T->isDependentType())
|
|
return;
|
|
|
|
T = Ctx.getCanonicalType(T);
|
|
switch (T->getTypeClass()) {
|
|
case Type::Pointer:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<PointerType>(T)->getPointeeType(),
|
|
OnlyDeduced,
|
|
Depth,
|
|
Used);
|
|
break;
|
|
|
|
case Type::BlockPointer:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<BlockPointerType>(T)->getPointeeType(),
|
|
OnlyDeduced,
|
|
Depth,
|
|
Used);
|
|
break;
|
|
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<ReferenceType>(T)->getPointeeType(),
|
|
OnlyDeduced,
|
|
Depth,
|
|
Used);
|
|
break;
|
|
|
|
case Type::MemberPointer: {
|
|
const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
|
|
MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
|
|
Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx,
|
|
QualType(MemPtr->getQualifier()->getAsType(), 0),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::DependentSizedArray:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DependentSizedArrayType>(T)->getSizeExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
// Fall through to check the element type
|
|
[[fallthrough]];
|
|
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
case Type::ArrayParameter:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<ArrayType>(T)->getElementType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
case Type::Vector:
|
|
case Type::ExtVector:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<VectorType>(T)->getElementType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::DependentVector: {
|
|
const auto *VecType = cast<DependentVectorType>(T);
|
|
MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
|
|
Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
|
|
Used);
|
|
break;
|
|
}
|
|
case Type::DependentSizedExtVector: {
|
|
const DependentSizedExtVectorType *VecType
|
|
= cast<DependentSizedExtVectorType>(T);
|
|
MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
|
|
Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::DependentAddressSpace: {
|
|
const DependentAddressSpaceType *DependentASType =
|
|
cast<DependentAddressSpaceType>(T);
|
|
MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
|
|
OnlyDeduced, Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx,
|
|
DependentASType->getAddrSpaceExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::ConstantMatrix: {
|
|
const ConstantMatrixType *MatType = cast<ConstantMatrixType>(T);
|
|
MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::DependentSizedMatrix: {
|
|
const DependentSizedMatrixType *MatType = cast<DependentSizedMatrixType>(T);
|
|
MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
|
|
Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth,
|
|
Used);
|
|
MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::FunctionProto: {
|
|
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
|
|
MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
|
|
Used);
|
|
for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
|
|
// C++17 [temp.deduct.type]p5:
|
|
// The non-deduced contexts are: [...]
|
|
// -- A function parameter pack that does not occur at the end of the
|
|
// parameter-declaration-list.
|
|
if (!OnlyDeduced || I + 1 == N ||
|
|
!Proto->getParamType(I)->getAs<PackExpansionType>()) {
|
|
MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
|
|
Depth, Used);
|
|
} else {
|
|
// FIXME: C++17 [temp.deduct.call]p1:
|
|
// When a function parameter pack appears in a non-deduced context,
|
|
// the type of that pack is never deduced.
|
|
//
|
|
// We should also track a set of "never deduced" parameters, and
|
|
// subtract that from the list of deduced parameters after marking.
|
|
}
|
|
}
|
|
if (auto *E = Proto->getNoexceptExpr())
|
|
MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::TemplateTypeParm: {
|
|
const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
|
|
if (TTP->getDepth() == Depth)
|
|
Used[TTP->getIndex()] = true;
|
|
break;
|
|
}
|
|
|
|
case Type::SubstTemplateTypeParmPack: {
|
|
const SubstTemplateTypeParmPackType *Subst
|
|
= cast<SubstTemplateTypeParmPackType>(T);
|
|
if (Subst->getReplacedParameter()->getDepth() == Depth)
|
|
Used[Subst->getIndex()] = true;
|
|
MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::InjectedClassName:
|
|
T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
|
|
[[fallthrough]];
|
|
|
|
case Type::TemplateSpecialization: {
|
|
const TemplateSpecializationType *Spec
|
|
= cast<TemplateSpecializationType>(T);
|
|
MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
|
|
Depth, Used);
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If the template argument list of P contains a pack expansion that is
|
|
// not the last template argument, the entire template argument list is a
|
|
// non-deduced context.
|
|
if (OnlyDeduced &&
|
|
hasPackExpansionBeforeEnd(Spec->template_arguments()))
|
|
break;
|
|
|
|
for (const auto &Arg : Spec->template_arguments())
|
|
MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::Complex:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<ComplexType>(T)->getElementType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::Atomic:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<AtomicType>(T)->getValueType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::DependentName:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DependentNameType>(T)->getQualifier(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::DependentTemplateSpecialization: {
|
|
// C++14 [temp.deduct.type]p5:
|
|
// The non-deduced contexts are:
|
|
// -- The nested-name-specifier of a type that was specified using a
|
|
// qualified-id
|
|
//
|
|
// C++14 [temp.deduct.type]p6:
|
|
// When a type name is specified in a way that includes a non-deduced
|
|
// context, all of the types that comprise that type name are also
|
|
// non-deduced.
|
|
if (OnlyDeduced)
|
|
break;
|
|
|
|
const DependentTemplateSpecializationType *Spec
|
|
= cast<DependentTemplateSpecializationType>(T);
|
|
|
|
MarkUsedTemplateParameters(Ctx,
|
|
Spec->getDependentTemplateName().getQualifier(),
|
|
OnlyDeduced, Depth, Used);
|
|
|
|
for (const auto &Arg : Spec->template_arguments())
|
|
MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::TypeOf:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx, cast<TypeOfType>(T)->getUnmodifiedType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::TypeOfExpr:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<TypeOfExprType>(T)->getUnderlyingExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::Decltype:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DecltypeType>(T)->getUnderlyingExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::PackIndexing:
|
|
if (!OnlyDeduced) {
|
|
MarkUsedTemplateParameters(Ctx, cast<PackIndexingType>(T)->getPattern(),
|
|
OnlyDeduced, Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, cast<PackIndexingType>(T)->getIndexExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
}
|
|
break;
|
|
|
|
case Type::UnaryTransform:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<UnaryTransformType>(T)->getUnderlyingType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::PackExpansion:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<PackExpansionType>(T)->getPattern(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::Auto:
|
|
case Type::DeducedTemplateSpecialization:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DeducedType>(T)->getDeducedType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
case Type::DependentBitInt:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DependentBitIntType>(T)->getNumBitsExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::HLSLAttributedResource:
|
|
MarkUsedTemplateParameters(
|
|
Ctx, cast<HLSLAttributedResourceType>(T)->getWrappedType(), OnlyDeduced,
|
|
Depth, Used);
|
|
if (cast<HLSLAttributedResourceType>(T)->hasContainedType())
|
|
MarkUsedTemplateParameters(
|
|
Ctx, cast<HLSLAttributedResourceType>(T)->getContainedType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
// None of these types have any template parameters in them.
|
|
case Type::Builtin:
|
|
case Type::VariableArray:
|
|
case Type::FunctionNoProto:
|
|
case Type::Record:
|
|
case Type::Enum:
|
|
case Type::ObjCInterface:
|
|
case Type::ObjCObject:
|
|
case Type::ObjCObjectPointer:
|
|
case Type::UnresolvedUsing:
|
|
case Type::Pipe:
|
|
case Type::BitInt:
|
|
#define TYPE(Class, Base)
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define DEPENDENT_TYPE(Class, Base)
|
|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
|
#include "clang/AST/TypeNodes.inc"
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Mark the template parameters that are used by this
|
|
/// template argument.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
const TemplateArgument &TemplateArg,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
switch (TemplateArg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::NullPtr:
|
|
case TemplateArgument::StructuralValue:
|
|
break;
|
|
|
|
case TemplateArgument::Type:
|
|
MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
TemplateArg.getAsTemplateOrTemplatePattern(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case TemplateArgument::Expression:
|
|
MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
|
|
case TemplateArgument::Pack:
|
|
for (const auto &P : TemplateArg.pack_elements())
|
|
MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used);
|
|
}
|
|
|
|
void
|
|
Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
|
|
bool OnlyDeduced, unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If the template argument list of P contains a pack expansion that is not
|
|
// the last template argument, the entire template argument list is a
|
|
// non-deduced context.
|
|
if (OnlyDeduced &&
|
|
hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
|
|
return;
|
|
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
|
|
Depth, Used);
|
|
}
|
|
|
|
void Sema::MarkUsedTemplateParameters(ArrayRef<TemplateArgument> TemplateArgs,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(Context, TemplateArgs[I],
|
|
/*OnlyDeduced=*/false, Depth, Used);
|
|
}
|
|
|
|
void Sema::MarkDeducedTemplateParameters(
|
|
ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
|
|
llvm::SmallBitVector &Deduced) {
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
Deduced.clear();
|
|
Deduced.resize(TemplateParams->size());
|
|
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
|
|
true, TemplateParams->getDepth(), Deduced);
|
|
}
|
|
|
|
bool hasDeducibleTemplateParameters(Sema &S,
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
QualType T) {
|
|
if (!T->isDependentType())
|
|
return false;
|
|
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
llvm::SmallBitVector Deduced(TemplateParams->size());
|
|
::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
|
|
Deduced);
|
|
|
|
return Deduced.any();
|
|
}
|