llvm-project/clang/lib/Sema/TreeTransform.h
Matheus Izvekov 761787d425
Reland: [clang] Improved canonicalization for template specialization types (#135414)
This relands https://github.com/llvm/llvm-project/pull/135119, after
fixing crashes seen in LLDB CI reported here:
https://github.com/llvm/llvm-project/pull/135119#issuecomment-2794910840

Fixes https://github.com/llvm/llvm-project/pull/135119

This changes the TemplateArgument representation to hold a flag
indicating whether a tempalte argument of expression type is supposed to
be canonical or not.

This gets one step closer to solving
https://github.com/llvm/llvm-project/issues/92292

This still doesn't try to unique as-written TSTs. While this would
increase the amount of memory savings and make code dealing with the AST
more well-behaved, profiling template argument lists is still too
expensive for this to be worthwhile, at least for now.

This also fixes the context creation of TSTs, so that they don't in some
cases get incorrectly flagged as sugar over their own canonical form.
This is captured in the test expectation change of some AST dumps.

This fixes some places which were unnecessarily canonicalizing these
TSTs.
2025-04-12 14:26:30 -03:00

17616 lines
680 KiB
C++

//===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//===----------------------------------------------------------------------===//
//
// This file implements a semantic tree transformation that takes a given
// AST and rebuilds it, possibly transforming some nodes in the process.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
#define LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
#include "CoroutineStmtBuilder.h"
#include "TypeLocBuilder.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtOpenACC.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/StmtSYCL.h"
#include "clang/Basic/DiagnosticParse.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Sema/Designator.h"
#include "clang/Sema/EnterExpressionEvaluationContext.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/SemaObjC.h"
#include "clang/Sema/SemaOpenACC.h"
#include "clang/Sema/SemaOpenMP.h"
#include "clang/Sema/SemaPseudoObject.h"
#include "clang/Sema/SemaSYCL.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <optional>
using namespace llvm::omp;
namespace clang {
using namespace sema;
/// A semantic tree transformation that allows one to transform one
/// abstract syntax tree into another.
///
/// A new tree transformation is defined by creating a new subclass \c X of
/// \c TreeTransform<X> and then overriding certain operations to provide
/// behavior specific to that transformation. For example, template
/// instantiation is implemented as a tree transformation where the
/// transformation of TemplateTypeParmType nodes involves substituting the
/// template arguments for their corresponding template parameters; a similar
/// transformation is performed for non-type template parameters and
/// template template parameters.
///
/// This tree-transformation template uses static polymorphism to allow
/// subclasses to customize any of its operations. Thus, a subclass can
/// override any of the transformation or rebuild operators by providing an
/// operation with the same signature as the default implementation. The
/// overriding function should not be virtual.
///
/// Semantic tree transformations are split into two stages, either of which
/// can be replaced by a subclass. The "transform" step transforms an AST node
/// or the parts of an AST node using the various transformation functions,
/// then passes the pieces on to the "rebuild" step, which constructs a new AST
/// node of the appropriate kind from the pieces. The default transformation
/// routines recursively transform the operands to composite AST nodes (e.g.,
/// the pointee type of a PointerType node) and, if any of those operand nodes
/// were changed by the transformation, invokes the rebuild operation to create
/// a new AST node.
///
/// Subclasses can customize the transformation at various levels. The
/// most coarse-grained transformations involve replacing TransformType(),
/// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
/// TransformTemplateName(), or TransformTemplateArgument() with entirely
/// new implementations.
///
/// For more fine-grained transformations, subclasses can replace any of the
/// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
/// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
/// replacing TransformTemplateTypeParmType() allows template instantiation
/// to substitute template arguments for their corresponding template
/// parameters. Additionally, subclasses can override the \c RebuildXXX
/// functions to control how AST nodes are rebuilt when their operands change.
/// By default, \c TreeTransform will invoke semantic analysis to rebuild
/// AST nodes. However, certain other tree transformations (e.g, cloning) may
/// be able to use more efficient rebuild steps.
///
/// There are a handful of other functions that can be overridden, allowing one
/// to avoid traversing nodes that don't need any transformation
/// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
/// operands have not changed (\c AlwaysRebuild()), and customize the
/// default locations and entity names used for type-checking
/// (\c getBaseLocation(), \c getBaseEntity()).
template<typename Derived>
class TreeTransform {
/// Private RAII object that helps us forget and then re-remember
/// the template argument corresponding to a partially-substituted parameter
/// pack.
class ForgetPartiallySubstitutedPackRAII {
Derived &Self;
TemplateArgument Old;
// Set the pack expansion index to -1 to avoid pack substitution and
// indicate that parameter packs should be instantiated as themselves.
Sema::ArgPackSubstIndexRAII ResetPackSubstIndex;
public:
ForgetPartiallySubstitutedPackRAII(Derived &Self)
: Self(Self), ResetPackSubstIndex(Self.getSema(), std::nullopt) {
Old = Self.ForgetPartiallySubstitutedPack();
}
~ForgetPartiallySubstitutedPackRAII() {
Self.RememberPartiallySubstitutedPack(Old);
}
};
protected:
Sema &SemaRef;
/// The set of local declarations that have been transformed, for
/// cases where we are forced to build new declarations within the transformer
/// rather than in the subclass (e.g., lambda closure types).
llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls;
public:
/// Initializes a new tree transformer.
TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
/// Retrieves a reference to the derived class.
Derived &getDerived() { return static_cast<Derived&>(*this); }
/// Retrieves a reference to the derived class.
const Derived &getDerived() const {
return static_cast<const Derived&>(*this);
}
static inline ExprResult Owned(Expr *E) { return E; }
static inline StmtResult Owned(Stmt *S) { return S; }
/// Retrieves a reference to the semantic analysis object used for
/// this tree transform.
Sema &getSema() const { return SemaRef; }
/// Whether the transformation should always rebuild AST nodes, even
/// if none of the children have changed.
///
/// Subclasses may override this function to specify when the transformation
/// should rebuild all AST nodes.
///
/// We must always rebuild all AST nodes when performing variadic template
/// pack expansion, in order to avoid violating the AST invariant that each
/// statement node appears at most once in its containing declaration.
bool AlwaysRebuild() { return static_cast<bool>(SemaRef.ArgPackSubstIndex); }
/// Whether the transformation is forming an expression or statement that
/// replaces the original. In this case, we'll reuse mangling numbers from
/// existing lambdas.
bool ReplacingOriginal() { return false; }
/// Wether CXXConstructExpr can be skipped when they are implicit.
/// They will be reconstructed when used if needed.
/// This is useful when the user that cause rebuilding of the
/// CXXConstructExpr is outside of the expression at which the TreeTransform
/// started.
bool AllowSkippingCXXConstructExpr() { return true; }
/// Returns the location of the entity being transformed, if that
/// information was not available elsewhere in the AST.
///
/// By default, returns no source-location information. Subclasses can
/// provide an alternative implementation that provides better location
/// information.
SourceLocation getBaseLocation() { return SourceLocation(); }
/// Returns the name of the entity being transformed, if that
/// information was not available elsewhere in the AST.
///
/// By default, returns an empty name. Subclasses can provide an alternative
/// implementation with a more precise name.
DeclarationName getBaseEntity() { return DeclarationName(); }
/// Sets the "base" location and entity when that
/// information is known based on another transformation.
///
/// By default, the source location and entity are ignored. Subclasses can
/// override this function to provide a customized implementation.
void setBase(SourceLocation Loc, DeclarationName Entity) { }
/// RAII object that temporarily sets the base location and entity
/// used for reporting diagnostics in types.
class TemporaryBase {
TreeTransform &Self;
SourceLocation OldLocation;
DeclarationName OldEntity;
public:
TemporaryBase(TreeTransform &Self, SourceLocation Location,
DeclarationName Entity) : Self(Self) {
OldLocation = Self.getDerived().getBaseLocation();
OldEntity = Self.getDerived().getBaseEntity();
if (Location.isValid())
Self.getDerived().setBase(Location, Entity);
}
~TemporaryBase() {
Self.getDerived().setBase(OldLocation, OldEntity);
}
};
/// Determine whether the given type \p T has already been
/// transformed.
///
/// Subclasses can provide an alternative implementation of this routine
/// to short-circuit evaluation when it is known that a given type will
/// not change. For example, template instantiation need not traverse
/// non-dependent types.
bool AlreadyTransformed(QualType T) {
return T.isNull();
}
/// Transform a template parameter depth level.
///
/// During a transformation that transforms template parameters, this maps
/// an old template parameter depth to a new depth.
unsigned TransformTemplateDepth(unsigned Depth) {
return Depth;
}
/// Determine whether the given call argument should be dropped, e.g.,
/// because it is a default argument.
///
/// Subclasses can provide an alternative implementation of this routine to
/// determine which kinds of call arguments get dropped. By default,
/// CXXDefaultArgument nodes are dropped (prior to transformation).
bool DropCallArgument(Expr *E) {
return E->isDefaultArgument();
}
/// Determine whether we should expand a pack expansion with the
/// given set of parameter packs into separate arguments by repeatedly
/// transforming the pattern.
///
/// By default, the transformer never tries to expand pack expansions.
/// Subclasses can override this routine to provide different behavior.
///
/// \param EllipsisLoc The location of the ellipsis that identifies the
/// pack expansion.
///
/// \param PatternRange The source range that covers the entire pattern of
/// the pack expansion.
///
/// \param Unexpanded The set of unexpanded parameter packs within the
/// pattern.
///
/// \param ShouldExpand Will be set to \c true if the transformer should
/// expand the corresponding pack expansions into separate arguments. When
/// set, \c NumExpansions must also be set.
///
/// \param RetainExpansion Whether the caller should add an unexpanded
/// pack expansion after all of the expanded arguments. This is used
/// when extending explicitly-specified template argument packs per
/// C++0x [temp.arg.explicit]p9.
///
/// \param NumExpansions The number of separate arguments that will be in
/// the expanded form of the corresponding pack expansion. This is both an
/// input and an output parameter, which can be set by the caller if the
/// number of expansions is known a priori (e.g., due to a prior substitution)
/// and will be set by the callee when the number of expansions is known.
/// The callee must set this value when \c ShouldExpand is \c true; it may
/// set this value in other cases.
///
/// \returns true if an error occurred (e.g., because the parameter packs
/// are to be instantiated with arguments of different lengths), false
/// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
/// must be set.
bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
SourceRange PatternRange,
ArrayRef<UnexpandedParameterPack> Unexpanded,
bool &ShouldExpand, bool &RetainExpansion,
UnsignedOrNone &NumExpansions) {
ShouldExpand = false;
return false;
}
/// "Forget" about the partially-substituted pack template argument,
/// when performing an instantiation that must preserve the parameter pack
/// use.
///
/// This routine is meant to be overridden by the template instantiator.
TemplateArgument ForgetPartiallySubstitutedPack() {
return TemplateArgument();
}
/// "Remember" the partially-substituted pack template argument
/// after performing an instantiation that must preserve the parameter pack
/// use.
///
/// This routine is meant to be overridden by the template instantiator.
void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
/// Note to the derived class when a function parameter pack is
/// being expanded.
void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
/// Transforms the given type into another type.
///
/// By default, this routine transforms a type by creating a
/// TypeSourceInfo for it and delegating to the appropriate
/// function. This is expensive, but we don't mind, because
/// this method is deprecated anyway; all users should be
/// switched to storing TypeSourceInfos.
///
/// \returns the transformed type.
QualType TransformType(QualType T);
/// Transforms the given type-with-location into a new
/// type-with-location.
///
/// By default, this routine transforms a type by delegating to the
/// appropriate TransformXXXType to build a new type. Subclasses
/// may override this function (to take over all type
/// transformations) or some set of the TransformXXXType functions
/// to alter the transformation.
TypeSourceInfo *TransformType(TypeSourceInfo *DI);
/// Transform the given type-with-location into a new
/// type, collecting location information in the given builder
/// as necessary.
///
QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
/// Transform a type that is permitted to produce a
/// DeducedTemplateSpecializationType.
///
/// This is used in the (relatively rare) contexts where it is acceptable
/// for transformation to produce a class template type with deduced
/// template arguments.
/// @{
QualType TransformTypeWithDeducedTST(QualType T);
TypeSourceInfo *TransformTypeWithDeducedTST(TypeSourceInfo *DI);
/// @}
/// The reason why the value of a statement is not discarded, if any.
enum StmtDiscardKind {
SDK_Discarded,
SDK_NotDiscarded,
SDK_StmtExprResult,
};
/// Transform the given statement.
///
/// By default, this routine transforms a statement by delegating to the
/// appropriate TransformXXXStmt function to transform a specific kind of
/// statement or the TransformExpr() function to transform an expression.
/// Subclasses may override this function to transform statements using some
/// other mechanism.
///
/// \returns the transformed statement.
StmtResult TransformStmt(Stmt *S, StmtDiscardKind SDK = SDK_Discarded);
/// Transform the given statement.
///
/// By default, this routine transforms a statement by delegating to the
/// appropriate TransformOMPXXXClause function to transform a specific kind
/// of clause. Subclasses may override this function to transform statements
/// using some other mechanism.
///
/// \returns the transformed OpenMP clause.
OMPClause *TransformOMPClause(OMPClause *S);
/// Transform the given attribute.
///
/// By default, this routine transforms a statement by delegating to the
/// appropriate TransformXXXAttr function to transform a specific kind
/// of attribute. Subclasses may override this function to transform
/// attributed statements/types using some other mechanism.
///
/// \returns the transformed attribute
const Attr *TransformAttr(const Attr *S);
// Transform the given statement attribute.
//
// Delegates to the appropriate TransformXXXAttr function to transform a
// specific kind of statement attribute. Unlike the non-statement taking
// version of this, this implements all attributes, not just pragmas.
const Attr *TransformStmtAttr(const Stmt *OrigS, const Stmt *InstS,
const Attr *A);
// Transform the specified attribute.
//
// Subclasses should override the transformation of attributes with a pragma
// spelling to transform expressions stored within the attribute.
//
// \returns the transformed attribute.
#define ATTR(X) \
const X##Attr *Transform##X##Attr(const X##Attr *R) { return R; }
#include "clang/Basic/AttrList.inc"
// Transform the specified attribute.
//
// Subclasses should override the transformation of attributes to do
// transformation and checking of statement attributes. By default, this
// delegates to the non-statement taking version.
//
// \returns the transformed attribute.
#define ATTR(X) \
const X##Attr *TransformStmt##X##Attr(const Stmt *, const Stmt *, \
const X##Attr *A) { \
return getDerived().Transform##X##Attr(A); \
}
#include "clang/Basic/AttrList.inc"
/// Transform the given expression.
///
/// By default, this routine transforms an expression by delegating to the
/// appropriate TransformXXXExpr function to build a new expression.
/// Subclasses may override this function to transform expressions using some
/// other mechanism.
///
/// \returns the transformed expression.
ExprResult TransformExpr(Expr *E);
/// Transform the given initializer.
///
/// By default, this routine transforms an initializer by stripping off the
/// semantic nodes added by initialization, then passing the result to
/// TransformExpr or TransformExprs.
///
/// \returns the transformed initializer.
ExprResult TransformInitializer(Expr *Init, bool NotCopyInit);
/// Transform the given list of expressions.
///
/// This routine transforms a list of expressions by invoking
/// \c TransformExpr() for each subexpression. However, it also provides
/// support for variadic templates by expanding any pack expansions (if the
/// derived class permits such expansion) along the way. When pack expansions
/// are present, the number of outputs may not equal the number of inputs.
///
/// \param Inputs The set of expressions to be transformed.
///
/// \param NumInputs The number of expressions in \c Inputs.
///
/// \param IsCall If \c true, then this transform is being performed on
/// function-call arguments, and any arguments that should be dropped, will
/// be.
///
/// \param Outputs The transformed input expressions will be added to this
/// vector.
///
/// \param ArgChanged If non-NULL, will be set \c true if any argument changed
/// due to transformation.
///
/// \returns true if an error occurred, false otherwise.
bool TransformExprs(Expr *const *Inputs, unsigned NumInputs, bool IsCall,
SmallVectorImpl<Expr *> &Outputs,
bool *ArgChanged = nullptr);
/// Transform the given declaration, which is referenced from a type
/// or expression.
///
/// By default, acts as the identity function on declarations, unless the
/// transformer has had to transform the declaration itself. Subclasses
/// may override this function to provide alternate behavior.
Decl *TransformDecl(SourceLocation Loc, Decl *D) {
llvm::DenseMap<Decl *, Decl *>::iterator Known
= TransformedLocalDecls.find(D);
if (Known != TransformedLocalDecls.end())
return Known->second;
return D;
}
/// Transform the specified condition.
///
/// By default, this transforms the variable and expression and rebuilds
/// the condition.
Sema::ConditionResult TransformCondition(SourceLocation Loc, VarDecl *Var,
Expr *Expr,
Sema::ConditionKind Kind);
/// Transform the attributes associated with the given declaration and
/// place them on the new declaration.
///
/// By default, this operation does nothing. Subclasses may override this
/// behavior to transform attributes.
void transformAttrs(Decl *Old, Decl *New) { }
/// Note that a local declaration has been transformed by this
/// transformer.
///
/// Local declarations are typically transformed via a call to
/// TransformDefinition. However, in some cases (e.g., lambda expressions),
/// the transformer itself has to transform the declarations. This routine
/// can be overridden by a subclass that keeps track of such mappings.
void transformedLocalDecl(Decl *Old, ArrayRef<Decl *> New) {
assert(New.size() == 1 &&
"must override transformedLocalDecl if performing pack expansion");
TransformedLocalDecls[Old] = New.front();
}
/// Transform the definition of the given declaration.
///
/// By default, invokes TransformDecl() to transform the declaration.
/// Subclasses may override this function to provide alternate behavior.
Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
return getDerived().TransformDecl(Loc, D);
}
/// Transform the given declaration, which was the first part of a
/// nested-name-specifier in a member access expression.
///
/// This specific declaration transformation only applies to the first
/// identifier in a nested-name-specifier of a member access expression, e.g.,
/// the \c T in \c x->T::member
///
/// By default, invokes TransformDecl() to transform the declaration.
/// Subclasses may override this function to provide alternate behavior.
NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
}
/// Transform the set of declarations in an OverloadExpr.
bool TransformOverloadExprDecls(OverloadExpr *Old, bool RequiresADL,
LookupResult &R);
/// Transform the given nested-name-specifier with source-location
/// information.
///
/// By default, transforms all of the types and declarations within the
/// nested-name-specifier. Subclasses may override this function to provide
/// alternate behavior.
NestedNameSpecifierLoc
TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
QualType ObjectType = QualType(),
NamedDecl *FirstQualifierInScope = nullptr);
/// Transform the given declaration name.
///
/// By default, transforms the types of conversion function, constructor,
/// and destructor names and then (if needed) rebuilds the declaration name.
/// Identifiers and selectors are returned unmodified. Subclasses may
/// override this function to provide alternate behavior.
DeclarationNameInfo
TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
bool TransformRequiresExprRequirements(
ArrayRef<concepts::Requirement *> Reqs,
llvm::SmallVectorImpl<concepts::Requirement *> &Transformed);
concepts::TypeRequirement *
TransformTypeRequirement(concepts::TypeRequirement *Req);
concepts::ExprRequirement *
TransformExprRequirement(concepts::ExprRequirement *Req);
concepts::NestedRequirement *
TransformNestedRequirement(concepts::NestedRequirement *Req);
/// Transform the given template name.
///
/// \param SS The nested-name-specifier that qualifies the template
/// name. This nested-name-specifier must already have been transformed.
///
/// \param Name The template name to transform.
///
/// \param NameLoc The source location of the template name.
///
/// \param ObjectType If we're translating a template name within a member
/// access expression, this is the type of the object whose member template
/// is being referenced.
///
/// \param FirstQualifierInScope If the first part of a nested-name-specifier
/// also refers to a name within the current (lexical) scope, this is the
/// declaration it refers to.
///
/// By default, transforms the template name by transforming the declarations
/// and nested-name-specifiers that occur within the template name.
/// Subclasses may override this function to provide alternate behavior.
TemplateName
TransformTemplateName(CXXScopeSpec &SS, TemplateName Name,
SourceLocation NameLoc,
QualType ObjectType = QualType(),
NamedDecl *FirstQualifierInScope = nullptr,
bool AllowInjectedClassName = false);
/// Transform the given template argument.
///
/// By default, this operation transforms the type, expression, or
/// declaration stored within the template argument and constructs a
/// new template argument from the transformed result. Subclasses may
/// override this function to provide alternate behavior.
///
/// Returns true if there was an error.
bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
TemplateArgumentLoc &Output,
bool Uneval = false);
/// Transform the given set of template arguments.
///
/// By default, this operation transforms all of the template arguments
/// in the input set using \c TransformTemplateArgument(), and appends
/// the transformed arguments to the output list.
///
/// Note that this overload of \c TransformTemplateArguments() is merely
/// a convenience function. Subclasses that wish to override this behavior
/// should override the iterator-based member template version.
///
/// \param Inputs The set of template arguments to be transformed.
///
/// \param NumInputs The number of template arguments in \p Inputs.
///
/// \param Outputs The set of transformed template arguments output by this
/// routine.
///
/// Returns true if an error occurred.
bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
unsigned NumInputs,
TemplateArgumentListInfo &Outputs,
bool Uneval = false) {
return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs,
Uneval);
}
/// Transform the given set of template arguments.
///
/// By default, this operation transforms all of the template arguments
/// in the input set using \c TransformTemplateArgument(), and appends
/// the transformed arguments to the output list.
///
/// \param First An iterator to the first template argument.
///
/// \param Last An iterator one step past the last template argument.
///
/// \param Outputs The set of transformed template arguments output by this
/// routine.
///
/// Returns true if an error occurred.
template<typename InputIterator>
bool TransformTemplateArguments(InputIterator First,
InputIterator Last,
TemplateArgumentListInfo &Outputs,
bool Uneval = false);
/// Fakes up a TemplateArgumentLoc for a given TemplateArgument.
void InventTemplateArgumentLoc(const TemplateArgument &Arg,
TemplateArgumentLoc &ArgLoc);
/// Fakes up a TypeSourceInfo for a type.
TypeSourceInfo *InventTypeSourceInfo(QualType T) {
return SemaRef.Context.getTrivialTypeSourceInfo(T,
getDerived().getBaseLocation());
}
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
#include "clang/AST/TypeLocNodes.def"
QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
TemplateTypeParmTypeLoc TL,
bool SuppressObjCLifetime);
QualType
TransformSubstTemplateTypeParmPackType(TypeLocBuilder &TLB,
SubstTemplateTypeParmPackTypeLoc TL,
bool SuppressObjCLifetime);
template<typename Fn>
QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
FunctionProtoTypeLoc TL,
CXXRecordDecl *ThisContext,
Qualifiers ThisTypeQuals,
Fn TransformExceptionSpec);
bool TransformExceptionSpec(SourceLocation Loc,
FunctionProtoType::ExceptionSpecInfo &ESI,
SmallVectorImpl<QualType> &Exceptions,
bool &Changed);
StmtResult TransformSEHHandler(Stmt *Handler);
QualType
TransformTemplateSpecializationType(TypeLocBuilder &TLB,
TemplateSpecializationTypeLoc TL,
TemplateName Template);
QualType
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
DependentTemplateSpecializationTypeLoc TL,
TemplateName Template,
CXXScopeSpec &SS);
QualType TransformDependentTemplateSpecializationType(
TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL,
CXXScopeSpec &SS);
/// Transforms the parameters of a function type into the
/// given vectors.
///
/// The result vectors should be kept in sync; null entries in the
/// variables vector are acceptable.
///
/// LastParamTransformed, if non-null, will be set to the index of the last
/// parameter on which transfromation was started. In the event of an error,
/// this will contain the parameter which failed to instantiate.
///
/// Return true on error.
bool TransformFunctionTypeParams(
SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
const QualType *ParamTypes,
const FunctionProtoType::ExtParameterInfo *ParamInfos,
SmallVectorImpl<QualType> &PTypes, SmallVectorImpl<ParmVarDecl *> *PVars,
Sema::ExtParameterInfoBuilder &PInfos, unsigned *LastParamTransformed);
bool TransformFunctionTypeParams(
SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
const QualType *ParamTypes,
const FunctionProtoType::ExtParameterInfo *ParamInfos,
SmallVectorImpl<QualType> &PTypes, SmallVectorImpl<ParmVarDecl *> *PVars,
Sema::ExtParameterInfoBuilder &PInfos) {
return getDerived().TransformFunctionTypeParams(
Loc, Params, ParamTypes, ParamInfos, PTypes, PVars, PInfos, nullptr);
}
/// Transforms the parameters of a requires expresison into the given vectors.
///
/// The result vectors should be kept in sync; null entries in the
/// variables vector are acceptable.
///
/// Returns an unset ExprResult on success. Returns an ExprResult the 'not
/// satisfied' RequiresExpr if subsitution failed, OR an ExprError, both of
/// which are cases where transformation shouldn't continue.
ExprResult TransformRequiresTypeParams(
SourceLocation KWLoc, SourceLocation RBraceLoc, const RequiresExpr *RE,
RequiresExprBodyDecl *Body, ArrayRef<ParmVarDecl *> Params,
SmallVectorImpl<QualType> &PTypes,
SmallVectorImpl<ParmVarDecl *> &TransParams,
Sema::ExtParameterInfoBuilder &PInfos) {
if (getDerived().TransformFunctionTypeParams(
KWLoc, Params, /*ParamTypes=*/nullptr,
/*ParamInfos=*/nullptr, PTypes, &TransParams, PInfos))
return ExprError();
return ExprResult{};
}
/// Transforms a single function-type parameter. Return null
/// on error.
///
/// \param indexAdjustment - A number to add to the parameter's
/// scope index; can be negative
ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
int indexAdjustment,
UnsignedOrNone NumExpansions,
bool ExpectParameterPack);
/// Transform the body of a lambda-expression.
StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body);
/// Alternative implementation of TransformLambdaBody that skips transforming
/// the body.
StmtResult SkipLambdaBody(LambdaExpr *E, Stmt *Body);
CXXRecordDecl::LambdaDependencyKind
ComputeLambdaDependency(LambdaScopeInfo *LSI) {
return static_cast<CXXRecordDecl::LambdaDependencyKind>(
LSI->Lambda->getLambdaDependencyKind());
}
QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
TemplateParameterList *TransformTemplateParameterList(
TemplateParameterList *TPL) {
return TPL;
}
ExprResult TransformAddressOfOperand(Expr *E);
ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
bool IsAddressOfOperand,
TypeSourceInfo **RecoveryTSI);
ExprResult TransformParenDependentScopeDeclRefExpr(
ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand,
TypeSourceInfo **RecoveryTSI);
ExprResult TransformUnresolvedLookupExpr(UnresolvedLookupExpr *E,
bool IsAddressOfOperand);
StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S);
StmtResult TransformOMPInformationalDirective(OMPExecutableDirective *S);
// FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous
// amount of stack usage with clang.
#define STMT(Node, Parent) \
LLVM_ATTRIBUTE_NOINLINE \
StmtResult Transform##Node(Node *S);
#define VALUESTMT(Node, Parent) \
LLVM_ATTRIBUTE_NOINLINE \
StmtResult Transform##Node(Node *S, StmtDiscardKind SDK);
#define EXPR(Node, Parent) \
LLVM_ATTRIBUTE_NOINLINE \
ExprResult Transform##Node(Node *E);
#define ABSTRACT_STMT(Stmt)
#include "clang/AST/StmtNodes.inc"
#define GEN_CLANG_CLAUSE_CLASS
#define CLAUSE_CLASS(Enum, Str, Class) \
LLVM_ATTRIBUTE_NOINLINE \
OMPClause *Transform##Class(Class *S);
#include "llvm/Frontend/OpenMP/OMP.inc"
/// Build a new qualified type given its unqualified type and type location.
///
/// By default, this routine adds type qualifiers only to types that can
/// have qualifiers, and silently suppresses those qualifiers that are not
/// permitted. Subclasses may override this routine to provide different
/// behavior.
QualType RebuildQualifiedType(QualType T, QualifiedTypeLoc TL);
/// Build a new pointer type given its pointee type.
///
/// By default, performs semantic analysis when building the pointer type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
/// Build a new block pointer type given its pointee type.
///
/// By default, performs semantic analysis when building the block pointer
/// type. Subclasses may override this routine to provide different behavior.
QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
/// Build a new reference type given the type it references.
///
/// By default, performs semantic analysis when building the
/// reference type. Subclasses may override this routine to provide
/// different behavior.
///
/// \param LValue whether the type was written with an lvalue sigil
/// or an rvalue sigil.
QualType RebuildReferenceType(QualType ReferentType,
bool LValue,
SourceLocation Sigil);
/// Build a new member pointer type given the pointee type and the
/// qualifier it refers into.
///
/// By default, performs semantic analysis when building the member pointer
/// type. Subclasses may override this routine to provide different behavior.
QualType RebuildMemberPointerType(QualType PointeeType,
const CXXScopeSpec &SS, CXXRecordDecl *Cls,
SourceLocation Sigil);
QualType RebuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc);
/// Build an Objective-C object type.
///
/// By default, performs semantic analysis when building the object type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildObjCObjectType(QualType BaseType,
SourceLocation Loc,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<TypeSourceInfo *> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc);
/// Build a new Objective-C object pointer type given the pointee type.
///
/// By default, directly builds the pointer type, with no additional semantic
/// analysis.
QualType RebuildObjCObjectPointerType(QualType PointeeType,
SourceLocation Star);
/// Build a new array type given the element type, size
/// modifier, size of the array (if known), size expression, and index type
/// qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
/// Also by default, all of the other Rebuild*Array
QualType RebuildArrayType(QualType ElementType, ArraySizeModifier SizeMod,
const llvm::APInt *Size, Expr *SizeExpr,
unsigned IndexTypeQuals, SourceRange BracketsRange);
/// Build a new constant array type given the element type, size
/// modifier, (known) size of the array, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildConstantArrayType(QualType ElementType,
ArraySizeModifier SizeMod,
const llvm::APInt &Size, Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// Build a new incomplete array type given the element type, size
/// modifier, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildIncompleteArrayType(QualType ElementType,
ArraySizeModifier SizeMod,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// Build a new variable-length array type given the element type,
/// size modifier, size expression, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildVariableArrayType(QualType ElementType,
ArraySizeModifier SizeMod, Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// Build a new dependent-sized array type given the element type,
/// size modifier, size expression, and index type qualifiers.
///
/// By default, performs semantic analysis when building the array type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildDependentSizedArrayType(QualType ElementType,
ArraySizeModifier SizeMod,
Expr *SizeExpr,
unsigned IndexTypeQuals,
SourceRange BracketsRange);
/// Build a new vector type given the element type and
/// number of elements.
///
/// By default, performs semantic analysis when building the vector type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
VectorKind VecKind);
/// Build a new potentially dependently-sized extended vector type
/// given the element type and number of elements.
///
/// By default, performs semantic analysis when building the vector type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildDependentVectorType(QualType ElementType, Expr *SizeExpr,
SourceLocation AttributeLoc, VectorKind);
/// Build a new extended vector type given the element type and
/// number of elements.
///
/// By default, performs semantic analysis when building the vector type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
SourceLocation AttributeLoc);
/// Build a new potentially dependently-sized extended vector type
/// given the element type and number of elements.
///
/// By default, performs semantic analysis when building the vector type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildDependentSizedExtVectorType(QualType ElementType,
Expr *SizeExpr,
SourceLocation AttributeLoc);
/// Build a new matrix type given the element type and dimensions.
QualType RebuildConstantMatrixType(QualType ElementType, unsigned NumRows,
unsigned NumColumns);
/// Build a new matrix type given the type and dependently-defined
/// dimensions.
QualType RebuildDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
Expr *ColumnExpr,
SourceLocation AttributeLoc);
/// Build a new DependentAddressSpaceType or return the pointee
/// type variable with the correct address space (retrieved from
/// AddrSpaceExpr) applied to it. The former will be returned in cases
/// where the address space remains dependent.
///
/// By default, performs semantic analysis when building the type with address
/// space applied. Subclasses may override this routine to provide different
/// behavior.
QualType RebuildDependentAddressSpaceType(QualType PointeeType,
Expr *AddrSpaceExpr,
SourceLocation AttributeLoc);
/// Build a new function type.
///
/// By default, performs semantic analysis when building the function type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildFunctionProtoType(QualType T,
MutableArrayRef<QualType> ParamTypes,
const FunctionProtoType::ExtProtoInfo &EPI);
/// Build a new unprototyped function type.
QualType RebuildFunctionNoProtoType(QualType ResultType);
/// Rebuild an unresolved typename type, given the decl that
/// the UnresolvedUsingTypenameDecl was transformed to.
QualType RebuildUnresolvedUsingType(SourceLocation NameLoc, Decl *D);
/// Build a new type found via an alias.
QualType RebuildUsingType(UsingShadowDecl *Found, QualType Underlying) {
return SemaRef.Context.getUsingType(Found, Underlying);
}
/// Build a new typedef type.
QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
return SemaRef.Context.getTypeDeclType(Typedef);
}
/// Build a new MacroDefined type.
QualType RebuildMacroQualifiedType(QualType T,
const IdentifierInfo *MacroII) {
return SemaRef.Context.getMacroQualifiedType(T, MacroII);
}
/// Build a new class/struct/union type.
QualType RebuildRecordType(RecordDecl *Record) {
return SemaRef.Context.getTypeDeclType(Record);
}
/// Build a new Enum type.
QualType RebuildEnumType(EnumDecl *Enum) {
return SemaRef.Context.getTypeDeclType(Enum);
}
/// Build a new typeof(expr) type.
///
/// By default, performs semantic analysis when building the typeof type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc,
TypeOfKind Kind);
/// Build a new typeof(type) type.
///
/// By default, builds a new TypeOfType with the given underlying type.
QualType RebuildTypeOfType(QualType Underlying, TypeOfKind Kind);
/// Build a new unary transform type.
QualType RebuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc);
/// Build a new C++11 decltype type.
///
/// By default, performs semantic analysis when building the decltype type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
QualType RebuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
SourceLocation Loc,
SourceLocation EllipsisLoc,
bool FullySubstituted,
ArrayRef<QualType> Expansions = {});
/// Build a new C++11 auto type.
///
/// By default, builds a new AutoType with the given deduced type.
QualType RebuildAutoType(QualType Deduced, AutoTypeKeyword Keyword,
ConceptDecl *TypeConstraintConcept,
ArrayRef<TemplateArgument> TypeConstraintArgs) {
// Note, IsDependent is always false here: we implicitly convert an 'auto'
// which has been deduced to a dependent type into an undeduced 'auto', so
// that we'll retry deduction after the transformation.
return SemaRef.Context.getAutoType(Deduced, Keyword,
/*IsDependent*/ false, /*IsPack=*/false,
TypeConstraintConcept,
TypeConstraintArgs);
}
/// By default, builds a new DeducedTemplateSpecializationType with the given
/// deduced type.
QualType RebuildDeducedTemplateSpecializationType(TemplateName Template,
QualType Deduced) {
return SemaRef.Context.getDeducedTemplateSpecializationType(
Template, Deduced, /*IsDependent*/ false);
}
/// Build a new template specialization type.
///
/// By default, performs semantic analysis when building the template
/// specialization type. Subclasses may override this routine to provide
/// different behavior.
QualType RebuildTemplateSpecializationType(TemplateName Template,
SourceLocation TemplateLoc,
TemplateArgumentListInfo &Args);
/// Build a new parenthesized type.
///
/// By default, builds a new ParenType type from the inner type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildParenType(QualType InnerType) {
return SemaRef.BuildParenType(InnerType);
}
/// Build a new qualified name type.
///
/// By default, builds a new ElaboratedType type from the keyword,
/// the nested-name-specifier and the named type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildElaboratedType(SourceLocation KeywordLoc,
ElaboratedTypeKeyword Keyword,
NestedNameSpecifierLoc QualifierLoc,
QualType Named) {
return SemaRef.Context.getElaboratedType(Keyword,
QualifierLoc.getNestedNameSpecifier(),
Named);
}
/// Build a new typename type that refers to a template-id.
///
/// By default, builds a new DependentNameType type from the
/// nested-name-specifier and the given type. Subclasses may override
/// this routine to provide different behavior.
QualType RebuildDependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
SourceLocation TemplateKWLoc, TemplateName Name, SourceLocation NameLoc,
TemplateArgumentListInfo &Args, bool AllowInjectedClassName) {
// If it's still dependent, make a dependent specialization.
if (const DependentTemplateStorage *S = Name.getAsDependentTemplateName())
return SemaRef.Context.getDependentTemplateSpecializationType(
Keyword, *S, Args.arguments());
// Otherwise, make an elaborated type wrapping a non-dependent
// specialization.
QualType T =
getDerived().RebuildTemplateSpecializationType(Name, NameLoc, Args);
if (T.isNull())
return QualType();
return SemaRef.Context.getElaboratedType(Keyword, NNS, T);
}
/// Build a new typename type that refers to an identifier.
///
/// By default, performs semantic analysis when building the typename type
/// (or elaborated type). Subclasses may override this routine to provide
/// different behavior.
QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
SourceLocation KeywordLoc,
NestedNameSpecifierLoc QualifierLoc,
const IdentifierInfo *Id,
SourceLocation IdLoc,
bool DeducedTSTContext) {
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
// If the name is still dependent, just build a new dependent name type.
if (!SemaRef.computeDeclContext(SS))
return SemaRef.Context.getDependentNameType(Keyword,
QualifierLoc.getNestedNameSpecifier(),
Id);
}
if (Keyword == ElaboratedTypeKeyword::None ||
Keyword == ElaboratedTypeKeyword::Typename) {
return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
*Id, IdLoc, DeducedTSTContext);
}
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
// We had a dependent elaborated-type-specifier that has been transformed
// into a non-dependent elaborated-type-specifier. Find the tag we're
// referring to.
LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
DeclContext *DC = SemaRef.computeDeclContext(SS, false);
if (!DC)
return QualType();
if (SemaRef.RequireCompleteDeclContext(SS, DC))
return QualType();
TagDecl *Tag = nullptr;
SemaRef.LookupQualifiedName(Result, DC);
switch (Result.getResultKind()) {
case LookupResult::NotFound:
case LookupResult::NotFoundInCurrentInstantiation:
break;
case LookupResult::Found:
Tag = Result.getAsSingle<TagDecl>();
break;
case LookupResult::FoundOverloaded:
case LookupResult::FoundUnresolvedValue:
llvm_unreachable("Tag lookup cannot find non-tags");
case LookupResult::Ambiguous:
// Let the LookupResult structure handle ambiguities.
return QualType();
}
if (!Tag) {
// Check where the name exists but isn't a tag type and use that to emit
// better diagnostics.
LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
SemaRef.LookupQualifiedName(Result, DC);
switch (Result.getResultKind()) {
case LookupResult::Found:
case LookupResult::FoundOverloaded:
case LookupResult::FoundUnresolvedValue: {
NamedDecl *SomeDecl = Result.getRepresentativeDecl();
Sema::NonTagKind NTK = SemaRef.getNonTagTypeDeclKind(SomeDecl, Kind);
SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag)
<< SomeDecl << NTK << llvm::to_underlying(Kind);
SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
break;
}
default:
SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
<< llvm::to_underlying(Kind) << Id << DC
<< QualifierLoc.getSourceRange();
break;
}
return QualType();
}
if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
IdLoc, Id)) {
SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
return QualType();
}
// Build the elaborated-type-specifier type.
QualType T = SemaRef.Context.getTypeDeclType(Tag);
return SemaRef.Context.getElaboratedType(Keyword,
QualifierLoc.getNestedNameSpecifier(),
T);
}
/// Build a new pack expansion type.
///
/// By default, builds a new PackExpansionType type from the given pattern.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildPackExpansionType(QualType Pattern, SourceRange PatternRange,
SourceLocation EllipsisLoc,
UnsignedOrNone NumExpansions) {
return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
NumExpansions);
}
/// Build a new atomic type given its value type.
///
/// By default, performs semantic analysis when building the atomic type.
/// Subclasses may override this routine to provide different behavior.
QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc);
/// Build a new pipe type given its value type.
QualType RebuildPipeType(QualType ValueType, SourceLocation KWLoc,
bool isReadPipe);
/// Build a bit-precise int given its value type.
QualType RebuildBitIntType(bool IsUnsigned, unsigned NumBits,
SourceLocation Loc);
/// Build a dependent bit-precise int given its value type.
QualType RebuildDependentBitIntType(bool IsUnsigned, Expr *NumBitsExpr,
SourceLocation Loc);
/// Build a new template name given a nested name specifier, a flag
/// indicating whether the "template" keyword was provided, and the template
/// that the template name refers to.
///
/// By default, builds the new template name directly. Subclasses may override
/// this routine to provide different behavior.
TemplateName RebuildTemplateName(CXXScopeSpec &SS,
bool TemplateKW,
TemplateDecl *Template);
/// Build a new template name given a nested name specifier and the
/// name that is referred to as a template.
///
/// By default, performs semantic analysis to determine whether the name can
/// be resolved to a specific template, then builds the appropriate kind of
/// template name. Subclasses may override this routine to provide different
/// behavior.
TemplateName RebuildTemplateName(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const IdentifierInfo &Name,
SourceLocation NameLoc, QualType ObjectType,
NamedDecl *FirstQualifierInScope,
bool AllowInjectedClassName);
/// Build a new template name given a nested name specifier and the
/// overloaded operator name that is referred to as a template.
///
/// By default, performs semantic analysis to determine whether the name can
/// be resolved to a specific template, then builds the appropriate kind of
/// template name. Subclasses may override this routine to provide different
/// behavior.
TemplateName RebuildTemplateName(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
OverloadedOperatorKind Operator,
SourceLocation NameLoc, QualType ObjectType,
bool AllowInjectedClassName);
TemplateName RebuildTemplateName(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
IdentifierOrOverloadedOperator IO,
SourceLocation NameLoc, QualType ObjectType,
NamedDecl *FirstQualifierInScope,
bool AllowInjectedClassName);
/// Build a new template name given a template template parameter pack
/// and the
///
/// By default, performs semantic analysis to determine whether the name can
/// be resolved to a specific template, then builds the appropriate kind of
/// template name. Subclasses may override this routine to provide different
/// behavior.
TemplateName RebuildTemplateName(const TemplateArgument &ArgPack,
Decl *AssociatedDecl, unsigned Index,
bool Final) {
return getSema().Context.getSubstTemplateTemplateParmPack(
ArgPack, AssociatedDecl, Index, Final);
}
/// Build a new compound statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
MultiStmtArg Statements,
SourceLocation RBraceLoc,
bool IsStmtExpr) {
return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
IsStmtExpr);
}
/// Build a new case statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
Expr *LHS,
SourceLocation EllipsisLoc,
Expr *RHS,
SourceLocation ColonLoc) {
return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
ColonLoc);
}
/// Attach the body to a new case statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
getSema().ActOnCaseStmtBody(S, Body);
return S;
}
/// Build a new default statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc,
Stmt *SubStmt) {
return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
/*CurScope=*/nullptr);
}
/// Build a new label statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
SourceLocation ColonLoc, Stmt *SubStmt) {
return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
}
/// Build a new attributed statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildAttributedStmt(SourceLocation AttrLoc,
ArrayRef<const Attr *> Attrs,
Stmt *SubStmt) {
if (SemaRef.CheckRebuiltStmtAttributes(Attrs))
return StmtError();
return SemaRef.BuildAttributedStmt(AttrLoc, Attrs, SubStmt);
}
/// Build a new "if" statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildIfStmt(SourceLocation IfLoc, IfStatementKind Kind,
SourceLocation LParenLoc, Sema::ConditionResult Cond,
SourceLocation RParenLoc, Stmt *Init, Stmt *Then,
SourceLocation ElseLoc, Stmt *Else) {
return getSema().ActOnIfStmt(IfLoc, Kind, LParenLoc, Init, Cond, RParenLoc,
Then, ElseLoc, Else);
}
/// Start building a new switch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
SourceLocation LParenLoc, Stmt *Init,
Sema::ConditionResult Cond,
SourceLocation RParenLoc) {
return getSema().ActOnStartOfSwitchStmt(SwitchLoc, LParenLoc, Init, Cond,
RParenLoc);
}
/// Attach the body to the switch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
Stmt *Switch, Stmt *Body) {
return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
}
/// Build a new while statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
Sema::ConditionResult Cond,
SourceLocation RParenLoc, Stmt *Body) {
return getSema().ActOnWhileStmt(WhileLoc, LParenLoc, Cond, RParenLoc, Body);
}
/// Build a new do-while statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
SourceLocation WhileLoc, SourceLocation LParenLoc,
Expr *Cond, SourceLocation RParenLoc) {
return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
Cond, RParenLoc);
}
/// Build a new for statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
Stmt *Init, Sema::ConditionResult Cond,
Sema::FullExprArg Inc, SourceLocation RParenLoc,
Stmt *Body) {
return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
Inc, RParenLoc, Body);
}
/// Build a new goto statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
LabelDecl *Label) {
return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
}
/// Build a new indirect goto statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
Expr *Target) {
return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
}
/// Build a new return statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
return getSema().BuildReturnStmt(ReturnLoc, Result);
}
/// Build a new declaration statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildDeclStmt(MutableArrayRef<Decl *> Decls,
SourceLocation StartLoc, SourceLocation EndLoc) {
Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls);
return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
}
/// Build a new inline asm statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
bool IsVolatile, unsigned NumOutputs,
unsigned NumInputs, IdentifierInfo **Names,
MultiExprArg Constraints, MultiExprArg Exprs,
Expr *AsmString, MultiExprArg Clobbers,
unsigned NumLabels,
SourceLocation RParenLoc) {
return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
NumInputs, Names, Constraints, Exprs,
AsmString, Clobbers, NumLabels, RParenLoc);
}
/// Build a new MS style inline asm statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
ArrayRef<Token> AsmToks,
StringRef AsmString,
unsigned NumOutputs, unsigned NumInputs,
ArrayRef<StringRef> Constraints,
ArrayRef<StringRef> Clobbers,
ArrayRef<Expr*> Exprs,
SourceLocation EndLoc) {
return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString,
NumOutputs, NumInputs,
Constraints, Clobbers, Exprs, EndLoc);
}
/// Build a new co_return statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCoreturnStmt(SourceLocation CoreturnLoc, Expr *Result,
bool IsImplicit) {
return getSema().BuildCoreturnStmt(CoreturnLoc, Result, IsImplicit);
}
/// Build a new co_await expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand,
UnresolvedLookupExpr *OpCoawaitLookup,
bool IsImplicit) {
// This function rebuilds a coawait-expr given its operator.
// For an explicit coawait-expr, the rebuild involves the full set
// of transformations performed by BuildUnresolvedCoawaitExpr(),
// including calling await_transform().
// For an implicit coawait-expr, we need to rebuild the "operator
// coawait" but not await_transform(), so use BuildResolvedCoawaitExpr().
// This mirrors how the implicit CoawaitExpr is originally created
// in Sema::ActOnCoroutineBodyStart().
if (IsImplicit) {
ExprResult Suspend = getSema().BuildOperatorCoawaitCall(
CoawaitLoc, Operand, OpCoawaitLookup);
if (Suspend.isInvalid())
return ExprError();
return getSema().BuildResolvedCoawaitExpr(CoawaitLoc, Operand,
Suspend.get(), true);
}
return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Operand,
OpCoawaitLookup);
}
/// Build a new co_await expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDependentCoawaitExpr(SourceLocation CoawaitLoc,
Expr *Result,
UnresolvedLookupExpr *Lookup) {
return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Result, Lookup);
}
/// Build a new co_yield expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCoyieldExpr(SourceLocation CoyieldLoc, Expr *Result) {
return getSema().BuildCoyieldExpr(CoyieldLoc, Result);
}
StmtResult RebuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
return getSema().BuildCoroutineBodyStmt(Args);
}
/// Build a new Objective-C \@try statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
Stmt *TryBody,
MultiStmtArg CatchStmts,
Stmt *Finally) {
return getSema().ObjC().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts,
Finally);
}
/// Rebuild an Objective-C exception declaration.
///
/// By default, performs semantic analysis to build the new declaration.
/// Subclasses may override this routine to provide different behavior.
VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
TypeSourceInfo *TInfo, QualType T) {
return getSema().ObjC().BuildObjCExceptionDecl(
TInfo, T, ExceptionDecl->getInnerLocStart(),
ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier());
}
/// Build a new Objective-C \@catch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
SourceLocation RParenLoc,
VarDecl *Var,
Stmt *Body) {
return getSema().ObjC().ActOnObjCAtCatchStmt(AtLoc, RParenLoc, Var, Body);
}
/// Build a new Objective-C \@finally statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
Stmt *Body) {
return getSema().ObjC().ActOnObjCAtFinallyStmt(AtLoc, Body);
}
/// Build a new Objective-C \@throw statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
Expr *Operand) {
return getSema().ObjC().BuildObjCAtThrowStmt(AtLoc, Operand);
}
/// Build a new OpenMP Canonical loop.
///
/// Ensures that the outermost loop in @p LoopStmt is wrapped by a
/// OMPCanonicalLoop.
StmtResult RebuildOMPCanonicalLoop(Stmt *LoopStmt) {
return getSema().OpenMP().ActOnOpenMPCanonicalLoop(LoopStmt);
}
/// Build a new OpenMP executable directive.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,
DeclarationNameInfo DirName,
OpenMPDirectiveKind CancelRegion,
ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPExecutableDirective(
Kind, DirName, CancelRegion, Clauses, AStmt, StartLoc, EndLoc);
}
/// Build a new OpenMP informational directive.
StmtResult RebuildOMPInformationalDirective(OpenMPDirectiveKind Kind,
DeclarationNameInfo DirName,
ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPInformationalDirective(
Kind, DirName, Clauses, AStmt, StartLoc, EndLoc);
}
/// Build a new OpenMP 'if' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPIfClause(OpenMPDirectiveKind NameModifier,
Expr *Condition, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation NameModifierLoc,
SourceLocation ColonLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPIfClause(
NameModifier, Condition, StartLoc, LParenLoc, NameModifierLoc, ColonLoc,
EndLoc);
}
/// Build a new OpenMP 'final' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPFinalClause(Expr *Condition, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPFinalClause(Condition, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'num_threads' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'safelen' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc,
EndLoc);
}
/// Build a new OpenMP 'simdlen' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPSimdlenClause(Expr *Len, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPSimdlenClause(Len, StartLoc, LParenLoc,
EndLoc);
}
OMPClause *RebuildOMPSizesClause(ArrayRef<Expr *> Sizes,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPSizesClause(Sizes, StartLoc, LParenLoc,
EndLoc);
}
/// Build a new OpenMP 'permutation' clause.
OMPClause *RebuildOMPPermutationClause(ArrayRef<Expr *> PermExprs,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPPermutationClause(PermExprs, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'full' clause.
OMPClause *RebuildOMPFullClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPFullClause(StartLoc, EndLoc);
}
/// Build a new OpenMP 'partial' clause.
OMPClause *RebuildOMPPartialClause(Expr *Factor, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPPartialClause(Factor, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'allocator' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPAllocatorClause(Expr *A, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPAllocatorClause(A, StartLoc, LParenLoc,
EndLoc);
}
/// Build a new OpenMP 'collapse' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPCollapseClause(Num, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'default' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPDefaultClause(DefaultKind Kind, SourceLocation KindKwLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPDefaultClause(
Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
}
/// Build a new OpenMP 'proc_bind' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPProcBindClause(ProcBindKind Kind,
SourceLocation KindKwLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPProcBindClause(
Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
}
/// Build a new OpenMP 'schedule' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPScheduleClause(
OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPScheduleClause(
M1, M2, Kind, ChunkSize, StartLoc, LParenLoc, M1Loc, M2Loc, KindLoc,
CommaLoc, EndLoc);
}
/// Build a new OpenMP 'ordered' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPOrderedClause(SourceLocation StartLoc,
SourceLocation EndLoc,
SourceLocation LParenLoc, Expr *Num) {
return getSema().OpenMP().ActOnOpenMPOrderedClause(StartLoc, EndLoc,
LParenLoc, Num);
}
/// Build a new OpenMP 'private' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPPrivateClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'firstprivate' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPFirstprivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPFirstprivateClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'lastprivate' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPLastprivateClause(ArrayRef<Expr *> VarList,
OpenMPLastprivateModifier LPKind,
SourceLocation LPKindLoc,
SourceLocation ColonLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPLastprivateClause(
VarList, LPKind, LPKindLoc, ColonLoc, StartLoc, LParenLoc, EndLoc);
}
/// Build a new OpenMP 'shared' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPSharedClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPSharedClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'reduction' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPReductionClause(
ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
OpenMPOriginalSharingModifier OriginalSharingModifier,
SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ModifierLoc, SourceLocation ColonLoc,
SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions) {
return getSema().OpenMP().ActOnOpenMPReductionClause(
VarList, {Modifier, OriginalSharingModifier}, StartLoc, LParenLoc,
ModifierLoc, ColonLoc, EndLoc, ReductionIdScopeSpec, ReductionId,
UnresolvedReductions);
}
/// Build a new OpenMP 'task_reduction' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPTaskReductionClause(
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
CXXScopeSpec &ReductionIdScopeSpec,
const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions) {
return getSema().OpenMP().ActOnOpenMPTaskReductionClause(
VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
ReductionId, UnresolvedReductions);
}
/// Build a new OpenMP 'in_reduction' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *
RebuildOMPInReductionClause(ArrayRef<Expr *> VarList, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation ColonLoc,
SourceLocation EndLoc,
CXXScopeSpec &ReductionIdScopeSpec,
const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions) {
return getSema().OpenMP().ActOnOpenMPInReductionClause(
VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
ReductionId, UnresolvedReductions);
}
/// Build a new OpenMP 'linear' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPLinearClause(
ArrayRef<Expr *> VarList, Expr *Step, SourceLocation StartLoc,
SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier,
SourceLocation ModifierLoc, SourceLocation ColonLoc,
SourceLocation StepModifierLoc, SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPLinearClause(
VarList, Step, StartLoc, LParenLoc, Modifier, ModifierLoc, ColonLoc,
StepModifierLoc, EndLoc);
}
/// Build a new OpenMP 'aligned' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPAlignedClause(ArrayRef<Expr *> VarList, Expr *Alignment,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ColonLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPAlignedClause(
VarList, Alignment, StartLoc, LParenLoc, ColonLoc, EndLoc);
}
/// Build a new OpenMP 'copyin' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPCopyinClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPCopyinClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'copyprivate' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPCopyprivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPCopyprivateClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'flush' pseudo clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPFlushClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPFlushClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'depobj' pseudo clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPDepobjClause(Depobj, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'depend' pseudo clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPDependClause(OMPDependClause::DependDataTy Data,
Expr *DepModifier, ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPDependClause(
Data, DepModifier, VarList, StartLoc, LParenLoc, EndLoc);
}
/// Build a new OpenMP 'device' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
Expr *Device, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ModifierLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPDeviceClause(
Modifier, Device, StartLoc, LParenLoc, ModifierLoc, EndLoc);
}
/// Build a new OpenMP 'map' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPMapClause(
Expr *IteratorModifier, ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
ArrayRef<SourceLocation> MapTypeModifiersLoc,
CXXScopeSpec MapperIdScopeSpec, DeclarationNameInfo MapperId,
OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs, ArrayRef<Expr *> UnresolvedMappers) {
return getSema().OpenMP().ActOnOpenMPMapClause(
IteratorModifier, MapTypeModifiers, MapTypeModifiersLoc,
MapperIdScopeSpec, MapperId, MapType, IsMapTypeImplicit, MapLoc,
ColonLoc, VarList, Locs,
/*NoDiagnose=*/false, UnresolvedMappers);
}
/// Build a new OpenMP 'allocate' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *
RebuildOMPAllocateClause(Expr *Allocate, Expr *Alignment,
OpenMPAllocateClauseModifier FirstModifier,
SourceLocation FirstModifierLoc,
OpenMPAllocateClauseModifier SecondModifier,
SourceLocation SecondModifierLoc,
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation ColonLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPAllocateClause(
Allocate, Alignment, FirstModifier, FirstModifierLoc, SecondModifier,
SecondModifierLoc, VarList, StartLoc, LParenLoc, ColonLoc, EndLoc);
}
/// Build a new OpenMP 'num_teams' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPNumTeamsClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPNumTeamsClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'thread_limit' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPThreadLimitClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPThreadLimitClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'priority' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPPriorityClause(Priority, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'grainsize' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPGrainsizeClause(OpenMPGrainsizeClauseModifier Modifier,
Expr *Device, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ModifierLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPGrainsizeClause(
Modifier, Device, StartLoc, LParenLoc, ModifierLoc, EndLoc);
}
/// Build a new OpenMP 'num_tasks' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPNumTasksClause(OpenMPNumTasksClauseModifier Modifier,
Expr *NumTasks, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ModifierLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPNumTasksClause(
Modifier, NumTasks, StartLoc, LParenLoc, ModifierLoc, EndLoc);
}
/// Build a new OpenMP 'hint' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPHintClause(Expr *Hint, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPHintClause(Hint, StartLoc, LParenLoc,
EndLoc);
}
/// Build a new OpenMP 'detach' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPDetachClause(Expr *Evt, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPDetachClause(Evt, StartLoc, LParenLoc,
EndLoc);
}
/// Build a new OpenMP 'dist_schedule' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *
RebuildOMPDistScheduleClause(OpenMPDistScheduleClauseKind Kind,
Expr *ChunkSize, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation KindLoc,
SourceLocation CommaLoc, SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPDistScheduleClause(
Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc);
}
/// Build a new OpenMP 'to' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *
RebuildOMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
ArrayRef<SourceLocation> MotionModifiersLoc,
CXXScopeSpec &MapperIdScopeSpec,
DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
ArrayRef<Expr *> UnresolvedMappers) {
return getSema().OpenMP().ActOnOpenMPToClause(
MotionModifiers, MotionModifiersLoc, MapperIdScopeSpec, MapperId,
ColonLoc, VarList, Locs, UnresolvedMappers);
}
/// Build a new OpenMP 'from' clause.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
OMPClause *
RebuildOMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
ArrayRef<SourceLocation> MotionModifiersLoc,
CXXScopeSpec &MapperIdScopeSpec,
DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
ArrayRef<Expr *> UnresolvedMappers) {
return getSema().OpenMP().ActOnOpenMPFromClause(
MotionModifiers, MotionModifiersLoc, MapperIdScopeSpec, MapperId,
ColonLoc, VarList, Locs, UnresolvedMappers);
}
/// Build a new OpenMP 'use_device_ptr' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs) {
return getSema().OpenMP().ActOnOpenMPUseDevicePtrClause(VarList, Locs);
}
/// Build a new OpenMP 'use_device_addr' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs) {
return getSema().OpenMP().ActOnOpenMPUseDeviceAddrClause(VarList, Locs);
}
/// Build a new OpenMP 'is_device_ptr' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs) {
return getSema().OpenMP().ActOnOpenMPIsDevicePtrClause(VarList, Locs);
}
/// Build a new OpenMP 'has_device_addr' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPHasDeviceAddrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs) {
return getSema().OpenMP().ActOnOpenMPHasDeviceAddrClause(VarList, Locs);
}
/// Build a new OpenMP 'defaultmap' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPDefaultmapClause(OpenMPDefaultmapClauseModifier M,
OpenMPDefaultmapClauseKind Kind,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation MLoc,
SourceLocation KindLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPDefaultmapClause(
M, Kind, StartLoc, LParenLoc, MLoc, KindLoc, EndLoc);
}
/// Build a new OpenMP 'nontemporal' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPNontemporalClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPNontemporalClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'inclusive' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPInclusiveClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPInclusiveClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'exclusive' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPExclusiveClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPExclusiveClause(VarList, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'uses_allocators' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPUsesAllocatorsClause(
ArrayRef<SemaOpenMP::UsesAllocatorsData> Data, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPUsesAllocatorClause(
StartLoc, LParenLoc, EndLoc, Data);
}
/// Build a new OpenMP 'affinity' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPAffinityClause(SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ColonLoc,
SourceLocation EndLoc, Expr *Modifier,
ArrayRef<Expr *> Locators) {
return getSema().OpenMP().ActOnOpenMPAffinityClause(
StartLoc, LParenLoc, ColonLoc, EndLoc, Modifier, Locators);
}
/// Build a new OpenMP 'order' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPOrderClause(
OpenMPOrderClauseKind Kind, SourceLocation KindKwLoc,
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc,
OpenMPOrderClauseModifier Modifier, SourceLocation ModifierKwLoc) {
return getSema().OpenMP().ActOnOpenMPOrderClause(
Modifier, Kind, StartLoc, LParenLoc, ModifierKwLoc, KindKwLoc, EndLoc);
}
/// Build a new OpenMP 'init' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPInitClause(Expr *InteropVar, OMPInteropInfo &InteropInfo,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation VarLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPInitClause(
InteropVar, InteropInfo, StartLoc, LParenLoc, VarLoc, EndLoc);
}
/// Build a new OpenMP 'use' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation VarLoc, SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPUseClause(InteropVar, StartLoc,
LParenLoc, VarLoc, EndLoc);
}
/// Build a new OpenMP 'destroy' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation VarLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPDestroyClause(
InteropVar, StartLoc, LParenLoc, VarLoc, EndLoc);
}
/// Build a new OpenMP 'novariants' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPNovariantsClause(Expr *Condition,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPNovariantsClause(Condition, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'nocontext' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPNocontextClause(Expr *Condition, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPNocontextClause(Condition, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'filter' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPFilterClause(ThreadID, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'bind' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPBindClause(OpenMPBindClauseKind Kind,
SourceLocation KindLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPBindClause(Kind, KindLoc, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'ompx_dyn_cgroup_mem' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPXDynCGroupMemClause(Expr *Size, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPXDynCGroupMemClause(Size, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'ompx_attribute' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPXAttributeClause(ArrayRef<const Attr *> Attrs,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPXAttributeClause(Attrs, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'ompx_bare' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPXBareClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPXBareClause(StartLoc, EndLoc);
}
/// Build a new OpenMP 'align' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPAlignClause(Expr *A, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPAlignClause(A, StartLoc, LParenLoc,
EndLoc);
}
/// Build a new OpenMP 'at' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPAtClause(OpenMPAtClauseKind Kind, SourceLocation KwLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPAtClause(Kind, KwLoc, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'severity' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPSeverityClause(OpenMPSeverityClauseKind Kind,
SourceLocation KwLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPSeverityClause(Kind, KwLoc, StartLoc,
LParenLoc, EndLoc);
}
/// Build a new OpenMP 'message' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *RebuildOMPMessageClause(Expr *MS, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPMessageClause(MS, StartLoc, LParenLoc,
EndLoc);
}
/// Build a new OpenMP 'doacross' clause.
///
/// By default, performs semantic analysis to build the new OpenMP clause.
/// Subclasses may override this routine to provide different behavior.
OMPClause *
RebuildOMPDoacrossClause(OpenMPDoacrossClauseModifier DepType,
SourceLocation DepLoc, SourceLocation ColonLoc,
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPDoacrossClause(
DepType, DepLoc, ColonLoc, VarList, StartLoc, LParenLoc, EndLoc);
}
/// Build a new OpenMP 'holds' clause.
OMPClause *RebuildOMPHoldsClause(Expr *A, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
return getSema().OpenMP().ActOnOpenMPHoldsClause(A, StartLoc, LParenLoc,
EndLoc);
}
/// Rebuild the operand to an Objective-C \@synchronized statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,
Expr *object) {
return getSema().ObjC().ActOnObjCAtSynchronizedOperand(atLoc, object);
}
/// Build a new Objective-C \@synchronized statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
Expr *Object, Stmt *Body) {
return getSema().ObjC().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body);
}
/// Build a new Objective-C \@autoreleasepool statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
Stmt *Body) {
return getSema().ObjC().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
}
/// Build a new Objective-C fast enumeration statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
Stmt *Element,
Expr *Collection,
SourceLocation RParenLoc,
Stmt *Body) {
StmtResult ForEachStmt = getSema().ObjC().ActOnObjCForCollectionStmt(
ForLoc, Element, Collection, RParenLoc);
if (ForEachStmt.isInvalid())
return StmtError();
return getSema().ObjC().FinishObjCForCollectionStmt(ForEachStmt.get(),
Body);
}
/// Build a new C++ exception declaration.
///
/// By default, performs semantic analysis to build the new decaration.
/// Subclasses may override this routine to provide different behavior.
VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
TypeSourceInfo *Declarator,
SourceLocation StartLoc,
SourceLocation IdLoc,
IdentifierInfo *Id) {
VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator,
StartLoc, IdLoc, Id);
if (Var)
getSema().CurContext->addDecl(Var);
return Var;
}
/// Build a new C++ catch statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
VarDecl *ExceptionDecl,
Stmt *Handler) {
return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
Handler));
}
/// Build a new C++ try statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock,
ArrayRef<Stmt *> Handlers) {
return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers);
}
/// Build a new C++0x range-based for statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildCXXForRangeStmt(
SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *Init,
SourceLocation ColonLoc, Stmt *Range, Stmt *Begin, Stmt *End, Expr *Cond,
Expr *Inc, Stmt *LoopVar, SourceLocation RParenLoc,
ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps) {
// If we've just learned that the range is actually an Objective-C
// collection, treat this as an Objective-C fast enumeration loop.
if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) {
if (RangeStmt->isSingleDecl()) {
if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) {
if (RangeVar->isInvalidDecl())
return StmtError();
Expr *RangeExpr = RangeVar->getInit();
if (!RangeExpr->isTypeDependent() &&
RangeExpr->getType()->isObjCObjectPointerType()) {
// FIXME: Support init-statements in Objective-C++20 ranged for
// statement.
if (Init) {
return SemaRef.Diag(Init->getBeginLoc(),
diag::err_objc_for_range_init_stmt)
<< Init->getSourceRange();
}
return getSema().ObjC().ActOnObjCForCollectionStmt(
ForLoc, LoopVar, RangeExpr, RParenLoc);
}
}
}
}
return getSema().BuildCXXForRangeStmt(
ForLoc, CoawaitLoc, Init, ColonLoc, Range, Begin, End, Cond, Inc,
LoopVar, RParenLoc, Sema::BFRK_Rebuild, LifetimeExtendTemps);
}
/// Build a new C++0x range-based for statement.
///
/// By default, performs semantic analysis to build the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
NestedNameSpecifierLoc QualifierLoc,
DeclarationNameInfo NameInfo,
Stmt *Nested) {
return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
QualifierLoc, NameInfo, Nested);
}
/// Attach body to a C++0x range-based for statement.
///
/// By default, performs semantic analysis to finish the new statement.
/// Subclasses may override this routine to provide different behavior.
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
return getSema().FinishCXXForRangeStmt(ForRange, Body);
}
StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc,
Stmt *TryBlock, Stmt *Handler) {
return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler);
}
StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr,
Stmt *Block) {
return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block);
}
StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) {
return SEHFinallyStmt::Create(getSema().getASTContext(), Loc, Block);
}
ExprResult RebuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
SourceLocation LParen,
SourceLocation RParen,
TypeSourceInfo *TSI) {
return getSema().SYCL().BuildUniqueStableNameExpr(OpLoc, LParen, RParen,
TSI);
}
/// Build a new predefined expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildPredefinedExpr(SourceLocation Loc, PredefinedIdentKind IK) {
return getSema().BuildPredefinedExpr(Loc, IK);
}
/// Build a new expression that references a declaration.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool RequiresADL) {
return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
}
/// Build a new expression that references a declaration.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
ValueDecl *VD,
const DeclarationNameInfo &NameInfo,
NamedDecl *Found,
TemplateArgumentListInfo *TemplateArgs) {
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD, Found,
TemplateArgs);
}
/// Build a new expression in parentheses.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
SourceLocation RParen) {
return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
}
/// Build a new pseudo-destructor expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
SourceLocation OperatorLoc,
bool isArrow,
CXXScopeSpec &SS,
TypeSourceInfo *ScopeType,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage Destroyed);
/// Build a new unary operator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
UnaryOperatorKind Opc,
Expr *SubExpr) {
return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr);
}
/// Build a new builtin offsetof expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
TypeSourceInfo *Type,
ArrayRef<Sema::OffsetOfComponent> Components,
SourceLocation RParenLoc) {
return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
RParenLoc);
}
/// Build a new sizeof, alignof or vec_step expression with a
/// type argument.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
SourceRange R) {
return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
}
/// Build a new sizeof, alignof or vec step expression with an
/// expression argument.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
SourceRange R) {
ExprResult Result
= getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
if (Result.isInvalid())
return ExprError();
return Result;
}
/// Build a new array subscript expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildArraySubscriptExpr(Expr *LHS,
SourceLocation LBracketLoc,
Expr *RHS,
SourceLocation RBracketLoc) {
return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS,
LBracketLoc, RHS,
RBracketLoc);
}
/// Build a new matrix subscript expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
Expr *ColumnIdx,
SourceLocation RBracketLoc) {
return getSema().CreateBuiltinMatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
RBracketLoc);
}
/// Build a new array section expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildArraySectionExpr(bool IsOMPArraySection, Expr *Base,
SourceLocation LBracketLoc,
Expr *LowerBound,
SourceLocation ColonLocFirst,
SourceLocation ColonLocSecond,
Expr *Length, Expr *Stride,
SourceLocation RBracketLoc) {
if (IsOMPArraySection)
return getSema().OpenMP().ActOnOMPArraySectionExpr(
Base, LBracketLoc, LowerBound, ColonLocFirst, ColonLocSecond, Length,
Stride, RBracketLoc);
assert(Stride == nullptr && !ColonLocSecond.isValid() &&
"Stride/second colon not allowed for OpenACC");
return getSema().OpenACC().ActOnArraySectionExpr(
Base, LBracketLoc, LowerBound, ColonLocFirst, Length, RBracketLoc);
}
/// Build a new array shaping expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
SourceLocation RParenLoc,
ArrayRef<Expr *> Dims,
ArrayRef<SourceRange> BracketsRanges) {
return getSema().OpenMP().ActOnOMPArrayShapingExpr(
Base, LParenLoc, RParenLoc, Dims, BracketsRanges);
}
/// Build a new iterator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult
RebuildOMPIteratorExpr(SourceLocation IteratorKwLoc, SourceLocation LLoc,
SourceLocation RLoc,
ArrayRef<SemaOpenMP::OMPIteratorData> Data) {
return getSema().OpenMP().ActOnOMPIteratorExpr(
/*Scope=*/nullptr, IteratorKwLoc, LLoc, RLoc, Data);
}
/// Build a new call expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc,
Expr *ExecConfig = nullptr) {
return getSema().ActOnCallExpr(
/*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc, ExecConfig);
}
ExprResult RebuildCxxSubscriptExpr(Expr *Callee, SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc) {
return getSema().ActOnArraySubscriptExpr(
/*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc);
}
/// Build a new member access expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
bool isArrow,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &MemberNameInfo,
ValueDecl *Member,
NamedDecl *FoundDecl,
const TemplateArgumentListInfo *ExplicitTemplateArgs,
NamedDecl *FirstQualifierInScope) {
ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base,
isArrow);
if (!Member->getDeclName()) {
// We have a reference to an unnamed field. This is always the
// base of an anonymous struct/union member access, i.e. the
// field is always of record type.
assert(Member->getType()->isRecordType() &&
"unnamed member not of record type?");
BaseResult =
getSema().PerformObjectMemberConversion(BaseResult.get(),
QualifierLoc.getNestedNameSpecifier(),
FoundDecl, Member);
if (BaseResult.isInvalid())
return ExprError();
Base = BaseResult.get();
// `TranformMaterializeTemporaryExpr()` removes materialized temporaries
// from the AST, so we need to re-insert them if needed (since
// `BuildFieldRefereneExpr()` doesn't do this).
if (!isArrow && Base->isPRValue()) {
BaseResult = getSema().TemporaryMaterializationConversion(Base);
if (BaseResult.isInvalid())
return ExprError();
Base = BaseResult.get();
}
CXXScopeSpec EmptySS;
return getSema().BuildFieldReferenceExpr(
Base, isArrow, OpLoc, EmptySS, cast<FieldDecl>(Member),
DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
MemberNameInfo);
}
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
Base = BaseResult.get();
if (Base->containsErrors())
return ExprError();
QualType BaseType = Base->getType();
if (isArrow && !BaseType->isPointerType())
return ExprError();
// FIXME: this involves duplicating earlier analysis in a lot of
// cases; we should avoid this when possible.
LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
R.addDecl(FoundDecl);
R.resolveKind();
if (getSema().isUnevaluatedContext() && Base->isImplicitCXXThis() &&
isa<FieldDecl, IndirectFieldDecl, MSPropertyDecl>(Member)) {
if (auto *ThisClass = cast<CXXThisExpr>(Base)
->getType()
->getPointeeType()
->getAsCXXRecordDecl()) {
auto *Class = cast<CXXRecordDecl>(Member->getDeclContext());
// In unevaluated contexts, an expression supposed to be a member access
// might reference a member in an unrelated class.
if (!ThisClass->Equals(Class) && !ThisClass->isDerivedFrom(Class))
return getSema().BuildDeclRefExpr(Member, Member->getType(),
VK_LValue, Member->getLocation());
}
}
return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
SS, TemplateKWLoc,
FirstQualifierInScope,
R, ExplicitTemplateArgs,
/*S*/nullptr);
}
/// Build a new binary operator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *LHS, Expr *RHS) {
return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS);
}
/// Build a new rewritten operator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXRewrittenBinaryOperator(
SourceLocation OpLoc, BinaryOperatorKind Opcode,
const UnresolvedSetImpl &UnqualLookups, Expr *LHS, Expr *RHS) {
return getSema().CreateOverloadedBinOp(OpLoc, Opcode, UnqualLookups, LHS,
RHS, /*RequiresADL*/false);
}
/// Build a new conditional operator expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildConditionalOperator(Expr *Cond,
SourceLocation QuestionLoc,
Expr *LHS,
SourceLocation ColonLoc,
Expr *RHS) {
return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
LHS, RHS);
}
/// Build a new C-style cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
TypeSourceInfo *TInfo,
SourceLocation RParenLoc,
Expr *SubExpr) {
return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
SubExpr);
}
/// Build a new compound literal expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
TypeSourceInfo *TInfo,
SourceLocation RParenLoc,
Expr *Init) {
return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
Init);
}
/// Build a new extended vector element access expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildExtVectorElementExpr(Expr *Base, SourceLocation OpLoc,
bool IsArrow,
SourceLocation AccessorLoc,
IdentifierInfo &Accessor) {
CXXScopeSpec SS;
DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
return getSema().BuildMemberReferenceExpr(
Base, Base->getType(), OpLoc, IsArrow, SS, SourceLocation(),
/*FirstQualifierInScope*/ nullptr, NameInfo,
/* TemplateArgs */ nullptr,
/*S*/ nullptr);
}
/// Build a new initializer list expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildInitList(SourceLocation LBraceLoc,
MultiExprArg Inits,
SourceLocation RBraceLoc) {
return SemaRef.BuildInitList(LBraceLoc, Inits, RBraceLoc);
}
/// Build a new designated initializer expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDesignatedInitExpr(Designation &Desig,
MultiExprArg ArrayExprs,
SourceLocation EqualOrColonLoc,
bool GNUSyntax,
Expr *Init) {
ExprResult Result
= SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
Init);
if (Result.isInvalid())
return ExprError();
return Result;
}
/// Build a new value-initialized expression.
///
/// By default, builds the implicit value initialization without performing
/// any semantic analysis. Subclasses may override this routine to provide
/// different behavior.
ExprResult RebuildImplicitValueInitExpr(QualType T) {
return new (SemaRef.Context) ImplicitValueInitExpr(T);
}
/// Build a new \c va_arg expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
Expr *SubExpr, TypeSourceInfo *TInfo,
SourceLocation RParenLoc) {
return getSema().BuildVAArgExpr(BuiltinLoc,
SubExpr, TInfo,
RParenLoc);
}
/// Build a new expression list in parentheses.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
MultiExprArg SubExprs,
SourceLocation RParenLoc) {
return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs);
}
/// Build a new address-of-label expression.
///
/// By default, performs semantic analysis, using the name of the label
/// rather than attempting to map the label statement itself.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
SourceLocation LabelLoc, LabelDecl *Label) {
return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
}
/// Build a new GNU statement expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildStmtExpr(SourceLocation LParenLoc, Stmt *SubStmt,
SourceLocation RParenLoc, unsigned TemplateDepth) {
return getSema().BuildStmtExpr(LParenLoc, SubStmt, RParenLoc,
TemplateDepth);
}
/// Build a new __builtin_choose_expr expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
Expr *Cond, Expr *LHS, Expr *RHS,
SourceLocation RParenLoc) {
return SemaRef.ActOnChooseExpr(BuiltinLoc,
Cond, LHS, RHS,
RParenLoc);
}
/// Build a new generic selection expression with an expression predicate.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> Types,
ArrayRef<Expr *> Exprs) {
return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
/*PredicateIsExpr=*/true,
ControllingExpr, Types, Exprs);
}
/// Build a new generic selection expression with a type predicate.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
TypeSourceInfo *ControllingType,
ArrayRef<TypeSourceInfo *> Types,
ArrayRef<Expr *> Exprs) {
return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
/*PredicateIsExpr=*/false,
ControllingType, Types, Exprs);
}
/// Build a new overloaded operator call expression.
///
/// By default, performs semantic analysis to build the new expression.
/// The semantic analysis provides the behavior of template instantiation,
/// copying with transformations that turn what looks like an overloaded
/// operator call into a use of a builtin operator, performing
/// argument-dependent lookup, etc. Subclasses may override this routine to
/// provide different behavior.
ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
SourceLocation OpLoc,
SourceLocation CalleeLoc,
bool RequiresADL,
const UnresolvedSetImpl &Functions,
Expr *First, Expr *Second);
/// Build a new C++ "named" cast expression, such as static_cast or
/// reinterpret_cast.
///
/// By default, this routine dispatches to one of the more-specific routines
/// for a particular named case, e.g., RebuildCXXStaticCastExpr().
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
Stmt::StmtClass Class,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
switch (Class) {
case Stmt::CXXStaticCastExprClass:
return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr, RParenLoc);
case Stmt::CXXDynamicCastExprClass:
return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr, RParenLoc);
case Stmt::CXXReinterpretCastExprClass:
return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr,
RParenLoc);
case Stmt::CXXConstCastExprClass:
return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
RAngleLoc, LParenLoc,
SubExpr, RParenLoc);
case Stmt::CXXAddrspaceCastExprClass:
return getDerived().RebuildCXXAddrspaceCastExpr(
OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc);
default:
llvm_unreachable("Invalid C++ named cast");
}
}
/// Build a new C++ static_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// Build a new C++ dynamic_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// Build a new C++ reinterpret_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
/// Build a new C++ const_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
SourceLocation LAngleLoc,
TypeSourceInfo *TInfo,
SourceLocation RAngleLoc,
SourceLocation LParenLoc,
Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc),
SourceRange(LParenLoc, RParenLoc));
}
ExprResult
RebuildCXXAddrspaceCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc,
TypeSourceInfo *TInfo, SourceLocation RAngleLoc,
SourceLocation LParenLoc, Expr *SubExpr,
SourceLocation RParenLoc) {
return getSema().BuildCXXNamedCast(
OpLoc, tok::kw_addrspace_cast, TInfo, SubExpr,
SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc));
}
/// Build a new C++ functional-style cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
SourceLocation LParenLoc,
Expr *Sub,
SourceLocation RParenLoc,
bool ListInitialization) {
// If Sub is a ParenListExpr, then Sub is the syntatic form of a
// CXXParenListInitExpr. Pass its expanded arguments so that the
// CXXParenListInitExpr can be rebuilt.
if (auto *PLE = dyn_cast<ParenListExpr>(Sub))
return getSema().BuildCXXTypeConstructExpr(
TInfo, LParenLoc, MultiExprArg(PLE->getExprs(), PLE->getNumExprs()),
RParenLoc, ListInitialization);
return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
MultiExprArg(&Sub, 1), RParenLoc,
ListInitialization);
}
/// Build a new C++ __builtin_bit_cast expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildBuiltinBitCastExpr(SourceLocation KWLoc,
TypeSourceInfo *TSI, Expr *Sub,
SourceLocation RParenLoc) {
return getSema().BuildBuiltinBitCastExpr(KWLoc, TSI, Sub, RParenLoc);
}
/// Build a new C++ typeid(type) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
RParenLoc);
}
/// Build a new C++ typeid(expr) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
RParenLoc);
}
/// Build a new C++ __uuidof(type) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc);
}
/// Build a new C++ __uuidof(expr) expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc,
Expr *Operand, SourceLocation RParenLoc) {
return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc);
}
/// Build a new C++ "this" expression.
///
/// By default, performs semantic analysis to build a new "this" expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
QualType ThisType,
bool isImplicit) {
if (getSema().CheckCXXThisType(ThisLoc, ThisType))
return ExprError();
return getSema().BuildCXXThisExpr(ThisLoc, ThisType, isImplicit);
}
/// Build a new C++ throw expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
bool IsThrownVariableInScope) {
return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
}
/// Build a new C++ default-argument expression.
///
/// By default, builds a new default-argument expression, which does not
/// require any semantic analysis. Subclasses may override this routine to
/// provide different behavior.
ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc, ParmVarDecl *Param,
Expr *RewrittenExpr) {
return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param,
RewrittenExpr, getSema().CurContext);
}
/// Build a new C++11 default-initialization expression.
///
/// By default, builds a new default field initialization expression, which
/// does not require any semantic analysis. Subclasses may override this
/// routine to provide different behavior.
ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc,
FieldDecl *Field) {
return getSema().BuildCXXDefaultInitExpr(Loc, Field);
}
/// Build a new C++ zero-initialization expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, {}, RParenLoc,
/*ListInitialization=*/false);
}
/// Build a new C++ "new" expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXNewExpr(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens, QualType AllocatedType,
TypeSourceInfo *AllocatedTypeInfo,
std::optional<Expr *> ArraySize,
SourceRange DirectInitRange, Expr *Initializer) {
return getSema().BuildCXXNew(StartLoc, UseGlobal,
PlacementLParen,
PlacementArgs,
PlacementRParen,
TypeIdParens,
AllocatedType,
AllocatedTypeInfo,
ArraySize,
DirectInitRange,
Initializer);
}
/// Build a new C++ "delete" expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
bool IsGlobalDelete,
bool IsArrayForm,
Expr *Operand) {
return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
Operand);
}
/// Build a new type trait expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildTypeTrait(TypeTrait Trait,
SourceLocation StartLoc,
ArrayRef<TypeSourceInfo *> Args,
SourceLocation RParenLoc) {
return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc);
}
/// Build a new array type trait expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
SourceLocation StartLoc,
TypeSourceInfo *TSInfo,
Expr *DimExpr,
SourceLocation RParenLoc) {
return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
}
/// Build a new expression trait expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
SourceLocation StartLoc,
Expr *Queried,
SourceLocation RParenLoc) {
return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
}
/// Build a new (previously unresolved) declaration reference
/// expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildDependentScopeDeclRefExpr(
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs,
bool IsAddressOfOperand,
TypeSourceInfo **RecoveryTSI) {
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
if (TemplateArgs || TemplateKWLoc.isValid())
return getSema().BuildQualifiedTemplateIdExpr(
SS, TemplateKWLoc, NameInfo, TemplateArgs, IsAddressOfOperand);
return getSema().BuildQualifiedDeclarationNameExpr(
SS, NameInfo, IsAddressOfOperand, RecoveryTSI);
}
/// Build a new template-id expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
LookupResult &R,
bool RequiresADL,
const TemplateArgumentListInfo *TemplateArgs) {
return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL,
TemplateArgs);
}
/// Build a new object-construction expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXConstructExpr(
QualType T, SourceLocation Loc, CXXConstructorDecl *Constructor,
bool IsElidable, MultiExprArg Args, bool HadMultipleCandidates,
bool ListInitialization, bool StdInitListInitialization,
bool RequiresZeroInit, CXXConstructionKind ConstructKind,
SourceRange ParenRange) {
// Reconstruct the constructor we originally found, which might be
// different if this is a call to an inherited constructor.
CXXConstructorDecl *FoundCtor = Constructor;
if (Constructor->isInheritingConstructor())
FoundCtor = Constructor->getInheritedConstructor().getConstructor();
SmallVector<Expr *, 8> ConvertedArgs;
if (getSema().CompleteConstructorCall(FoundCtor, T, Args, Loc,
ConvertedArgs))
return ExprError();
return getSema().BuildCXXConstructExpr(Loc, T, Constructor,
IsElidable,
ConvertedArgs,
HadMultipleCandidates,
ListInitialization,
StdInitListInitialization,
RequiresZeroInit, ConstructKind,
ParenRange);
}
/// Build a new implicit construction via inherited constructor
/// expression.
ExprResult RebuildCXXInheritedCtorInitExpr(QualType T, SourceLocation Loc,
CXXConstructorDecl *Constructor,
bool ConstructsVBase,
bool InheritedFromVBase) {
return new (getSema().Context) CXXInheritedCtorInitExpr(
Loc, T, Constructor, ConstructsVBase, InheritedFromVBase);
}
/// Build a new object-construction expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
SourceLocation LParenOrBraceLoc,
MultiExprArg Args,
SourceLocation RParenOrBraceLoc,
bool ListInitialization) {
return getSema().BuildCXXTypeConstructExpr(
TSInfo, LParenOrBraceLoc, Args, RParenOrBraceLoc, ListInitialization);
}
/// Build a new object-construction expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation RParenLoc,
bool ListInitialization) {
return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args,
RParenLoc, ListInitialization);
}
/// Build a new member reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
QualType BaseType,
bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs) {
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
OperatorLoc, IsArrow,
SS, TemplateKWLoc,
FirstQualifierInScope,
MemberNameInfo,
TemplateArgs, /*S*/nullptr);
}
/// Build a new member reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType,
SourceLocation OperatorLoc,
bool IsArrow,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
NamedDecl *FirstQualifierInScope,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs) {
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
OperatorLoc, IsArrow,
SS, TemplateKWLoc,
FirstQualifierInScope,
R, TemplateArgs, /*S*/nullptr);
}
/// Build a new noexcept expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
}
UnsignedOrNone
ComputeSizeOfPackExprWithoutSubstitution(ArrayRef<TemplateArgument> PackArgs);
/// Build a new expression to compute the length of a parameter pack.
ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack,
SourceLocation PackLoc,
SourceLocation RParenLoc,
UnsignedOrNone Length,
ArrayRef<TemplateArgument> PartialArgs) {
return SizeOfPackExpr::Create(SemaRef.Context, OperatorLoc, Pack, PackLoc,
RParenLoc, Length, PartialArgs);
}
ExprResult RebuildPackIndexingExpr(SourceLocation EllipsisLoc,
SourceLocation RSquareLoc,
Expr *PackIdExpression, Expr *IndexExpr,
ArrayRef<Expr *> ExpandedExprs,
bool FullySubstituted = false) {
return getSema().BuildPackIndexingExpr(PackIdExpression, EllipsisLoc,
IndexExpr, RSquareLoc, ExpandedExprs,
FullySubstituted);
}
/// Build a new expression representing a call to a source location
/// builtin.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
SourceLocation BuiltinLoc,
SourceLocation RPLoc,
DeclContext *ParentContext) {
return getSema().BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc,
ParentContext);
}
/// Build a new Objective-C boxed expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildConceptSpecializationExpr(NestedNameSpecifierLoc NNS,
SourceLocation TemplateKWLoc, DeclarationNameInfo ConceptNameInfo,
NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
TemplateArgumentListInfo *TALI) {
CXXScopeSpec SS;
SS.Adopt(NNS);
ExprResult Result = getSema().CheckConceptTemplateId(SS, TemplateKWLoc,
ConceptNameInfo,
FoundDecl,
NamedConcept, TALI);
if (Result.isInvalid())
return ExprError();
return Result;
}
/// \brief Build a new requires expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildRequiresExpr(SourceLocation RequiresKWLoc,
RequiresExprBodyDecl *Body,
SourceLocation LParenLoc,
ArrayRef<ParmVarDecl *> LocalParameters,
SourceLocation RParenLoc,
ArrayRef<concepts::Requirement *> Requirements,
SourceLocation ClosingBraceLoc) {
return RequiresExpr::Create(SemaRef.Context, RequiresKWLoc, Body, LParenLoc,
LocalParameters, RParenLoc, Requirements,
ClosingBraceLoc);
}
concepts::TypeRequirement *
RebuildTypeRequirement(
concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
return SemaRef.BuildTypeRequirement(SubstDiag);
}
concepts::TypeRequirement *RebuildTypeRequirement(TypeSourceInfo *T) {
return SemaRef.BuildTypeRequirement(T);
}
concepts::ExprRequirement *
RebuildExprRequirement(
concepts::Requirement::SubstitutionDiagnostic *SubstDiag, bool IsSimple,
SourceLocation NoexceptLoc,
concepts::ExprRequirement::ReturnTypeRequirement Ret) {
return SemaRef.BuildExprRequirement(SubstDiag, IsSimple, NoexceptLoc,
std::move(Ret));
}
concepts::ExprRequirement *
RebuildExprRequirement(Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
concepts::ExprRequirement::ReturnTypeRequirement Ret) {
return SemaRef.BuildExprRequirement(E, IsSimple, NoexceptLoc,
std::move(Ret));
}
concepts::NestedRequirement *
RebuildNestedRequirement(StringRef InvalidConstraintEntity,
const ASTConstraintSatisfaction &Satisfaction) {
return SemaRef.BuildNestedRequirement(InvalidConstraintEntity,
Satisfaction);
}
concepts::NestedRequirement *RebuildNestedRequirement(Expr *Constraint) {
return SemaRef.BuildNestedRequirement(Constraint);
}
/// \brief Build a new Objective-C boxed expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
return getSema().ObjC().BuildObjCBoxedExpr(SR, ValueExpr);
}
/// Build a new Objective-C array literal.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCArrayLiteral(SourceRange Range,
Expr **Elements, unsigned NumElements) {
return getSema().ObjC().BuildObjCArrayLiteral(
Range, MultiExprArg(Elements, NumElements));
}
ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB,
Expr *Base, Expr *Key,
ObjCMethodDecl *getterMethod,
ObjCMethodDecl *setterMethod) {
return getSema().ObjC().BuildObjCSubscriptExpression(
RB, Base, Key, getterMethod, setterMethod);
}
/// Build a new Objective-C dictionary literal.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCDictionaryLiteral(SourceRange Range,
MutableArrayRef<ObjCDictionaryElement> Elements) {
return getSema().ObjC().BuildObjCDictionaryLiteral(Range, Elements);
}
/// Build a new Objective-C \@encode expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
TypeSourceInfo *EncodeTypeInfo,
SourceLocation RParenLoc) {
return SemaRef.ObjC().BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo,
RParenLoc);
}
/// Build a new Objective-C class message.
ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
Selector Sel,
ArrayRef<SourceLocation> SelectorLocs,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
MultiExprArg Args,
SourceLocation RBracLoc) {
return SemaRef.ObjC().BuildClassMessage(
ReceiverTypeInfo, ReceiverTypeInfo->getType(),
/*SuperLoc=*/SourceLocation(), Sel, Method, LBracLoc, SelectorLocs,
RBracLoc, Args);
}
/// Build a new Objective-C instance message.
ExprResult RebuildObjCMessageExpr(Expr *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelectorLocs,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
MultiExprArg Args,
SourceLocation RBracLoc) {
return SemaRef.ObjC().BuildInstanceMessage(Receiver, Receiver->getType(),
/*SuperLoc=*/SourceLocation(),
Sel, Method, LBracLoc,
SelectorLocs, RBracLoc, Args);
}
/// Build a new Objective-C instance/class message to 'super'.
ExprResult RebuildObjCMessageExpr(SourceLocation SuperLoc,
Selector Sel,
ArrayRef<SourceLocation> SelectorLocs,
QualType SuperType,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
MultiExprArg Args,
SourceLocation RBracLoc) {
return Method->isInstanceMethod()
? SemaRef.ObjC().BuildInstanceMessage(
nullptr, SuperType, SuperLoc, Sel, Method, LBracLoc,
SelectorLocs, RBracLoc, Args)
: SemaRef.ObjC().BuildClassMessage(nullptr, SuperType, SuperLoc,
Sel, Method, LBracLoc,
SelectorLocs, RBracLoc, Args);
}
/// Build a new Objective-C ivar reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
SourceLocation IvarLoc,
bool IsArrow, bool IsFreeIvar) {
CXXScopeSpec SS;
DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc);
ExprResult Result = getSema().BuildMemberReferenceExpr(
BaseArg, BaseArg->getType(),
/*FIXME:*/ IvarLoc, IsArrow, SS, SourceLocation(),
/*FirstQualifierInScope=*/nullptr, NameInfo,
/*TemplateArgs=*/nullptr,
/*S=*/nullptr);
if (IsFreeIvar && Result.isUsable())
cast<ObjCIvarRefExpr>(Result.get())->setIsFreeIvar(IsFreeIvar);
return Result;
}
/// Build a new Objective-C property reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
ObjCPropertyDecl *Property,
SourceLocation PropertyLoc) {
CXXScopeSpec SS;
DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc);
return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
/*FIXME:*/PropertyLoc,
/*IsArrow=*/false,
SS, SourceLocation(),
/*FirstQualifierInScope=*/nullptr,
NameInfo,
/*TemplateArgs=*/nullptr,
/*S=*/nullptr);
}
/// Build a new Objective-C property reference expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
ObjCMethodDecl *Getter,
ObjCMethodDecl *Setter,
SourceLocation PropertyLoc) {
// Since these expressions can only be value-dependent, we do not
// need to perform semantic analysis again.
return Owned(
new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
VK_LValue, OK_ObjCProperty,
PropertyLoc, Base));
}
/// Build a new Objective-C "isa" expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
SourceLocation OpLoc, bool IsArrow) {
CXXScopeSpec SS;
DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc);
return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
OpLoc, IsArrow,
SS, SourceLocation(),
/*FirstQualifierInScope=*/nullptr,
NameInfo,
/*TemplateArgs=*/nullptr,
/*S=*/nullptr);
}
/// Build a new shuffle vector expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
MultiExprArg SubExprs,
SourceLocation RParenLoc) {
// Find the declaration for __builtin_shufflevector
const IdentifierInfo &Name
= SemaRef.Context.Idents.get("__builtin_shufflevector");
TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
assert(!Lookup.empty() && "No __builtin_shufflevector?");
// Build a reference to the __builtin_shufflevector builtin
FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front());
Expr *Callee = new (SemaRef.Context)
DeclRefExpr(SemaRef.Context, Builtin, false,
SemaRef.Context.BuiltinFnTy, VK_PRValue, BuiltinLoc);
QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType());
Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy,
CK_BuiltinFnToFnPtr).get();
// Build the CallExpr
ExprResult TheCall = CallExpr::Create(
SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(),
Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc,
FPOptionsOverride());
// Type-check the __builtin_shufflevector expression.
return SemaRef.BuiltinShuffleVector(cast<CallExpr>(TheCall.get()));
}
/// Build a new convert vector expression.
ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc,
Expr *SrcExpr, TypeSourceInfo *DstTInfo,
SourceLocation RParenLoc) {
return SemaRef.ConvertVectorExpr(SrcExpr, DstTInfo, BuiltinLoc, RParenLoc);
}
/// Build a new template argument pack expansion.
///
/// By default, performs semantic analysis to build a new pack expansion
/// for a template argument. Subclasses may override this routine to provide
/// different behavior.
TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
SourceLocation EllipsisLoc,
UnsignedOrNone NumExpansions) {
switch (Pattern.getArgument().getKind()) {
case TemplateArgument::Expression: {
ExprResult Result
= getSema().CheckPackExpansion(Pattern.getSourceExpression(),
EllipsisLoc, NumExpansions);
if (Result.isInvalid())
return TemplateArgumentLoc();
return TemplateArgumentLoc(TemplateArgument(Result.get(),
/*IsCanonical=*/false),
Result.get());
}
case TemplateArgument::Template:
return TemplateArgumentLoc(
SemaRef.Context,
TemplateArgument(Pattern.getArgument().getAsTemplate(),
NumExpansions),
Pattern.getTemplateQualifierLoc(), Pattern.getTemplateNameLoc(),
EllipsisLoc);
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Declaration:
case TemplateArgument::StructuralValue:
case TemplateArgument::Pack:
case TemplateArgument::TemplateExpansion:
case TemplateArgument::NullPtr:
llvm_unreachable("Pack expansion pattern has no parameter packs");
case TemplateArgument::Type:
if (TypeSourceInfo *Expansion
= getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
EllipsisLoc,
NumExpansions))
return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
Expansion);
break;
}
return TemplateArgumentLoc();
}
/// Build a new expression pack expansion.
///
/// By default, performs semantic analysis to build a new pack expansion
/// for an expression. Subclasses may override this routine to provide
/// different behavior.
ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
UnsignedOrNone NumExpansions) {
return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
}
/// Build a new C++1z fold-expression.
///
/// By default, performs semantic analysis in order to build a new fold
/// expression.
ExprResult RebuildCXXFoldExpr(UnresolvedLookupExpr *ULE,
SourceLocation LParenLoc, Expr *LHS,
BinaryOperatorKind Operator,
SourceLocation EllipsisLoc, Expr *RHS,
SourceLocation RParenLoc,
UnsignedOrNone NumExpansions) {
return getSema().BuildCXXFoldExpr(ULE, LParenLoc, LHS, Operator,
EllipsisLoc, RHS, RParenLoc,
NumExpansions);
}
ExprResult RebuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
LambdaScopeInfo *LSI) {
for (ParmVarDecl *PVD : LSI->CallOperator->parameters()) {
if (Expr *Init = PVD->getInit())
LSI->ContainsUnexpandedParameterPack |=
Init->containsUnexpandedParameterPack();
else if (PVD->hasUninstantiatedDefaultArg())
LSI->ContainsUnexpandedParameterPack |=
PVD->getUninstantiatedDefaultArg()
->containsUnexpandedParameterPack();
}
return getSema().BuildLambdaExpr(StartLoc, EndLoc, LSI);
}
/// Build an empty C++1z fold-expression with the given operator.
///
/// By default, produces the fallback value for the fold-expression, or
/// produce an error if there is no fallback value.
ExprResult RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
BinaryOperatorKind Operator) {
return getSema().BuildEmptyCXXFoldExpr(EllipsisLoc, Operator);
}
/// Build a new atomic operation expression.
///
/// By default, performs semantic analysis to build the new expression.
/// Subclasses may override this routine to provide different behavior.
ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs,
AtomicExpr::AtomicOp Op,
SourceLocation RParenLoc) {
// Use this for all of the locations, since we don't know the difference
// between the call and the expr at this point.
SourceRange Range{BuiltinLoc, RParenLoc};
return getSema().BuildAtomicExpr(Range, Range, RParenLoc, SubExprs, Op,
Sema::AtomicArgumentOrder::AST);
}
ExprResult RebuildRecoveryExpr(SourceLocation BeginLoc, SourceLocation EndLoc,
ArrayRef<Expr *> SubExprs, QualType Type) {
return getSema().CreateRecoveryExpr(BeginLoc, EndLoc, SubExprs, Type);
}
StmtResult RebuildOpenACCComputeConstruct(OpenACCDirectiveKind K,
SourceLocation BeginLoc,
SourceLocation DirLoc,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses,
StmtResult StrBlock) {
return getSema().OpenACC().ActOnEndStmtDirective(
K, BeginLoc, DirLoc, SourceLocation{}, SourceLocation{}, {},
OpenACCAtomicKind::None, SourceLocation{}, EndLoc, Clauses, StrBlock);
}
StmtResult RebuildOpenACCLoopConstruct(SourceLocation BeginLoc,
SourceLocation DirLoc,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses,
StmtResult Loop) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::Loop, BeginLoc, DirLoc, SourceLocation{},
SourceLocation{}, {}, OpenACCAtomicKind::None, SourceLocation{}, EndLoc,
Clauses, Loop);
}
StmtResult RebuildOpenACCCombinedConstruct(OpenACCDirectiveKind K,
SourceLocation BeginLoc,
SourceLocation DirLoc,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses,
StmtResult Loop) {
return getSema().OpenACC().ActOnEndStmtDirective(
K, BeginLoc, DirLoc, SourceLocation{}, SourceLocation{}, {},
OpenACCAtomicKind::None, SourceLocation{}, EndLoc, Clauses, Loop);
}
StmtResult RebuildOpenACCDataConstruct(SourceLocation BeginLoc,
SourceLocation DirLoc,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses,
StmtResult StrBlock) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::Data, BeginLoc, DirLoc, SourceLocation{},
SourceLocation{}, {}, OpenACCAtomicKind::None, SourceLocation{}, EndLoc,
Clauses, StrBlock);
}
StmtResult
RebuildOpenACCEnterDataConstruct(SourceLocation BeginLoc,
SourceLocation DirLoc, SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::EnterData, BeginLoc, DirLoc, SourceLocation{},
SourceLocation{}, {}, OpenACCAtomicKind::None, SourceLocation{}, EndLoc,
Clauses, {});
}
StmtResult
RebuildOpenACCExitDataConstruct(SourceLocation BeginLoc,
SourceLocation DirLoc, SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::ExitData, BeginLoc, DirLoc, SourceLocation{},
SourceLocation{}, {}, OpenACCAtomicKind::None, SourceLocation{}, EndLoc,
Clauses, {});
}
StmtResult RebuildOpenACCHostDataConstruct(SourceLocation BeginLoc,
SourceLocation DirLoc,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses,
StmtResult StrBlock) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::HostData, BeginLoc, DirLoc, SourceLocation{},
SourceLocation{}, {}, OpenACCAtomicKind::None, SourceLocation{}, EndLoc,
Clauses, StrBlock);
}
StmtResult RebuildOpenACCInitConstruct(SourceLocation BeginLoc,
SourceLocation DirLoc,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::Init, BeginLoc, DirLoc, SourceLocation{},
SourceLocation{}, {}, OpenACCAtomicKind::None, SourceLocation{}, EndLoc,
Clauses, {});
}
StmtResult
RebuildOpenACCShutdownConstruct(SourceLocation BeginLoc,
SourceLocation DirLoc, SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::Shutdown, BeginLoc, DirLoc, SourceLocation{},
SourceLocation{}, {}, OpenACCAtomicKind::None, SourceLocation{}, EndLoc,
Clauses, {});
}
StmtResult RebuildOpenACCSetConstruct(SourceLocation BeginLoc,
SourceLocation DirLoc,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::Set, BeginLoc, DirLoc, SourceLocation{},
SourceLocation{}, {}, OpenACCAtomicKind::None, SourceLocation{}, EndLoc,
Clauses, {});
}
StmtResult RebuildOpenACCUpdateConstruct(SourceLocation BeginLoc,
SourceLocation DirLoc,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::Update, BeginLoc, DirLoc, SourceLocation{},
SourceLocation{}, {}, OpenACCAtomicKind::None, SourceLocation{}, EndLoc,
Clauses, {});
}
StmtResult RebuildOpenACCWaitConstruct(
SourceLocation BeginLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *DevNumExpr, SourceLocation QueuesLoc, ArrayRef<Expr *> QueueIdExprs,
SourceLocation RParenLoc, SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
llvm::SmallVector<Expr *> Exprs;
Exprs.push_back(DevNumExpr);
Exprs.insert(Exprs.end(), QueueIdExprs.begin(), QueueIdExprs.end());
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::Wait, BeginLoc, DirLoc, LParenLoc, QueuesLoc,
Exprs, OpenACCAtomicKind::None, RParenLoc, EndLoc, Clauses, {});
}
StmtResult RebuildOpenACCCacheConstruct(
SourceLocation BeginLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
SourceLocation ReadOnlyLoc, ArrayRef<Expr *> VarList,
SourceLocation RParenLoc, SourceLocation EndLoc) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::Cache, BeginLoc, DirLoc, LParenLoc, ReadOnlyLoc,
VarList, OpenACCAtomicKind::None, RParenLoc, EndLoc, {}, {});
}
StmtResult RebuildOpenACCAtomicConstruct(SourceLocation BeginLoc,
SourceLocation DirLoc,
OpenACCAtomicKind AtKind,
SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses,
StmtResult AssociatedStmt) {
return getSema().OpenACC().ActOnEndStmtDirective(
OpenACCDirectiveKind::Atomic, BeginLoc, DirLoc, SourceLocation{},
SourceLocation{}, {}, AtKind, SourceLocation{}, EndLoc, Clauses,
AssociatedStmt);
}
ExprResult RebuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return getSema().OpenACC().ActOnOpenACCAsteriskSizeExpr(AsteriskLoc);
}
private:
TypeLoc TransformTypeInObjectScope(TypeLoc TL,
QualType ObjectType,
NamedDecl *FirstQualifierInScope,
CXXScopeSpec &SS);
TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
QualType ObjectType,
NamedDecl *FirstQualifierInScope,
CXXScopeSpec &SS);
TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType,
NamedDecl *FirstQualifierInScope,
CXXScopeSpec &SS);
QualType TransformDependentNameType(TypeLocBuilder &TLB,
DependentNameTypeLoc TL,
bool DeducibleTSTContext);
llvm::SmallVector<OpenACCClause *>
TransformOpenACCClauseList(OpenACCDirectiveKind DirKind,
ArrayRef<const OpenACCClause *> OldClauses);
OpenACCClause *
TransformOpenACCClause(ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DirKind,
const OpenACCClause *OldClause);
};
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S, StmtDiscardKind SDK) {
if (!S)
return S;
switch (S->getStmtClass()) {
case Stmt::NoStmtClass: break;
// Transform individual statement nodes
// Pass SDK into statements that can produce a value
#define STMT(Node, Parent) \
case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
#define VALUESTMT(Node, Parent) \
case Stmt::Node##Class: \
return getDerived().Transform##Node(cast<Node>(S), SDK);
#define ABSTRACT_STMT(Node)
#define EXPR(Node, Parent)
#include "clang/AST/StmtNodes.inc"
// Transform expressions by calling TransformExpr.
#define STMT(Node, Parent)
#define ABSTRACT_STMT(Stmt)
#define EXPR(Node, Parent) case Stmt::Node##Class:
#include "clang/AST/StmtNodes.inc"
{
ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
if (SDK == SDK_StmtExprResult)
E = getSema().ActOnStmtExprResult(E);
return getSema().ActOnExprStmt(E, SDK == SDK_Discarded);
}
}
return S;
}
template<typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) {
if (!S)
return S;
switch (S->getClauseKind()) {
default: break;
// Transform individual clause nodes
#define GEN_CLANG_CLAUSE_CLASS
#define CLAUSE_CLASS(Enum, Str, Class) \
case Enum: \
return getDerived().Transform##Class(cast<Class>(S));
#include "llvm/Frontend/OpenMP/OMP.inc"
}
return S;
}
template<typename Derived>
ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
if (!E)
return E;
switch (E->getStmtClass()) {
case Stmt::NoStmtClass: break;
#define STMT(Node, Parent) case Stmt::Node##Class: break;
#define ABSTRACT_STMT(Stmt)
#define EXPR(Node, Parent) \
case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
#include "clang/AST/StmtNodes.inc"
}
return E;
}
template<typename Derived>
ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init,
bool NotCopyInit) {
// Initializers are instantiated like expressions, except that various outer
// layers are stripped.
if (!Init)
return Init;
if (auto *FE = dyn_cast<FullExpr>(Init))
Init = FE->getSubExpr();
if (auto *AIL = dyn_cast<ArrayInitLoopExpr>(Init)) {
OpaqueValueExpr *OVE = AIL->getCommonExpr();
Init = OVE->getSourceExpr();
}
if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
Init = MTE->getSubExpr();
while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
Init = Binder->getSubExpr();
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
Init = ICE->getSubExprAsWritten();
if (CXXStdInitializerListExpr *ILE =
dyn_cast<CXXStdInitializerListExpr>(Init))
return TransformInitializer(ILE->getSubExpr(), NotCopyInit);
// If this is copy-initialization, we only need to reconstruct
// InitListExprs. Other forms of copy-initialization will be a no-op if
// the initializer is already the right type.
CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init);
if (!NotCopyInit && !(Construct && Construct->isListInitialization()))
return getDerived().TransformExpr(Init);
// Revert value-initialization back to empty parens.
if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) {
SourceRange Parens = VIE->getSourceRange();
return getDerived().RebuildParenListExpr(Parens.getBegin(), {},
Parens.getEnd());
}
// FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization.
if (isa<ImplicitValueInitExpr>(Init))
return getDerived().RebuildParenListExpr(SourceLocation(), {},
SourceLocation());
// Revert initialization by constructor back to a parenthesized or braced list
// of expressions. Any other form of initializer can just be reused directly.
if (!Construct || isa<CXXTemporaryObjectExpr>(Construct))
return getDerived().TransformExpr(Init);
// If the initialization implicitly converted an initializer list to a
// std::initializer_list object, unwrap the std::initializer_list too.
if (Construct && Construct->isStdInitListInitialization())
return TransformInitializer(Construct->getArg(0), NotCopyInit);
// Enter a list-init context if this was list initialization.
EnterExpressionEvaluationContext Context(
getSema(), EnterExpressionEvaluationContext::InitList,
Construct->isListInitialization());
getSema().currentEvaluationContext().InLifetimeExtendingContext =
getSema().parentEvaluationContext().InLifetimeExtendingContext;
getSema().currentEvaluationContext().RebuildDefaultArgOrDefaultInit =
getSema().parentEvaluationContext().RebuildDefaultArgOrDefaultInit;
SmallVector<Expr*, 8> NewArgs;
bool ArgChanged = false;
if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(),
/*IsCall*/true, NewArgs, &ArgChanged))
return ExprError();
// If this was list initialization, revert to syntactic list form.
if (Construct->isListInitialization())
return getDerived().RebuildInitList(Construct->getBeginLoc(), NewArgs,
Construct->getEndLoc());
// Build a ParenListExpr to represent anything else.
SourceRange Parens = Construct->getParenOrBraceRange();
if (Parens.isInvalid()) {
// This was a variable declaration's initialization for which no initializer
// was specified.
assert(NewArgs.empty() &&
"no parens or braces but have direct init with arguments?");
return ExprEmpty();
}
return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs,
Parens.getEnd());
}
template<typename Derived>
bool TreeTransform<Derived>::TransformExprs(Expr *const *Inputs,
unsigned NumInputs,
bool IsCall,
SmallVectorImpl<Expr *> &Outputs,
bool *ArgChanged) {
for (unsigned I = 0; I != NumInputs; ++I) {
// If requested, drop call arguments that need to be dropped.
if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
if (ArgChanged)
*ArgChanged = true;
break;
}
if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
Expr *Pattern = Expansion->getPattern();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can and should
// be expanded.
bool Expand = true;
bool RetainExpansion = false;
UnsignedOrNone OrigNumExpansions = Expansion->getNumExpansions();
UnsignedOrNone NumExpansions = OrigNumExpansions;
if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
Pattern->getSourceRange(),
Unexpanded,
Expand, RetainExpansion,
NumExpansions))
return true;
if (!Expand) {
// The transform has determined that we should perform a simple
// transformation on the pack expansion, producing another pack
// expansion.
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
ExprResult OutPattern = getDerived().TransformExpr(Pattern);
if (OutPattern.isInvalid())
return true;
ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
Expansion->getEllipsisLoc(),
NumExpansions);
if (Out.isInvalid())
return true;
if (ArgChanged)
*ArgChanged = true;
Outputs.push_back(Out.get());
continue;
}
// Record right away that the argument was changed. This needs
// to happen even if the array expands to nothing.
if (ArgChanged) *ArgChanged = true;
// The transform has determined that we should perform an elementwise
// expansion of the pattern. Do so.
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), I);
ExprResult Out = getDerived().TransformExpr(Pattern);
if (Out.isInvalid())
return true;
if (Out.get()->containsUnexpandedParameterPack()) {
Out = getDerived().RebuildPackExpansion(
Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
if (Out.isInvalid())
return true;
}
Outputs.push_back(Out.get());
}
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
if (RetainExpansion) {
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
ExprResult Out = getDerived().TransformExpr(Pattern);
if (Out.isInvalid())
return true;
Out = getDerived().RebuildPackExpansion(
Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
if (Out.isInvalid())
return true;
Outputs.push_back(Out.get());
}
continue;
}
ExprResult Result =
IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false)
: getDerived().TransformExpr(Inputs[I]);
if (Result.isInvalid())
return true;
if (Result.get() != Inputs[I] && ArgChanged)
*ArgChanged = true;
Outputs.push_back(Result.get());
}
return false;
}
template <typename Derived>
Sema::ConditionResult TreeTransform<Derived>::TransformCondition(
SourceLocation Loc, VarDecl *Var, Expr *Expr, Sema::ConditionKind Kind) {
if (Var) {
VarDecl *ConditionVar = cast_or_null<VarDecl>(
getDerived().TransformDefinition(Var->getLocation(), Var));
if (!ConditionVar)
return Sema::ConditionError();
return getSema().ActOnConditionVariable(ConditionVar, Loc, Kind);
}
if (Expr) {
ExprResult CondExpr = getDerived().TransformExpr(Expr);
if (CondExpr.isInvalid())
return Sema::ConditionError();
return getSema().ActOnCondition(nullptr, Loc, CondExpr.get(), Kind,
/*MissingOK=*/true);
}
return Sema::ConditionResult();
}
template <typename Derived>
NestedNameSpecifierLoc TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
NestedNameSpecifierLoc NNS, QualType ObjectType,
NamedDecl *FirstQualifierInScope) {
SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
auto insertNNS = [&Qualifiers](NestedNameSpecifierLoc NNS) {
for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
Qualifier = Qualifier.getPrefix())
Qualifiers.push_back(Qualifier);
};
insertNNS(NNS);
CXXScopeSpec SS;
while (!Qualifiers.empty()) {
NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
switch (QNNS->getKind()) {
case NestedNameSpecifier::Identifier: {
Sema::NestedNameSpecInfo IdInfo(QNNS->getAsIdentifier(),
Q.getLocalBeginLoc(), Q.getLocalEndLoc(),
ObjectType);
if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr, IdInfo, false,
SS, FirstQualifierInScope, false))
return NestedNameSpecifierLoc();
break;
}
case NestedNameSpecifier::Namespace: {
NamespaceDecl *NS =
cast_or_null<NamespaceDecl>(getDerived().TransformDecl(
Q.getLocalBeginLoc(), QNNS->getAsNamespace()));
SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
break;
}
case NestedNameSpecifier::NamespaceAlias: {
NamespaceAliasDecl *Alias =
cast_or_null<NamespaceAliasDecl>(getDerived().TransformDecl(
Q.getLocalBeginLoc(), QNNS->getAsNamespaceAlias()));
SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
Q.getLocalEndLoc());
break;
}
case NestedNameSpecifier::Global:
// There is no meaningful transformation that one could perform on the
// global scope.
SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
break;
case NestedNameSpecifier::Super: {
CXXRecordDecl *RD =
cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
SourceLocation(), QNNS->getAsRecordDecl()));
SS.MakeSuper(SemaRef.Context, RD, Q.getBeginLoc(), Q.getEndLoc());
break;
}
case NestedNameSpecifier::TypeSpec: {
TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
FirstQualifierInScope, SS);
if (!TL)
return NestedNameSpecifierLoc();
QualType T = TL.getType();
if (T->isDependentType() || T->isRecordType() ||
(SemaRef.getLangOpts().CPlusPlus11 && T->isEnumeralType())) {
if (T->isEnumeralType())
SemaRef.Diag(TL.getBeginLoc(),
diag::warn_cxx98_compat_enum_nested_name_spec);
if (const auto ETL = TL.getAs<ElaboratedTypeLoc>()) {
SS.Adopt(ETL.getQualifierLoc());
TL = ETL.getNamedTypeLoc();
}
SS.Extend(SemaRef.Context, TL, Q.getLocalEndLoc());
break;
}
// If the nested-name-specifier is an invalid type def, don't emit an
// error because a previous error should have already been emitted.
TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>();
if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) {
SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
<< T << SS.getRange();
}
return NestedNameSpecifierLoc();
}
}
// The qualifier-in-scope and object type only apply to the leftmost entity.
FirstQualifierInScope = nullptr;
ObjectType = QualType();
}
// Don't rebuild the nested-name-specifier if we don't have to.
if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
!getDerived().AlwaysRebuild())
return NNS;
// If we can re-use the source-location data from the original
// nested-name-specifier, do so.
if (SS.location_size() == NNS.getDataLength() &&
memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
// Allocate new nested-name-specifier location information.
return SS.getWithLocInContext(SemaRef.Context);
}
template<typename Derived>
DeclarationNameInfo
TreeTransform<Derived>
::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
DeclarationName Name = NameInfo.getName();
if (!Name)
return DeclarationNameInfo();
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
return NameInfo;
case DeclarationName::CXXDeductionGuideName: {
TemplateDecl *OldTemplate = Name.getCXXDeductionGuideTemplate();
TemplateDecl *NewTemplate = cast_or_null<TemplateDecl>(
getDerived().TransformDecl(NameInfo.getLoc(), OldTemplate));
if (!NewTemplate)
return DeclarationNameInfo();
DeclarationNameInfo NewNameInfo(NameInfo);
NewNameInfo.setName(
SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(NewTemplate));
return NewNameInfo;
}
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName: {
TypeSourceInfo *NewTInfo;
CanQualType NewCanTy;
if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
NewTInfo = getDerived().TransformType(OldTInfo);
if (!NewTInfo)
return DeclarationNameInfo();
NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
}
else {
NewTInfo = nullptr;
TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
QualType NewT = getDerived().TransformType(Name.getCXXNameType());
if (NewT.isNull())
return DeclarationNameInfo();
NewCanTy = SemaRef.Context.getCanonicalType(NewT);
}
DeclarationName NewName
= SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
NewCanTy);
DeclarationNameInfo NewNameInfo(NameInfo);
NewNameInfo.setName(NewName);
NewNameInfo.setNamedTypeInfo(NewTInfo);
return NewNameInfo;
}
}
llvm_unreachable("Unknown name kind.");
}
template <typename Derived>
TemplateName TreeTransform<Derived>::RebuildTemplateName(
CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
IdentifierOrOverloadedOperator IO, SourceLocation NameLoc,
QualType ObjectType, NamedDecl *FirstQualifierInScope,
bool AllowInjectedClassName) {
if (const IdentifierInfo *II = IO.getIdentifier()) {
return getDerived().RebuildTemplateName(SS, TemplateKWLoc, *II, NameLoc,
ObjectType, FirstQualifierInScope,
AllowInjectedClassName);
}
return getDerived().RebuildTemplateName(SS, TemplateKWLoc, IO.getOperator(),
NameLoc, ObjectType,
AllowInjectedClassName);
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
TemplateName Name,
SourceLocation NameLoc,
QualType ObjectType,
NamedDecl *FirstQualifierInScope,
bool AllowInjectedClassName) {
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
TemplateDecl *Template = QTN->getUnderlyingTemplate().getAsTemplateDecl();
assert(Template && "qualified template name must refer to a template");
TemplateDecl *TransTemplate
= cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
Template));
if (!TransTemplate)
return TemplateName();
if (!getDerived().AlwaysRebuild() &&
SS.getScopeRep() == QTN->getQualifier() &&
TransTemplate == Template)
return Name;
return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
TransTemplate);
}
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
if (SS.getScopeRep()) {
// These apply to the scope specifier, not the template.
ObjectType = QualType();
FirstQualifierInScope = nullptr;
}
if (!getDerived().AlwaysRebuild() &&
SS.getScopeRep() == DTN->getQualifier() &&
ObjectType.isNull())
return Name;
// FIXME: Preserve the location of the "template" keyword.
SourceLocation TemplateKWLoc = NameLoc;
return getDerived().RebuildTemplateName(
SS, TemplateKWLoc, DTN->getName(), NameLoc, ObjectType,
FirstQualifierInScope, AllowInjectedClassName);
}
// FIXME: Try to preserve more of the TemplateName.
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
TemplateDecl *TransTemplate
= cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
Template));
if (!TransTemplate)
return TemplateName();
return getDerived().RebuildTemplateName(SS, /*TemplateKeyword=*/false,
TransTemplate);
}
if (SubstTemplateTemplateParmPackStorage *SubstPack
= Name.getAsSubstTemplateTemplateParmPack()) {
return getDerived().RebuildTemplateName(
SubstPack->getArgumentPack(), SubstPack->getAssociatedDecl(),
SubstPack->getIndex(), SubstPack->getFinal());
}
// These should be getting filtered out before they reach the AST.
llvm_unreachable("overloaded function decl survived to here");
}
template<typename Derived>
void TreeTransform<Derived>::InventTemplateArgumentLoc(
const TemplateArgument &Arg,
TemplateArgumentLoc &Output) {
Output = getSema().getTrivialTemplateArgumentLoc(
Arg, QualType(), getDerived().getBaseLocation());
}
template <typename Derived>
bool TreeTransform<Derived>::TransformTemplateArgument(
const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output,
bool Uneval) {
const TemplateArgument &Arg = Input.getArgument();
switch (Arg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Pack:
llvm_unreachable("Unexpected TemplateArgument");
case TemplateArgument::Integral:
case TemplateArgument::NullPtr:
case TemplateArgument::Declaration:
case TemplateArgument::StructuralValue: {
// Transform a resolved template argument straight to a resolved template
// argument. We get here when substituting into an already-substituted
// template type argument during concept satisfaction checking.
QualType T = Arg.getNonTypeTemplateArgumentType();
QualType NewT = getDerived().TransformType(T);
if (NewT.isNull())
return true;
ValueDecl *D = Arg.getKind() == TemplateArgument::Declaration
? Arg.getAsDecl()
: nullptr;
ValueDecl *NewD = D ? cast_or_null<ValueDecl>(getDerived().TransformDecl(
getDerived().getBaseLocation(), D))
: nullptr;
if (D && !NewD)
return true;
if (NewT == T && D == NewD)
Output = Input;
else if (Arg.getKind() == TemplateArgument::Integral)
Output = TemplateArgumentLoc(
TemplateArgument(getSema().Context, Arg.getAsIntegral(), NewT),
TemplateArgumentLocInfo());
else if (Arg.getKind() == TemplateArgument::NullPtr)
Output = TemplateArgumentLoc(TemplateArgument(NewT, /*IsNullPtr=*/true),
TemplateArgumentLocInfo());
else if (Arg.getKind() == TemplateArgument::Declaration)
Output = TemplateArgumentLoc(TemplateArgument(NewD, NewT),
TemplateArgumentLocInfo());
else if (Arg.getKind() == TemplateArgument::StructuralValue)
Output = TemplateArgumentLoc(
TemplateArgument(getSema().Context, NewT, Arg.getAsStructuralValue()),
TemplateArgumentLocInfo());
else
llvm_unreachable("unexpected template argument kind");
return false;
}
case TemplateArgument::Type: {
TypeSourceInfo *DI = Input.getTypeSourceInfo();
if (!DI)
DI = InventTypeSourceInfo(Input.getArgument().getAsType());
DI = getDerived().TransformType(DI);
if (!DI)
return true;
Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
return false;
}
case TemplateArgument::Template: {
NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
if (QualifierLoc) {
QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
if (!QualifierLoc)
return true;
}
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
TemplateName Template = getDerived().TransformTemplateName(
SS, Arg.getAsTemplate(), Input.getTemplateNameLoc());
if (Template.isNull())
return true;
Output = TemplateArgumentLoc(SemaRef.Context, TemplateArgument(Template),
QualifierLoc, Input.getTemplateNameLoc());
return false;
}
case TemplateArgument::TemplateExpansion:
llvm_unreachable("Caller should expand pack expansions");
case TemplateArgument::Expression: {
// Template argument expressions are constant expressions.
EnterExpressionEvaluationContext Unevaluated(
getSema(),
Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
: Sema::ExpressionEvaluationContext::ConstantEvaluated,
Sema::ReuseLambdaContextDecl, /*ExprContext=*/
Sema::ExpressionEvaluationContextRecord::EK_TemplateArgument);
Expr *InputExpr = Input.getSourceExpression();
if (!InputExpr)
InputExpr = Input.getArgument().getAsExpr();
ExprResult E = getDerived().TransformExpr(InputExpr);
E = SemaRef.ActOnConstantExpression(E);
if (E.isInvalid())
return true;
Output = TemplateArgumentLoc(
TemplateArgument(E.get(), /*IsCanonical=*/false), E.get());
return false;
}
}
// Work around bogus GCC warning
return true;
}
/// Iterator adaptor that invents template argument location information
/// for each of the template arguments in its underlying iterator.
template<typename Derived, typename InputIterator>
class TemplateArgumentLocInventIterator {
TreeTransform<Derived> &Self;
InputIterator Iter;
public:
typedef TemplateArgumentLoc value_type;
typedef TemplateArgumentLoc reference;
typedef typename std::iterator_traits<InputIterator>::difference_type
difference_type;
typedef std::input_iterator_tag iterator_category;
class pointer {
TemplateArgumentLoc Arg;
public:
explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
const TemplateArgumentLoc *operator->() const { return &Arg; }
};
explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
InputIterator Iter)
: Self(Self), Iter(Iter) { }
TemplateArgumentLocInventIterator &operator++() {
++Iter;
return *this;
}
TemplateArgumentLocInventIterator operator++(int) {
TemplateArgumentLocInventIterator Old(*this);
++(*this);
return Old;
}
reference operator*() const {
TemplateArgumentLoc Result;
Self.InventTemplateArgumentLoc(*Iter, Result);
return Result;
}
pointer operator->() const { return pointer(**this); }
friend bool operator==(const TemplateArgumentLocInventIterator &X,
const TemplateArgumentLocInventIterator &Y) {
return X.Iter == Y.Iter;
}
friend bool operator!=(const TemplateArgumentLocInventIterator &X,
const TemplateArgumentLocInventIterator &Y) {
return X.Iter != Y.Iter;
}
};
template<typename Derived>
template<typename InputIterator>
bool TreeTransform<Derived>::TransformTemplateArguments(
InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs,
bool Uneval) {
for (; First != Last; ++First) {
TemplateArgumentLoc Out;
TemplateArgumentLoc In = *First;
if (In.getArgument().getKind() == TemplateArgument::Pack) {
// Unpack argument packs, which we translate them into separate
// arguments.
// FIXME: We could do much better if we could guarantee that the
// TemplateArgumentLocInfo for the pack expansion would be usable for
// all of the template arguments in the argument pack.
typedef TemplateArgumentLocInventIterator<Derived,
TemplateArgument::pack_iterator>
PackLocIterator;
if (TransformTemplateArguments(PackLocIterator(*this,
In.getArgument().pack_begin()),
PackLocIterator(*this,
In.getArgument().pack_end()),
Outputs, Uneval))
return true;
continue;
}
if (In.getArgument().isPackExpansion()) {
// We have a pack expansion, for which we will be substituting into
// the pattern.
SourceLocation Ellipsis;
UnsignedOrNone OrigNumExpansions = std::nullopt;
TemplateArgumentLoc Pattern
= getSema().getTemplateArgumentPackExpansionPattern(
In, Ellipsis, OrigNumExpansions);
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can and should
// be expanded.
bool Expand = true;
bool RetainExpansion = false;
UnsignedOrNone NumExpansions = OrigNumExpansions;
if (getDerived().TryExpandParameterPacks(Ellipsis,
Pattern.getSourceRange(),
Unexpanded,
Expand,
RetainExpansion,
NumExpansions))
return true;
if (!Expand) {
// The transform has determined that we should perform a simple
// transformation on the pack expansion, producing another pack
// expansion.
TemplateArgumentLoc OutPattern;
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
if (getDerived().TransformTemplateArgument(Pattern, OutPattern, Uneval))
return true;
Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
NumExpansions);
if (Out.getArgument().isNull())
return true;
Outputs.addArgument(Out);
continue;
}
// The transform has determined that we should perform an elementwise
// expansion of the pattern. Do so.
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), I);
if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval))
return true;
if (Out.getArgument().containsUnexpandedParameterPack()) {
Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
OrigNumExpansions);
if (Out.getArgument().isNull())
return true;
}
Outputs.addArgument(Out);
}
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
if (RetainExpansion) {
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval))
return true;
Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
OrigNumExpansions);
if (Out.getArgument().isNull())
return true;
Outputs.addArgument(Out);
}
continue;
}
// The simple case:
if (getDerived().TransformTemplateArgument(In, Out, Uneval))
return true;
Outputs.addArgument(Out);
}
return false;
}
//===----------------------------------------------------------------------===//
// Type transformation
//===----------------------------------------------------------------------===//
template<typename Derived>
QualType TreeTransform<Derived>::TransformType(QualType T) {
if (getDerived().AlreadyTransformed(T))
return T;
// Temporary workaround. All of these transformations should
// eventually turn into transformations on TypeLocs.
TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
getDerived().getBaseLocation());
TypeSourceInfo *NewDI = getDerived().TransformType(DI);
if (!NewDI)
return QualType();
return NewDI->getType();
}
template<typename Derived>
TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
// Refine the base location to the type's location.
TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
getDerived().getBaseEntity());
if (getDerived().AlreadyTransformed(DI->getType()))
return DI;
TypeLocBuilder TLB;
TypeLoc TL = DI->getTypeLoc();
TLB.reserve(TL.getFullDataSize());
QualType Result = getDerived().TransformType(TLB, TL);
if (Result.isNull())
return nullptr;
return TLB.getTypeSourceInfo(SemaRef.Context, Result);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
switch (T.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
case TypeLoc::CLASS: \
return getDerived().Transform##CLASS##Type(TLB, \
T.castAs<CLASS##TypeLoc>());
#include "clang/AST/TypeLocNodes.def"
}
llvm_unreachable("unhandled type loc!");
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTypeWithDeducedTST(QualType T) {
if (!isa<DependentNameType>(T))
return TransformType(T);
if (getDerived().AlreadyTransformed(T))
return T;
TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
getDerived().getBaseLocation());
TypeSourceInfo *NewDI = getDerived().TransformTypeWithDeducedTST(DI);
return NewDI ? NewDI->getType() : QualType();
}
template<typename Derived>
TypeSourceInfo *
TreeTransform<Derived>::TransformTypeWithDeducedTST(TypeSourceInfo *DI) {
if (!isa<DependentNameType>(DI->getType()))
return TransformType(DI);
// Refine the base location to the type's location.
TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
getDerived().getBaseEntity());
if (getDerived().AlreadyTransformed(DI->getType()))
return DI;
TypeLocBuilder TLB;
TypeLoc TL = DI->getTypeLoc();
TLB.reserve(TL.getFullDataSize());
auto QTL = TL.getAs<QualifiedTypeLoc>();
if (QTL)
TL = QTL.getUnqualifiedLoc();
auto DNTL = TL.castAs<DependentNameTypeLoc>();
QualType Result = getDerived().TransformDependentNameType(
TLB, DNTL, /*DeducedTSTContext*/true);
if (Result.isNull())
return nullptr;
if (QTL) {
Result = getDerived().RebuildQualifiedType(Result, QTL);
if (Result.isNull())
return nullptr;
TLB.TypeWasModifiedSafely(Result);
}
return TLB.getTypeSourceInfo(SemaRef.Context, Result);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
QualifiedTypeLoc T) {
QualType Result;
TypeLoc UnqualTL = T.getUnqualifiedLoc();
auto SuppressObjCLifetime =
T.getType().getLocalQualifiers().hasObjCLifetime();
if (auto TTP = UnqualTL.getAs<TemplateTypeParmTypeLoc>()) {
Result = getDerived().TransformTemplateTypeParmType(TLB, TTP,
SuppressObjCLifetime);
} else if (auto STTP = UnqualTL.getAs<SubstTemplateTypeParmPackTypeLoc>()) {
Result = getDerived().TransformSubstTemplateTypeParmPackType(
TLB, STTP, SuppressObjCLifetime);
} else {
Result = getDerived().TransformType(TLB, UnqualTL);
}
if (Result.isNull())
return QualType();
Result = getDerived().RebuildQualifiedType(Result, T);
if (Result.isNull())
return QualType();
// RebuildQualifiedType might have updated the type, but not in a way
// that invalidates the TypeLoc. (There's no location information for
// qualifiers.)
TLB.TypeWasModifiedSafely(Result);
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildQualifiedType(QualType T,
QualifiedTypeLoc TL) {
SourceLocation Loc = TL.getBeginLoc();
Qualifiers Quals = TL.getType().getLocalQualifiers();
if ((T.getAddressSpace() != LangAS::Default &&
Quals.getAddressSpace() != LangAS::Default) &&
T.getAddressSpace() != Quals.getAddressSpace()) {
SemaRef.Diag(Loc, diag::err_address_space_mismatch_templ_inst)
<< TL.getType() << T;
return QualType();
}
// C++ [dcl.fct]p7:
// [When] adding cv-qualifications on top of the function type [...] the
// cv-qualifiers are ignored.
if (T->isFunctionType()) {
T = SemaRef.getASTContext().getAddrSpaceQualType(T,
Quals.getAddressSpace());
return T;
}
// C++ [dcl.ref]p1:
// when the cv-qualifiers are introduced through the use of a typedef-name
// or decltype-specifier [...] the cv-qualifiers are ignored.
// Note that [dcl.ref]p1 lists all cases in which cv-qualifiers can be
// applied to a reference type.
if (T->isReferenceType()) {
// The only qualifier that applies to a reference type is restrict.
if (!Quals.hasRestrict())
return T;
Quals = Qualifiers::fromCVRMask(Qualifiers::Restrict);
}
// Suppress Objective-C lifetime qualifiers if they don't make sense for the
// resulting type.
if (Quals.hasObjCLifetime()) {
if (!T->isObjCLifetimeType() && !T->isDependentType())
Quals.removeObjCLifetime();
else if (T.getObjCLifetime()) {
// Objective-C ARC:
// A lifetime qualifier applied to a substituted template parameter
// overrides the lifetime qualifier from the template argument.
const AutoType *AutoTy;
if ((AutoTy = dyn_cast<AutoType>(T)) && AutoTy->isDeduced()) {
// 'auto' types behave the same way as template parameters.
QualType Deduced = AutoTy->getDeducedType();
Qualifiers Qs = Deduced.getQualifiers();
Qs.removeObjCLifetime();
Deduced =
SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(), Qs);
T = SemaRef.Context.getAutoType(Deduced, AutoTy->getKeyword(),
AutoTy->isDependentType(),
/*isPack=*/false,
AutoTy->getTypeConstraintConcept(),
AutoTy->getTypeConstraintArguments());
} else {
// Otherwise, complain about the addition of a qualifier to an
// already-qualified type.
// FIXME: Why is this check not in Sema::BuildQualifiedType?
SemaRef.Diag(Loc, diag::err_attr_objc_ownership_redundant) << T;
Quals.removeObjCLifetime();
}
}
}
return SemaRef.BuildQualifiedType(T, Loc, Quals);
}
template<typename Derived>
TypeLoc
TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
QualType ObjectType,
NamedDecl *UnqualLookup,
CXXScopeSpec &SS) {
if (getDerived().AlreadyTransformed(TL.getType()))
return TL;
TypeSourceInfo *TSI =
TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS);
if (TSI)
return TSI->getTypeLoc();
return TypeLoc();
}
template<typename Derived>
TypeSourceInfo *
TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
QualType ObjectType,
NamedDecl *UnqualLookup,
CXXScopeSpec &SS) {
if (getDerived().AlreadyTransformed(TSInfo->getType()))
return TSInfo;
return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType,
UnqualLookup, SS);
}
template <typename Derived>
TypeSourceInfo *TreeTransform<Derived>::TransformTSIInObjectScope(
TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup,
CXXScopeSpec &SS) {
QualType T = TL.getType();
assert(!getDerived().AlreadyTransformed(T));
TypeLocBuilder TLB;
QualType Result;
if (isa<TemplateSpecializationType>(T)) {
TemplateSpecializationTypeLoc SpecTL =
TL.castAs<TemplateSpecializationTypeLoc>();
TemplateName Template = getDerived().TransformTemplateName(
SS, SpecTL.getTypePtr()->getTemplateName(), SpecTL.getTemplateNameLoc(),
ObjectType, UnqualLookup, /*AllowInjectedClassName*/true);
if (Template.isNull())
return nullptr;
Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
Template);
} else if (isa<DependentTemplateSpecializationType>(T)) {
DependentTemplateSpecializationTypeLoc SpecTL =
TL.castAs<DependentTemplateSpecializationTypeLoc>();
const IdentifierInfo *II = SpecTL.getTypePtr()
->getDependentTemplateName()
.getName()
.getIdentifier();
TemplateName Template = getDerived().RebuildTemplateName(
SS, SpecTL.getTemplateKeywordLoc(), *II, SpecTL.getTemplateNameLoc(),
ObjectType, UnqualLookup,
/*AllowInjectedClassName*/ true);
if (Template.isNull())
return nullptr;
Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
SpecTL,
Template,
SS);
} else {
// Nothing special needs to be done for these.
Result = getDerived().TransformType(TLB, TL);
}
if (Result.isNull())
return nullptr;
return TLB.getTypeSourceInfo(SemaRef.Context, Result);
}
template <class TyLoc> static inline
QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
TyLoc NewT = TLB.push<TyLoc>(T.getType());
NewT.setNameLoc(T.getNameLoc());
return T.getType();
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
BuiltinTypeLoc T) {
BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
NewT.setBuiltinLoc(T.getBuiltinLoc());
if (T.needsExtraLocalData())
NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
return T.getType();
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
ComplexTypeLoc T) {
// FIXME: recurse?
return TransformTypeSpecType(TLB, T);
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformAdjustedType(TypeLocBuilder &TLB,
AdjustedTypeLoc TL) {
// Adjustments applied during transformation are handled elsewhere.
return getDerived().TransformType(TLB, TL.getOriginalLoc());
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB,
DecayedTypeLoc TL) {
QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc());
if (OriginalType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
OriginalType != TL.getOriginalLoc().getType())
Result = SemaRef.Context.getDecayedType(OriginalType);
TLB.push<DecayedTypeLoc>(Result);
// Nothing to set for DecayedTypeLoc.
return Result;
}
template <typename Derived>
QualType
TreeTransform<Derived>::TransformArrayParameterType(TypeLocBuilder &TLB,
ArrayParameterTypeLoc TL) {
QualType OriginalType = getDerived().TransformType(TLB, TL.getElementLoc());
if (OriginalType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
OriginalType != TL.getElementLoc().getType())
Result = SemaRef.Context.getArrayParameterType(OriginalType);
TLB.push<ArrayParameterTypeLoc>(Result);
// Nothing to set for ArrayParameterTypeLoc.
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
PointerTypeLoc TL) {
QualType PointeeType
= getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
QualType Result = TL.getType();
if (PointeeType->getAs<ObjCObjectType>()) {
// A dependent pointer type 'T *' has is being transformed such
// that an Objective-C class type is being replaced for 'T'. The
// resulting pointer type is an ObjCObjectPointerType, not a
// PointerType.
Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
NewT.setStarLoc(TL.getStarLoc());
return Result;
}
if (getDerived().AlwaysRebuild() ||
PointeeType != TL.getPointeeLoc().getType()) {
Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
if (Result.isNull())
return QualType();
}
// Objective-C ARC can add lifetime qualifiers to the type that we're
// pointing to.
TLB.TypeWasModifiedSafely(Result->getPointeeType());
PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
NewT.setSigilLoc(TL.getSigilLoc());
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
BlockPointerTypeLoc TL) {
QualType PointeeType
= getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
PointeeType != TL.getPointeeLoc().getType()) {
Result = getDerived().RebuildBlockPointerType(PointeeType,
TL.getSigilLoc());
if (Result.isNull())
return QualType();
}
BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
NewT.setSigilLoc(TL.getSigilLoc());
return Result;
}
/// Transforms a reference type. Note that somewhat paradoxically we
/// don't care whether the type itself is an l-value type or an r-value
/// type; we only care if the type was *written* as an l-value type
/// or an r-value type.
template<typename Derived>
QualType
TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
ReferenceTypeLoc TL) {
const ReferenceType *T = TL.getTypePtr();
// Note that this works with the pointee-as-written.
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
PointeeType != T->getPointeeTypeAsWritten()) {
Result = getDerived().RebuildReferenceType(PointeeType,
T->isSpelledAsLValue(),
TL.getSigilLoc());
if (Result.isNull())
return QualType();
}
// Objective-C ARC can add lifetime qualifiers to the type that we're
// referring to.
TLB.TypeWasModifiedSafely(
Result->castAs<ReferenceType>()->getPointeeTypeAsWritten());
// r-value references can be rebuilt as l-value references.
ReferenceTypeLoc NewTL;
if (isa<LValueReferenceType>(Result))
NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
else
NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
NewTL.setSigilLoc(TL.getSigilLoc());
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
LValueReferenceTypeLoc TL) {
return TransformReferenceType(TLB, TL);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
RValueReferenceTypeLoc TL) {
return TransformReferenceType(TLB, TL);
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
MemberPointerTypeLoc TL) {
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
const MemberPointerType *T = TL.getTypePtr();
NestedNameSpecifierLoc OldQualifierLoc = TL.getQualifierLoc();
NestedNameSpecifierLoc NewQualifierLoc =
getDerived().TransformNestedNameSpecifierLoc(OldQualifierLoc);
if (!NewQualifierLoc)
return QualType();
CXXRecordDecl *OldCls = T->getMostRecentCXXRecordDecl(), *NewCls = nullptr;
if (OldCls) {
NewCls = cast_or_null<CXXRecordDecl>(
getDerived().TransformDecl(TL.getStarLoc(), OldCls));
if (!NewCls)
return QualType();
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || PointeeType != T->getPointeeType() ||
NewQualifierLoc.getNestedNameSpecifier() !=
OldQualifierLoc.getNestedNameSpecifier() ||
NewCls != OldCls) {
CXXScopeSpec SS;
SS.Adopt(NewQualifierLoc);
Result = getDerived().RebuildMemberPointerType(PointeeType, SS, NewCls,
TL.getStarLoc());
if (Result.isNull())
return QualType();
}
// If we had to adjust the pointee type when building a member pointer, make
// sure to push TypeLoc info for it.
const MemberPointerType *MPT = Result->getAs<MemberPointerType>();
if (MPT && PointeeType != MPT->getPointeeType()) {
assert(isa<AdjustedType>(MPT->getPointeeType()));
TLB.push<AdjustedTypeLoc>(MPT->getPointeeType());
}
MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
NewTL.setSigilLoc(TL.getSigilLoc());
NewTL.setQualifierLoc(NewQualifierLoc);
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
ConstantArrayTypeLoc TL) {
const ConstantArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
// Prefer the expression from the TypeLoc; the other may have been uniqued.
Expr *OldSize = TL.getSizeExpr();
if (!OldSize)
OldSize = const_cast<Expr*>(T->getSizeExpr());
Expr *NewSize = nullptr;
if (OldSize) {
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
NewSize = getDerived().TransformExpr(OldSize).template getAs<Expr>();
NewSize = SemaRef.ActOnConstantExpression(NewSize).get();
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType() ||
(T->getSizeExpr() && NewSize != OldSize)) {
Result = getDerived().RebuildConstantArrayType(ElementType,
T->getSizeModifier(),
T->getSize(), NewSize,
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
// We might have either a ConstantArrayType or a VariableArrayType now:
// a ConstantArrayType is allowed to have an element type which is a
// VariableArrayType if the type is dependent. Fortunately, all array
// types have the same location layout.
ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
NewTL.setSizeExpr(NewSize);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformIncompleteArrayType(
TypeLocBuilder &TLB,
IncompleteArrayTypeLoc TL) {
const IncompleteArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildIncompleteArrayType(ElementType,
T->getSizeModifier(),
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
NewTL.setSizeExpr(nullptr);
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
VariableArrayTypeLoc TL) {
const VariableArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
ExprResult SizeResult;
{
EnterExpressionEvaluationContext Context(
SemaRef, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
SizeResult = getDerived().TransformExpr(T->getSizeExpr());
}
if (SizeResult.isInvalid())
return QualType();
SizeResult =
SemaRef.ActOnFinishFullExpr(SizeResult.get(), /*DiscardedValue*/ false);
if (SizeResult.isInvalid())
return QualType();
Expr *Size = SizeResult.get();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType() ||
Size != T->getSizeExpr()) {
Result = getDerived().RebuildVariableArrayType(ElementType,
T->getSizeModifier(),
Size,
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
// We might have constant size array now, but fortunately it has the same
// location layout.
ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
NewTL.setSizeExpr(Size);
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
DependentSizedArrayTypeLoc TL) {
const DependentSizedArrayType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
// Array bounds are constant expressions.
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
// If we have a VLA then it won't be a constant.
SemaRef.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true;
// Prefer the expression from the TypeLoc; the other may have been uniqued.
Expr *origSize = TL.getSizeExpr();
if (!origSize) origSize = T->getSizeExpr();
ExprResult sizeResult
= getDerived().TransformExpr(origSize);
sizeResult = SemaRef.ActOnConstantExpression(sizeResult);
if (sizeResult.isInvalid())
return QualType();
Expr *size = sizeResult.get();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType() ||
size != origSize) {
Result = getDerived().RebuildDependentSizedArrayType(ElementType,
T->getSizeModifier(),
size,
T->getIndexTypeCVRQualifiers(),
TL.getBracketsRange());
if (Result.isNull())
return QualType();
}
// We might have any sort of array type now, but fortunately they
// all have the same location layout.
ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
NewTL.setLBracketLoc(TL.getLBracketLoc());
NewTL.setRBracketLoc(TL.getRBracketLoc());
NewTL.setSizeExpr(size);
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformDependentVectorType(
TypeLocBuilder &TLB, DependentVectorTypeLoc TL) {
const DependentVectorType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
Size = SemaRef.ActOnConstantExpression(Size);
if (Size.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() ||
Size.get() != T->getSizeExpr()) {
Result = getDerived().RebuildDependentVectorType(
ElementType, Size.get(), T->getAttributeLoc(), T->getVectorKind());
if (Result.isNull())
return QualType();
}
// Result might be dependent or not.
if (isa<DependentVectorType>(Result)) {
DependentVectorTypeLoc NewTL =
TLB.push<DependentVectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
} else {
VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
}
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
TypeLocBuilder &TLB,
DependentSizedExtVectorTypeLoc TL) {
const DependentSizedExtVectorType *T = TL.getTypePtr();
// FIXME: ext vector locs should be nested
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
// Vector sizes are constant expressions.
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
Size = SemaRef.ActOnConstantExpression(Size);
if (Size.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType() ||
Size.get() != T->getSizeExpr()) {
Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
Size.get(),
T->getAttributeLoc());
if (Result.isNull())
return QualType();
}
// Result might be dependent or not.
if (isa<DependentSizedExtVectorType>(Result)) {
DependentSizedExtVectorTypeLoc NewTL
= TLB.push<DependentSizedExtVectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
} else {
ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
}
return Result;
}
template <typename Derived>
QualType
TreeTransform<Derived>::TransformConstantMatrixType(TypeLocBuilder &TLB,
ConstantMatrixTypeLoc TL) {
const ConstantMatrixType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(T->getElementType());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) {
Result = getDerived().RebuildConstantMatrixType(
ElementType, T->getNumRows(), T->getNumColumns());
if (Result.isNull())
return QualType();
}
ConstantMatrixTypeLoc NewTL = TLB.push<ConstantMatrixTypeLoc>(Result);
NewTL.setAttrNameLoc(TL.getAttrNameLoc());
NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
NewTL.setAttrRowOperand(TL.getAttrRowOperand());
NewTL.setAttrColumnOperand(TL.getAttrColumnOperand());
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformDependentSizedMatrixType(
TypeLocBuilder &TLB, DependentSizedMatrixTypeLoc TL) {
const DependentSizedMatrixType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(T->getElementType());
if (ElementType.isNull()) {
return QualType();
}
// Matrix dimensions are constant expressions.
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
Expr *origRows = TL.getAttrRowOperand();
if (!origRows)
origRows = T->getRowExpr();
Expr *origColumns = TL.getAttrColumnOperand();
if (!origColumns)
origColumns = T->getColumnExpr();
ExprResult rowResult = getDerived().TransformExpr(origRows);
rowResult = SemaRef.ActOnConstantExpression(rowResult);
if (rowResult.isInvalid())
return QualType();
ExprResult columnResult = getDerived().TransformExpr(origColumns);
columnResult = SemaRef.ActOnConstantExpression(columnResult);
if (columnResult.isInvalid())
return QualType();
Expr *rows = rowResult.get();
Expr *columns = columnResult.get();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() ||
rows != origRows || columns != origColumns) {
Result = getDerived().RebuildDependentSizedMatrixType(
ElementType, rows, columns, T->getAttributeLoc());
if (Result.isNull())
return QualType();
}
// We might have any sort of matrix type now, but fortunately they
// all have the same location layout.
MatrixTypeLoc NewTL = TLB.push<MatrixTypeLoc>(Result);
NewTL.setAttrNameLoc(TL.getAttrNameLoc());
NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
NewTL.setAttrRowOperand(rows);
NewTL.setAttrColumnOperand(columns);
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformDependentAddressSpaceType(
TypeLocBuilder &TLB, DependentAddressSpaceTypeLoc TL) {
const DependentAddressSpaceType *T = TL.getTypePtr();
QualType pointeeType =
getDerived().TransformType(TLB, TL.getPointeeTypeLoc());
if (pointeeType.isNull())
return QualType();
// Address spaces are constant expressions.
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
ExprResult AddrSpace = getDerived().TransformExpr(T->getAddrSpaceExpr());
AddrSpace = SemaRef.ActOnConstantExpression(AddrSpace);
if (AddrSpace.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || pointeeType != T->getPointeeType() ||
AddrSpace.get() != T->getAddrSpaceExpr()) {
Result = getDerived().RebuildDependentAddressSpaceType(
pointeeType, AddrSpace.get(), T->getAttributeLoc());
if (Result.isNull())
return QualType();
}
// Result might be dependent or not.
if (isa<DependentAddressSpaceType>(Result)) {
DependentAddressSpaceTypeLoc NewTL =
TLB.push<DependentAddressSpaceTypeLoc>(Result);
NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
NewTL.setAttrExprOperand(TL.getAttrExprOperand());
NewTL.setAttrNameLoc(TL.getAttrNameLoc());
} else {
TLB.TypeWasModifiedSafely(Result);
}
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
VectorTypeLoc TL) {
const VectorType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
T->getVectorKind());
if (Result.isNull())
return QualType();
}
VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
ExtVectorTypeLoc TL) {
const VectorType *T = TL.getTypePtr();
QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
if (ElementType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ElementType != T->getElementType()) {
Result = getDerived().RebuildExtVectorType(ElementType,
T->getNumElements(),
/*FIXME*/ SourceLocation());
if (Result.isNull())
return QualType();
}
ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template <typename Derived>
ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam(
ParmVarDecl *OldParm, int indexAdjustment, UnsignedOrNone NumExpansions,
bool ExpectParameterPack) {
TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
TypeSourceInfo *NewDI = nullptr;
if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
// If we're substituting into a pack expansion type and we know the
// length we want to expand to, just substitute for the pattern.
TypeLoc OldTL = OldDI->getTypeLoc();
PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>();
TypeLocBuilder TLB;
TypeLoc NewTL = OldDI->getTypeLoc();
TLB.reserve(NewTL.getFullDataSize());
QualType Result = getDerived().TransformType(TLB,
OldExpansionTL.getPatternLoc());
if (Result.isNull())
return nullptr;
Result = RebuildPackExpansionType(Result,
OldExpansionTL.getPatternLoc().getSourceRange(),
OldExpansionTL.getEllipsisLoc(),
NumExpansions);
if (Result.isNull())
return nullptr;
PackExpansionTypeLoc NewExpansionTL
= TLB.push<PackExpansionTypeLoc>(Result);
NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
} else
NewDI = getDerived().TransformType(OldDI);
if (!NewDI)
return nullptr;
if (NewDI == OldDI && indexAdjustment == 0)
return OldParm;
ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
OldParm->getDeclContext(),
OldParm->getInnerLocStart(),
OldParm->getLocation(),
OldParm->getIdentifier(),
NewDI->getType(),
NewDI,
OldParm->getStorageClass(),
/* DefArg */ nullptr);
newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
OldParm->getFunctionScopeIndex() + indexAdjustment);
transformedLocalDecl(OldParm, {newParm});
return newParm;
}
template <typename Derived>
bool TreeTransform<Derived>::TransformFunctionTypeParams(
SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
const QualType *ParamTypes,
const FunctionProtoType::ExtParameterInfo *ParamInfos,
SmallVectorImpl<QualType> &OutParamTypes,
SmallVectorImpl<ParmVarDecl *> *PVars,
Sema::ExtParameterInfoBuilder &PInfos,
unsigned *LastParamTransformed) {
int indexAdjustment = 0;
unsigned NumParams = Params.size();
for (unsigned i = 0; i != NumParams; ++i) {
if (LastParamTransformed)
*LastParamTransformed = i;
if (ParmVarDecl *OldParm = Params[i]) {
assert(OldParm->getFunctionScopeIndex() == i);
UnsignedOrNone NumExpansions = std::nullopt;
ParmVarDecl *NewParm = nullptr;
if (OldParm->isParameterPack()) {
// We have a function parameter pack that may need to be expanded.
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
// Find the parameter packs that could be expanded.
TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>();
TypeLoc Pattern = ExpansionTL.getPatternLoc();
SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
// Determine whether we should expand the parameter packs.
bool ShouldExpand = false;
bool RetainExpansion = false;
UnsignedOrNone OrigNumExpansions = std::nullopt;
if (Unexpanded.size() > 0) {
OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions();
NumExpansions = OrigNumExpansions;
if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
Pattern.getSourceRange(),
Unexpanded,
ShouldExpand,
RetainExpansion,
NumExpansions)) {
return true;
}
} else {
#ifndef NDEBUG
const AutoType *AT =
Pattern.getType().getTypePtr()->getContainedAutoType();
assert((AT && (!AT->isDeduced() || AT->getDeducedType().isNull())) &&
"Could not find parameter packs or undeduced auto type!");
#endif
}
if (ShouldExpand) {
// Expand the function parameter pack into multiple, separate
// parameters.
getDerived().ExpandingFunctionParameterPack(OldParm);
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), I);
ParmVarDecl *NewParm
= getDerived().TransformFunctionTypeParam(OldParm,
indexAdjustment++,
OrigNumExpansions,
/*ExpectParameterPack=*/false);
if (!NewParm)
return true;
if (ParamInfos)
PInfos.set(OutParamTypes.size(), ParamInfos[i]);
OutParamTypes.push_back(NewParm->getType());
if (PVars)
PVars->push_back(NewParm);
}
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
if (RetainExpansion) {
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
ParmVarDecl *NewParm
= getDerived().TransformFunctionTypeParam(OldParm,
indexAdjustment++,
OrigNumExpansions,
/*ExpectParameterPack=*/false);
if (!NewParm)
return true;
if (ParamInfos)
PInfos.set(OutParamTypes.size(), ParamInfos[i]);
OutParamTypes.push_back(NewParm->getType());
if (PVars)
PVars->push_back(NewParm);
}
// The next parameter should have the same adjustment as the
// last thing we pushed, but we post-incremented indexAdjustment
// on every push. Also, if we push nothing, the adjustment should
// go down by one.
indexAdjustment--;
// We're done with the pack expansion.
continue;
}
// We'll substitute the parameter now without expanding the pack
// expansion.
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
NewParm = getDerived().TransformFunctionTypeParam(OldParm,
indexAdjustment,
NumExpansions,
/*ExpectParameterPack=*/true);
assert(NewParm->isParameterPack() &&
"Parameter pack no longer a parameter pack after "
"transformation.");
} else {
NewParm = getDerived().TransformFunctionTypeParam(
OldParm, indexAdjustment, std::nullopt,
/*ExpectParameterPack=*/false);
}
if (!NewParm)
return true;
if (ParamInfos)
PInfos.set(OutParamTypes.size(), ParamInfos[i]);
OutParamTypes.push_back(NewParm->getType());
if (PVars)
PVars->push_back(NewParm);
continue;
}
// Deal with the possibility that we don't have a parameter
// declaration for this parameter.
assert(ParamTypes);
QualType OldType = ParamTypes[i];
bool IsPackExpansion = false;
UnsignedOrNone NumExpansions = std::nullopt;
QualType NewType;
if (const PackExpansionType *Expansion
= dyn_cast<PackExpansionType>(OldType)) {
// We have a function parameter pack that may need to be expanded.
QualType Pattern = Expansion->getPattern();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
// Determine whether we should expand the parameter packs.
bool ShouldExpand = false;
bool RetainExpansion = false;
if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
Unexpanded,
ShouldExpand,
RetainExpansion,
NumExpansions)) {
return true;
}
if (ShouldExpand) {
// Expand the function parameter pack into multiple, separate
// parameters.
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), I);
QualType NewType = getDerived().TransformType(Pattern);
if (NewType.isNull())
return true;
if (NewType->containsUnexpandedParameterPack()) {
NewType = getSema().getASTContext().getPackExpansionType(
NewType, std::nullopt);
if (NewType.isNull())
return true;
}
if (ParamInfos)
PInfos.set(OutParamTypes.size(), ParamInfos[i]);
OutParamTypes.push_back(NewType);
if (PVars)
PVars->push_back(nullptr);
}
// We're done with the pack expansion.
continue;
}
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
if (RetainExpansion) {
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
QualType NewType = getDerived().TransformType(Pattern);
if (NewType.isNull())
return true;
if (ParamInfos)
PInfos.set(OutParamTypes.size(), ParamInfos[i]);
OutParamTypes.push_back(NewType);
if (PVars)
PVars->push_back(nullptr);
}
// We'll substitute the parameter now without expanding the pack
// expansion.
OldType = Expansion->getPattern();
IsPackExpansion = true;
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
NewType = getDerived().TransformType(OldType);
} else {
NewType = getDerived().TransformType(OldType);
}
if (NewType.isNull())
return true;
if (IsPackExpansion)
NewType = getSema().Context.getPackExpansionType(NewType,
NumExpansions);
if (ParamInfos)
PInfos.set(OutParamTypes.size(), ParamInfos[i]);
OutParamTypes.push_back(NewType);
if (PVars)
PVars->push_back(nullptr);
}
#ifndef NDEBUG
if (PVars) {
for (unsigned i = 0, e = PVars->size(); i != e; ++i)
if (ParmVarDecl *parm = (*PVars)[i])
assert(parm->getFunctionScopeIndex() == i);
}
#endif
return false;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
FunctionProtoTypeLoc TL) {
SmallVector<QualType, 4> ExceptionStorage;
return getDerived().TransformFunctionProtoType(
TLB, TL, nullptr, Qualifiers(),
[&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
return getDerived().TransformExceptionSpec(TL.getBeginLoc(), ESI,
ExceptionStorage, Changed);
});
}
template<typename Derived> template<typename Fn>
QualType TreeTransform<Derived>::TransformFunctionProtoType(
TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext,
Qualifiers ThisTypeQuals, Fn TransformExceptionSpec) {
// Transform the parameters and return type.
//
// We are required to instantiate the params and return type in source order.
// When the function has a trailing return type, we instantiate the
// parameters before the return type, since the return type can then refer
// to the parameters themselves (via decltype, sizeof, etc.).
//
SmallVector<QualType, 4> ParamTypes;
SmallVector<ParmVarDecl*, 4> ParamDecls;
Sema::ExtParameterInfoBuilder ExtParamInfos;
const FunctionProtoType *T = TL.getTypePtr();
QualType ResultType;
if (T->hasTrailingReturn()) {
if (getDerived().TransformFunctionTypeParams(
TL.getBeginLoc(), TL.getParams(),
TL.getTypePtr()->param_type_begin(),
T->getExtParameterInfosOrNull(),
ParamTypes, &ParamDecls, ExtParamInfos))
return QualType();
{
// C++11 [expr.prim.general]p3:
// If a declaration declares a member function or member function
// template of a class X, the expression this is a prvalue of type
// "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
// and the end of the function-definition, member-declarator, or
// declarator.
auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.getCurLexicalContext());
Sema::CXXThisScopeRAII ThisScope(
SemaRef, !ThisContext && RD ? RD : ThisContext, ThisTypeQuals);
ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
if (ResultType.isNull())
return QualType();
}
}
else {
ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
if (ResultType.isNull())
return QualType();
if (getDerived().TransformFunctionTypeParams(
TL.getBeginLoc(), TL.getParams(),
TL.getTypePtr()->param_type_begin(),
T->getExtParameterInfosOrNull(),
ParamTypes, &ParamDecls, ExtParamInfos))
return QualType();
}
FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo();
bool EPIChanged = false;
if (TransformExceptionSpec(EPI.ExceptionSpec, EPIChanged))
return QualType();
// Handle extended parameter information.
if (auto NewExtParamInfos =
ExtParamInfos.getPointerOrNull(ParamTypes.size())) {
if (!EPI.ExtParameterInfos ||
llvm::ArrayRef(EPI.ExtParameterInfos, TL.getNumParams()) !=
llvm::ArrayRef(NewExtParamInfos, ParamTypes.size())) {
EPIChanged = true;
}
EPI.ExtParameterInfos = NewExtParamInfos;
} else if (EPI.ExtParameterInfos) {
EPIChanged = true;
EPI.ExtParameterInfos = nullptr;
}
// Transform any function effects with unevaluated conditions.
// Hold this set in a local for the rest of this function, since EPI
// may need to hold a FunctionEffectsRef pointing into it.
std::optional<FunctionEffectSet> NewFX;
if (ArrayRef FXConds = EPI.FunctionEffects.conditions(); !FXConds.empty()) {
NewFX.emplace();
EnterExpressionEvaluationContext Unevaluated(
getSema(), Sema::ExpressionEvaluationContext::ConstantEvaluated);
for (const FunctionEffectWithCondition &PrevEC : EPI.FunctionEffects) {
FunctionEffectWithCondition NewEC = PrevEC;
if (Expr *CondExpr = PrevEC.Cond.getCondition()) {
ExprResult NewExpr = getDerived().TransformExpr(CondExpr);
if (NewExpr.isInvalid())
return QualType();
std::optional<FunctionEffectMode> Mode =
SemaRef.ActOnEffectExpression(NewExpr.get(), PrevEC.Effect.name());
if (!Mode)
return QualType();
// The condition expression has been transformed, and re-evaluated.
// It may or may not have become constant.
switch (*Mode) {
case FunctionEffectMode::True:
NewEC.Cond = {};
break;
case FunctionEffectMode::False:
NewEC.Effect = FunctionEffect(PrevEC.Effect.oppositeKind());
NewEC.Cond = {};
break;
case FunctionEffectMode::Dependent:
NewEC.Cond = EffectConditionExpr(NewExpr.get());
break;
case FunctionEffectMode::None:
llvm_unreachable(
"FunctionEffectMode::None shouldn't be possible here");
}
}
if (!SemaRef.diagnoseConflictingFunctionEffect(*NewFX, NewEC,
TL.getBeginLoc())) {
FunctionEffectSet::Conflicts Errs;
NewFX->insert(NewEC, Errs);
assert(Errs.empty());
}
}
EPI.FunctionEffects = *NewFX;
EPIChanged = true;
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() ||
T->getParamTypes() != llvm::ArrayRef(ParamTypes) || EPIChanged) {
Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, EPI);
if (Result.isNull())
return QualType();
}
FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
NewTL.setExceptionSpecRange(TL.getExceptionSpecRange());
NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i)
NewTL.setParam(i, ParamDecls[i]);
return Result;
}
template<typename Derived>
bool TreeTransform<Derived>::TransformExceptionSpec(
SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI,
SmallVectorImpl<QualType> &Exceptions, bool &Changed) {
assert(ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated);
// Instantiate a dynamic noexcept expression, if any.
if (isComputedNoexcept(ESI.Type)) {
// Update this scrope because ContextDecl in Sema will be used in
// TransformExpr.
auto *Method = dyn_cast_if_present<CXXMethodDecl>(ESI.SourceTemplate);
Sema::CXXThisScopeRAII ThisScope(
SemaRef, Method ? Method->getParent() : nullptr,
Method ? Method->getMethodQualifiers() : Qualifiers{},
Method != nullptr);
EnterExpressionEvaluationContext Unevaluated(
getSema(), Sema::ExpressionEvaluationContext::ConstantEvaluated);
ExprResult NoexceptExpr = getDerived().TransformExpr(ESI.NoexceptExpr);
if (NoexceptExpr.isInvalid())
return true;
ExceptionSpecificationType EST = ESI.Type;
NoexceptExpr =
getSema().ActOnNoexceptSpec(NoexceptExpr.get(), EST);
if (NoexceptExpr.isInvalid())
return true;
if (ESI.NoexceptExpr != NoexceptExpr.get() || EST != ESI.Type)
Changed = true;
ESI.NoexceptExpr = NoexceptExpr.get();
ESI.Type = EST;
}
if (ESI.Type != EST_Dynamic)
return false;
// Instantiate a dynamic exception specification's type.
for (QualType T : ESI.Exceptions) {
if (const PackExpansionType *PackExpansion =
T->getAs<PackExpansionType>()) {
Changed = true;
// We have a pack expansion. Instantiate it.
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(),
Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can and
// should
// be expanded.
bool Expand = false;
bool RetainExpansion = false;
UnsignedOrNone NumExpansions = PackExpansion->getNumExpansions();
// FIXME: Track the location of the ellipsis (and track source location
// information for the types in the exception specification in general).
if (getDerived().TryExpandParameterPacks(
Loc, SourceRange(), Unexpanded, Expand,
RetainExpansion, NumExpansions))
return true;
if (!Expand) {
// We can't expand this pack expansion into separate arguments yet;
// just substitute into the pattern and create a new pack expansion
// type.
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
QualType U = getDerived().TransformType(PackExpansion->getPattern());
if (U.isNull())
return true;
U = SemaRef.Context.getPackExpansionType(U, NumExpansions);
Exceptions.push_back(U);
continue;
}
// Substitute into the pack expansion pattern for each slice of the
// pack.
for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), ArgIdx);
QualType U = getDerived().TransformType(PackExpansion->getPattern());
if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
return true;
Exceptions.push_back(U);
}
} else {
QualType U = getDerived().TransformType(T);
if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
return true;
if (T != U)
Changed = true;
Exceptions.push_back(U);
}
}
ESI.Exceptions = Exceptions;
if (ESI.Exceptions.empty())
ESI.Type = EST_DynamicNone;
return false;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
TypeLocBuilder &TLB,
FunctionNoProtoTypeLoc TL) {
const FunctionNoProtoType *T = TL.getTypePtr();
QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
if (ResultType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType())
Result = getDerived().RebuildFunctionNoProtoType(ResultType);
FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformUnresolvedUsingType(
TypeLocBuilder &TLB, UnresolvedUsingTypeLoc TL) {
const UnresolvedUsingType *T = TL.getTypePtr();
Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
if (!D)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
Result = getDerived().RebuildUnresolvedUsingType(TL.getNameLoc(), D);
if (Result.isNull())
return QualType();
}
// We might get an arbitrary type spec type back. We should at
// least always get a type spec type, though.
TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformUsingType(TypeLocBuilder &TLB,
UsingTypeLoc TL) {
const UsingType *T = TL.getTypePtr();
auto *Found = cast_or_null<UsingShadowDecl>(getDerived().TransformDecl(
TL.getLocalSourceRange().getBegin(), T->getFoundDecl()));
if (!Found)
return QualType();
QualType Underlying = getDerived().TransformType(T->desugar());
if (Underlying.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || Found != T->getFoundDecl() ||
Underlying != T->getUnderlyingType()) {
Result = getDerived().RebuildUsingType(Found, Underlying);
if (Result.isNull())
return QualType();
}
TLB.pushTypeSpec(Result).setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
TypedefTypeLoc TL) {
const TypedefType *T = TL.getTypePtr();
TypedefNameDecl *Typedef
= cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
T->getDecl()));
if (!Typedef)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Typedef != T->getDecl()) {
Result = getDerived().RebuildTypedefType(Typedef);
if (Result.isNull())
return QualType();
}
TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
TypeOfExprTypeLoc TL) {
// typeof expressions are not potentially evaluated contexts
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
Sema::ReuseLambdaContextDecl);
ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
if (E.isInvalid())
return QualType();
E = SemaRef.HandleExprEvaluationContextForTypeof(E.get());
if (E.isInvalid())
return QualType();
QualType Result = TL.getType();
TypeOfKind Kind = Result->castAs<TypeOfExprType>()->getKind();
if (getDerived().AlwaysRebuild() || E.get() != TL.getUnderlyingExpr()) {
Result =
getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc(), Kind);
if (Result.isNull())
return QualType();
}
TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
NewTL.setTypeofLoc(TL.getTypeofLoc());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
TypeOfTypeLoc TL) {
TypeSourceInfo* Old_Under_TI = TL.getUnmodifiedTInfo();
TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
if (!New_Under_TI)
return QualType();
QualType Result = TL.getType();
TypeOfKind Kind = Result->castAs<TypeOfType>()->getKind();
if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
Result = getDerived().RebuildTypeOfType(New_Under_TI->getType(), Kind);
if (Result.isNull())
return QualType();
}
TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
NewTL.setTypeofLoc(TL.getTypeofLoc());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
NewTL.setUnmodifiedTInfo(New_Under_TI);
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
DecltypeTypeLoc TL) {
const DecltypeType *T = TL.getTypePtr();
// decltype expressions are not potentially evaluated contexts
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, nullptr,
Sema::ExpressionEvaluationContextRecord::EK_Decltype);
ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
if (E.isInvalid())
return QualType();
E = getSema().ActOnDecltypeExpression(E.get());
if (E.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
E.get() != T->getUnderlyingExpr()) {
Result = getDerived().RebuildDecltypeType(E.get(), TL.getDecltypeLoc());
if (Result.isNull())
return QualType();
}
else E.get();
DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
NewTL.setDecltypeLoc(TL.getDecltypeLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
return Result;
}
template <typename Derived>
QualType
TreeTransform<Derived>::TransformPackIndexingType(TypeLocBuilder &TLB,
PackIndexingTypeLoc TL) {
// Transform the index
ExprResult IndexExpr;
{
EnterExpressionEvaluationContext ConstantContext(
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
IndexExpr = getDerived().TransformExpr(TL.getIndexExpr());
if (IndexExpr.isInvalid())
return QualType();
}
QualType Pattern = TL.getPattern();
const PackIndexingType *PIT = TL.getTypePtr();
SmallVector<QualType, 5> SubtitutedTypes;
llvm::ArrayRef<QualType> Types = PIT->getExpansions();
bool NotYetExpanded = Types.empty();
bool FullySubstituted = true;
if (Types.empty() && !PIT->expandsToEmptyPack())
Types = llvm::ArrayRef<QualType>(&Pattern, 1);
for (QualType T : Types) {
if (!T->containsUnexpandedParameterPack()) {
QualType Transformed = getDerived().TransformType(T);
if (Transformed.isNull())
return QualType();
SubtitutedTypes.push_back(Transformed);
continue;
}
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(T, Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can and should
// be expanded.
bool ShouldExpand = true;
bool RetainExpansion = false;
UnsignedOrNone NumExpansions = std::nullopt;
if (getDerived().TryExpandParameterPacks(TL.getEllipsisLoc(), SourceRange(),
Unexpanded, ShouldExpand,
RetainExpansion, NumExpansions))
return QualType();
if (!ShouldExpand) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
// FIXME: should we keep TypeLoc for individual expansions in
// PackIndexingTypeLoc?
TypeSourceInfo *TI =
SemaRef.getASTContext().getTrivialTypeSourceInfo(T, TL.getBeginLoc());
QualType Pack = getDerived().TransformType(TLB, TI->getTypeLoc());
if (Pack.isNull())
return QualType();
if (NotYetExpanded) {
FullySubstituted = false;
QualType Out = getDerived().RebuildPackIndexingType(
Pack, IndexExpr.get(), SourceLocation(), TL.getEllipsisLoc(),
FullySubstituted);
if (Out.isNull())
return QualType();
PackIndexingTypeLoc Loc = TLB.push<PackIndexingTypeLoc>(Out);
Loc.setEllipsisLoc(TL.getEllipsisLoc());
return Out;
}
SubtitutedTypes.push_back(Pack);
continue;
}
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), I);
QualType Out = getDerived().TransformType(T);
if (Out.isNull())
return QualType();
SubtitutedTypes.push_back(Out);
FullySubstituted &= !Out->containsUnexpandedParameterPack();
}
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
if (RetainExpansion) {
FullySubstituted = false;
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
QualType Out = getDerived().TransformType(T);
if (Out.isNull())
return QualType();
SubtitutedTypes.push_back(Out);
}
}
// A pack indexing type can appear in a larger pack expansion,
// e.g. `Pack...[pack_of_indexes]...`
// so we need to temporarily disable substitution of pack elements
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
QualType Result = getDerived().TransformType(TLB, TL.getPatternLoc());
QualType Out = getDerived().RebuildPackIndexingType(
Result, IndexExpr.get(), SourceLocation(), TL.getEllipsisLoc(),
FullySubstituted, SubtitutedTypes);
if (Out.isNull())
return Out;
PackIndexingTypeLoc Loc = TLB.push<PackIndexingTypeLoc>(Out);
Loc.setEllipsisLoc(TL.getEllipsisLoc());
return Out;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformUnaryTransformType(
TypeLocBuilder &TLB,
UnaryTransformTypeLoc TL) {
QualType Result = TL.getType();
if (Result->isDependentType()) {
const UnaryTransformType *T = TL.getTypePtr();
TypeSourceInfo *NewBaseTSI =
getDerived().TransformType(TL.getUnderlyingTInfo());
if (!NewBaseTSI)
return QualType();
QualType NewBase = NewBaseTSI->getType();
Result = getDerived().RebuildUnaryTransformType(NewBase,
T->getUTTKind(),
TL.getKWLoc());
if (Result.isNull())
return QualType();
}
UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
NewTL.setKWLoc(TL.getKWLoc());
NewTL.setParensRange(TL.getParensRange());
NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDeducedTemplateSpecializationType(
TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
const DeducedTemplateSpecializationType *T = TL.getTypePtr();
CXXScopeSpec SS;
TemplateName TemplateName = getDerived().TransformTemplateName(
SS, T->getTemplateName(), TL.getTemplateNameLoc());
if (TemplateName.isNull())
return QualType();
QualType OldDeduced = T->getDeducedType();
QualType NewDeduced;
if (!OldDeduced.isNull()) {
NewDeduced = getDerived().TransformType(OldDeduced);
if (NewDeduced.isNull())
return QualType();
}
QualType Result = getDerived().RebuildDeducedTemplateSpecializationType(
TemplateName, NewDeduced);
if (Result.isNull())
return QualType();
DeducedTemplateSpecializationTypeLoc NewTL =
TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
RecordTypeLoc TL) {
const RecordType *T = TL.getTypePtr();
RecordDecl *Record
= cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
T->getDecl()));
if (!Record)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Record != T->getDecl()) {
Result = getDerived().RebuildRecordType(Record);
if (Result.isNull())
return QualType();
}
RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
EnumTypeLoc TL) {
const EnumType *T = TL.getTypePtr();
EnumDecl *Enum
= cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
T->getDecl()));
if (!Enum)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Enum != T->getDecl()) {
Result = getDerived().RebuildEnumType(Enum);
if (Result.isNull())
return QualType();
}
EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformInjectedClassNameType(
TypeLocBuilder &TLB,
InjectedClassNameTypeLoc TL) {
Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
TL.getTypePtr()->getDecl());
if (!D) return QualType();
QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
return T;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
TypeLocBuilder &TLB,
TemplateTypeParmTypeLoc TL) {
return getDerived().TransformTemplateTypeParmType(
TLB, TL,
/*SuppressObjCLifetime=*/false);
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
TypeLocBuilder &TLB, TemplateTypeParmTypeLoc TL, bool) {
return TransformTypeSpecType(TLB, TL);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
TypeLocBuilder &TLB,
SubstTemplateTypeParmTypeLoc TL) {
const SubstTemplateTypeParmType *T = TL.getTypePtr();
Decl *NewReplaced =
getDerived().TransformDecl(TL.getNameLoc(), T->getAssociatedDecl());
// Substitute into the replacement type, which itself might involve something
// that needs to be transformed. This only tends to occur with default
// template arguments of template template parameters.
TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
QualType Replacement = getDerived().TransformType(T->getReplacementType());
if (Replacement.isNull())
return QualType();
QualType Result = SemaRef.Context.getSubstTemplateTypeParmType(
Replacement, NewReplaced, T->getIndex(), T->getPackIndex(),
T->getFinal());
// Propagate type-source information.
SubstTemplateTypeParmTypeLoc NewTL
= TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
TypeLocBuilder &TLB,
SubstTemplateTypeParmPackTypeLoc TL) {
return getDerived().TransformSubstTemplateTypeParmPackType(
TLB, TL, /*SuppressObjCLifetime=*/false);
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
TypeLocBuilder &TLB, SubstTemplateTypeParmPackTypeLoc TL, bool) {
return TransformTypeSpecType(TLB, TL);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
TypeLocBuilder &TLB,
TemplateSpecializationTypeLoc TL) {
const TemplateSpecializationType *T = TL.getTypePtr();
// The nested-name-specifier never matters in a TemplateSpecializationType,
// because we can't have a dependent nested-name-specifier anyway.
CXXScopeSpec SS;
TemplateName Template
= getDerived().TransformTemplateName(SS, T->getTemplateName(),
TL.getTemplateNameLoc());
if (Template.isNull())
return QualType();
return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB,
AtomicTypeLoc TL) {
QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
if (ValueType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
ValueType != TL.getValueLoc().getType()) {
Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc());
if (Result.isNull())
return QualType();
}
AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result);
NewTL.setKWLoc(TL.getKWLoc());
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformPipeType(TypeLocBuilder &TLB,
PipeTypeLoc TL) {
QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
if (ValueType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || ValueType != TL.getValueLoc().getType()) {
const PipeType *PT = Result->castAs<PipeType>();
bool isReadPipe = PT->isReadOnly();
Result = getDerived().RebuildPipeType(ValueType, TL.getKWLoc(), isReadPipe);
if (Result.isNull())
return QualType();
}
PipeTypeLoc NewTL = TLB.push<PipeTypeLoc>(Result);
NewTL.setKWLoc(TL.getKWLoc());
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformBitIntType(TypeLocBuilder &TLB,
BitIntTypeLoc TL) {
const BitIntType *EIT = TL.getTypePtr();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild()) {
Result = getDerived().RebuildBitIntType(EIT->isUnsigned(),
EIT->getNumBits(), TL.getNameLoc());
if (Result.isNull())
return QualType();
}
BitIntTypeLoc NewTL = TLB.push<BitIntTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformDependentBitIntType(
TypeLocBuilder &TLB, DependentBitIntTypeLoc TL) {
const DependentBitIntType *EIT = TL.getTypePtr();
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
ExprResult BitsExpr = getDerived().TransformExpr(EIT->getNumBitsExpr());
BitsExpr = SemaRef.ActOnConstantExpression(BitsExpr);
if (BitsExpr.isInvalid())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || BitsExpr.get() != EIT->getNumBitsExpr()) {
Result = getDerived().RebuildDependentBitIntType(
EIT->isUnsigned(), BitsExpr.get(), TL.getNameLoc());
if (Result.isNull())
return QualType();
}
if (isa<DependentBitIntType>(Result)) {
DependentBitIntTypeLoc NewTL = TLB.push<DependentBitIntTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
} else {
BitIntTypeLoc NewTL = TLB.push<BitIntTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
}
return Result;
}
/// Simple iterator that traverses the template arguments in a
/// container that provides a \c getArgLoc() member function.
///
/// This iterator is intended to be used with the iterator form of
/// \c TreeTransform<Derived>::TransformTemplateArguments().
template<typename ArgLocContainer>
class TemplateArgumentLocContainerIterator {
ArgLocContainer *Container;
unsigned Index;
public:
typedef TemplateArgumentLoc value_type;
typedef TemplateArgumentLoc reference;
typedef int difference_type;
typedef std::input_iterator_tag iterator_category;
class pointer {
TemplateArgumentLoc Arg;
public:
explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
const TemplateArgumentLoc *operator->() const {
return &Arg;
}
};
TemplateArgumentLocContainerIterator() {}
TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
unsigned Index)
: Container(&Container), Index(Index) { }
TemplateArgumentLocContainerIterator &operator++() {
++Index;
return *this;
}
TemplateArgumentLocContainerIterator operator++(int) {
TemplateArgumentLocContainerIterator Old(*this);
++(*this);
return Old;
}
TemplateArgumentLoc operator*() const {
return Container->getArgLoc(Index);
}
pointer operator->() const {
return pointer(Container->getArgLoc(Index));
}
friend bool operator==(const TemplateArgumentLocContainerIterator &X,
const TemplateArgumentLocContainerIterator &Y) {
return X.Container == Y.Container && X.Index == Y.Index;
}
friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
const TemplateArgumentLocContainerIterator &Y) {
return !(X == Y);
}
};
template<typename Derived>
QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
AutoTypeLoc TL) {
const AutoType *T = TL.getTypePtr();
QualType OldDeduced = T->getDeducedType();
QualType NewDeduced;
if (!OldDeduced.isNull()) {
NewDeduced = getDerived().TransformType(OldDeduced);
if (NewDeduced.isNull())
return QualType();
}
ConceptDecl *NewCD = nullptr;
TemplateArgumentListInfo NewTemplateArgs;
NestedNameSpecifierLoc NewNestedNameSpec;
if (T->isConstrained()) {
assert(TL.getConceptReference());
NewCD = cast_or_null<ConceptDecl>(getDerived().TransformDecl(
TL.getConceptNameLoc(), T->getTypeConstraintConcept()));
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
typedef TemplateArgumentLocContainerIterator<AutoTypeLoc> ArgIterator;
if (getDerived().TransformTemplateArguments(
ArgIterator(TL, 0), ArgIterator(TL, TL.getNumArgs()),
NewTemplateArgs))
return QualType();
if (TL.getNestedNameSpecifierLoc()) {
NewNestedNameSpec
= getDerived().TransformNestedNameSpecifierLoc(
TL.getNestedNameSpecifierLoc());
if (!NewNestedNameSpec)
return QualType();
}
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
T->isDependentType() || T->isConstrained()) {
// FIXME: Maybe don't rebuild if all template arguments are the same.
llvm::SmallVector<TemplateArgument, 4> NewArgList;
NewArgList.reserve(NewTemplateArgs.size());
for (const auto &ArgLoc : NewTemplateArgs.arguments())
NewArgList.push_back(ArgLoc.getArgument());
Result = getDerived().RebuildAutoType(NewDeduced, T->getKeyword(), NewCD,
NewArgList);
if (Result.isNull())
return QualType();
}
AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
NewTL.setConceptReference(nullptr);
if (T->isConstrained()) {
DeclarationNameInfo DNI = DeclarationNameInfo(
TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(),
TL.getConceptNameLoc(),
TL.getTypePtr()->getTypeConstraintConcept()->getDeclName());
auto *CR = ConceptReference::Create(
SemaRef.Context, NewNestedNameSpec, TL.getTemplateKWLoc(), DNI,
TL.getFoundDecl(), TL.getTypePtr()->getTypeConstraintConcept(),
ASTTemplateArgumentListInfo::Create(SemaRef.Context, NewTemplateArgs));
NewTL.setConceptReference(CR);
}
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
TypeLocBuilder &TLB,
TemplateSpecializationTypeLoc TL,
TemplateName Template) {
TemplateArgumentListInfo NewTemplateArgs;
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
ArgIterator;
if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
ArgIterator(TL, TL.getNumArgs()),
NewTemplateArgs))
return QualType();
// This needs to be rebuilt if either the arguments changed, or if the
// original template changed. If the template changed, and even if the
// arguments didn't change, these arguments might not correspond to their
// respective parameters, therefore needing conversions.
QualType Result =
getDerived().RebuildTemplateSpecializationType(Template,
TL.getTemplateNameLoc(),
NewTemplateArgs);
if (!Result.isNull()) {
// Specializations of template template parameters are represented as
// TemplateSpecializationTypes, and substitution of type alias templates
// within a dependent context can transform them into
// DependentTemplateSpecializationTypes.
if (isa<DependentTemplateSpecializationType>(Result)) {
DependentTemplateSpecializationTypeLoc NewTL
= TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(SourceLocation());
NewTL.setQualifierLoc(NestedNameSpecifierLoc());
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NewTL.setLAngleLoc(TL.getLAngleLoc());
NewTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
return Result;
}
TemplateSpecializationTypeLoc NewTL
= TLB.push<TemplateSpecializationTypeLoc>(Result);
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NewTL.setLAngleLoc(TL.getLAngleLoc());
NewTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
}
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
TypeLocBuilder &TLB,
DependentTemplateSpecializationTypeLoc TL,
TemplateName Template,
CXXScopeSpec &SS) {
TemplateArgumentListInfo NewTemplateArgs;
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
typedef TemplateArgumentLocContainerIterator<
DependentTemplateSpecializationTypeLoc> ArgIterator;
if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
ArgIterator(TL, TL.getNumArgs()),
NewTemplateArgs))
return QualType();
// FIXME: maybe don't rebuild if all the template arguments are the same.
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
assert(DTN->getQualifier() == SS.getScopeRep());
QualType Result = getSema().Context.getDependentTemplateSpecializationType(
TL.getTypePtr()->getKeyword(), *DTN, NewTemplateArgs.arguments());
DependentTemplateSpecializationTypeLoc NewTL
= TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NewTL.setLAngleLoc(TL.getLAngleLoc());
NewTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
return Result;
}
QualType Result
= getDerived().RebuildTemplateSpecializationType(Template,
TL.getTemplateNameLoc(),
NewTemplateArgs);
if (!Result.isNull()) {
/// FIXME: Wrap this in an elaborated-type-specifier?
TemplateSpecializationTypeLoc NewTL
= TLB.push<TemplateSpecializationTypeLoc>(Result);
NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NewTL.setLAngleLoc(TL.getLAngleLoc());
NewTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
}
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
ElaboratedTypeLoc TL) {
const ElaboratedType *T = TL.getTypePtr();
NestedNameSpecifierLoc QualifierLoc;
// NOTE: the qualifier in an ElaboratedType is optional.
if (TL.getQualifierLoc()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
if (!QualifierLoc)
return QualType();
}
QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
if (NamedT.isNull())
return QualType();
// C++0x [dcl.type.elab]p2:
// If the identifier resolves to a typedef-name or the simple-template-id
// resolves to an alias template specialization, the
// elaborated-type-specifier is ill-formed.
if (T->getKeyword() != ElaboratedTypeKeyword::None &&
T->getKeyword() != ElaboratedTypeKeyword::Typename) {
if (const TemplateSpecializationType *TST =
NamedT->getAs<TemplateSpecializationType>()) {
TemplateName Template = TST->getTemplateName();
if (TypeAliasTemplateDecl *TAT = dyn_cast_or_null<TypeAliasTemplateDecl>(
Template.getAsTemplateDecl())) {
SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
diag::err_tag_reference_non_tag)
<< TAT << Sema::NTK_TypeAliasTemplate
<< llvm::to_underlying(
ElaboratedType::getTagTypeKindForKeyword(T->getKeyword()));
SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
}
}
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
QualifierLoc != TL.getQualifierLoc() ||
NamedT != T->getNamedType()) {
Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(),
T->getKeyword(),
QualifierLoc, NamedT);
if (Result.isNull())
return QualType();
}
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
NewTL.setQualifierLoc(QualifierLoc);
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformAttributedType(TypeLocBuilder &TLB,
AttributedTypeLoc TL) {
const AttributedType *oldType = TL.getTypePtr();
QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
if (modifiedType.isNull())
return QualType();
// oldAttr can be null if we started with a QualType rather than a TypeLoc.
const Attr *oldAttr = TL.getAttr();
const Attr *newAttr = oldAttr ? getDerived().TransformAttr(oldAttr) : nullptr;
if (oldAttr && !newAttr)
return QualType();
QualType result = TL.getType();
// FIXME: dependent operand expressions?
if (getDerived().AlwaysRebuild() ||
modifiedType != oldType->getModifiedType()) {
// If the equivalent type is equal to the modified type, we don't want to
// transform it as well because:
//
// 1. The transformation would yield the same result and is therefore
// superfluous, and
//
// 2. Transforming the same type twice can cause problems, e.g. if it
// is a FunctionProtoType, we may end up instantiating the function
// parameters twice, which causes an assertion since the parameters
// are already bound to their counterparts in the template for this
// instantiation.
//
QualType equivalentType = modifiedType;
if (TL.getModifiedLoc().getType() != TL.getEquivalentTypeLoc().getType()) {
TypeLocBuilder AuxiliaryTLB;
AuxiliaryTLB.reserve(TL.getFullDataSize());
equivalentType =
getDerived().TransformType(AuxiliaryTLB, TL.getEquivalentTypeLoc());
if (equivalentType.isNull())
return QualType();
}
// Check whether we can add nullability; it is only represented as
// type sugar, and therefore cannot be diagnosed in any other way.
if (auto nullability = oldType->getImmediateNullability()) {
if (!modifiedType->canHaveNullability()) {
SemaRef.Diag((TL.getAttr() ? TL.getAttr()->getLocation()
: TL.getModifiedLoc().getBeginLoc()),
diag::err_nullability_nonpointer)
<< DiagNullabilityKind(*nullability, false) << modifiedType;
return QualType();
}
}
result = SemaRef.Context.getAttributedType(TL.getAttrKind(),
modifiedType,
equivalentType,
TL.getAttr());
}
AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
newTL.setAttr(newAttr);
return result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformCountAttributedType(
TypeLocBuilder &TLB, CountAttributedTypeLoc TL) {
const CountAttributedType *OldTy = TL.getTypePtr();
QualType InnerTy = getDerived().TransformType(TLB, TL.getInnerLoc());
if (InnerTy.isNull())
return QualType();
Expr *OldCount = TL.getCountExpr();
Expr *NewCount = nullptr;
if (OldCount) {
ExprResult CountResult = getDerived().TransformExpr(OldCount);
if (CountResult.isInvalid())
return QualType();
NewCount = CountResult.get();
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || InnerTy != OldTy->desugar() ||
OldCount != NewCount) {
// Currently, CountAttributedType can only wrap incomplete array types.
Result = SemaRef.BuildCountAttributedArrayOrPointerType(
InnerTy, NewCount, OldTy->isCountInBytes(), OldTy->isOrNull());
}
TLB.push<CountAttributedTypeLoc>(Result);
return Result;
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformBTFTagAttributedType(
TypeLocBuilder &TLB, BTFTagAttributedTypeLoc TL) {
// The BTFTagAttributedType is available for C only.
llvm_unreachable("Unexpected TreeTransform for BTFTagAttributedType");
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformHLSLAttributedResourceType(
TypeLocBuilder &TLB, HLSLAttributedResourceTypeLoc TL) {
const HLSLAttributedResourceType *oldType = TL.getTypePtr();
QualType WrappedTy = getDerived().TransformType(TLB, TL.getWrappedLoc());
if (WrappedTy.isNull())
return QualType();
QualType ContainedTy = QualType();
QualType OldContainedTy = oldType->getContainedType();
if (!OldContainedTy.isNull()) {
TypeSourceInfo *oldContainedTSI = TL.getContainedTypeSourceInfo();
if (!oldContainedTSI)
oldContainedTSI = getSema().getASTContext().getTrivialTypeSourceInfo(
OldContainedTy, SourceLocation());
TypeSourceInfo *ContainedTSI = getDerived().TransformType(oldContainedTSI);
if (!ContainedTSI)
return QualType();
ContainedTy = ContainedTSI->getType();
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || WrappedTy != oldType->getWrappedType() ||
ContainedTy != oldType->getContainedType()) {
Result = SemaRef.Context.getHLSLAttributedResourceType(
WrappedTy, ContainedTy, oldType->getAttrs());
}
TLB.push<HLSLAttributedResourceTypeLoc>(Result);
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
ParenTypeLoc TL) {
QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
if (Inner.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Inner != TL.getInnerLoc().getType()) {
Result = getDerived().RebuildParenType(Inner);
if (Result.isNull())
return QualType();
}
ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
NewTL.setLParenLoc(TL.getLParenLoc());
NewTL.setRParenLoc(TL.getRParenLoc());
return Result;
}
template <typename Derived>
QualType
TreeTransform<Derived>::TransformMacroQualifiedType(TypeLocBuilder &TLB,
MacroQualifiedTypeLoc TL) {
QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
if (Inner.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || Inner != TL.getInnerLoc().getType()) {
Result =
getDerived().RebuildMacroQualifiedType(Inner, TL.getMacroIdentifier());
if (Result.isNull())
return QualType();
}
MacroQualifiedTypeLoc NewTL = TLB.push<MacroQualifiedTypeLoc>(Result);
NewTL.setExpansionLoc(TL.getExpansionLoc());
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDependentNameType(
TypeLocBuilder &TLB, DependentNameTypeLoc TL) {
return TransformDependentNameType(TLB, TL, false);
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformDependentNameType(
TypeLocBuilder &TLB, DependentNameTypeLoc TL, bool DeducedTSTContext) {
const DependentNameType *T = TL.getTypePtr();
NestedNameSpecifierLoc QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
if (!QualifierLoc)
return QualType();
QualType Result
= getDerived().RebuildDependentNameType(T->getKeyword(),
TL.getElaboratedKeywordLoc(),
QualifierLoc,
T->getIdentifier(),
TL.getNameLoc(),
DeducedTSTContext);
if (Result.isNull())
return QualType();
if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
QualType NamedT = ElabT->getNamedType();
TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
NewTL.setQualifierLoc(QualifierLoc);
} else {
DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
NewTL.setQualifierLoc(QualifierLoc);
NewTL.setNameLoc(TL.getNameLoc());
}
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
DependentTemplateSpecializationTypeLoc TL) {
NestedNameSpecifierLoc QualifierLoc;
if (TL.getQualifierLoc()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
if (!QualifierLoc)
return QualType();
}
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
return getDerived().TransformDependentTemplateSpecializationType(TLB, TL, SS);
}
template <typename Derived>
QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL,
CXXScopeSpec &SS) {
const DependentTemplateSpecializationType *T = TL.getTypePtr();
TemplateArgumentListInfo NewTemplateArgs;
NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
auto ArgsRange = llvm::make_range<TemplateArgumentLocContainerIterator<
DependentTemplateSpecializationTypeLoc>>({TL, 0}, {TL, TL.getNumArgs()});
if (getDerived().TransformTemplateArguments(ArgsRange.begin(),
ArgsRange.end(), NewTemplateArgs))
return QualType();
bool TemplateArgumentsChanged = !llvm::equal(
ArgsRange, NewTemplateArgs.arguments(),
[](const TemplateArgumentLoc &A, const TemplateArgumentLoc &B) {
return A.getArgument().structurallyEquals(B.getArgument());
});
const DependentTemplateStorage &DTN = T->getDependentTemplateName();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || SS.getScopeRep() != DTN.getQualifier() ||
TemplateArgumentsChanged) {
TemplateName Name = getDerived().RebuildTemplateName(
SS, TL.getTemplateKeywordLoc(), DTN.getName(), TL.getTemplateNameLoc(),
/*ObjectType=*/QualType(), /*FirstQualifierInScope=*/nullptr,
/*AllowInjectedClassName=*/false);
if (Name.isNull())
return QualType();
Result = getDerived().RebuildDependentTemplateSpecializationType(
T->getKeyword(), SS.getScopeRep(), TL.getTemplateKeywordLoc(), Name,
TL.getTemplateNameLoc(), NewTemplateArgs,
/*AllowInjectedClassName=*/false);
if (Result.isNull())
return QualType();
}
NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(SemaRef.Context);
if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
QualType NamedT = ElabT->getNamedType();
// Copy information relevant to the template specialization.
TemplateSpecializationTypeLoc NamedTL
= TLB.push<TemplateSpecializationTypeLoc>(NamedT);
NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc());
NamedTL.setLAngleLoc(TL.getLAngleLoc());
NamedTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
// Copy information relevant to the elaborated type.
ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
NewTL.setQualifierLoc(QualifierLoc);
} else {
assert(isa<DependentTemplateSpecializationType>(Result));
DependentTemplateSpecializationTypeLoc SpecTL
= TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
SpecTL.setQualifierLoc(QualifierLoc);
SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
SpecTL.setLAngleLoc(TL.getLAngleLoc());
SpecTL.setRAngleLoc(TL.getRAngleLoc());
for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
}
return Result;
}
template<typename Derived>
QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
PackExpansionTypeLoc TL) {
QualType Pattern
= getDerived().TransformType(TLB, TL.getPatternLoc());
if (Pattern.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
Pattern != TL.getPatternLoc().getType()) {
Result = getDerived().RebuildPackExpansionType(Pattern,
TL.getPatternLoc().getSourceRange(),
TL.getEllipsisLoc(),
TL.getTypePtr()->getNumExpansions());
if (Result.isNull())
return QualType();
}
PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
NewT.setEllipsisLoc(TL.getEllipsisLoc());
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
ObjCInterfaceTypeLoc TL) {
// ObjCInterfaceType is never dependent.
TLB.pushFullCopy(TL);
return TL.getType();
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformObjCTypeParamType(TypeLocBuilder &TLB,
ObjCTypeParamTypeLoc TL) {
const ObjCTypeParamType *T = TL.getTypePtr();
ObjCTypeParamDecl *OTP = cast_or_null<ObjCTypeParamDecl>(
getDerived().TransformDecl(T->getDecl()->getLocation(), T->getDecl()));
if (!OTP)
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
OTP != T->getDecl()) {
Result = getDerived().RebuildObjCTypeParamType(
OTP, TL.getProtocolLAngleLoc(),
llvm::ArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()),
TL.getProtocolLocs(), TL.getProtocolRAngleLoc());
if (Result.isNull())
return QualType();
}
ObjCTypeParamTypeLoc NewTL = TLB.push<ObjCTypeParamTypeLoc>(Result);
if (TL.getNumProtocols()) {
NewTL.setProtocolLAngleLoc(TL.getProtocolLAngleLoc());
for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i)
NewTL.setProtocolLoc(i, TL.getProtocolLoc(i));
NewTL.setProtocolRAngleLoc(TL.getProtocolRAngleLoc());
}
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
ObjCObjectTypeLoc TL) {
// Transform base type.
QualType BaseType = getDerived().TransformType(TLB, TL.getBaseLoc());
if (BaseType.isNull())
return QualType();
bool AnyChanged = BaseType != TL.getBaseLoc().getType();
// Transform type arguments.
SmallVector<TypeSourceInfo *, 4> NewTypeArgInfos;
for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) {
TypeSourceInfo *TypeArgInfo = TL.getTypeArgTInfo(i);
TypeLoc TypeArgLoc = TypeArgInfo->getTypeLoc();
QualType TypeArg = TypeArgInfo->getType();
if (auto PackExpansionLoc = TypeArgLoc.getAs<PackExpansionTypeLoc>()) {
AnyChanged = true;
// We have a pack expansion. Instantiate it.
const auto *PackExpansion = PackExpansionLoc.getType()
->castAs<PackExpansionType>();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(),
Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can
// and should be expanded.
TypeLoc PatternLoc = PackExpansionLoc.getPatternLoc();
bool Expand = false;
bool RetainExpansion = false;
UnsignedOrNone NumExpansions = PackExpansion->getNumExpansions();
if (getDerived().TryExpandParameterPacks(
PackExpansionLoc.getEllipsisLoc(), PatternLoc.getSourceRange(),
Unexpanded, Expand, RetainExpansion, NumExpansions))
return QualType();
if (!Expand) {
// We can't expand this pack expansion into separate arguments yet;
// just substitute into the pattern and create a new pack expansion
// type.
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
TypeLocBuilder TypeArgBuilder;
TypeArgBuilder.reserve(PatternLoc.getFullDataSize());
QualType NewPatternType = getDerived().TransformType(TypeArgBuilder,
PatternLoc);
if (NewPatternType.isNull())
return QualType();
QualType NewExpansionType = SemaRef.Context.getPackExpansionType(
NewPatternType, NumExpansions);
auto NewExpansionLoc = TLB.push<PackExpansionTypeLoc>(NewExpansionType);
NewExpansionLoc.setEllipsisLoc(PackExpansionLoc.getEllipsisLoc());
NewTypeArgInfos.push_back(
TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewExpansionType));
continue;
}
// Substitute into the pack expansion pattern for each slice of the
// pack.
for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), ArgIdx);
TypeLocBuilder TypeArgBuilder;
TypeArgBuilder.reserve(PatternLoc.getFullDataSize());
QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder,
PatternLoc);
if (NewTypeArg.isNull())
return QualType();
NewTypeArgInfos.push_back(
TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg));
}
continue;
}
TypeLocBuilder TypeArgBuilder;
TypeArgBuilder.reserve(TypeArgLoc.getFullDataSize());
QualType NewTypeArg =
getDerived().TransformType(TypeArgBuilder, TypeArgLoc);
if (NewTypeArg.isNull())
return QualType();
// If nothing changed, just keep the old TypeSourceInfo.
if (NewTypeArg == TypeArg) {
NewTypeArgInfos.push_back(TypeArgInfo);
continue;
}
NewTypeArgInfos.push_back(
TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg));
AnyChanged = true;
}
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() || AnyChanged) {
// Rebuild the type.
Result = getDerived().RebuildObjCObjectType(
BaseType, TL.getBeginLoc(), TL.getTypeArgsLAngleLoc(), NewTypeArgInfos,
TL.getTypeArgsRAngleLoc(), TL.getProtocolLAngleLoc(),
llvm::ArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()),
TL.getProtocolLocs(), TL.getProtocolRAngleLoc());
if (Result.isNull())
return QualType();
}
ObjCObjectTypeLoc NewT = TLB.push<ObjCObjectTypeLoc>(Result);
NewT.setHasBaseTypeAsWritten(true);
NewT.setTypeArgsLAngleLoc(TL.getTypeArgsLAngleLoc());
for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i)
NewT.setTypeArgTInfo(i, NewTypeArgInfos[i]);
NewT.setTypeArgsRAngleLoc(TL.getTypeArgsRAngleLoc());
NewT.setProtocolLAngleLoc(TL.getProtocolLAngleLoc());
for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i)
NewT.setProtocolLoc(i, TL.getProtocolLoc(i));
NewT.setProtocolRAngleLoc(TL.getProtocolRAngleLoc());
return Result;
}
template<typename Derived>
QualType
TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
ObjCObjectPointerTypeLoc TL) {
QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
if (PointeeType.isNull())
return QualType();
QualType Result = TL.getType();
if (getDerived().AlwaysRebuild() ||
PointeeType != TL.getPointeeLoc().getType()) {
Result = getDerived().RebuildObjCObjectPointerType(PointeeType,
TL.getStarLoc());
if (Result.isNull())
return QualType();
}
ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
NewT.setStarLoc(TL.getStarLoc());
return Result;
}
//===----------------------------------------------------------------------===//
// Statement transformation
//===----------------------------------------------------------------------===//
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
return S;
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
return getDerived().TransformCompoundStmt(S, false);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
bool IsStmtExpr) {
Sema::CompoundScopeRAII CompoundScope(getSema());
Sema::FPFeaturesStateRAII FPSave(getSema());
if (S->hasStoredFPFeatures())
getSema().resetFPOptions(
S->getStoredFPFeatures().applyOverrides(getSema().getLangOpts()));
const Stmt *ExprResult = S->getStmtExprResult();
bool SubStmtInvalid = false;
bool SubStmtChanged = false;
SmallVector<Stmt*, 8> Statements;
for (auto *B : S->body()) {
StmtResult Result = getDerived().TransformStmt(
B, IsStmtExpr && B == ExprResult ? SDK_StmtExprResult : SDK_Discarded);
if (Result.isInvalid()) {
// Immediately fail if this was a DeclStmt, since it's very
// likely that this will cause problems for future statements.
if (isa<DeclStmt>(B))
return StmtError();
// Otherwise, just keep processing substatements and fail later.
SubStmtInvalid = true;
continue;
}
SubStmtChanged = SubStmtChanged || Result.get() != B;
Statements.push_back(Result.getAs<Stmt>());
}
if (SubStmtInvalid)
return StmtError();
if (!getDerived().AlwaysRebuild() &&
!SubStmtChanged)
return S;
return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
Statements,
S->getRBracLoc(),
IsStmtExpr);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
ExprResult LHS, RHS;
{
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
// Transform the left-hand case value.
LHS = getDerived().TransformExpr(S->getLHS());
LHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), LHS);
if (LHS.isInvalid())
return StmtError();
// Transform the right-hand case value (for the GNU case-range extension).
RHS = getDerived().TransformExpr(S->getRHS());
RHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), RHS);
if (RHS.isInvalid())
return StmtError();
}
// Build the case statement.
// Case statements are always rebuilt so that they will attached to their
// transformed switch statement.
StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
LHS.get(),
S->getEllipsisLoc(),
RHS.get(),
S->getColonLoc());
if (Case.isInvalid())
return StmtError();
// Transform the statement following the case
StmtResult SubStmt =
getDerived().TransformStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
// Attach the body to the case statement
return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
// Transform the statement following the default case
StmtResult SubStmt =
getDerived().TransformStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
// Default statements are always rebuilt
return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
SubStmt.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S, StmtDiscardKind SDK) {
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK);
if (SubStmt.isInvalid())
return StmtError();
Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
S->getDecl());
if (!LD)
return StmtError();
// If we're transforming "in-place" (we're not creating new local
// declarations), assume we're replacing the old label statement
// and clear out the reference to it.
if (LD == S->getDecl())
S->getDecl()->setStmt(nullptr);
// FIXME: Pass the real colon location in.
return getDerived().RebuildLabelStmt(S->getIdentLoc(),
cast<LabelDecl>(LD), SourceLocation(),
SubStmt.get());
}
template <typename Derived>
const Attr *TreeTransform<Derived>::TransformAttr(const Attr *R) {
if (!R)
return R;
switch (R->getKind()) {
// Transform attributes by calling TransformXXXAttr.
#define ATTR(X) \
case attr::X: \
return getDerived().Transform##X##Attr(cast<X##Attr>(R));
#include "clang/Basic/AttrList.inc"
}
return R;
}
template <typename Derived>
const Attr *TreeTransform<Derived>::TransformStmtAttr(const Stmt *OrigS,
const Stmt *InstS,
const Attr *R) {
if (!R)
return R;
switch (R->getKind()) {
// Transform attributes by calling TransformStmtXXXAttr.
#define ATTR(X) \
case attr::X: \
return getDerived().TransformStmt##X##Attr(OrigS, InstS, cast<X##Attr>(R));
#include "clang/Basic/AttrList.inc"
}
return TransformAttr(R);
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S,
StmtDiscardKind SDK) {
StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK);
if (SubStmt.isInvalid())
return StmtError();
bool AttrsChanged = false;
SmallVector<const Attr *, 1> Attrs;
// Visit attributes and keep track if any are transformed.
for (const auto *I : S->getAttrs()) {
const Attr *R =
getDerived().TransformStmtAttr(S->getSubStmt(), SubStmt.get(), I);
AttrsChanged |= (I != R);
if (R)
Attrs.push_back(R);
}
if (SubStmt.get() == S->getSubStmt() && !AttrsChanged)
return S;
// If transforming the attributes failed for all of the attributes in the
// statement, don't make an AttributedStmt without attributes.
if (Attrs.empty())
return SubStmt;
return getDerived().RebuildAttributedStmt(S->getAttrLoc(), Attrs,
SubStmt.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
// Transform the initialization statement
StmtResult Init = getDerived().TransformStmt(S->getInit());
if (Init.isInvalid())
return StmtError();
Sema::ConditionResult Cond;
if (!S->isConsteval()) {
// Transform the condition
Cond = getDerived().TransformCondition(
S->getIfLoc(), S->getConditionVariable(), S->getCond(),
S->isConstexpr() ? Sema::ConditionKind::ConstexprIf
: Sema::ConditionKind::Boolean);
if (Cond.isInvalid())
return StmtError();
}
// If this is a constexpr if, determine which arm we should instantiate.
std::optional<bool> ConstexprConditionValue;
if (S->isConstexpr())
ConstexprConditionValue = Cond.getKnownValue();
// Transform the "then" branch.
StmtResult Then;
if (!ConstexprConditionValue || *ConstexprConditionValue) {
EnterExpressionEvaluationContext Ctx(
getSema(), Sema::ExpressionEvaluationContext::ImmediateFunctionContext,
nullptr, Sema::ExpressionEvaluationContextRecord::EK_Other,
S->isNonNegatedConsteval());
Then = getDerived().TransformStmt(S->getThen());
if (Then.isInvalid())
return StmtError();
} else {
// Discarded branch is replaced with empty CompoundStmt so we can keep
// proper source location for start and end of original branch, so
// subsequent transformations like CoverageMapping work properly
Then = new (getSema().Context)
CompoundStmt(S->getThen()->getBeginLoc(), S->getThen()->getEndLoc());
}
// Transform the "else" branch.
StmtResult Else;
if (!ConstexprConditionValue || !*ConstexprConditionValue) {
EnterExpressionEvaluationContext Ctx(
getSema(), Sema::ExpressionEvaluationContext::ImmediateFunctionContext,
nullptr, Sema::ExpressionEvaluationContextRecord::EK_Other,
S->isNegatedConsteval());
Else = getDerived().TransformStmt(S->getElse());
if (Else.isInvalid())
return StmtError();
} else if (S->getElse() && ConstexprConditionValue &&
*ConstexprConditionValue) {
// Same thing here as with <then> branch, we are discarding it, we can't
// replace it with NULL nor NullStmt as we need to keep for source location
// range, for CoverageMapping
Else = new (getSema().Context)
CompoundStmt(S->getElse()->getBeginLoc(), S->getElse()->getEndLoc());
}
if (!getDerived().AlwaysRebuild() &&
Init.get() == S->getInit() &&
Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
Then.get() == S->getThen() &&
Else.get() == S->getElse())
return S;
return getDerived().RebuildIfStmt(
S->getIfLoc(), S->getStatementKind(), S->getLParenLoc(), Cond,
S->getRParenLoc(), Init.get(), Then.get(), S->getElseLoc(), Else.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
// Transform the initialization statement
StmtResult Init = getDerived().TransformStmt(S->getInit());
if (Init.isInvalid())
return StmtError();
// Transform the condition.
Sema::ConditionResult Cond = getDerived().TransformCondition(
S->getSwitchLoc(), S->getConditionVariable(), S->getCond(),
Sema::ConditionKind::Switch);
if (Cond.isInvalid())
return StmtError();
// Rebuild the switch statement.
StmtResult Switch =
getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), S->getLParenLoc(),
Init.get(), Cond, S->getRParenLoc());
if (Switch.isInvalid())
return StmtError();
// Transform the body of the switch statement.
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
// Complete the switch statement.
return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
// Transform the condition
Sema::ConditionResult Cond = getDerived().TransformCondition(
S->getWhileLoc(), S->getConditionVariable(), S->getCond(),
Sema::ConditionKind::Boolean);
if (Cond.isInvalid())
return StmtError();
// OpenACC Restricts a while-loop inside of certain construct/clause
// combinations, so diagnose that here in OpenACC mode.
SemaOpenACC::LoopInConstructRAII LCR{SemaRef.OpenACC()};
SemaRef.OpenACC().ActOnWhileStmt(S->getBeginLoc());
// Transform the body
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
Body.get() == S->getBody())
return Owned(S);
return getDerived().RebuildWhileStmt(S->getWhileLoc(), S->getLParenLoc(),
Cond, S->getRParenLoc(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
// OpenACC Restricts a do-loop inside of certain construct/clause
// combinations, so diagnose that here in OpenACC mode.
SemaOpenACC::LoopInConstructRAII LCR{SemaRef.OpenACC()};
SemaRef.OpenACC().ActOnDoStmt(S->getBeginLoc());
// Transform the body
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
// Transform the condition
ExprResult Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() &&
Cond.get() == S->getCond() &&
Body.get() == S->getBody())
return S;
return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
/*FIXME:*/S->getWhileLoc(), Cond.get(),
S->getRParenLoc());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
if (getSema().getLangOpts().OpenMP)
getSema().OpenMP().startOpenMPLoop();
// Transform the initialization statement
StmtResult Init = getDerived().TransformStmt(S->getInit());
if (Init.isInvalid())
return StmtError();
// In OpenMP loop region loop control variable must be captured and be
// private. Perform analysis of first part (if any).
if (getSema().getLangOpts().OpenMP && Init.isUsable())
getSema().OpenMP().ActOnOpenMPLoopInitialization(S->getForLoc(),
Init.get());
// Transform the condition
Sema::ConditionResult Cond = getDerived().TransformCondition(
S->getForLoc(), S->getConditionVariable(), S->getCond(),
Sema::ConditionKind::Boolean);
if (Cond.isInvalid())
return StmtError();
// Transform the increment
ExprResult Inc = getDerived().TransformExpr(S->getInc());
if (Inc.isInvalid())
return StmtError();
Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get()));
if (S->getInc() && !FullInc.get())
return StmtError();
// OpenACC Restricts a for-loop inside of certain construct/clause
// combinations, so diagnose that here in OpenACC mode.
SemaOpenACC::LoopInConstructRAII LCR{SemaRef.OpenACC()};
SemaRef.OpenACC().ActOnForStmtBegin(
S->getBeginLoc(), S->getInit(), Init.get(), S->getCond(),
Cond.get().second, S->getInc(), Inc.get());
// Transform the body
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
SemaRef.OpenACC().ActOnForStmtEnd(S->getBeginLoc(), Body);
if (!getDerived().AlwaysRebuild() &&
Init.get() == S->getInit() &&
Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
Inc.get() == S->getInc() &&
Body.get() == S->getBody())
return S;
return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
Init.get(), Cond, FullInc,
S->getRParenLoc(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
S->getLabel());
if (!LD)
return StmtError();
// Goto statements must always be rebuilt, to resolve the label.
return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
cast<LabelDecl>(LD));
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
ExprResult Target = getDerived().TransformExpr(S->getTarget());
if (Target.isInvalid())
return StmtError();
Target = SemaRef.MaybeCreateExprWithCleanups(Target.get());
if (!getDerived().AlwaysRebuild() &&
Target.get() == S->getTarget())
return S;
return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
Target.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
return S;
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
return S;
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
ExprResult Result = getDerived().TransformInitializer(S->getRetValue(),
/*NotCopyInit*/false);
if (Result.isInvalid())
return StmtError();
// FIXME: We always rebuild the return statement because there is no way
// to tell whether the return type of the function has changed.
return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
bool DeclChanged = false;
SmallVector<Decl *, 4> Decls;
LambdaScopeInfo *LSI = getSema().getCurLambda();
for (auto *D : S->decls()) {
Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D);
if (!Transformed)
return StmtError();
if (Transformed != D)
DeclChanged = true;
if (LSI) {
if (auto *TD = dyn_cast<TypeDecl>(Transformed))
LSI->ContainsUnexpandedParameterPack |=
getSema()
.getASTContext()
.getTypeDeclType(TD)
.getSingleStepDesugaredType(getSema().getASTContext())
->containsUnexpandedParameterPack();
if (auto *VD = dyn_cast<VarDecl>(Transformed))
LSI->ContainsUnexpandedParameterPack |=
VD->getType()->containsUnexpandedParameterPack();
}
Decls.push_back(Transformed);
}
if (!getDerived().AlwaysRebuild() && !DeclChanged)
return S;
return getDerived().RebuildDeclStmt(Decls, S->getBeginLoc(), S->getEndLoc());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) {
SmallVector<Expr*, 8> Constraints;
SmallVector<Expr*, 8> Exprs;
SmallVector<IdentifierInfo *, 4> Names;
SmallVector<Expr*, 8> Clobbers;
bool ExprsChanged = false;
auto RebuildString = [&](Expr *E) {
ExprResult Result = getDerived().TransformExpr(E);
if (!Result.isUsable())
return Result;
if (Result.get() != E) {
ExprsChanged = true;
Result = SemaRef.ActOnGCCAsmStmtString(Result.get(), /*ForLabel=*/false);
}
return Result;
};
// Go through the outputs.
for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
Names.push_back(S->getOutputIdentifier(I));
ExprResult Result = RebuildString(S->getOutputConstraintExpr(I));
if (Result.isInvalid())
return StmtError();
Constraints.push_back(Result.get());
// Transform the output expr.
Expr *OutputExpr = S->getOutputExpr(I);
Result = getDerived().TransformExpr(OutputExpr);
if (Result.isInvalid())
return StmtError();
ExprsChanged |= Result.get() != OutputExpr;
Exprs.push_back(Result.get());
}
// Go through the inputs.
for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
Names.push_back(S->getInputIdentifier(I));
ExprResult Result = RebuildString(S->getInputConstraintExpr(I));
if (Result.isInvalid())
return StmtError();
Constraints.push_back(Result.get());
// Transform the input expr.
Expr *InputExpr = S->getInputExpr(I);
Result = getDerived().TransformExpr(InputExpr);
if (Result.isInvalid())
return StmtError();
ExprsChanged |= Result.get() != InputExpr;
Exprs.push_back(Result.get());
}
// Go through the Labels.
for (unsigned I = 0, E = S->getNumLabels(); I != E; ++I) {
Names.push_back(S->getLabelIdentifier(I));
ExprResult Result = getDerived().TransformExpr(S->getLabelExpr(I));
if (Result.isInvalid())
return StmtError();
ExprsChanged |= Result.get() != S->getLabelExpr(I);
Exprs.push_back(Result.get());
}
// Go through the clobbers.
for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I) {
ExprResult Result = RebuildString(S->getClobberExpr(I));
if (Result.isInvalid())
return StmtError();
Clobbers.push_back(Result.get());
}
ExprResult AsmString = RebuildString(S->getAsmStringExpr());
if (AsmString.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() && !ExprsChanged)
return S;
return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(),
S->isVolatile(), S->getNumOutputs(),
S->getNumInputs(), Names.data(),
Constraints, Exprs, AsmString.get(),
Clobbers, S->getNumLabels(),
S->getRParenLoc());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) {
ArrayRef<Token> AsmToks = llvm::ArrayRef(S->getAsmToks(), S->getNumAsmToks());
bool HadError = false, HadChange = false;
ArrayRef<Expr*> SrcExprs = S->getAllExprs();
SmallVector<Expr*, 8> TransformedExprs;
TransformedExprs.reserve(SrcExprs.size());
for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) {
ExprResult Result = getDerived().TransformExpr(SrcExprs[i]);
if (!Result.isUsable()) {
HadError = true;
} else {
HadChange |= (Result.get() != SrcExprs[i]);
TransformedExprs.push_back(Result.get());
}
}
if (HadError) return StmtError();
if (!HadChange && !getDerived().AlwaysRebuild())
return Owned(S);
return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(),
AsmToks, S->getAsmString(),
S->getNumOutputs(), S->getNumInputs(),
S->getAllConstraints(), S->getClobbers(),
TransformedExprs, S->getEndLoc());
}
// C++ Coroutines
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCoroutineBodyStmt(CoroutineBodyStmt *S) {
auto *ScopeInfo = SemaRef.getCurFunction();
auto *FD = cast<FunctionDecl>(SemaRef.CurContext);
assert(FD && ScopeInfo && !ScopeInfo->CoroutinePromise &&
ScopeInfo->NeedsCoroutineSuspends &&
ScopeInfo->CoroutineSuspends.first == nullptr &&
ScopeInfo->CoroutineSuspends.second == nullptr &&
"expected clean scope info");
// Set that we have (possibly-invalid) suspend points before we do anything
// that may fail.
ScopeInfo->setNeedsCoroutineSuspends(false);
// We re-build the coroutine promise object (and the coroutine parameters its
// type and constructor depend on) based on the types used in our current
// function. We must do so, and set it on the current FunctionScopeInfo,
// before attempting to transform the other parts of the coroutine body
// statement, such as the implicit suspend statements (because those
// statements reference the FunctionScopeInfo::CoroutinePromise).
if (!SemaRef.buildCoroutineParameterMoves(FD->getLocation()))
return StmtError();
auto *Promise = SemaRef.buildCoroutinePromise(FD->getLocation());
if (!Promise)
return StmtError();
getDerived().transformedLocalDecl(S->getPromiseDecl(), {Promise});
ScopeInfo->CoroutinePromise = Promise;
// Transform the implicit coroutine statements constructed using dependent
// types during the previous parse: initial and final suspensions, the return
// object, and others. We also transform the coroutine function's body.
StmtResult InitSuspend = getDerived().TransformStmt(S->getInitSuspendStmt());
if (InitSuspend.isInvalid())
return StmtError();
StmtResult FinalSuspend =
getDerived().TransformStmt(S->getFinalSuspendStmt());
if (FinalSuspend.isInvalid() ||
!SemaRef.checkFinalSuspendNoThrow(FinalSuspend.get()))
return StmtError();
ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
assert(isa<Expr>(InitSuspend.get()) && isa<Expr>(FinalSuspend.get()));
StmtResult BodyRes = getDerived().TransformStmt(S->getBody());
if (BodyRes.isInvalid())
return StmtError();
CoroutineStmtBuilder Builder(SemaRef, *FD, *ScopeInfo, BodyRes.get());
if (Builder.isInvalid())
return StmtError();
Expr *ReturnObject = S->getReturnValueInit();
assert(ReturnObject && "the return object is expected to be valid");
ExprResult Res = getDerived().TransformInitializer(ReturnObject,
/*NoCopyInit*/ false);
if (Res.isInvalid())
return StmtError();
Builder.ReturnValue = Res.get();
// If during the previous parse the coroutine still had a dependent promise
// statement, we may need to build some implicit coroutine statements
// (such as exception and fallthrough handlers) for the first time.
if (S->hasDependentPromiseType()) {
// We can only build these statements, however, if the current promise type
// is not dependent.
if (!Promise->getType()->isDependentType()) {
assert(!S->getFallthroughHandler() && !S->getExceptionHandler() &&
!S->getReturnStmtOnAllocFailure() && !S->getDeallocate() &&
"these nodes should not have been built yet");
if (!Builder.buildDependentStatements())
return StmtError();
}
} else {
if (auto *OnFallthrough = S->getFallthroughHandler()) {
StmtResult Res = getDerived().TransformStmt(OnFallthrough);
if (Res.isInvalid())
return StmtError();
Builder.OnFallthrough = Res.get();
}
if (auto *OnException = S->getExceptionHandler()) {
StmtResult Res = getDerived().TransformStmt(OnException);
if (Res.isInvalid())
return StmtError();
Builder.OnException = Res.get();
}
if (auto *OnAllocFailure = S->getReturnStmtOnAllocFailure()) {
StmtResult Res = getDerived().TransformStmt(OnAllocFailure);
if (Res.isInvalid())
return StmtError();
Builder.ReturnStmtOnAllocFailure = Res.get();
}
// Transform any additional statements we may have already built
assert(S->getAllocate() && S->getDeallocate() &&
"allocation and deallocation calls must already be built");
ExprResult AllocRes = getDerived().TransformExpr(S->getAllocate());
if (AllocRes.isInvalid())
return StmtError();
Builder.Allocate = AllocRes.get();
ExprResult DeallocRes = getDerived().TransformExpr(S->getDeallocate());
if (DeallocRes.isInvalid())
return StmtError();
Builder.Deallocate = DeallocRes.get();
if (auto *ResultDecl = S->getResultDecl()) {
StmtResult Res = getDerived().TransformStmt(ResultDecl);
if (Res.isInvalid())
return StmtError();
Builder.ResultDecl = Res.get();
}
if (auto *ReturnStmt = S->getReturnStmt()) {
StmtResult Res = getDerived().TransformStmt(ReturnStmt);
if (Res.isInvalid())
return StmtError();
Builder.ReturnStmt = Res.get();
}
}
return getDerived().RebuildCoroutineBodyStmt(Builder);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCoreturnStmt(CoreturnStmt *S) {
ExprResult Result = getDerived().TransformInitializer(S->getOperand(),
/*NotCopyInit*/false);
if (Result.isInvalid())
return StmtError();
// Always rebuild; we don't know if this needs to be injected into a new
// context or if the promise type has changed.
return getDerived().RebuildCoreturnStmt(S->getKeywordLoc(), Result.get(),
S->isImplicit());
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformCoawaitExpr(CoawaitExpr *E) {
ExprResult Operand = getDerived().TransformInitializer(E->getOperand(),
/*NotCopyInit*/ false);
if (Operand.isInvalid())
return ExprError();
// Rebuild the common-expr from the operand rather than transforming it
// separately.
// FIXME: getCurScope() should not be used during template instantiation.
// We should pick up the set of unqualified lookup results for operator
// co_await during the initial parse.
ExprResult Lookup = getSema().BuildOperatorCoawaitLookupExpr(
getSema().getCurScope(), E->getKeywordLoc());
// Always rebuild; we don't know if this needs to be injected into a new
// context or if the promise type has changed.
return getDerived().RebuildCoawaitExpr(
E->getKeywordLoc(), Operand.get(),
cast<UnresolvedLookupExpr>(Lookup.get()), E->isImplicit());
}
template <typename Derived>
ExprResult
TreeTransform<Derived>::TransformDependentCoawaitExpr(DependentCoawaitExpr *E) {
ExprResult OperandResult = getDerived().TransformInitializer(E->getOperand(),
/*NotCopyInit*/ false);
if (OperandResult.isInvalid())
return ExprError();
ExprResult LookupResult = getDerived().TransformUnresolvedLookupExpr(
E->getOperatorCoawaitLookup());
if (LookupResult.isInvalid())
return ExprError();
// Always rebuild; we don't know if this needs to be injected into a new
// context or if the promise type has changed.
return getDerived().RebuildDependentCoawaitExpr(
E->getKeywordLoc(), OperandResult.get(),
cast<UnresolvedLookupExpr>(LookupResult.get()));
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCoyieldExpr(CoyieldExpr *E) {
ExprResult Result = getDerived().TransformInitializer(E->getOperand(),
/*NotCopyInit*/false);
if (Result.isInvalid())
return ExprError();
// Always rebuild; we don't know if this needs to be injected into a new
// context or if the promise type has changed.
return getDerived().RebuildCoyieldExpr(E->getKeywordLoc(), Result.get());
}
// Objective-C Statements.
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
// Transform the body of the @try.
StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
if (TryBody.isInvalid())
return StmtError();
// Transform the @catch statements (if present).
bool AnyCatchChanged = false;
SmallVector<Stmt*, 8> CatchStmts;
for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
if (Catch.isInvalid())
return StmtError();
if (Catch.get() != S->getCatchStmt(I))
AnyCatchChanged = true;
CatchStmts.push_back(Catch.get());
}
// Transform the @finally statement (if present).
StmtResult Finally;
if (S->getFinallyStmt()) {
Finally = getDerived().TransformStmt(S->getFinallyStmt());
if (Finally.isInvalid())
return StmtError();
}
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
TryBody.get() == S->getTryBody() &&
!AnyCatchChanged &&
Finally.get() == S->getFinallyStmt())
return S;
// Build a new statement.
return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
CatchStmts, Finally.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
// Transform the @catch parameter, if there is one.
VarDecl *Var = nullptr;
if (VarDecl *FromVar = S->getCatchParamDecl()) {
TypeSourceInfo *TSInfo = nullptr;
if (FromVar->getTypeSourceInfo()) {
TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
if (!TSInfo)
return StmtError();
}
QualType T;
if (TSInfo)
T = TSInfo->getType();
else {
T = getDerived().TransformType(FromVar->getType());
if (T.isNull())
return StmtError();
}
Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
if (!Var)
return StmtError();
}
StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
if (Body.isInvalid())
return StmtError();
return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
S->getRParenLoc(),
Var, Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
if (Body.isInvalid())
return StmtError();
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
Body.get() == S->getFinallyBody())
return S;
// Build a new statement.
return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
ExprResult Operand;
if (S->getThrowExpr()) {
Operand = getDerived().TransformExpr(S->getThrowExpr());
if (Operand.isInvalid())
return StmtError();
}
if (!getDerived().AlwaysRebuild() &&
Operand.get() == S->getThrowExpr())
return S;
return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
ObjCAtSynchronizedStmt *S) {
// Transform the object we are locking.
ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
if (Object.isInvalid())
return StmtError();
Object =
getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(),
Object.get());
if (Object.isInvalid())
return StmtError();
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
if (Body.isInvalid())
return StmtError();
// If nothing change, just retain the current statement.
if (!getDerived().AlwaysRebuild() &&
Object.get() == S->getSynchExpr() &&
Body.get() == S->getSynchBody())
return S;
// Build a new statement.
return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
Object.get(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
ObjCAutoreleasePoolStmt *S) {
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
if (Body.isInvalid())
return StmtError();
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
Body.get() == S->getSubStmt())
return S;
// Build a new statement.
return getDerived().RebuildObjCAutoreleasePoolStmt(
S->getAtLoc(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformObjCForCollectionStmt(
ObjCForCollectionStmt *S) {
// Transform the element statement.
StmtResult Element =
getDerived().TransformStmt(S->getElement(), SDK_NotDiscarded);
if (Element.isInvalid())
return StmtError();
// Transform the collection expression.
ExprResult Collection = getDerived().TransformExpr(S->getCollection());
if (Collection.isInvalid())
return StmtError();
// Transform the body.
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
// If nothing changed, just retain this statement.
if (!getDerived().AlwaysRebuild() &&
Element.get() == S->getElement() &&
Collection.get() == S->getCollection() &&
Body.get() == S->getBody())
return S;
// Build a new statement.
return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
Element.get(),
Collection.get(),
S->getRParenLoc(),
Body.get());
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
// Transform the exception declaration, if any.
VarDecl *Var = nullptr;
if (VarDecl *ExceptionDecl = S->getExceptionDecl()) {
TypeSourceInfo *T =
getDerived().TransformType(ExceptionDecl->getTypeSourceInfo());
if (!T)
return StmtError();
Var = getDerived().RebuildExceptionDecl(
ExceptionDecl, T, ExceptionDecl->getInnerLocStart(),
ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier());
if (!Var || Var->isInvalidDecl())
return StmtError();
}
// Transform the actual exception handler.
StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
if (Handler.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() && !Var &&
Handler.get() == S->getHandlerBlock())
return S;
return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get());
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
// Transform the try block itself.
StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
if (TryBlock.isInvalid())
return StmtError();
// Transform the handlers.
bool HandlerChanged = false;
SmallVector<Stmt *, 8> Handlers;
for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I));
if (Handler.isInvalid())
return StmtError();
HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
Handlers.push_back(Handler.getAs<Stmt>());
}
if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
!HandlerChanged)
return S;
return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
Handlers);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
EnterExpressionEvaluationContext ForRangeInitContext(
getSema(), Sema::ExpressionEvaluationContext::PotentiallyEvaluated,
/*LambdaContextDecl=*/nullptr,
Sema::ExpressionEvaluationContextRecord::EK_Other,
getSema().getLangOpts().CPlusPlus23);
// P2718R0 - Lifetime extension in range-based for loops.
if (getSema().getLangOpts().CPlusPlus23) {
auto &LastRecord = getSema().currentEvaluationContext();
LastRecord.InLifetimeExtendingContext = true;
LastRecord.RebuildDefaultArgOrDefaultInit = true;
}
StmtResult Init =
S->getInit() ? getDerived().TransformStmt(S->getInit()) : StmtResult();
if (Init.isInvalid())
return StmtError();
StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
if (Range.isInvalid())
return StmtError();
// Before c++23, ForRangeLifetimeExtendTemps should be empty.
assert(getSema().getLangOpts().CPlusPlus23 ||
getSema().ExprEvalContexts.back().ForRangeLifetimeExtendTemps.empty());
auto ForRangeLifetimeExtendTemps =
getSema().ExprEvalContexts.back().ForRangeLifetimeExtendTemps;
StmtResult Begin = getDerived().TransformStmt(S->getBeginStmt());
if (Begin.isInvalid())
return StmtError();
StmtResult End = getDerived().TransformStmt(S->getEndStmt());
if (End.isInvalid())
return StmtError();
ExprResult Cond = getDerived().TransformExpr(S->getCond());
if (Cond.isInvalid())
return StmtError();
if (Cond.get())
Cond = SemaRef.CheckBooleanCondition(S->getColonLoc(), Cond.get());
if (Cond.isInvalid())
return StmtError();
if (Cond.get())
Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get());
ExprResult Inc = getDerived().TransformExpr(S->getInc());
if (Inc.isInvalid())
return StmtError();
if (Inc.get())
Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get());
StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
if (LoopVar.isInvalid())
return StmtError();
StmtResult NewStmt = S;
if (getDerived().AlwaysRebuild() ||
Init.get() != S->getInit() ||
Range.get() != S->getRangeStmt() ||
Begin.get() != S->getBeginStmt() ||
End.get() != S->getEndStmt() ||
Cond.get() != S->getCond() ||
Inc.get() != S->getInc() ||
LoopVar.get() != S->getLoopVarStmt()) {
NewStmt = getDerived().RebuildCXXForRangeStmt(
S->getForLoc(), S->getCoawaitLoc(), Init.get(), S->getColonLoc(),
Range.get(), Begin.get(), End.get(), Cond.get(), Inc.get(),
LoopVar.get(), S->getRParenLoc(), ForRangeLifetimeExtendTemps);
if (NewStmt.isInvalid() && LoopVar.get() != S->getLoopVarStmt()) {
// Might not have attached any initializer to the loop variable.
getSema().ActOnInitializerError(
cast<DeclStmt>(LoopVar.get())->getSingleDecl());
return StmtError();
}
}
// OpenACC Restricts a while-loop inside of certain construct/clause
// combinations, so diagnose that here in OpenACC mode.
SemaOpenACC::LoopInConstructRAII LCR{SemaRef.OpenACC()};
SemaRef.OpenACC().ActOnRangeForStmtBegin(S->getBeginLoc(), S, NewStmt.get());
StmtResult Body = getDerived().TransformStmt(S->getBody());
if (Body.isInvalid())
return StmtError();
SemaRef.OpenACC().ActOnForStmtEnd(S->getBeginLoc(), Body);
// Body has changed but we didn't rebuild the for-range statement. Rebuild
// it now so we have a new statement to attach the body to.
if (Body.get() != S->getBody() && NewStmt.get() == S) {
NewStmt = getDerived().RebuildCXXForRangeStmt(
S->getForLoc(), S->getCoawaitLoc(), Init.get(), S->getColonLoc(),
Range.get(), Begin.get(), End.get(), Cond.get(), Inc.get(),
LoopVar.get(), S->getRParenLoc(), ForRangeLifetimeExtendTemps);
if (NewStmt.isInvalid())
return StmtError();
}
if (NewStmt.get() == S)
return S;
return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformMSDependentExistsStmt(
MSDependentExistsStmt *S) {
// Transform the nested-name-specifier, if any.
NestedNameSpecifierLoc QualifierLoc;
if (S->getQualifierLoc()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc());
if (!QualifierLoc)
return StmtError();
}
// Transform the declaration name.
DeclarationNameInfo NameInfo = S->getNameInfo();
if (NameInfo.getName()) {
NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
if (!NameInfo.getName())
return StmtError();
}
// Check whether anything changed.
if (!getDerived().AlwaysRebuild() &&
QualifierLoc == S->getQualifierLoc() &&
NameInfo.getName() == S->getNameInfo().getName())
return S;
// Determine whether this name exists, if we can.
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
bool Dependent = false;
switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) {
case Sema::IER_Exists:
if (S->isIfExists())
break;
return new (getSema().Context) NullStmt(S->getKeywordLoc());
case Sema::IER_DoesNotExist:
if (S->isIfNotExists())
break;
return new (getSema().Context) NullStmt(S->getKeywordLoc());
case Sema::IER_Dependent:
Dependent = true;
break;
case Sema::IER_Error:
return StmtError();
}
// We need to continue with the instantiation, so do so now.
StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt());
if (SubStmt.isInvalid())
return StmtError();
// If we have resolved the name, just transform to the substatement.
if (!Dependent)
return SubStmt;
// The name is still dependent, so build a dependent expression again.
return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(),
S->isIfExists(),
QualifierLoc,
NameInfo,
SubStmt.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) {
NestedNameSpecifierLoc QualifierLoc;
if (E->getQualifierLoc()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
}
MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>(
getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl()));
if (!PD)
return ExprError();
ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
if (Base.isInvalid())
return ExprError();
return new (SemaRef.getASTContext())
MSPropertyRefExpr(Base.get(), PD, E->isArrow(),
SemaRef.getASTContext().PseudoObjectTy, VK_LValue,
QualifierLoc, E->getMemberLoc());
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformMSPropertySubscriptExpr(
MSPropertySubscriptExpr *E) {
auto BaseRes = getDerived().TransformExpr(E->getBase());
if (BaseRes.isInvalid())
return ExprError();
auto IdxRes = getDerived().TransformExpr(E->getIdx());
if (IdxRes.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
BaseRes.get() == E->getBase() &&
IdxRes.get() == E->getIdx())
return E;
return getDerived().RebuildArraySubscriptExpr(
BaseRes.get(), SourceLocation(), IdxRes.get(), E->getRBracketLoc());
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
if (TryBlock.isInvalid())
return StmtError();
StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
if (Handler.isInvalid())
return StmtError();
if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
Handler.get() == S->getHandler())
return S;
return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(),
TryBlock.get(), Handler.get());
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
if (Block.isInvalid())
return StmtError();
return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get());
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
if (FilterExpr.isInvalid())
return StmtError();
StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
if (Block.isInvalid())
return StmtError();
return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(),
Block.get());
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
if (isa<SEHFinallyStmt>(Handler))
return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
else
return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformSEHLeaveStmt(SEHLeaveStmt *S) {
return S;
}
//===----------------------------------------------------------------------===//
// OpenMP directive transformation
//===----------------------------------------------------------------------===//
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPCanonicalLoop(OMPCanonicalLoop *L) {
// OMPCanonicalLoops are eliminated during transformation, since they will be
// recomputed by semantic analysis of the associated OMPLoopBasedDirective
// after transformation.
return getDerived().TransformStmt(L->getLoopStmt());
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPExecutableDirective(
OMPExecutableDirective *D) {
// Transform the clauses
llvm::SmallVector<OMPClause *, 16> TClauses;
ArrayRef<OMPClause *> Clauses = D->clauses();
TClauses.reserve(Clauses.size());
for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
I != E; ++I) {
if (*I) {
getDerived().getSema().OpenMP().StartOpenMPClause((*I)->getClauseKind());
OMPClause *Clause = getDerived().TransformOMPClause(*I);
getDerived().getSema().OpenMP().EndOpenMPClause();
if (Clause)
TClauses.push_back(Clause);
} else {
TClauses.push_back(nullptr);
}
}
StmtResult AssociatedStmt;
if (D->hasAssociatedStmt() && D->getAssociatedStmt()) {
getDerived().getSema().OpenMP().ActOnOpenMPRegionStart(
D->getDirectiveKind(),
/*CurScope=*/nullptr);
StmtResult Body;
{
Sema::CompoundScopeRAII CompoundScope(getSema());
Stmt *CS;
if (D->getDirectiveKind() == OMPD_atomic ||
D->getDirectiveKind() == OMPD_critical ||
D->getDirectiveKind() == OMPD_section ||
D->getDirectiveKind() == OMPD_master)
CS = D->getAssociatedStmt();
else
CS = D->getRawStmt();
Body = getDerived().TransformStmt(CS);
if (Body.isUsable() && isOpenMPLoopDirective(D->getDirectiveKind()) &&
getSema().getLangOpts().OpenMPIRBuilder)
Body = getDerived().RebuildOMPCanonicalLoop(Body.get());
}
AssociatedStmt =
getDerived().getSema().OpenMP().ActOnOpenMPRegionEnd(Body, TClauses);
if (AssociatedStmt.isInvalid()) {
return StmtError();
}
}
if (TClauses.size() != Clauses.size()) {
return StmtError();
}
// Transform directive name for 'omp critical' directive.
DeclarationNameInfo DirName;
if (D->getDirectiveKind() == OMPD_critical) {
DirName = cast<OMPCriticalDirective>(D)->getDirectiveName();
DirName = getDerived().TransformDeclarationNameInfo(DirName);
}
OpenMPDirectiveKind CancelRegion = OMPD_unknown;
if (D->getDirectiveKind() == OMPD_cancellation_point) {
CancelRegion = cast<OMPCancellationPointDirective>(D)->getCancelRegion();
} else if (D->getDirectiveKind() == OMPD_cancel) {
CancelRegion = cast<OMPCancelDirective>(D)->getCancelRegion();
}
return getDerived().RebuildOMPExecutableDirective(
D->getDirectiveKind(), DirName, CancelRegion, TClauses,
AssociatedStmt.get(), D->getBeginLoc(), D->getEndLoc());
}
/// This is mostly the same as above, but allows 'informational' class
/// directives when rebuilding the stmt. It still takes an
/// OMPExecutableDirective-type argument because we're reusing that as the
/// superclass for the 'assume' directive at present, instead of defining a
/// mostly-identical OMPInformationalDirective parent class.
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPInformationalDirective(
OMPExecutableDirective *D) {
// Transform the clauses
llvm::SmallVector<OMPClause *, 16> TClauses;
ArrayRef<OMPClause *> Clauses = D->clauses();
TClauses.reserve(Clauses.size());
for (OMPClause *C : Clauses) {
if (C) {
getDerived().getSema().OpenMP().StartOpenMPClause(C->getClauseKind());
OMPClause *Clause = getDerived().TransformOMPClause(C);
getDerived().getSema().OpenMP().EndOpenMPClause();
if (Clause)
TClauses.push_back(Clause);
} else {
TClauses.push_back(nullptr);
}
}
StmtResult AssociatedStmt;
if (D->hasAssociatedStmt() && D->getAssociatedStmt()) {
getDerived().getSema().OpenMP().ActOnOpenMPRegionStart(
D->getDirectiveKind(),
/*CurScope=*/nullptr);
StmtResult Body;
{
Sema::CompoundScopeRAII CompoundScope(getSema());
assert(D->getDirectiveKind() == OMPD_assume &&
"Unexpected informational directive");
Stmt *CS = D->getAssociatedStmt();
Body = getDerived().TransformStmt(CS);
}
AssociatedStmt =
getDerived().getSema().OpenMP().ActOnOpenMPRegionEnd(Body, TClauses);
if (AssociatedStmt.isInvalid())
return StmtError();
}
if (TClauses.size() != Clauses.size())
return StmtError();
DeclarationNameInfo DirName;
return getDerived().RebuildOMPInformationalDirective(
D->getDirectiveKind(), DirName, TClauses, AssociatedStmt.get(),
D->getBeginLoc(), D->getEndLoc());
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPMetaDirective(OMPMetaDirective *D) {
// TODO: Fix This
SemaRef.Diag(D->getBeginLoc(), diag::err_omp_instantiation_not_supported)
<< getOpenMPDirectiveName(D->getDirectiveKind());
return StmtError();
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPSimdDirective(OMPSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPTileDirective(OMPTileDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPStripeDirective(OMPStripeDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPUnrollDirective(OMPUnrollDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPReverseDirective(OMPReverseDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPInterchangeDirective(
OMPInterchangeDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPForDirective(OMPForDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_for, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPForSimdDirective(OMPForSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_for_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPSectionsDirective(OMPSectionsDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_sections, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPSectionDirective(OMPSectionDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_section, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPScopeDirective(OMPScopeDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_scope, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPSingleDirective(OMPSingleDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_single, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPMasterDirective(OMPMasterDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_master, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPCriticalDirective(OMPCriticalDirective *D) {
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_critical, D->getDirectiveName(), nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPParallelForDirective(
OMPParallelForDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel_for, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPParallelForSimdDirective(
OMPParallelForSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel_for_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPParallelMasterDirective(
OMPParallelMasterDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel_master, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPParallelMaskedDirective(
OMPParallelMaskedDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel_masked, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPParallelSectionsDirective(
OMPParallelSectionsDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel_sections, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPTaskDirective(OMPTaskDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_task, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTaskyieldDirective(
OMPTaskyieldDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_taskyield, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPBarrierDirective(OMPBarrierDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_barrier, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPTaskwaitDirective(OMPTaskwaitDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_taskwait, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPAssumeDirective(OMPAssumeDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_assume, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPInformationalDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPErrorDirective(OMPErrorDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_error, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTaskgroupDirective(
OMPTaskgroupDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_taskgroup, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPFlushDirective(OMPFlushDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_flush, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPDepobjDirective(OMPDepobjDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_depobj, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPScanDirective(OMPScanDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_scan, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPOrderedDirective(OMPOrderedDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_ordered, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPAtomicDirective(OMPAtomicDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_atomic, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPTargetDirective(OMPTargetDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetDataDirective(
OMPTargetDataDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_data, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetEnterDataDirective(
OMPTargetEnterDataDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_enter_data, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetExitDataDirective(
OMPTargetExitDataDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_exit_data, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetParallelDirective(
OMPTargetParallelDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_parallel, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForDirective(
OMPTargetParallelForDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_parallel_for, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetUpdateDirective(
OMPTargetUpdateDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_update, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPTeamsDirective(OMPTeamsDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_teams, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPCancellationPointDirective(
OMPCancellationPointDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_cancellation_point, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPCancelDirective(OMPCancelDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_cancel, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPTaskLoopDirective(OMPTaskLoopDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_taskloop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTaskLoopSimdDirective(
OMPTaskLoopSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_taskloop_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopDirective(
OMPMasterTaskLoopDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_master_taskloop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPMaskedTaskLoopDirective(
OMPMaskedTaskLoopDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_masked_taskloop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopSimdDirective(
OMPMasterTaskLoopSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_master_taskloop_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPMaskedTaskLoopSimdDirective(
OMPMaskedTaskLoopSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_masked_taskloop_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopDirective(
OMPParallelMasterTaskLoopDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel_master_taskloop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPParallelMaskedTaskLoopDirective(
OMPParallelMaskedTaskLoopDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel_masked_taskloop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopSimdDirective(
OMPParallelMasterTaskLoopSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel_master_taskloop_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPParallelMaskedTaskLoopSimdDirective(
OMPParallelMaskedTaskLoopSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel_masked_taskloop_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPDistributeDirective(
OMPDistributeDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_distribute, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPDistributeParallelForDirective(
OMPDistributeParallelForDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_distribute_parallel_for, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPDistributeParallelForSimdDirective(
OMPDistributeParallelForSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_distribute_parallel_for_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPDistributeSimdDirective(
OMPDistributeSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_distribute_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForSimdDirective(
OMPTargetParallelForSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_parallel_for_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetSimdDirective(
OMPTargetSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeDirective(
OMPTeamsDistributeDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_teams_distribute, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeSimdDirective(
OMPTeamsDistributeSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_teams_distribute_simd, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForSimdDirective(
OMPTeamsDistributeParallelForSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_teams_distribute_parallel_for_simd, DirName, nullptr,
D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForDirective(
OMPTeamsDistributeParallelForDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_teams_distribute_parallel_for, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDirective(
OMPTargetTeamsDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_teams, DirName, nullptr, D->getBeginLoc());
auto Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDistributeDirective(
OMPTargetTeamsDistributeDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_teams_distribute, DirName, nullptr, D->getBeginLoc());
auto Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPTargetTeamsDistributeParallelForDirective(
OMPTargetTeamsDistributeParallelForDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_teams_distribute_parallel_for, DirName, nullptr,
D->getBeginLoc());
auto Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::
TransformOMPTargetTeamsDistributeParallelForSimdDirective(
OMPTargetTeamsDistributeParallelForSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_teams_distribute_parallel_for_simd, DirName, nullptr,
D->getBeginLoc());
auto Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPTargetTeamsDistributeSimdDirective(
OMPTargetTeamsDistributeSimdDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_teams_distribute_simd, DirName, nullptr, D->getBeginLoc());
auto Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPInteropDirective(OMPInteropDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_interop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPDispatchDirective(OMPDispatchDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_dispatch, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPMaskedDirective(OMPMaskedDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_masked, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPGenericLoopDirective(
OMPGenericLoopDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_loop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTeamsGenericLoopDirective(
OMPTeamsGenericLoopDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_teams_loop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsGenericLoopDirective(
OMPTargetTeamsGenericLoopDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_teams_loop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOMPParallelGenericLoopDirective(
OMPParallelGenericLoopDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_parallel_loop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOMPTargetParallelGenericLoopDirective(
OMPTargetParallelGenericLoopDirective *D) {
DeclarationNameInfo DirName;
getDerived().getSema().OpenMP().StartOpenMPDSABlock(
OMPD_target_parallel_loop, DirName, nullptr, D->getBeginLoc());
StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get());
return Res;
}
//===----------------------------------------------------------------------===//
// OpenMP clause transformation
//===----------------------------------------------------------------------===//
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPIfClause(OMPIfClause *C) {
ExprResult Cond = getDerived().TransformExpr(C->getCondition());
if (Cond.isInvalid())
return nullptr;
return getDerived().RebuildOMPIfClause(
C->getNameModifier(), Cond.get(), C->getBeginLoc(), C->getLParenLoc(),
C->getNameModifierLoc(), C->getColonLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPFinalClause(OMPFinalClause *C) {
ExprResult Cond = getDerived().TransformExpr(C->getCondition());
if (Cond.isInvalid())
return nullptr;
return getDerived().RebuildOMPFinalClause(Cond.get(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) {
ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads());
if (NumThreads.isInvalid())
return nullptr;
return getDerived().RebuildOMPNumThreadsClause(
NumThreads.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPSafelenClause(OMPSafelenClause *C) {
ExprResult E = getDerived().TransformExpr(C->getSafelen());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPSafelenClause(
E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPAllocatorClause(OMPAllocatorClause *C) {
ExprResult E = getDerived().TransformExpr(C->getAllocator());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPAllocatorClause(
E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPSimdlenClause(OMPSimdlenClause *C) {
ExprResult E = getDerived().TransformExpr(C->getSimdlen());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPSimdlenClause(
E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPSizesClause(OMPSizesClause *C) {
SmallVector<Expr *, 4> TransformedSizes;
TransformedSizes.reserve(C->getNumSizes());
bool Changed = false;
for (Expr *E : C->getSizesRefs()) {
if (!E) {
TransformedSizes.push_back(nullptr);
continue;
}
ExprResult T = getDerived().TransformExpr(E);
if (T.isInvalid())
return nullptr;
if (E != T.get())
Changed = true;
TransformedSizes.push_back(T.get());
}
if (!Changed && !getDerived().AlwaysRebuild())
return C;
return RebuildOMPSizesClause(TransformedSizes, C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPPermutationClause(OMPPermutationClause *C) {
SmallVector<Expr *> TransformedArgs;
TransformedArgs.reserve(C->getNumLoops());
bool Changed = false;
for (Expr *E : C->getArgsRefs()) {
if (!E) {
TransformedArgs.push_back(nullptr);
continue;
}
ExprResult T = getDerived().TransformExpr(E);
if (T.isInvalid())
return nullptr;
if (E != T.get())
Changed = true;
TransformedArgs.push_back(T.get());
}
if (!Changed && !getDerived().AlwaysRebuild())
return C;
return RebuildOMPPermutationClause(TransformedArgs, C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPFullClause(OMPFullClause *C) {
if (!getDerived().AlwaysRebuild())
return C;
return RebuildOMPFullClause(C->getBeginLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPPartialClause(OMPPartialClause *C) {
ExprResult T = getDerived().TransformExpr(C->getFactor());
if (T.isInvalid())
return nullptr;
Expr *Factor = T.get();
bool Changed = Factor != C->getFactor();
if (!Changed && !getDerived().AlwaysRebuild())
return C;
return RebuildOMPPartialClause(Factor, C->getBeginLoc(), C->getLParenLoc(),
C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPCollapseClause(OMPCollapseClause *C) {
ExprResult E = getDerived().TransformExpr(C->getNumForLoops());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPCollapseClause(
E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) {
return getDerived().RebuildOMPDefaultClause(
C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPProcBindClause(OMPProcBindClause *C) {
return getDerived().RebuildOMPProcBindClause(
C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPScheduleClause(OMPScheduleClause *C) {
ExprResult E = getDerived().TransformExpr(C->getChunkSize());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPScheduleClause(
C->getFirstScheduleModifier(), C->getSecondScheduleModifier(),
C->getScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
C->getFirstScheduleModifierLoc(), C->getSecondScheduleModifierLoc(),
C->getScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPOrderedClause(OMPOrderedClause *C) {
ExprResult E;
if (auto *Num = C->getNumForLoops()) {
E = getDerived().TransformExpr(Num);
if (E.isInvalid())
return nullptr;
}
return getDerived().RebuildOMPOrderedClause(C->getBeginLoc(), C->getEndLoc(),
C->getLParenLoc(), E.get());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPDetachClause(OMPDetachClause *C) {
ExprResult E;
if (Expr *Evt = C->getEventHandler()) {
E = getDerived().TransformExpr(Evt);
if (E.isInvalid())
return nullptr;
}
return getDerived().RebuildOMPDetachClause(E.get(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPNowaitClause(OMPNowaitClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPUntiedClause(OMPUntiedClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPMergeableClause(OMPMergeableClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPReadClause(OMPReadClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPWriteClause(OMPWriteClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPUpdateClause(OMPUpdateClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPCaptureClause(OMPCaptureClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPCompareClause(OMPCompareClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPFailClause(OMPFailClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPAbsentClause(OMPAbsentClause *C) {
return C;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPHoldsClause(OMPHoldsClause *C) {
ExprResult E = getDerived().TransformExpr(C->getExpr());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPHoldsClause(E.get(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPContainsClause(OMPContainsClause *C) {
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPNoOpenMPClause(OMPNoOpenMPClause *C) {
return C;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPNoOpenMPRoutinesClause(
OMPNoOpenMPRoutinesClause *C) {
return C;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPNoOpenMPConstructsClause(
OMPNoOpenMPConstructsClause *C) {
return C;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPNoParallelismClause(
OMPNoParallelismClause *C) {
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPSeqCstClause(OMPSeqCstClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPAcqRelClause(OMPAcqRelClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPAcquireClause(OMPAcquireClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPReleaseClause(OMPReleaseClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPRelaxedClause(OMPRelaxedClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPWeakClause(OMPWeakClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPThreadsClause(OMPThreadsClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPSIMDClause(OMPSIMDClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPNogroupClause(OMPNogroupClause *C) {
// No need to rebuild this clause, no template-dependent parameters.
return C;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPInitClause(OMPInitClause *C) {
ExprResult IVR = getDerived().TransformExpr(C->getInteropVar());
if (IVR.isInvalid())
return nullptr;
OMPInteropInfo InteropInfo(C->getIsTarget(), C->getIsTargetSync());
InteropInfo.PreferTypes.reserve(C->varlist_size() - 1);
for (Expr *E : llvm::drop_begin(C->varlist())) {
ExprResult ER = getDerived().TransformExpr(cast<Expr>(E));
if (ER.isInvalid())
return nullptr;
InteropInfo.PreferTypes.push_back(ER.get());
}
return getDerived().RebuildOMPInitClause(IVR.get(), InteropInfo,
C->getBeginLoc(), C->getLParenLoc(),
C->getVarLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPUseClause(OMPUseClause *C) {
ExprResult ER = getDerived().TransformExpr(C->getInteropVar());
if (ER.isInvalid())
return nullptr;
return getDerived().RebuildOMPUseClause(ER.get(), C->getBeginLoc(),
C->getLParenLoc(), C->getVarLoc(),
C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPDestroyClause(OMPDestroyClause *C) {
ExprResult ER;
if (Expr *IV = C->getInteropVar()) {
ER = getDerived().TransformExpr(IV);
if (ER.isInvalid())
return nullptr;
}
return getDerived().RebuildOMPDestroyClause(ER.get(), C->getBeginLoc(),
C->getLParenLoc(), C->getVarLoc(),
C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPNovariantsClause(OMPNovariantsClause *C) {
ExprResult Cond = getDerived().TransformExpr(C->getCondition());
if (Cond.isInvalid())
return nullptr;
return getDerived().RebuildOMPNovariantsClause(
Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPNocontextClause(OMPNocontextClause *C) {
ExprResult Cond = getDerived().TransformExpr(C->getCondition());
if (Cond.isInvalid())
return nullptr;
return getDerived().RebuildOMPNocontextClause(
Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPFilterClause(OMPFilterClause *C) {
ExprResult ThreadID = getDerived().TransformExpr(C->getThreadID());
if (ThreadID.isInvalid())
return nullptr;
return getDerived().RebuildOMPFilterClause(ThreadID.get(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPAlignClause(OMPAlignClause *C) {
ExprResult E = getDerived().TransformExpr(C->getAlignment());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPAlignClause(E.get(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPUnifiedAddressClause(
OMPUnifiedAddressClause *C) {
llvm_unreachable("unified_address clause cannot appear in dependent context");
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPUnifiedSharedMemoryClause(
OMPUnifiedSharedMemoryClause *C) {
llvm_unreachable(
"unified_shared_memory clause cannot appear in dependent context");
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPReverseOffloadClause(
OMPReverseOffloadClause *C) {
llvm_unreachable("reverse_offload clause cannot appear in dependent context");
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPDynamicAllocatorsClause(
OMPDynamicAllocatorsClause *C) {
llvm_unreachable(
"dynamic_allocators clause cannot appear in dependent context");
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPAtomicDefaultMemOrderClause(
OMPAtomicDefaultMemOrderClause *C) {
llvm_unreachable(
"atomic_default_mem_order clause cannot appear in dependent context");
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPSelfMapsClause(OMPSelfMapsClause *C) {
llvm_unreachable("self_maps clause cannot appear in dependent context");
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPAtClause(OMPAtClause *C) {
return getDerived().RebuildOMPAtClause(C->getAtKind(), C->getAtKindKwLoc(),
C->getBeginLoc(), C->getLParenLoc(),
C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPSeverityClause(OMPSeverityClause *C) {
return getDerived().RebuildOMPSeverityClause(
C->getSeverityKind(), C->getSeverityKindKwLoc(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPMessageClause(OMPMessageClause *C) {
ExprResult E = getDerived().TransformExpr(C->getMessageString());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPMessageClause(
C->getMessageString(), C->getBeginLoc(), C->getLParenLoc(),
C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPPrivateClause(
Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPFirstprivateClause(
OMPFirstprivateClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPFirstprivateClause(
Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPLastprivateClause(OMPLastprivateClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPLastprivateClause(
Vars, C->getKind(), C->getKindLoc(), C->getColonLoc(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPSharedClause(OMPSharedClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPSharedClause(Vars, C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPReductionClause(OMPReductionClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
CXXScopeSpec ReductionIdScopeSpec;
ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
DeclarationNameInfo NameInfo = C->getNameInfo();
if (NameInfo.getName()) {
NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
if (!NameInfo.getName())
return nullptr;
}
// Build a list of all UDR decls with the same names ranged by the Scopes.
// The Scope boundary is a duplication of the previous decl.
llvm::SmallVector<Expr *, 16> UnresolvedReductions;
for (auto *E : C->reduction_ops()) {
// Transform all the decls.
if (E) {
auto *ULE = cast<UnresolvedLookupExpr>(E);
UnresolvedSet<8> Decls;
for (auto *D : ULE->decls()) {
NamedDecl *InstD =
cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
Decls.addDecl(InstD, InstD->getAccess());
}
UnresolvedReductions.push_back(UnresolvedLookupExpr::Create(
SemaRef.Context, /*NamingClass=*/nullptr,
ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo,
/*ADL=*/true, Decls.begin(), Decls.end(),
/*KnownDependent=*/false, /*KnownInstantiationDependent=*/false));
} else
UnresolvedReductions.push_back(nullptr);
}
return getDerived().RebuildOMPReductionClause(
Vars, C->getModifier(), C->getOriginalSharingModifier(), C->getBeginLoc(),
C->getLParenLoc(), C->getModifierLoc(), C->getColonLoc(), C->getEndLoc(),
ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPTaskReductionClause(
OMPTaskReductionClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
CXXScopeSpec ReductionIdScopeSpec;
ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
DeclarationNameInfo NameInfo = C->getNameInfo();
if (NameInfo.getName()) {
NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
if (!NameInfo.getName())
return nullptr;
}
// Build a list of all UDR decls with the same names ranged by the Scopes.
// The Scope boundary is a duplication of the previous decl.
llvm::SmallVector<Expr *, 16> UnresolvedReductions;
for (auto *E : C->reduction_ops()) {
// Transform all the decls.
if (E) {
auto *ULE = cast<UnresolvedLookupExpr>(E);
UnresolvedSet<8> Decls;
for (auto *D : ULE->decls()) {
NamedDecl *InstD =
cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
Decls.addDecl(InstD, InstD->getAccess());
}
UnresolvedReductions.push_back(UnresolvedLookupExpr::Create(
SemaRef.Context, /*NamingClass=*/nullptr,
ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo,
/*ADL=*/true, Decls.begin(), Decls.end(),
/*KnownDependent=*/false, /*KnownInstantiationDependent=*/false));
} else
UnresolvedReductions.push_back(nullptr);
}
return getDerived().RebuildOMPTaskReductionClause(
Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPInReductionClause(OMPInReductionClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
CXXScopeSpec ReductionIdScopeSpec;
ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
DeclarationNameInfo NameInfo = C->getNameInfo();
if (NameInfo.getName()) {
NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
if (!NameInfo.getName())
return nullptr;
}
// Build a list of all UDR decls with the same names ranged by the Scopes.
// The Scope boundary is a duplication of the previous decl.
llvm::SmallVector<Expr *, 16> UnresolvedReductions;
for (auto *E : C->reduction_ops()) {
// Transform all the decls.
if (E) {
auto *ULE = cast<UnresolvedLookupExpr>(E);
UnresolvedSet<8> Decls;
for (auto *D : ULE->decls()) {
NamedDecl *InstD =
cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
Decls.addDecl(InstD, InstD->getAccess());
}
UnresolvedReductions.push_back(UnresolvedLookupExpr::Create(
SemaRef.Context, /*NamingClass=*/nullptr,
ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo,
/*ADL=*/true, Decls.begin(), Decls.end(),
/*KnownDependent=*/false, /*KnownInstantiationDependent=*/false));
} else
UnresolvedReductions.push_back(nullptr);
}
return getDerived().RebuildOMPInReductionClause(
Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPLinearClause(OMPLinearClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
ExprResult Step = getDerived().TransformExpr(C->getStep());
if (Step.isInvalid())
return nullptr;
return getDerived().RebuildOMPLinearClause(
Vars, Step.get(), C->getBeginLoc(), C->getLParenLoc(), C->getModifier(),
C->getModifierLoc(), C->getColonLoc(), C->getStepModifierLoc(),
C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPAlignedClause(OMPAlignedClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
ExprResult Alignment = getDerived().TransformExpr(C->getAlignment());
if (Alignment.isInvalid())
return nullptr;
return getDerived().RebuildOMPAlignedClause(
Vars, Alignment.get(), C->getBeginLoc(), C->getLParenLoc(),
C->getColonLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPCopyinClause(OMPCopyinClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPCopyinClause(Vars, C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPCopyprivateClause(
Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPFlushClause(OMPFlushClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPFlushClause(Vars, C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPDepobjClause(OMPDepobjClause *C) {
ExprResult E = getDerived().TransformExpr(C->getDepobj());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPDepobjClause(E.get(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPDependClause(OMPDependClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Expr *DepModifier = C->getModifier();
if (DepModifier) {
ExprResult DepModRes = getDerived().TransformExpr(DepModifier);
if (DepModRes.isInvalid())
return nullptr;
DepModifier = DepModRes.get();
}
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPDependClause(
{C->getDependencyKind(), C->getDependencyLoc(), C->getColonLoc(),
C->getOmpAllMemoryLoc()},
DepModifier, Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPDeviceClause(OMPDeviceClause *C) {
ExprResult E = getDerived().TransformExpr(C->getDevice());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPDeviceClause(
C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
C->getModifierLoc(), C->getEndLoc());
}
template <typename Derived, class T>
bool transformOMPMappableExprListClause(
TreeTransform<Derived> &TT, OMPMappableExprListClause<T> *C,
llvm::SmallVectorImpl<Expr *> &Vars, CXXScopeSpec &MapperIdScopeSpec,
DeclarationNameInfo &MapperIdInfo,
llvm::SmallVectorImpl<Expr *> &UnresolvedMappers) {
// Transform expressions in the list.
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = TT.getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return true;
Vars.push_back(EVar.get());
}
// Transform mapper scope specifier and identifier.
NestedNameSpecifierLoc QualifierLoc;
if (C->getMapperQualifierLoc()) {
QualifierLoc = TT.getDerived().TransformNestedNameSpecifierLoc(
C->getMapperQualifierLoc());
if (!QualifierLoc)
return true;
}
MapperIdScopeSpec.Adopt(QualifierLoc);
MapperIdInfo = C->getMapperIdInfo();
if (MapperIdInfo.getName()) {
MapperIdInfo = TT.getDerived().TransformDeclarationNameInfo(MapperIdInfo);
if (!MapperIdInfo.getName())
return true;
}
// Build a list of all candidate OMPDeclareMapperDecls, which is provided by
// the previous user-defined mapper lookup in dependent environment.
for (auto *E : C->mapperlists()) {
// Transform all the decls.
if (E) {
auto *ULE = cast<UnresolvedLookupExpr>(E);
UnresolvedSet<8> Decls;
for (auto *D : ULE->decls()) {
NamedDecl *InstD =
cast<NamedDecl>(TT.getDerived().TransformDecl(E->getExprLoc(), D));
Decls.addDecl(InstD, InstD->getAccess());
}
UnresolvedMappers.push_back(UnresolvedLookupExpr::Create(
TT.getSema().Context, /*NamingClass=*/nullptr,
MapperIdScopeSpec.getWithLocInContext(TT.getSema().Context),
MapperIdInfo, /*ADL=*/true, Decls.begin(), Decls.end(),
/*KnownDependent=*/false, /*KnownInstantiationDependent=*/false));
} else {
UnresolvedMappers.push_back(nullptr);
}
}
return false;
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPMapClause(OMPMapClause *C) {
OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
llvm::SmallVector<Expr *, 16> Vars;
Expr *IteratorModifier = C->getIteratorModifier();
if (IteratorModifier) {
ExprResult MapModRes = getDerived().TransformExpr(IteratorModifier);
if (MapModRes.isInvalid())
return nullptr;
IteratorModifier = MapModRes.get();
}
CXXScopeSpec MapperIdScopeSpec;
DeclarationNameInfo MapperIdInfo;
llvm::SmallVector<Expr *, 16> UnresolvedMappers;
if (transformOMPMappableExprListClause<Derived, OMPMapClause>(
*this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
return nullptr;
return getDerived().RebuildOMPMapClause(
IteratorModifier, C->getMapTypeModifiers(), C->getMapTypeModifiersLoc(),
MapperIdScopeSpec, MapperIdInfo, C->getMapType(), C->isImplicitMapType(),
C->getMapLoc(), C->getColonLoc(), Vars, Locs, UnresolvedMappers);
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPAllocateClause(OMPAllocateClause *C) {
Expr *Allocator = C->getAllocator();
if (Allocator) {
ExprResult AllocatorRes = getDerived().TransformExpr(Allocator);
if (AllocatorRes.isInvalid())
return nullptr;
Allocator = AllocatorRes.get();
}
Expr *Alignment = C->getAlignment();
if (Alignment) {
ExprResult AlignmentRes = getDerived().TransformExpr(Alignment);
if (AlignmentRes.isInvalid())
return nullptr;
Alignment = AlignmentRes.get();
}
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPAllocateClause(
Allocator, Alignment, C->getFirstAllocateModifier(),
C->getFirstAllocateModifierLoc(), C->getSecondAllocateModifier(),
C->getSecondAllocateModifierLoc(), Vars, C->getBeginLoc(),
C->getLParenLoc(), C->getColonLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPNumTeamsClause(OMPNumTeamsClause *C) {
llvm::SmallVector<Expr *, 3> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPNumTeamsClause(
Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPThreadLimitClause(OMPThreadLimitClause *C) {
llvm::SmallVector<Expr *, 3> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPThreadLimitClause(
Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPPriorityClause(OMPPriorityClause *C) {
ExprResult E = getDerived().TransformExpr(C->getPriority());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPPriorityClause(
E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPGrainsizeClause(OMPGrainsizeClause *C) {
ExprResult E = getDerived().TransformExpr(C->getGrainsize());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPGrainsizeClause(
C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
C->getModifierLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPNumTasksClause(OMPNumTasksClause *C) {
ExprResult E = getDerived().TransformExpr(C->getNumTasks());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPNumTasksClause(
C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
C->getModifierLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPHintClause(OMPHintClause *C) {
ExprResult E = getDerived().TransformExpr(C->getHint());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPHintClause(E.get(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPDistScheduleClause(
OMPDistScheduleClause *C) {
ExprResult E = getDerived().TransformExpr(C->getChunkSize());
if (E.isInvalid())
return nullptr;
return getDerived().RebuildOMPDistScheduleClause(
C->getDistScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
C->getDistScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPDefaultmapClause(OMPDefaultmapClause *C) {
// Rebuild Defaultmap Clause since we need to invoke the checking of
// defaultmap(none:variable-category) after template initialization.
return getDerived().RebuildOMPDefaultmapClause(C->getDefaultmapModifier(),
C->getDefaultmapKind(),
C->getBeginLoc(),
C->getLParenLoc(),
C->getDefaultmapModifierLoc(),
C->getDefaultmapKindLoc(),
C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPToClause(OMPToClause *C) {
OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
llvm::SmallVector<Expr *, 16> Vars;
CXXScopeSpec MapperIdScopeSpec;
DeclarationNameInfo MapperIdInfo;
llvm::SmallVector<Expr *, 16> UnresolvedMappers;
if (transformOMPMappableExprListClause<Derived, OMPToClause>(
*this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
return nullptr;
return getDerived().RebuildOMPToClause(
C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec,
MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers);
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPFromClause(OMPFromClause *C) {
OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
llvm::SmallVector<Expr *, 16> Vars;
CXXScopeSpec MapperIdScopeSpec;
DeclarationNameInfo MapperIdInfo;
llvm::SmallVector<Expr *, 16> UnresolvedMappers;
if (transformOMPMappableExprListClause<Derived, OMPFromClause>(
*this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
return nullptr;
return getDerived().RebuildOMPFromClause(
C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec,
MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers);
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPUseDevicePtrClause(
OMPUseDevicePtrClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
return getDerived().RebuildOMPUseDevicePtrClause(Vars, Locs);
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPUseDeviceAddrClause(
OMPUseDeviceAddrClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
return getDerived().RebuildOMPUseDeviceAddrClause(Vars, Locs);
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPIsDevicePtrClause(OMPIsDevicePtrClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
return getDerived().RebuildOMPIsDevicePtrClause(Vars, Locs);
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPHasDeviceAddrClause(
OMPHasDeviceAddrClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
return getDerived().RebuildOMPHasDeviceAddrClause(Vars, Locs);
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPNontemporalClause(OMPNontemporalClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPNontemporalClause(
Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPInclusiveClause(OMPInclusiveClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPInclusiveClause(
Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPExclusiveClause(OMPExclusiveClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPExclusiveClause(
Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPUsesAllocatorsClause(
OMPUsesAllocatorsClause *C) {
SmallVector<SemaOpenMP::UsesAllocatorsData, 16> Data;
Data.reserve(C->getNumberOfAllocators());
for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
ExprResult Allocator = getDerived().TransformExpr(D.Allocator);
if (Allocator.isInvalid())
continue;
ExprResult AllocatorTraits;
if (Expr *AT = D.AllocatorTraits) {
AllocatorTraits = getDerived().TransformExpr(AT);
if (AllocatorTraits.isInvalid())
continue;
}
SemaOpenMP::UsesAllocatorsData &NewD = Data.emplace_back();
NewD.Allocator = Allocator.get();
NewD.AllocatorTraits = AllocatorTraits.get();
NewD.LParenLoc = D.LParenLoc;
NewD.RParenLoc = D.RParenLoc;
}
return getDerived().RebuildOMPUsesAllocatorsClause(
Data, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPAffinityClause(OMPAffinityClause *C) {
SmallVector<Expr *, 4> Locators;
Locators.reserve(C->varlist_size());
ExprResult ModifierRes;
if (Expr *Modifier = C->getModifier()) {
ModifierRes = getDerived().TransformExpr(Modifier);
if (ModifierRes.isInvalid())
return nullptr;
}
for (Expr *E : C->varlist()) {
ExprResult Locator = getDerived().TransformExpr(E);
if (Locator.isInvalid())
continue;
Locators.push_back(Locator.get());
}
return getDerived().RebuildOMPAffinityClause(
C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc(),
ModifierRes.get(), Locators);
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPOrderClause(OMPOrderClause *C) {
return getDerived().RebuildOMPOrderClause(
C->getKind(), C->getKindKwLoc(), C->getBeginLoc(), C->getLParenLoc(),
C->getEndLoc(), C->getModifier(), C->getModifierKwLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPBindClause(OMPBindClause *C) {
return getDerived().RebuildOMPBindClause(
C->getBindKind(), C->getBindKindLoc(), C->getBeginLoc(),
C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPXDynCGroupMemClause(
OMPXDynCGroupMemClause *C) {
ExprResult Size = getDerived().TransformExpr(C->getSize());
if (Size.isInvalid())
return nullptr;
return getDerived().RebuildOMPXDynCGroupMemClause(
Size.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPDoacrossClause(OMPDoacrossClause *C) {
llvm::SmallVector<Expr *, 16> Vars;
Vars.reserve(C->varlist_size());
for (auto *VE : C->varlist()) {
ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
if (EVar.isInvalid())
return nullptr;
Vars.push_back(EVar.get());
}
return getDerived().RebuildOMPDoacrossClause(
C->getDependenceType(), C->getDependenceLoc(), C->getColonLoc(), Vars,
C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *
TreeTransform<Derived>::TransformOMPXAttributeClause(OMPXAttributeClause *C) {
SmallVector<const Attr *> NewAttrs;
for (auto *A : C->getAttrs())
NewAttrs.push_back(getDerived().TransformAttr(A));
return getDerived().RebuildOMPXAttributeClause(
NewAttrs, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
}
template <typename Derived>
OMPClause *TreeTransform<Derived>::TransformOMPXBareClause(OMPXBareClause *C) {
return getDerived().RebuildOMPXBareClause(C->getBeginLoc(), C->getEndLoc());
}
//===----------------------------------------------------------------------===//
// OpenACC transformation
//===----------------------------------------------------------------------===//
namespace {
template <typename Derived>
class OpenACCClauseTransform final
: public OpenACCClauseVisitor<OpenACCClauseTransform<Derived>> {
TreeTransform<Derived> &Self;
ArrayRef<const OpenACCClause *> ExistingClauses;
SemaOpenACC::OpenACCParsedClause &ParsedClause;
OpenACCClause *NewClause = nullptr;
llvm::SmallVector<Expr *> VisitVarList(ArrayRef<Expr *> VarList) {
llvm::SmallVector<Expr *> InstantiatedVarList;
for (Expr *CurVar : VarList) {
ExprResult Res = Self.TransformExpr(CurVar);
if (!Res.isUsable())
continue;
Res = Self.getSema().OpenACC().ActOnVar(ParsedClause.getDirectiveKind(),
ParsedClause.getClauseKind(),
Res.get());
if (Res.isUsable())
InstantiatedVarList.push_back(Res.get());
}
return InstantiatedVarList;
}
public:
OpenACCClauseTransform(TreeTransform<Derived> &Self,
ArrayRef<const OpenACCClause *> ExistingClauses,
SemaOpenACC::OpenACCParsedClause &PC)
: Self(Self), ExistingClauses(ExistingClauses), ParsedClause(PC) {}
OpenACCClause *CreatedClause() const { return NewClause; }
#define VISIT_CLAUSE(CLAUSE_NAME) \
void Visit##CLAUSE_NAME##Clause(const OpenACC##CLAUSE_NAME##Clause &Clause);
#include "clang/Basic/OpenACCClauses.def"
};
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitDefaultClause(
const OpenACCDefaultClause &C) {
ParsedClause.setDefaultDetails(C.getDefaultClauseKind());
NewClause = OpenACCDefaultClause::Create(
Self.getSema().getASTContext(), ParsedClause.getDefaultClauseKind(),
ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitIfClause(const OpenACCIfClause &C) {
Expr *Cond = const_cast<Expr *>(C.getConditionExpr());
assert(Cond && "If constructed with invalid Condition");
Sema::ConditionResult Res = Self.TransformCondition(
Cond->getExprLoc(), /*Var=*/nullptr, Cond, Sema::ConditionKind::Boolean);
if (Res.isInvalid() || !Res.get().second)
return;
ParsedClause.setConditionDetails(Res.get().second);
NewClause = OpenACCIfClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getConditionExpr(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitSelfClause(
const OpenACCSelfClause &C) {
// If this is an 'update' 'self' clause, this is actually a var list instead.
if (ParsedClause.getDirectiveKind() == OpenACCDirectiveKind::Update) {
llvm::SmallVector<Expr *> InstantiatedVarList;
for (Expr *CurVar : C.getVarList()) {
ExprResult Res = Self.TransformExpr(CurVar);
if (!Res.isUsable())
continue;
Res = Self.getSema().OpenACC().ActOnVar(ParsedClause.getDirectiveKind(),
ParsedClause.getClauseKind(),
Res.get());
if (Res.isUsable())
InstantiatedVarList.push_back(Res.get());
}
ParsedClause.setVarListDetails(InstantiatedVarList,
OpenACCModifierKind::Invalid);
NewClause = OpenACCSelfClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
} else {
if (C.hasConditionExpr()) {
Expr *Cond = const_cast<Expr *>(C.getConditionExpr());
Sema::ConditionResult Res =
Self.TransformCondition(Cond->getExprLoc(), /*Var=*/nullptr, Cond,
Sema::ConditionKind::Boolean);
if (Res.isInvalid() || !Res.get().second)
return;
ParsedClause.setConditionDetails(Res.get().second);
}
NewClause = OpenACCSelfClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getConditionExpr(),
ParsedClause.getEndLoc());
}
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitNumGangsClause(
const OpenACCNumGangsClause &C) {
llvm::SmallVector<Expr *> InstantiatedIntExprs;
for (Expr *CurIntExpr : C.getIntExprs()) {
ExprResult Res = Self.TransformExpr(CurIntExpr);
if (!Res.isUsable())
return;
Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid,
C.getClauseKind(),
C.getBeginLoc(), Res.get());
if (!Res.isUsable())
return;
InstantiatedIntExprs.push_back(Res.get());
}
ParsedClause.setIntExprDetails(InstantiatedIntExprs);
NewClause = OpenACCNumGangsClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getIntExprs(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitPrivateClause(
const OpenACCPrivateClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
OpenACCModifierKind::Invalid);
NewClause = OpenACCPrivateClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitHostClause(
const OpenACCHostClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
OpenACCModifierKind::Invalid);
NewClause = OpenACCHostClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitDeviceClause(
const OpenACCDeviceClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
OpenACCModifierKind::Invalid);
NewClause = OpenACCDeviceClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitFirstPrivateClause(
const OpenACCFirstPrivateClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
OpenACCModifierKind::Invalid);
NewClause = OpenACCFirstPrivateClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitNoCreateClause(
const OpenACCNoCreateClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
OpenACCModifierKind::Invalid);
NewClause = OpenACCNoCreateClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitPresentClause(
const OpenACCPresentClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
OpenACCModifierKind::Invalid);
NewClause = OpenACCPresentClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitCopyClause(
const OpenACCCopyClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
C.getModifierList());
NewClause = OpenACCCopyClause::Create(
Self.getSema().getASTContext(), ParsedClause.getClauseKind(),
ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(),
ParsedClause.getModifierList(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitLinkClause(
const OpenACCLinkClause &C) {
llvm_unreachable("link clause not valid unless a decl transform");
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitDeviceResidentClause(
const OpenACCDeviceResidentClause &C) {
llvm_unreachable("device_resident clause not valid unless a decl transform");
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitNoHostClause(
const OpenACCNoHostClause &C) {
llvm_unreachable("nohost clause not valid unless a decl transform");
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitBindClause(
const OpenACCBindClause &C) {
llvm_unreachable("bind clause not valid unless a decl transform");
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitCopyInClause(
const OpenACCCopyInClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
C.getModifierList());
NewClause = OpenACCCopyInClause::Create(
Self.getSema().getASTContext(), ParsedClause.getClauseKind(),
ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(),
ParsedClause.getModifierList(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitCopyOutClause(
const OpenACCCopyOutClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
C.getModifierList());
NewClause = OpenACCCopyOutClause::Create(
Self.getSema().getASTContext(), ParsedClause.getClauseKind(),
ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(),
ParsedClause.getModifierList(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitCreateClause(
const OpenACCCreateClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
C.getModifierList());
NewClause = OpenACCCreateClause::Create(
Self.getSema().getASTContext(), ParsedClause.getClauseKind(),
ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(),
ParsedClause.getModifierList(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitAttachClause(
const OpenACCAttachClause &C) {
llvm::SmallVector<Expr *> VarList = VisitVarList(C.getVarList());
// Ensure each var is a pointer type.
llvm::erase_if(VarList, [&](Expr *E) {
return Self.getSema().OpenACC().CheckVarIsPointerType(
OpenACCClauseKind::Attach, E);
});
ParsedClause.setVarListDetails(VarList, OpenACCModifierKind::Invalid);
NewClause = OpenACCAttachClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitDetachClause(
const OpenACCDetachClause &C) {
llvm::SmallVector<Expr *> VarList = VisitVarList(C.getVarList());
// Ensure each var is a pointer type.
VarList.erase(
std::remove_if(VarList.begin(), VarList.end(),
[&](Expr *E) {
return Self.getSema().OpenACC().CheckVarIsPointerType(
OpenACCClauseKind::Detach, E);
}),
VarList.end());
ParsedClause.setVarListDetails(VarList, OpenACCModifierKind::Invalid);
NewClause = OpenACCDetachClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitDeleteClause(
const OpenACCDeleteClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
OpenACCModifierKind::Invalid);
NewClause = OpenACCDeleteClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitUseDeviceClause(
const OpenACCUseDeviceClause &C) {
ParsedClause.setVarListDetails(VisitVarList(C.getVarList()),
OpenACCModifierKind::Invalid);
NewClause = OpenACCUseDeviceClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitDevicePtrClause(
const OpenACCDevicePtrClause &C) {
llvm::SmallVector<Expr *> VarList = VisitVarList(C.getVarList());
// Ensure each var is a pointer type.
llvm::erase_if(VarList, [&](Expr *E) {
return Self.getSema().OpenACC().CheckVarIsPointerType(
OpenACCClauseKind::DevicePtr, E);
});
ParsedClause.setVarListDetails(VarList, OpenACCModifierKind::Invalid);
NewClause = OpenACCDevicePtrClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getVarList(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitNumWorkersClause(
const OpenACCNumWorkersClause &C) {
Expr *IntExpr = const_cast<Expr *>(C.getIntExpr());
assert(IntExpr && "num_workers clause constructed with invalid int expr");
ExprResult Res = Self.TransformExpr(IntExpr);
if (!Res.isUsable())
return;
Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid,
C.getClauseKind(),
C.getBeginLoc(), Res.get());
if (!Res.isUsable())
return;
ParsedClause.setIntExprDetails(Res.get());
NewClause = OpenACCNumWorkersClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getIntExprs()[0],
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitDeviceNumClause (
const OpenACCDeviceNumClause &C) {
Expr *IntExpr = const_cast<Expr *>(C.getIntExpr());
assert(IntExpr && "device_num clause constructed with invalid int expr");
ExprResult Res = Self.TransformExpr(IntExpr);
if (!Res.isUsable())
return;
Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid,
C.getClauseKind(),
C.getBeginLoc(), Res.get());
if (!Res.isUsable())
return;
ParsedClause.setIntExprDetails(Res.get());
NewClause = OpenACCDeviceNumClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getIntExprs()[0],
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitDefaultAsyncClause(
const OpenACCDefaultAsyncClause &C) {
Expr *IntExpr = const_cast<Expr *>(C.getIntExpr());
assert(IntExpr && "default_async clause constructed with invalid int expr");
ExprResult Res = Self.TransformExpr(IntExpr);
if (!Res.isUsable())
return;
Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid,
C.getClauseKind(),
C.getBeginLoc(), Res.get());
if (!Res.isUsable())
return;
ParsedClause.setIntExprDetails(Res.get());
NewClause = OpenACCDefaultAsyncClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getIntExprs()[0],
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitVectorLengthClause(
const OpenACCVectorLengthClause &C) {
Expr *IntExpr = const_cast<Expr *>(C.getIntExpr());
assert(IntExpr && "vector_length clause constructed with invalid int expr");
ExprResult Res = Self.TransformExpr(IntExpr);
if (!Res.isUsable())
return;
Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid,
C.getClauseKind(),
C.getBeginLoc(), Res.get());
if (!Res.isUsable())
return;
ParsedClause.setIntExprDetails(Res.get());
NewClause = OpenACCVectorLengthClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getIntExprs()[0],
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitAsyncClause(
const OpenACCAsyncClause &C) {
if (C.hasIntExpr()) {
ExprResult Res = Self.TransformExpr(const_cast<Expr *>(C.getIntExpr()));
if (!Res.isUsable())
return;
Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid,
C.getClauseKind(),
C.getBeginLoc(), Res.get());
if (!Res.isUsable())
return;
ParsedClause.setIntExprDetails(Res.get());
}
NewClause = OpenACCAsyncClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(),
ParsedClause.getNumIntExprs() != 0 ? ParsedClause.getIntExprs()[0]
: nullptr,
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitWorkerClause(
const OpenACCWorkerClause &C) {
if (C.hasIntExpr()) {
// restrictions on this expression are all "does it exist in certain
// situations" that are not possible to be dependent, so the only check we
// have is that it transforms, and is an int expression.
ExprResult Res = Self.TransformExpr(const_cast<Expr *>(C.getIntExpr()));
if (!Res.isUsable())
return;
Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid,
C.getClauseKind(),
C.getBeginLoc(), Res.get());
if (!Res.isUsable())
return;
ParsedClause.setIntExprDetails(Res.get());
}
NewClause = OpenACCWorkerClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(),
ParsedClause.getNumIntExprs() != 0 ? ParsedClause.getIntExprs()[0]
: nullptr,
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitVectorClause(
const OpenACCVectorClause &C) {
if (C.hasIntExpr()) {
// restrictions on this expression are all "does it exist in certain
// situations" that are not possible to be dependent, so the only check we
// have is that it transforms, and is an int expression.
ExprResult Res = Self.TransformExpr(const_cast<Expr *>(C.getIntExpr()));
if (!Res.isUsable())
return;
Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid,
C.getClauseKind(),
C.getBeginLoc(), Res.get());
if (!Res.isUsable())
return;
ParsedClause.setIntExprDetails(Res.get());
}
NewClause = OpenACCVectorClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(),
ParsedClause.getNumIntExprs() != 0 ? ParsedClause.getIntExprs()[0]
: nullptr,
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitWaitClause(
const OpenACCWaitClause &C) {
if (!C.getLParenLoc().isInvalid()) {
Expr *DevNumExpr = nullptr;
llvm::SmallVector<Expr *> InstantiatedQueueIdExprs;
// Instantiate devnum expr if it exists.
if (C.getDevNumExpr()) {
ExprResult Res = Self.TransformExpr(C.getDevNumExpr());
if (!Res.isUsable())
return;
Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid,
C.getClauseKind(),
C.getBeginLoc(), Res.get());
if (!Res.isUsable())
return;
DevNumExpr = Res.get();
}
// Instantiate queue ids.
for (Expr *CurQueueIdExpr : C.getQueueIdExprs()) {
ExprResult Res = Self.TransformExpr(CurQueueIdExpr);
if (!Res.isUsable())
return;
Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid,
C.getClauseKind(),
C.getBeginLoc(), Res.get());
if (!Res.isUsable())
return;
InstantiatedQueueIdExprs.push_back(Res.get());
}
ParsedClause.setWaitDetails(DevNumExpr, C.getQueuesLoc(),
std::move(InstantiatedQueueIdExprs));
}
NewClause = OpenACCWaitClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getDevNumExpr(),
ParsedClause.getQueuesLoc(), ParsedClause.getQueueIdExprs(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitDeviceTypeClause(
const OpenACCDeviceTypeClause &C) {
// Nothing to transform here, just create a new version of 'C'.
NewClause = OpenACCDeviceTypeClause::Create(
Self.getSema().getASTContext(), C.getClauseKind(),
ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(),
C.getArchitectures(), ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitAutoClause(
const OpenACCAutoClause &C) {
// Nothing to do, so just create a new node.
NewClause = OpenACCAutoClause::Create(Self.getSema().getASTContext(),
ParsedClause.getBeginLoc(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitIndependentClause(
const OpenACCIndependentClause &C) {
NewClause = OpenACCIndependentClause::Create(Self.getSema().getASTContext(),
ParsedClause.getBeginLoc(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitSeqClause(
const OpenACCSeqClause &C) {
NewClause = OpenACCSeqClause::Create(Self.getSema().getASTContext(),
ParsedClause.getBeginLoc(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitFinalizeClause(
const OpenACCFinalizeClause &C) {
NewClause = OpenACCFinalizeClause::Create(Self.getSema().getASTContext(),
ParsedClause.getBeginLoc(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitIfPresentClause(
const OpenACCIfPresentClause &C) {
NewClause = OpenACCIfPresentClause::Create(Self.getSema().getASTContext(),
ParsedClause.getBeginLoc(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitReductionClause(
const OpenACCReductionClause &C) {
SmallVector<Expr *> TransformedVars = VisitVarList(C.getVarList());
SmallVector<Expr *> ValidVars;
for (Expr *Var : TransformedVars) {
ExprResult Res = Self.getSema().OpenACC().CheckReductionVar(
ParsedClause.getDirectiveKind(), C.getReductionOp(), Var);
if (Res.isUsable())
ValidVars.push_back(Res.get());
}
NewClause = Self.getSema().OpenACC().CheckReductionClause(
ExistingClauses, ParsedClause.getDirectiveKind(),
ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(),
C.getReductionOp(), ValidVars, ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitCollapseClause(
const OpenACCCollapseClause &C) {
Expr *LoopCount = const_cast<Expr *>(C.getLoopCount());
assert(LoopCount && "collapse clause constructed with invalid loop count");
ExprResult NewLoopCount = Self.TransformExpr(LoopCount);
NewLoopCount = Self.getSema().OpenACC().ActOnIntExpr(
OpenACCDirectiveKind::Invalid, ParsedClause.getClauseKind(),
NewLoopCount.get()->getBeginLoc(), NewLoopCount.get());
NewLoopCount =
Self.getSema().OpenACC().CheckCollapseLoopCount(NewLoopCount.get());
if (!NewLoopCount.isUsable())
return;
ParsedClause.setCollapseDetails(C.hasForce(), NewLoopCount.get());
NewClause = OpenACCCollapseClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.isForce(),
ParsedClause.getLoopCount(), ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitTileClause(
const OpenACCTileClause &C) {
llvm::SmallVector<Expr *> TransformedExprs;
for (Expr *E : C.getSizeExprs()) {
ExprResult NewSizeExpr = Self.TransformExpr(E);
if (!NewSizeExpr.isUsable())
return;
NewSizeExpr = Self.getSema().OpenACC().ActOnIntExpr(
OpenACCDirectiveKind::Invalid, ParsedClause.getClauseKind(),
NewSizeExpr.get()->getBeginLoc(), NewSizeExpr.get());
NewSizeExpr = Self.getSema().OpenACC().CheckTileSizeExpr(NewSizeExpr.get());
if (!NewSizeExpr.isUsable())
return;
TransformedExprs.push_back(NewSizeExpr.get());
}
ParsedClause.setIntExprDetails(TransformedExprs);
NewClause = OpenACCTileClause::Create(
Self.getSema().getASTContext(), ParsedClause.getBeginLoc(),
ParsedClause.getLParenLoc(), ParsedClause.getIntExprs(),
ParsedClause.getEndLoc());
}
template <typename Derived>
void OpenACCClauseTransform<Derived>::VisitGangClause(
const OpenACCGangClause &C) {
llvm::SmallVector<OpenACCGangKind> TransformedGangKinds;
llvm::SmallVector<Expr *> TransformedIntExprs;
for (unsigned I = 0; I < C.getNumExprs(); ++I) {
ExprResult ER = Self.TransformExpr(const_cast<Expr *>(C.getExpr(I).second));
if (!ER.isUsable())
continue;
ER = Self.getSema().OpenACC().CheckGangExpr(ExistingClauses,
ParsedClause.getDirectiveKind(),
C.getExpr(I).first, ER.get());
if (!ER.isUsable())
continue;
TransformedGangKinds.push_back(C.getExpr(I).first);
TransformedIntExprs.push_back(ER.get());
}
NewClause = Self.getSema().OpenACC().CheckGangClause(
ParsedClause.getDirectiveKind(), ExistingClauses,
ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(),
TransformedGangKinds, TransformedIntExprs, ParsedClause.getEndLoc());
}
} // namespace
template <typename Derived>
OpenACCClause *TreeTransform<Derived>::TransformOpenACCClause(
ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DirKind, const OpenACCClause *OldClause) {
SemaOpenACC::OpenACCParsedClause ParsedClause(
DirKind, OldClause->getClauseKind(), OldClause->getBeginLoc());
ParsedClause.setEndLoc(OldClause->getEndLoc());
if (const auto *WithParms = dyn_cast<OpenACCClauseWithParams>(OldClause))
ParsedClause.setLParenLoc(WithParms->getLParenLoc());
OpenACCClauseTransform<Derived> Transform{*this, ExistingClauses,
ParsedClause};
Transform.Visit(OldClause);
return Transform.CreatedClause();
}
template <typename Derived>
llvm::SmallVector<OpenACCClause *>
TreeTransform<Derived>::TransformOpenACCClauseList(
OpenACCDirectiveKind DirKind, ArrayRef<const OpenACCClause *> OldClauses) {
llvm::SmallVector<OpenACCClause *> TransformedClauses;
for (const auto *Clause : OldClauses) {
if (OpenACCClause *TransformedClause = getDerived().TransformOpenACCClause(
TransformedClauses, DirKind, Clause))
TransformedClauses.push_back(TransformedClause);
}
return TransformedClauses;
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOpenACCComputeConstruct(
OpenACCComputeConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
// Transform Structured Block.
SemaOpenACC::AssociatedStmtRAII AssocStmtRAII(
getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(),
C->clauses(), TransformedClauses);
StmtResult StrBlock = getDerived().TransformStmt(C->getStructuredBlock());
StrBlock = getSema().OpenACC().ActOnAssociatedStmt(
C->getBeginLoc(), C->getDirectiveKind(), TransformedClauses, StrBlock);
return getDerived().RebuildOpenACCComputeConstruct(
C->getDirectiveKind(), C->getBeginLoc(), C->getDirectiveLoc(),
C->getEndLoc(), TransformedClauses, StrBlock);
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOpenACCLoopConstruct(OpenACCLoopConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
// Transform Loop.
SemaOpenACC::AssociatedStmtRAII AssocStmtRAII(
getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(),
C->clauses(), TransformedClauses);
StmtResult Loop = getDerived().TransformStmt(C->getLoop());
Loop = getSema().OpenACC().ActOnAssociatedStmt(
C->getBeginLoc(), C->getDirectiveKind(), TransformedClauses, Loop);
return getDerived().RebuildOpenACCLoopConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(),
TransformedClauses, Loop);
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOpenACCCombinedConstruct(
OpenACCCombinedConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
// Transform Loop.
SemaOpenACC::AssociatedStmtRAII AssocStmtRAII(
getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(),
C->clauses(), TransformedClauses);
StmtResult Loop = getDerived().TransformStmt(C->getLoop());
Loop = getSema().OpenACC().ActOnAssociatedStmt(
C->getBeginLoc(), C->getDirectiveKind(), TransformedClauses, Loop);
return getDerived().RebuildOpenACCCombinedConstruct(
C->getDirectiveKind(), C->getBeginLoc(), C->getDirectiveLoc(),
C->getEndLoc(), TransformedClauses, Loop);
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOpenACCDataConstruct(OpenACCDataConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
SemaOpenACC::AssociatedStmtRAII AssocStmtRAII(
getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(),
C->clauses(), TransformedClauses);
StmtResult StrBlock = getDerived().TransformStmt(C->getStructuredBlock());
StrBlock = getSema().OpenACC().ActOnAssociatedStmt(
C->getBeginLoc(), C->getDirectiveKind(), TransformedClauses, StrBlock);
return getDerived().RebuildOpenACCDataConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(),
TransformedClauses, StrBlock);
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOpenACCEnterDataConstruct(
OpenACCEnterDataConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
return getDerived().RebuildOpenACCEnterDataConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(),
TransformedClauses);
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOpenACCExitDataConstruct(
OpenACCExitDataConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
return getDerived().RebuildOpenACCExitDataConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(),
TransformedClauses);
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOpenACCHostDataConstruct(
OpenACCHostDataConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
SemaOpenACC::AssociatedStmtRAII AssocStmtRAII(
getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(),
C->clauses(), TransformedClauses);
StmtResult StrBlock = getDerived().TransformStmt(C->getStructuredBlock());
StrBlock = getSema().OpenACC().ActOnAssociatedStmt(
C->getBeginLoc(), C->getDirectiveKind(), TransformedClauses, StrBlock);
return getDerived().RebuildOpenACCHostDataConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(),
TransformedClauses, StrBlock);
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOpenACCInitConstruct(OpenACCInitConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
return getDerived().RebuildOpenACCInitConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(),
TransformedClauses);
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOpenACCShutdownConstruct(
OpenACCShutdownConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
return getDerived().RebuildOpenACCShutdownConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(),
TransformedClauses);
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOpenACCSetConstruct(OpenACCSetConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
return getDerived().RebuildOpenACCSetConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(),
TransformedClauses);
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOpenACCUpdateConstruct(
OpenACCUpdateConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
return getDerived().RebuildOpenACCUpdateConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(),
TransformedClauses);
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformOpenACCWaitConstruct(OpenACCWaitConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
ExprResult DevNumExpr;
if (C->hasDevNumExpr()) {
DevNumExpr = getDerived().TransformExpr(C->getDevNumExpr());
if (DevNumExpr.isUsable())
DevNumExpr = getSema().OpenACC().ActOnIntExpr(
OpenACCDirectiveKind::Wait, OpenACCClauseKind::Invalid,
C->getBeginLoc(), DevNumExpr.get());
}
llvm::SmallVector<Expr *> QueueIdExprs;
for (Expr *QE : C->getQueueIdExprs()) {
assert(QE && "Null queue id expr?");
ExprResult NewEQ = getDerived().TransformExpr(QE);
if (!NewEQ.isUsable())
break;
NewEQ = getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Wait,
OpenACCClauseKind::Invalid,
C->getBeginLoc(), NewEQ.get());
if (NewEQ.isUsable())
QueueIdExprs.push_back(NewEQ.get());
}
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(
C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses))
return StmtError();
return getDerived().RebuildOpenACCWaitConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getLParenLoc(),
DevNumExpr.isUsable() ? DevNumExpr.get() : nullptr, C->getQueuesLoc(),
QueueIdExprs, C->getRParenLoc(), C->getEndLoc(), TransformedClauses);
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOpenACCCacheConstruct(
OpenACCCacheConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<Expr *> TransformedVarList;
for (Expr *Var : C->getVarList()) {
assert(Var && "Null var listexpr?");
ExprResult NewVar = getDerived().TransformExpr(Var);
if (!NewVar.isUsable())
break;
NewVar = getSema().OpenACC().ActOnVar(
C->getDirectiveKind(), OpenACCClauseKind::Invalid, NewVar.get());
if (!NewVar.isUsable())
break;
TransformedVarList.push_back(NewVar.get());
}
if (getSema().OpenACC().ActOnStartStmtDirective(C->getDirectiveKind(),
C->getBeginLoc(), {}))
return StmtError();
return getDerived().RebuildOpenACCCacheConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getLParenLoc(),
C->getReadOnlyLoc(), TransformedVarList, C->getRParenLoc(),
C->getEndLoc());
}
template <typename Derived>
StmtResult TreeTransform<Derived>::TransformOpenACCAtomicConstruct(
OpenACCAtomicConstruct *C) {
getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc());
llvm::SmallVector<OpenACCClause *> TransformedClauses =
getDerived().TransformOpenACCClauseList(C->getDirectiveKind(),
C->clauses());
if (getSema().OpenACC().ActOnStartStmtDirective(C->getDirectiveKind(),
C->getBeginLoc(), {}))
return StmtError();
// Transform Associated Stmt.
SemaOpenACC::AssociatedStmtRAII AssocStmtRAII(
getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(), {}, {});
StmtResult AssocStmt = getDerived().TransformStmt(C->getAssociatedStmt());
AssocStmt = getSema().OpenACC().ActOnAssociatedStmt(
C->getBeginLoc(), C->getDirectiveKind(), C->getAtomicKind(), {},
AssocStmt);
return getDerived().RebuildOpenACCAtomicConstruct(
C->getBeginLoc(), C->getDirectiveLoc(), C->getAtomicKind(),
C->getEndLoc(), TransformedClauses, AssocStmt);
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformOpenACCAsteriskSizeExpr(
OpenACCAsteriskSizeExpr *E) {
if (getDerived().AlwaysRebuild())
return getDerived().RebuildOpenACCAsteriskSizeExpr(E->getLocation());
// Nothing can ever change, so there is never anything to transform.
return E;
}
//===----------------------------------------------------------------------===//
// Expression transformation
//===----------------------------------------------------------------------===//
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformConstantExpr(ConstantExpr *E) {
return TransformExpr(E->getSubExpr());
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformSYCLUniqueStableNameExpr(
SYCLUniqueStableNameExpr *E) {
if (!E->isTypeDependent())
return E;
TypeSourceInfo *NewT = getDerived().TransformType(E->getTypeSourceInfo());
if (!NewT)
return ExprError();
if (!getDerived().AlwaysRebuild() && E->getTypeSourceInfo() == NewT)
return E;
return getDerived().RebuildSYCLUniqueStableNameExpr(
E->getLocation(), E->getLParenLocation(), E->getRParenLocation(), NewT);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
if (!E->isTypeDependent())
return E;
return getDerived().RebuildPredefinedExpr(E->getLocation(),
E->getIdentKind());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
NestedNameSpecifierLoc QualifierLoc;
if (E->getQualifierLoc()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
}
ValueDecl *ND
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
E->getDecl()));
if (!ND || ND->isInvalidDecl())
return ExprError();
NamedDecl *Found = ND;
if (E->getFoundDecl() != E->getDecl()) {
Found = cast_or_null<NamedDecl>(
getDerived().TransformDecl(E->getLocation(), E->getFoundDecl()));
if (!Found)
return ExprError();
}
DeclarationNameInfo NameInfo = E->getNameInfo();
if (NameInfo.getName()) {
NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
if (!NameInfo.getName())
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
!E->isCapturedByCopyInLambdaWithExplicitObjectParameter() &&
QualifierLoc == E->getQualifierLoc() && ND == E->getDecl() &&
Found == E->getFoundDecl() &&
NameInfo.getName() == E->getDecl()->getDeclName() &&
!E->hasExplicitTemplateArgs()) {
// Mark it referenced in the new context regardless.
// FIXME: this is a bit instantiation-specific.
SemaRef.MarkDeclRefReferenced(E);
return E;
}
TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr;
if (E->hasExplicitTemplateArgs()) {
TemplateArgs = &TransArgs;
TransArgs.setLAngleLoc(E->getLAngleLoc());
TransArgs.setRAngleLoc(E->getRAngleLoc());
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
E->getNumTemplateArgs(),
TransArgs))
return ExprError();
}
return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
Found, TemplateArgs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
return E;
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformFixedPointLiteral(
FixedPointLiteral *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) {
return getDerived().TransformCallExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
ExprResult ControllingExpr;
TypeSourceInfo *ControllingType = nullptr;
if (E->isExprPredicate())
ControllingExpr = getDerived().TransformExpr(E->getControllingExpr());
else
ControllingType = getDerived().TransformType(E->getControllingType());
if (ControllingExpr.isInvalid() && !ControllingType)
return ExprError();
SmallVector<Expr *, 4> AssocExprs;
SmallVector<TypeSourceInfo *, 4> AssocTypes;
for (const GenericSelectionExpr::Association Assoc : E->associations()) {
TypeSourceInfo *TSI = Assoc.getTypeSourceInfo();
if (TSI) {
TypeSourceInfo *AssocType = getDerived().TransformType(TSI);
if (!AssocType)
return ExprError();
AssocTypes.push_back(AssocType);
} else {
AssocTypes.push_back(nullptr);
}
ExprResult AssocExpr =
getDerived().TransformExpr(Assoc.getAssociationExpr());
if (AssocExpr.isInvalid())
return ExprError();
AssocExprs.push_back(AssocExpr.get());
}
if (!ControllingType)
return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
E->getDefaultLoc(),
E->getRParenLoc(),
ControllingExpr.get(),
AssocTypes,
AssocExprs);
return getDerived().RebuildGenericSelectionExpr(
E->getGenericLoc(), E->getDefaultLoc(), E->getRParenLoc(),
ControllingType, AssocTypes, AssocExprs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
return E;
return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
E->getRParen());
}
/// The operand of a unary address-of operator has special rules: it's
/// allowed to refer to a non-static member of a class even if there's no 'this'
/// object available.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) {
if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E))
return getDerived().TransformDependentScopeDeclRefExpr(
DRE, /*IsAddressOfOperand=*/true, nullptr);
else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E))
return getDerived().TransformUnresolvedLookupExpr(
ULE, /*IsAddressOfOperand=*/true);
else
return getDerived().TransformExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
ExprResult SubExpr;
if (E->getOpcode() == UO_AddrOf)
SubExpr = TransformAddressOfOperand(E->getSubExpr());
else
SubExpr = TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
return E;
return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
E->getOpcode(),
SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
// Transform the type.
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
if (!Type)
return ExprError();
// Transform all of the components into components similar to what the
// parser uses.
// FIXME: It would be slightly more efficient in the non-dependent case to
// just map FieldDecls, rather than requiring the rebuilder to look for
// the fields again. However, __builtin_offsetof is rare enough in
// template code that we don't care.
bool ExprChanged = false;
typedef Sema::OffsetOfComponent Component;
SmallVector<Component, 4> Components;
for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
const OffsetOfNode &ON = E->getComponent(I);
Component Comp;
Comp.isBrackets = true;
Comp.LocStart = ON.getSourceRange().getBegin();
Comp.LocEnd = ON.getSourceRange().getEnd();
switch (ON.getKind()) {
case OffsetOfNode::Array: {
Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
ExprResult Index = getDerived().TransformExpr(FromIndex);
if (Index.isInvalid())
return ExprError();
ExprChanged = ExprChanged || Index.get() != FromIndex;
Comp.isBrackets = true;
Comp.U.E = Index.get();
break;
}
case OffsetOfNode::Field:
case OffsetOfNode::Identifier:
Comp.isBrackets = false;
Comp.U.IdentInfo = ON.getFieldName();
if (!Comp.U.IdentInfo)
continue;
break;
case OffsetOfNode::Base:
// Will be recomputed during the rebuild.
continue;
}
Components.push_back(Comp);
}
// If nothing changed, retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeSourceInfo() &&
!ExprChanged)
return E;
// Build a new offsetof expression.
return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
Components, E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
assert((!E->getSourceExpr() || getDerived().AlreadyTransformed(E->getType())) &&
"opaque value expression requires transformation");
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformTypoExpr(TypoExpr *E) {
return E;
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformRecoveryExpr(RecoveryExpr *E) {
llvm::SmallVector<Expr *, 8> Children;
bool Changed = false;
for (Expr *C : E->subExpressions()) {
ExprResult NewC = getDerived().TransformExpr(C);
if (NewC.isInvalid())
return ExprError();
Children.push_back(NewC.get());
Changed |= NewC.get() != C;
}
if (!getDerived().AlwaysRebuild() && !Changed)
return E;
return getDerived().RebuildRecoveryExpr(E->getBeginLoc(), E->getEndLoc(),
Children, E->getType());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
// Rebuild the syntactic form. The original syntactic form has
// opaque-value expressions in it, so strip those away and rebuild
// the result. This is a really awful way of doing this, but the
// better solution (rebuilding the semantic expressions and
// rebinding OVEs as necessary) doesn't work; we'd need
// TreeTransform to not strip away implicit conversions.
Expr *newSyntacticForm = SemaRef.PseudoObject().recreateSyntacticForm(E);
ExprResult result = getDerived().TransformExpr(newSyntacticForm);
if (result.isInvalid()) return ExprError();
// If that gives us a pseudo-object result back, the pseudo-object
// expression must have been an lvalue-to-rvalue conversion which we
// should reapply.
if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
result = SemaRef.PseudoObject().checkRValue(result.get());
return result;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
UnaryExprOrTypeTraitExpr *E) {
if (E->isArgumentType()) {
TypeSourceInfo *OldT = E->getArgumentTypeInfo();
TypeSourceInfo *NewT = getDerived().TransformType(OldT);
if (!NewT)
return ExprError();
if (!getDerived().AlwaysRebuild() && OldT == NewT)
return E;
return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
E->getKind(),
E->getSourceRange());
}
// C++0x [expr.sizeof]p1:
// The operand is either an expression, which is an unevaluated operand
// [...]
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
Sema::ReuseLambdaContextDecl);
// Try to recover if we have something like sizeof(T::X) where X is a type.
// Notably, there must be *exactly* one set of parens if X is a type.
TypeSourceInfo *RecoveryTSI = nullptr;
ExprResult SubExpr;
auto *PE = dyn_cast<ParenExpr>(E->getArgumentExpr());
if (auto *DRE =
PE ? dyn_cast<DependentScopeDeclRefExpr>(PE->getSubExpr()) : nullptr)
SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr(
PE, DRE, false, &RecoveryTSI);
else
SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
if (RecoveryTSI) {
return getDerived().RebuildUnaryExprOrTypeTrait(
RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange());
} else if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
return E;
return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
E->getOperatorLoc(),
E->getKind(),
E->getSourceRange());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return E;
return getDerived().RebuildArraySubscriptExpr(
LHS.get(),
/*FIXME:*/ E->getLHS()->getBeginLoc(), RHS.get(), E->getRBracketLoc());
}
template <typename Derived>
ExprResult
TreeTransform<Derived>::TransformMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
ExprResult RowIdx = getDerived().TransformExpr(E->getRowIdx());
if (RowIdx.isInvalid())
return ExprError();
ExprResult ColumnIdx = getDerived().TransformExpr(E->getColumnIdx());
if (ColumnIdx.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() &&
RowIdx.get() == E->getRowIdx() && ColumnIdx.get() == E->getColumnIdx())
return E;
return getDerived().RebuildMatrixSubscriptExpr(
Base.get(), RowIdx.get(), ColumnIdx.get(), E->getRBracketLoc());
}
template <typename Derived>
ExprResult
TreeTransform<Derived>::TransformArraySectionExpr(ArraySectionExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
ExprResult LowerBound;
if (E->getLowerBound()) {
LowerBound = getDerived().TransformExpr(E->getLowerBound());
if (LowerBound.isInvalid())
return ExprError();
}
ExprResult Length;
if (E->getLength()) {
Length = getDerived().TransformExpr(E->getLength());
if (Length.isInvalid())
return ExprError();
}
ExprResult Stride;
if (E->isOMPArraySection()) {
if (Expr *Str = E->getStride()) {
Stride = getDerived().TransformExpr(Str);
if (Stride.isInvalid())
return ExprError();
}
}
if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() &&
LowerBound.get() == E->getLowerBound() &&
Length.get() == E->getLength() &&
(E->isOpenACCArraySection() || Stride.get() == E->getStride()))
return E;
return getDerived().RebuildArraySectionExpr(
E->isOMPArraySection(), Base.get(), E->getBase()->getEndLoc(),
LowerBound.get(), E->getColonLocFirst(),
E->isOMPArraySection() ? E->getColonLocSecond() : SourceLocation{},
Length.get(), Stride.get(), E->getRBracketLoc());
}
template <typename Derived>
ExprResult
TreeTransform<Derived>::TransformOMPArrayShapingExpr(OMPArrayShapingExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
SmallVector<Expr *, 4> Dims;
bool ErrorFound = false;
for (Expr *Dim : E->getDimensions()) {
ExprResult DimRes = getDerived().TransformExpr(Dim);
if (DimRes.isInvalid()) {
ErrorFound = true;
continue;
}
Dims.push_back(DimRes.get());
}
if (ErrorFound)
return ExprError();
return getDerived().RebuildOMPArrayShapingExpr(Base.get(), E->getLParenLoc(),
E->getRParenLoc(), Dims,
E->getBracketsRanges());
}
template <typename Derived>
ExprResult
TreeTransform<Derived>::TransformOMPIteratorExpr(OMPIteratorExpr *E) {
unsigned NumIterators = E->numOfIterators();
SmallVector<SemaOpenMP::OMPIteratorData, 4> Data(NumIterators);
bool ErrorFound = false;
bool NeedToRebuild = getDerived().AlwaysRebuild();
for (unsigned I = 0; I < NumIterators; ++I) {
auto *D = cast<VarDecl>(E->getIteratorDecl(I));
Data[I].DeclIdent = D->getIdentifier();
Data[I].DeclIdentLoc = D->getLocation();
if (D->getLocation() == D->getBeginLoc()) {
assert(SemaRef.Context.hasSameType(D->getType(), SemaRef.Context.IntTy) &&
"Implicit type must be int.");
} else {
TypeSourceInfo *TSI = getDerived().TransformType(D->getTypeSourceInfo());
QualType DeclTy = getDerived().TransformType(D->getType());
Data[I].Type = SemaRef.CreateParsedType(DeclTy, TSI);
}
OMPIteratorExpr::IteratorRange Range = E->getIteratorRange(I);
ExprResult Begin = getDerived().TransformExpr(Range.Begin);
ExprResult End = getDerived().TransformExpr(Range.End);
ExprResult Step = getDerived().TransformExpr(Range.Step);
ErrorFound = ErrorFound ||
!(!D->getTypeSourceInfo() || (Data[I].Type.getAsOpaquePtr() &&
!Data[I].Type.get().isNull())) ||
Begin.isInvalid() || End.isInvalid() || Step.isInvalid();
if (ErrorFound)
continue;
Data[I].Range.Begin = Begin.get();
Data[I].Range.End = End.get();
Data[I].Range.Step = Step.get();
Data[I].AssignLoc = E->getAssignLoc(I);
Data[I].ColonLoc = E->getColonLoc(I);
Data[I].SecColonLoc = E->getSecondColonLoc(I);
NeedToRebuild =
NeedToRebuild ||
(D->getTypeSourceInfo() && Data[I].Type.get().getTypePtrOrNull() !=
D->getType().getTypePtrOrNull()) ||
Range.Begin != Data[I].Range.Begin || Range.End != Data[I].Range.End ||
Range.Step != Data[I].Range.Step;
}
if (ErrorFound)
return ExprError();
if (!NeedToRebuild)
return E;
ExprResult Res = getDerived().RebuildOMPIteratorExpr(
E->getIteratorKwLoc(), E->getLParenLoc(), E->getRParenLoc(), Data);
if (!Res.isUsable())
return Res;
auto *IE = cast<OMPIteratorExpr>(Res.get());
for (unsigned I = 0; I < NumIterators; ++I)
getDerived().transformedLocalDecl(E->getIteratorDecl(I),
IE->getIteratorDecl(I));
return Res;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
// Transform the callee.
ExprResult Callee = getDerived().TransformExpr(E->getCallee());
if (Callee.isInvalid())
return ExprError();
// Transform arguments.
bool ArgChanged = false;
SmallVector<Expr*, 8> Args;
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
&ArgChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Callee.get() == E->getCallee() &&
!ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
// FIXME: Wrong source location information for the '('.
SourceLocation FakeLParenLoc
= ((Expr *)Callee.get())->getSourceRange().getBegin();
Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
if (E->hasStoredFPFeatures()) {
FPOptionsOverride NewOverrides = E->getFPFeatures();
getSema().CurFPFeatures =
NewOverrides.applyOverrides(getSema().getLangOpts());
getSema().FpPragmaStack.CurrentValue = NewOverrides;
}
return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
Args,
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
NestedNameSpecifierLoc QualifierLoc;
if (E->hasQualifier()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
}
SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
ValueDecl *Member
= cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
E->getMemberDecl()));
if (!Member)
return ExprError();
NamedDecl *FoundDecl = E->getFoundDecl();
if (FoundDecl == E->getMemberDecl()) {
FoundDecl = Member;
} else {
FoundDecl = cast_or_null<NamedDecl>(
getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
if (!FoundDecl)
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase() &&
QualifierLoc == E->getQualifierLoc() &&
Member == E->getMemberDecl() &&
FoundDecl == E->getFoundDecl() &&
!E->hasExplicitTemplateArgs()) {
// Skip for member expression of (this->f), rebuilt thisi->f is needed
// for Openmp where the field need to be privatizized in the case.
if (!(isa<CXXThisExpr>(E->getBase()) &&
getSema().OpenMP().isOpenMPRebuildMemberExpr(
cast<ValueDecl>(Member)))) {
// Mark it referenced in the new context regardless.
// FIXME: this is a bit instantiation-specific.
SemaRef.MarkMemberReferenced(E);
return E;
}
}
TemplateArgumentListInfo TransArgs;
if (E->hasExplicitTemplateArgs()) {
TransArgs.setLAngleLoc(E->getLAngleLoc());
TransArgs.setRAngleLoc(E->getRAngleLoc());
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
E->getNumTemplateArgs(),
TransArgs))
return ExprError();
}
// FIXME: Bogus source location for the operator
SourceLocation FakeOperatorLoc =
SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
// FIXME: to do this check properly, we will need to preserve the
// first-qualifier-in-scope here, just in case we had a dependent
// base (and therefore couldn't do the check) and a
// nested-name-qualifier (and therefore could do the lookup).
NamedDecl *FirstQualifierInScope = nullptr;
DeclarationNameInfo MemberNameInfo = E->getMemberNameInfo();
if (MemberNameInfo.getName()) {
MemberNameInfo = getDerived().TransformDeclarationNameInfo(MemberNameInfo);
if (!MemberNameInfo.getName())
return ExprError();
}
return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
E->isArrow(),
QualifierLoc,
TemplateKWLoc,
MemberNameInfo,
Member,
FoundDecl,
(E->hasExplicitTemplateArgs()
? &TransArgs : nullptr),
FirstQualifierInScope);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS =
getDerived().TransformInitializer(E->getRHS(), /*NotCopyInit=*/false);
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return E;
if (E->isCompoundAssignmentOp())
// FPFeatures has already been established from trailing storage
return getDerived().RebuildBinaryOperator(
E->getOperatorLoc(), E->getOpcode(), LHS.get(), RHS.get());
Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
FPOptionsOverride NewOverrides(E->getFPFeatures());
getSema().CurFPFeatures =
NewOverrides.applyOverrides(getSema().getLangOpts());
getSema().FpPragmaStack.CurrentValue = NewOverrides;
return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
LHS.get(), RHS.get());
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformCXXRewrittenBinaryOperator(
CXXRewrittenBinaryOperator *E) {
CXXRewrittenBinaryOperator::DecomposedForm Decomp = E->getDecomposedForm();
ExprResult LHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.LHS));
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.RHS));
if (RHS.isInvalid())
return ExprError();
// Extract the already-resolved callee declarations so that we can restrict
// ourselves to using them as the unqualified lookup results when rebuilding.
UnresolvedSet<2> UnqualLookups;
bool ChangedAnyLookups = false;
Expr *PossibleBinOps[] = {E->getSemanticForm(),
const_cast<Expr *>(Decomp.InnerBinOp)};
for (Expr *PossibleBinOp : PossibleBinOps) {
auto *Op = dyn_cast<CXXOperatorCallExpr>(PossibleBinOp->IgnoreImplicit());
if (!Op)
continue;
auto *Callee = dyn_cast<DeclRefExpr>(Op->getCallee()->IgnoreImplicit());
if (!Callee || isa<CXXMethodDecl>(Callee->getDecl()))
continue;
// Transform the callee in case we built a call to a local extern
// declaration.
NamedDecl *Found = cast_or_null<NamedDecl>(getDerived().TransformDecl(
E->getOperatorLoc(), Callee->getFoundDecl()));
if (!Found)
return ExprError();
if (Found != Callee->getFoundDecl())
ChangedAnyLookups = true;
UnqualLookups.addDecl(Found);
}
if (!getDerived().AlwaysRebuild() && !ChangedAnyLookups &&
LHS.get() == Decomp.LHS && RHS.get() == Decomp.RHS) {
// Mark all functions used in the rewrite as referenced. Note that when
// a < b is rewritten to (a <=> b) < 0, both the <=> and the < might be
// function calls, and/or there might be a user-defined conversion sequence
// applied to the operands of the <.
// FIXME: this is a bit instantiation-specific.
const Expr *StopAt[] = {Decomp.LHS, Decomp.RHS};
SemaRef.MarkDeclarationsReferencedInExpr(E, false, StopAt);
return E;
}
return getDerived().RebuildCXXRewrittenBinaryOperator(
E->getOperatorLoc(), Decomp.Opcode, UnqualLookups, LHS.get(), RHS.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCompoundAssignOperator(
CompoundAssignOperator *E) {
Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
FPOptionsOverride NewOverrides(E->getFPFeatures());
getSema().CurFPFeatures =
NewOverrides.applyOverrides(getSema().getLangOpts());
getSema().FpPragmaStack.CurrentValue = NewOverrides;
return getDerived().TransformBinaryOperator(E);
}
template<typename Derived>
ExprResult TreeTransform<Derived>::
TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
// Just rebuild the common and RHS expressions and see whether we
// get any changes.
ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
if (commonExpr.isInvalid())
return ExprError();
ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
if (rhs.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
commonExpr.get() == e->getCommon() &&
rhs.get() == e->getFalseExpr())
return e;
return getDerived().RebuildConditionalOperator(commonExpr.get(),
e->getQuestionLoc(),
nullptr,
e->getColonLoc(),
rhs.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
ExprResult Cond = getDerived().TransformExpr(E->getCond());
if (Cond.isInvalid())
return ExprError();
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Cond.get() == E->getCond() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return E;
return getDerived().RebuildConditionalOperator(Cond.get(),
E->getQuestionLoc(),
LHS.get(),
E->getColonLoc(),
RHS.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
// Implicit casts are eliminated during transformation, since they
// will be recomputed by semantic analysis after transformation.
return getDerived().TransformExpr(E->getSubExprAsWritten());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
if (!Type)
return ExprError();
ExprResult SubExpr
= getDerived().TransformExpr(E->getSubExprAsWritten());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeInfoAsWritten() &&
SubExpr.get() == E->getSubExpr())
return E;
return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
Type,
E->getRParenLoc(),
SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
TypeSourceInfo *OldT = E->getTypeSourceInfo();
TypeSourceInfo *NewT = getDerived().TransformType(OldT);
if (!NewT)
return ExprError();
ExprResult Init = getDerived().TransformExpr(E->getInitializer());
if (Init.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
OldT == NewT &&
Init.get() == E->getInitializer())
return SemaRef.MaybeBindToTemporary(E);
// Note: the expression type doesn't necessarily match the
// type-as-written, but that's okay, because it should always be
// derivable from the initializer.
return getDerived().RebuildCompoundLiteralExpr(
E->getLParenLoc(), NewT,
/*FIXME:*/ E->getInitializer()->getEndLoc(), Init.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return E;
// FIXME: Bad source location
SourceLocation FakeOperatorLoc =
SemaRef.getLocForEndOfToken(E->getBase()->getEndLoc());
return getDerived().RebuildExtVectorElementExpr(
Base.get(), FakeOperatorLoc, E->isArrow(), E->getAccessorLoc(),
E->getAccessor());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
if (InitListExpr *Syntactic = E->getSyntacticForm())
E = Syntactic;
bool InitChanged = false;
EnterExpressionEvaluationContext Context(
getSema(), EnterExpressionEvaluationContext::InitList);
SmallVector<Expr*, 4> Inits;
if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
Inits, &InitChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() && !InitChanged) {
// FIXME: Attempt to reuse the existing syntactic form of the InitListExpr
// in some cases. We can't reuse it in general, because the syntactic and
// semantic forms are linked, and we can't know that semantic form will
// match even if the syntactic form does.
}
return getDerived().RebuildInitList(E->getLBraceLoc(), Inits,
E->getRBraceLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
Designation Desig;
// transform the initializer value
ExprResult Init = getDerived().TransformExpr(E->getInit());
if (Init.isInvalid())
return ExprError();
// transform the designators.
SmallVector<Expr*, 4> ArrayExprs;
bool ExprChanged = false;
for (const DesignatedInitExpr::Designator &D : E->designators()) {
if (D.isFieldDesignator()) {
if (D.getFieldDecl()) {
FieldDecl *Field = cast_or_null<FieldDecl>(
getDerived().TransformDecl(D.getFieldLoc(), D.getFieldDecl()));
if (Field != D.getFieldDecl())
// Rebuild the expression when the transformed FieldDecl is
// different to the already assigned FieldDecl.
ExprChanged = true;
if (Field->isAnonymousStructOrUnion())
continue;
} else {
// Ensure that the designator expression is rebuilt when there isn't
// a resolved FieldDecl in the designator as we don't want to assign
// a FieldDecl to a pattern designator that will be instantiated again.
ExprChanged = true;
}
Desig.AddDesignator(Designator::CreateFieldDesignator(
D.getFieldName(), D.getDotLoc(), D.getFieldLoc()));
continue;
}
if (D.isArrayDesignator()) {
ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(D));
if (Index.isInvalid())
return ExprError();
Desig.AddDesignator(
Designator::CreateArrayDesignator(Index.get(), D.getLBracketLoc()));
ExprChanged = ExprChanged || Index.get() != E->getArrayIndex(D);
ArrayExprs.push_back(Index.get());
continue;
}
assert(D.isArrayRangeDesignator() && "New kind of designator?");
ExprResult Start
= getDerived().TransformExpr(E->getArrayRangeStart(D));
if (Start.isInvalid())
return ExprError();
ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(D));
if (End.isInvalid())
return ExprError();
Desig.AddDesignator(Designator::CreateArrayRangeDesignator(
Start.get(), End.get(), D.getLBracketLoc(), D.getEllipsisLoc()));
ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(D) ||
End.get() != E->getArrayRangeEnd(D);
ArrayExprs.push_back(Start.get());
ArrayExprs.push_back(End.get());
}
if (!getDerived().AlwaysRebuild() &&
Init.get() == E->getInit() &&
!ExprChanged)
return E;
return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs,
E->getEqualOrColonLoc(),
E->usesGNUSyntax(), Init.get());
}
// Seems that if TransformInitListExpr() only works on the syntactic form of an
// InitListExpr, then a DesignatedInitUpdateExpr is not encountered.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformDesignatedInitUpdateExpr(
DesignatedInitUpdateExpr *E) {
llvm_unreachable("Unexpected DesignatedInitUpdateExpr in syntactic form of "
"initializer");
return ExprError();
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformNoInitExpr(
NoInitExpr *E) {
llvm_unreachable("Unexpected NoInitExpr in syntactic form of initializer");
return ExprError();
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformArrayInitLoopExpr(ArrayInitLoopExpr *E) {
llvm_unreachable("Unexpected ArrayInitLoopExpr outside of initializer");
return ExprError();
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformArrayInitIndexExpr(ArrayInitIndexExpr *E) {
llvm_unreachable("Unexpected ArrayInitIndexExpr outside of initializer");
return ExprError();
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformImplicitValueInitExpr(
ImplicitValueInitExpr *E) {
TemporaryBase Rebase(*this, E->getBeginLoc(), DeclarationName());
// FIXME: Will we ever have proper type location here? Will we actually
// need to transform the type?
QualType T = getDerived().TransformType(E->getType());
if (T.isNull())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getType())
return E;
return getDerived().RebuildImplicitValueInitExpr(T);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
if (!TInfo)
return ExprError();
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TInfo == E->getWrittenTypeInfo() &&
SubExpr.get() == E->getSubExpr())
return E;
return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
TInfo, E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
bool ArgumentChanged = false;
SmallVector<Expr*, 4> Inits;
if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
&ArgumentChanged))
return ExprError();
return getDerived().RebuildParenListExpr(E->getLParenLoc(),
Inits,
E->getRParenLoc());
}
/// Transform an address-of-label expression.
///
/// By default, the transformation of an address-of-label expression always
/// rebuilds the expression, so that the label identifier can be resolved to
/// the corresponding label statement by semantic analysis.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
E->getLabel());
if (!LD)
return ExprError();
return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
cast<LabelDecl>(LD));
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
SemaRef.ActOnStartStmtExpr();
StmtResult SubStmt
= getDerived().TransformCompoundStmt(E->getSubStmt(), true);
if (SubStmt.isInvalid()) {
SemaRef.ActOnStmtExprError();
return ExprError();
}
unsigned OldDepth = E->getTemplateDepth();
unsigned NewDepth = getDerived().TransformTemplateDepth(OldDepth);
if (!getDerived().AlwaysRebuild() && OldDepth == NewDepth &&
SubStmt.get() == E->getSubStmt()) {
// Calling this an 'error' is unintuitive, but it does the right thing.
SemaRef.ActOnStmtExprError();
return SemaRef.MaybeBindToTemporary(E);
}
return getDerived().RebuildStmtExpr(E->getLParenLoc(), SubStmt.get(),
E->getRParenLoc(), NewDepth);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
ExprResult Cond = getDerived().TransformExpr(E->getCond());
if (Cond.isInvalid())
return ExprError();
ExprResult LHS = getDerived().TransformExpr(E->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = getDerived().TransformExpr(E->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Cond.get() == E->getCond() &&
LHS.get() == E->getLHS() &&
RHS.get() == E->getRHS())
return E;
return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
Cond.get(), LHS.get(), RHS.get(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
switch (E->getOperator()) {
case OO_New:
case OO_Delete:
case OO_Array_New:
case OO_Array_Delete:
llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
case OO_Subscript:
case OO_Call: {
// This is a call to an object's operator().
assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
// Transform the object itself.
ExprResult Object = getDerived().TransformExpr(E->getArg(0));
if (Object.isInvalid())
return ExprError();
// FIXME: Poor location information
SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken(
static_cast<Expr *>(Object.get())->getEndLoc());
// Transform the call arguments.
SmallVector<Expr*, 8> Args;
if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
Args))
return ExprError();
if (E->getOperator() == OO_Subscript)
return getDerived().RebuildCxxSubscriptExpr(Object.get(), FakeLParenLoc,
Args, E->getEndLoc());
return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc, Args,
E->getEndLoc());
}
#define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \
case OO_##Name: \
break;
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
#include "clang/Basic/OperatorKinds.def"
case OO_Conditional:
llvm_unreachable("conditional operator is not actually overloadable");
case OO_None:
case NUM_OVERLOADED_OPERATORS:
llvm_unreachable("not an overloaded operator?");
}
ExprResult First;
if (E->getNumArgs() == 1 && E->getOperator() == OO_Amp)
First = getDerived().TransformAddressOfOperand(E->getArg(0));
else
First = getDerived().TransformExpr(E->getArg(0));
if (First.isInvalid())
return ExprError();
ExprResult Second;
if (E->getNumArgs() == 2) {
Second =
getDerived().TransformInitializer(E->getArg(1), /*NotCopyInit=*/false);
if (Second.isInvalid())
return ExprError();
}
Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
FPOptionsOverride NewOverrides(E->getFPFeatures());
getSema().CurFPFeatures =
NewOverrides.applyOverrides(getSema().getLangOpts());
getSema().FpPragmaStack.CurrentValue = NewOverrides;
Expr *Callee = E->getCallee();
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
Sema::LookupOrdinaryName);
if (getDerived().TransformOverloadExprDecls(ULE, ULE->requiresADL(), R))
return ExprError();
return getDerived().RebuildCXXOperatorCallExpr(
E->getOperator(), E->getOperatorLoc(), Callee->getBeginLoc(),
ULE->requiresADL(), R.asUnresolvedSet(), First.get(), Second.get());
}
UnresolvedSet<1> Functions;
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Callee))
Callee = ICE->getSubExprAsWritten();
NamedDecl *DR = cast<DeclRefExpr>(Callee)->getDecl();
ValueDecl *VD = cast_or_null<ValueDecl>(
getDerived().TransformDecl(DR->getLocation(), DR));
if (!VD)
return ExprError();
if (!isa<CXXMethodDecl>(VD))
Functions.addDecl(VD);
return getDerived().RebuildCXXOperatorCallExpr(
E->getOperator(), E->getOperatorLoc(), Callee->getBeginLoc(),
/*RequiresADL=*/false, Functions, First.get(), Second.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
return getDerived().TransformCallExpr(E);
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformSourceLocExpr(SourceLocExpr *E) {
bool NeedRebuildFunc = SourceLocExpr::MayBeDependent(E->getIdentKind()) &&
getSema().CurContext != E->getParentContext();
if (!getDerived().AlwaysRebuild() && !NeedRebuildFunc)
return E;
return getDerived().RebuildSourceLocExpr(E->getIdentKind(), E->getType(),
E->getBeginLoc(), E->getEndLoc(),
getSema().CurContext);
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformEmbedExpr(EmbedExpr *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
// Transform the callee.
ExprResult Callee = getDerived().TransformExpr(E->getCallee());
if (Callee.isInvalid())
return ExprError();
// Transform exec config.
ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
if (EC.isInvalid())
return ExprError();
// Transform arguments.
bool ArgChanged = false;
SmallVector<Expr*, 8> Args;
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
&ArgChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Callee.get() == E->getCallee() &&
!ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
// FIXME: Wrong source location information for the '('.
SourceLocation FakeLParenLoc
= ((Expr *)Callee.get())->getSourceRange().getBegin();
return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
Args,
E->getRParenLoc(), EC.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
if (!Type)
return ExprError();
ExprResult SubExpr
= getDerived().TransformExpr(E->getSubExprAsWritten());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeInfoAsWritten() &&
SubExpr.get() == E->getSubExpr())
return E;
return getDerived().RebuildCXXNamedCastExpr(
E->getOperatorLoc(), E->getStmtClass(), E->getAngleBrackets().getBegin(),
Type, E->getAngleBrackets().getEnd(),
// FIXME. this should be '(' location
E->getAngleBrackets().getEnd(), SubExpr.get(), E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformBuiltinBitCastExpr(BuiltinBitCastExpr *BCE) {
TypeSourceInfo *TSI =
getDerived().TransformType(BCE->getTypeInfoAsWritten());
if (!TSI)
return ExprError();
ExprResult Sub = getDerived().TransformExpr(BCE->getSubExpr());
if (Sub.isInvalid())
return ExprError();
return getDerived().RebuildBuiltinBitCastExpr(BCE->getBeginLoc(), TSI,
Sub.get(), BCE->getEndLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
CXXReinterpretCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXAddrspaceCastExpr(CXXAddrspaceCastExpr *E) {
return getDerived().TransformCXXNamedCastExpr(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
CXXFunctionalCastExpr *E) {
TypeSourceInfo *Type =
getDerived().TransformTypeWithDeducedTST(E->getTypeInfoAsWritten());
if (!Type)
return ExprError();
ExprResult SubExpr
= getDerived().TransformExpr(E->getSubExprAsWritten());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeInfoAsWritten() &&
SubExpr.get() == E->getSubExpr())
return E;
return getDerived().RebuildCXXFunctionalCastExpr(Type,
E->getLParenLoc(),
SubExpr.get(),
E->getRParenLoc(),
E->isListInitialization());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
if (E->isTypeOperand()) {
TypeSourceInfo *TInfo
= getDerived().TransformType(E->getTypeOperandSourceInfo());
if (!TInfo)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TInfo == E->getTypeOperandSourceInfo())
return E;
return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(),
TInfo, E->getEndLoc());
}
// Typeid's operand is an unevaluated context, unless it's a polymorphic
// type. We must not unilaterally enter unevaluated context here, as then
// semantic processing can re-transform an already transformed operand.
Expr *Op = E->getExprOperand();
auto EvalCtx = Sema::ExpressionEvaluationContext::Unevaluated;
if (E->isGLValue())
if (auto *RecordT = Op->getType()->getAs<RecordType>())
if (cast<CXXRecordDecl>(RecordT->getDecl())->isPolymorphic())
EvalCtx = SemaRef.ExprEvalContexts.back().Context;
EnterExpressionEvaluationContext Unevaluated(SemaRef, EvalCtx,
Sema::ReuseLambdaContextDecl);
ExprResult SubExpr = getDerived().TransformExpr(Op);
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getExprOperand())
return E;
return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(),
SubExpr.get(), E->getEndLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
if (E->isTypeOperand()) {
TypeSourceInfo *TInfo
= getDerived().TransformType(E->getTypeOperandSourceInfo());
if (!TInfo)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TInfo == E->getTypeOperandSourceInfo())
return E;
return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(),
TInfo, E->getEndLoc());
}
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getExprOperand())
return E;
return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(),
SubExpr.get(), E->getEndLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
CXXNullPtrLiteralExpr *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
// In lambdas, the qualifiers of the type depends of where in
// the call operator `this` appear, and we do not have a good way to
// rebuild this information, so we transform the type.
//
// In other contexts, the type of `this` may be overrided
// for type deduction, so we need to recompute it.
//
// Always recompute the type if we're in the body of a lambda, and
// 'this' is dependent on a lambda's explicit object parameter.
QualType T = [&]() {
auto &S = getSema();
if (E->isCapturedByCopyInLambdaWithExplicitObjectParameter())
return S.getCurrentThisType();
if (S.getCurLambda())
return getDerived().TransformType(E->getType());
return S.getCurrentThisType();
}();
if (!getDerived().AlwaysRebuild() && T == E->getType()) {
// Mark it referenced in the new context regardless.
// FIXME: this is a bit instantiation-specific.
getSema().MarkThisReferenced(E);
return E;
}
return getDerived().RebuildCXXThisExpr(E->getBeginLoc(), T, E->isImplicit());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getSubExpr())
return E;
return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
E->isThrownVariableInScope());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
ParmVarDecl *Param = cast_or_null<ParmVarDecl>(
getDerived().TransformDecl(E->getBeginLoc(), E->getParam()));
if (!Param)
return ExprError();
ExprResult InitRes;
if (E->hasRewrittenInit()) {
InitRes = getDerived().TransformExpr(E->getRewrittenExpr());
if (InitRes.isInvalid())
return ExprError();
}
if (!getDerived().AlwaysRebuild() && Param == E->getParam() &&
E->getUsedContext() == SemaRef.CurContext &&
InitRes.get() == E->getRewrittenExpr())
return E;
return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param,
InitRes.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
FieldDecl *Field = cast_or_null<FieldDecl>(
getDerived().TransformDecl(E->getBeginLoc(), E->getField()));
if (!Field)
return ExprError();
if (!getDerived().AlwaysRebuild() && Field == E->getField() &&
E->getUsedContext() == SemaRef.CurContext)
return E;
return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
CXXScalarValueInitExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
if (!T)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getTypeSourceInfo())
return E;
return getDerived().RebuildCXXScalarValueInitExpr(T,
/*FIXME:*/T->getTypeLoc().getEndLoc(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
// Transform the type that we're allocating
TypeSourceInfo *AllocTypeInfo =
getDerived().TransformTypeWithDeducedTST(E->getAllocatedTypeSourceInfo());
if (!AllocTypeInfo)
return ExprError();
// Transform the size of the array we're allocating (if any).
std::optional<Expr *> ArraySize;
if (E->isArray()) {
ExprResult NewArraySize;
if (std::optional<Expr *> OldArraySize = E->getArraySize()) {
NewArraySize = getDerived().TransformExpr(*OldArraySize);
if (NewArraySize.isInvalid())
return ExprError();
}
ArraySize = NewArraySize.get();
}
// Transform the placement arguments (if any).
bool ArgumentChanged = false;
SmallVector<Expr*, 8> PlacementArgs;
if (getDerived().TransformExprs(E->getPlacementArgs(),
E->getNumPlacementArgs(), true,
PlacementArgs, &ArgumentChanged))
return ExprError();
// Transform the initializer (if any).
Expr *OldInit = E->getInitializer();
ExprResult NewInit;
if (OldInit)
NewInit = getDerived().TransformInitializer(OldInit, true);
if (NewInit.isInvalid())
return ExprError();
// Transform new operator and delete operator.
FunctionDecl *OperatorNew = nullptr;
if (E->getOperatorNew()) {
OperatorNew = cast_or_null<FunctionDecl>(
getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorNew()));
if (!OperatorNew)
return ExprError();
}
FunctionDecl *OperatorDelete = nullptr;
if (E->getOperatorDelete()) {
OperatorDelete = cast_or_null<FunctionDecl>(
getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete()));
if (!OperatorDelete)
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
ArraySize == E->getArraySize() &&
NewInit.get() == OldInit &&
OperatorNew == E->getOperatorNew() &&
OperatorDelete == E->getOperatorDelete() &&
!ArgumentChanged) {
// Mark any declarations we need as referenced.
// FIXME: instantiation-specific.
if (OperatorNew)
SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorNew);
if (OperatorDelete)
SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete);
if (E->isArray() && !E->getAllocatedType()->isDependentType()) {
QualType ElementType
= SemaRef.Context.getBaseElementType(E->getAllocatedType());
if (const RecordType *RecordT = ElementType->getAs<RecordType>()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl());
if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) {
SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Destructor);
}
}
}
return E;
}
QualType AllocType = AllocTypeInfo->getType();
if (!ArraySize) {
// If no array size was specified, but the new expression was
// instantiated with an array type (e.g., "new T" where T is
// instantiated with "int[4]"), extract the outer bound from the
// array type as our array size. We do this with constant and
// dependently-sized array types.
const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
if (!ArrayT) {
// Do nothing
} else if (const ConstantArrayType *ConsArrayT
= dyn_cast<ConstantArrayType>(ArrayT)) {
ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(),
SemaRef.Context.getSizeType(),
/*FIXME:*/ E->getBeginLoc());
AllocType = ConsArrayT->getElementType();
} else if (const DependentSizedArrayType *DepArrayT
= dyn_cast<DependentSizedArrayType>(ArrayT)) {
if (DepArrayT->getSizeExpr()) {
ArraySize = DepArrayT->getSizeExpr();
AllocType = DepArrayT->getElementType();
}
}
}
return getDerived().RebuildCXXNewExpr(
E->getBeginLoc(), E->isGlobalNew(),
/*FIXME:*/ E->getBeginLoc(), PlacementArgs,
/*FIXME:*/ E->getBeginLoc(), E->getTypeIdParens(), AllocType,
AllocTypeInfo, ArraySize, E->getDirectInitRange(), NewInit.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
ExprResult Operand = getDerived().TransformExpr(E->getArgument());
if (Operand.isInvalid())
return ExprError();
// Transform the delete operator, if known.
FunctionDecl *OperatorDelete = nullptr;
if (E->getOperatorDelete()) {
OperatorDelete = cast_or_null<FunctionDecl>(
getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete()));
if (!OperatorDelete)
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
Operand.get() == E->getArgument() &&
OperatorDelete == E->getOperatorDelete()) {
// Mark any declarations we need as referenced.
// FIXME: instantiation-specific.
if (OperatorDelete)
SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete);
if (!E->getArgument()->isTypeDependent()) {
QualType Destroyed = SemaRef.Context.getBaseElementType(
E->getDestroyedType());
if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
SemaRef.MarkFunctionReferenced(E->getBeginLoc(),
SemaRef.LookupDestructor(Record));
}
}
return E;
}
return getDerived().RebuildCXXDeleteExpr(
E->getBeginLoc(), E->isGlobalDelete(), E->isArrayForm(), Operand.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
CXXPseudoDestructorExpr *E) {
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
ParsedType ObjectTypePtr;
bool MayBePseudoDestructor = false;
Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
E->getOperatorLoc(),
E->isArrow()? tok::arrow : tok::period,
ObjectTypePtr,
MayBePseudoDestructor);
if (Base.isInvalid())
return ExprError();
QualType ObjectType = ObjectTypePtr.get();
NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
if (QualifierLoc) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
if (!QualifierLoc)
return ExprError();
}
CXXScopeSpec SS;
SS.Adopt(QualifierLoc);
PseudoDestructorTypeStorage Destroyed;
if (E->getDestroyedTypeInfo()) {
TypeSourceInfo *DestroyedTypeInfo
= getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
ObjectType, nullptr, SS);
if (!DestroyedTypeInfo)
return ExprError();
Destroyed = DestroyedTypeInfo;
} else if (!ObjectType.isNull() && ObjectType->isDependentType()) {
// We aren't likely to be able to resolve the identifier down to a type
// now anyway, so just retain the identifier.
Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
E->getDestroyedTypeLoc());
} else {
// Look for a destructor known with the given name.
ParsedType T = SemaRef.getDestructorName(
*E->getDestroyedTypeIdentifier(), E->getDestroyedTypeLoc(),
/*Scope=*/nullptr, SS, ObjectTypePtr, false);
if (!T)
return ExprError();
Destroyed
= SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
E->getDestroyedTypeLoc());
}
TypeSourceInfo *ScopeTypeInfo = nullptr;
if (E->getScopeTypeInfo()) {
CXXScopeSpec EmptySS;
ScopeTypeInfo = getDerived().TransformTypeInObjectScope(
E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS);
if (!ScopeTypeInfo)
return ExprError();
}
return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
E->getOperatorLoc(),
E->isArrow(),
SS,
ScopeTypeInfo,
E->getColonColonLoc(),
E->getTildeLoc(),
Destroyed);
}
template <typename Derived>
bool TreeTransform<Derived>::TransformOverloadExprDecls(OverloadExpr *Old,
bool RequiresADL,
LookupResult &R) {
// Transform all the decls.
bool AllEmptyPacks = true;
for (auto *OldD : Old->decls()) {
Decl *InstD = getDerived().TransformDecl(Old->getNameLoc(), OldD);
if (!InstD) {
// Silently ignore these if a UsingShadowDecl instantiated to nothing.
// This can happen because of dependent hiding.
if (isa<UsingShadowDecl>(OldD))
continue;
else {
R.clear();
return true;
}
}
// Expand using pack declarations.
NamedDecl *SingleDecl = cast<NamedDecl>(InstD);
ArrayRef<NamedDecl*> Decls = SingleDecl;
if (auto *UPD = dyn_cast<UsingPackDecl>(InstD))
Decls = UPD->expansions();
// Expand using declarations.
for (auto *D : Decls) {
if (auto *UD = dyn_cast<UsingDecl>(D)) {
for (auto *SD : UD->shadows())
R.addDecl(SD);
} else {
R.addDecl(D);
}
}
AllEmptyPacks &= Decls.empty();
}
// C++ [temp.res]/8.4.2:
// The program is ill-formed, no diagnostic required, if [...] lookup for
// a name in the template definition found a using-declaration, but the
// lookup in the corresponding scope in the instantiation odoes not find
// any declarations because the using-declaration was a pack expansion and
// the corresponding pack is empty
if (AllEmptyPacks && !RequiresADL) {
getSema().Diag(Old->getNameLoc(), diag::err_using_pack_expansion_empty)
<< isa<UnresolvedMemberExpr>(Old) << Old->getName();
return true;
}
// Resolve a kind, but don't do any further analysis. If it's
// ambiguous, the callee needs to deal with it.
R.resolveKind();
if (Old->hasTemplateKeyword() && !R.empty()) {
NamedDecl *FoundDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
getSema().FilterAcceptableTemplateNames(R,
/*AllowFunctionTemplates=*/true,
/*AllowDependent=*/true);
if (R.empty()) {
// If a 'template' keyword was used, a lookup that finds only non-template
// names is an error.
getSema().Diag(R.getNameLoc(),
diag::err_template_kw_refers_to_non_template)
<< R.getLookupName() << Old->getQualifierLoc().getSourceRange()
<< Old->hasTemplateKeyword() << Old->getTemplateKeywordLoc();
getSema().Diag(FoundDecl->getLocation(),
diag::note_template_kw_refers_to_non_template)
<< R.getLookupName();
return true;
}
}
return false;
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformUnresolvedLookupExpr(
UnresolvedLookupExpr *Old) {
return TransformUnresolvedLookupExpr(Old, /*IsAddressOfOperand=*/false);
}
template <typename Derived>
ExprResult
TreeTransform<Derived>::TransformUnresolvedLookupExpr(UnresolvedLookupExpr *Old,
bool IsAddressOfOperand) {
LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
Sema::LookupOrdinaryName);
// Transform the declaration set.
if (TransformOverloadExprDecls(Old, Old->requiresADL(), R))
return ExprError();
// Rebuild the nested-name qualifier, if present.
CXXScopeSpec SS;
if (Old->getQualifierLoc()) {
NestedNameSpecifierLoc QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
SS.Adopt(QualifierLoc);
}
if (Old->getNamingClass()) {
CXXRecordDecl *NamingClass
= cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
Old->getNameLoc(),
Old->getNamingClass()));
if (!NamingClass) {
R.clear();
return ExprError();
}
R.setNamingClass(NamingClass);
}
// Rebuild the template arguments, if any.
SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
if (Old->hasExplicitTemplateArgs() &&
getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
Old->getNumTemplateArgs(),
TransArgs)) {
R.clear();
return ExprError();
}
// An UnresolvedLookupExpr can refer to a class member. This occurs e.g. when
// a non-static data member is named in an unevaluated operand, or when
// a member is named in a dependent class scope function template explicit
// specialization that is neither declared static nor with an explicit object
// parameter.
if (SemaRef.isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
return SemaRef.BuildPossibleImplicitMemberExpr(
SS, TemplateKWLoc, R,
Old->hasExplicitTemplateArgs() ? &TransArgs : nullptr,
/*S=*/nullptr);
// If we have neither explicit template arguments, nor the template keyword,
// it's a normal declaration name or member reference.
if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid())
return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
// If we have template arguments, then rebuild the template-id expression.
return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R,
Old->requiresADL(), &TransArgs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) {
bool ArgChanged = false;
SmallVector<TypeSourceInfo *, 4> Args;
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
TypeSourceInfo *From = E->getArg(I);
TypeLoc FromTL = From->getTypeLoc();
if (!FromTL.getAs<PackExpansionTypeLoc>()) {
TypeLocBuilder TLB;
TLB.reserve(FromTL.getFullDataSize());
QualType To = getDerived().TransformType(TLB, FromTL);
if (To.isNull())
return ExprError();
if (To == From->getType())
Args.push_back(From);
else {
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
ArgChanged = true;
}
continue;
}
ArgChanged = true;
// We have a pack expansion. Instantiate it.
PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>();
TypeLoc PatternTL = ExpansionTL.getPatternLoc();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded);
// Determine whether the set of unexpanded parameter packs can and should
// be expanded.
bool Expand = true;
bool RetainExpansion = false;
UnsignedOrNone OrigNumExpansions =
ExpansionTL.getTypePtr()->getNumExpansions();
UnsignedOrNone NumExpansions = OrigNumExpansions;
if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
PatternTL.getSourceRange(),
Unexpanded,
Expand, RetainExpansion,
NumExpansions))
return ExprError();
if (!Expand) {
// The transform has determined that we should perform a simple
// transformation on the pack expansion, producing another pack
// expansion.
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
TypeLocBuilder TLB;
TLB.reserve(From->getTypeLoc().getFullDataSize());
QualType To = getDerived().TransformType(TLB, PatternTL);
if (To.isNull())
return ExprError();
To = getDerived().RebuildPackExpansionType(To,
PatternTL.getSourceRange(),
ExpansionTL.getEllipsisLoc(),
NumExpansions);
if (To.isNull())
return ExprError();
PackExpansionTypeLoc ToExpansionTL
= TLB.push<PackExpansionTypeLoc>(To);
ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
continue;
}
// Expand the pack expansion by substituting for each argument in the
// pack(s).
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(SemaRef, I);
TypeLocBuilder TLB;
TLB.reserve(PatternTL.getFullDataSize());
QualType To = getDerived().TransformType(TLB, PatternTL);
if (To.isNull())
return ExprError();
if (To->containsUnexpandedParameterPack()) {
To = getDerived().RebuildPackExpansionType(To,
PatternTL.getSourceRange(),
ExpansionTL.getEllipsisLoc(),
NumExpansions);
if (To.isNull())
return ExprError();
PackExpansionTypeLoc ToExpansionTL
= TLB.push<PackExpansionTypeLoc>(To);
ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
}
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
}
if (!RetainExpansion)
continue;
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
TypeLocBuilder TLB;
TLB.reserve(From->getTypeLoc().getFullDataSize());
QualType To = getDerived().TransformType(TLB, PatternTL);
if (To.isNull())
return ExprError();
To = getDerived().RebuildPackExpansionType(To,
PatternTL.getSourceRange(),
ExpansionTL.getEllipsisLoc(),
NumExpansions);
if (To.isNull())
return ExprError();
PackExpansionTypeLoc ToExpansionTL
= TLB.push<PackExpansionTypeLoc>(To);
ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
}
if (!getDerived().AlwaysRebuild() && !ArgChanged)
return E;
return getDerived().RebuildTypeTrait(E->getTrait(), E->getBeginLoc(), Args,
E->getEndLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformConceptSpecializationExpr(
ConceptSpecializationExpr *E) {
const ASTTemplateArgumentListInfo *Old = E->getTemplateArgsAsWritten();
TemplateArgumentListInfo TransArgs(Old->LAngleLoc, Old->RAngleLoc);
if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
Old->NumTemplateArgs, TransArgs))
return ExprError();
return getDerived().RebuildConceptSpecializationExpr(
E->getNestedNameSpecifierLoc(), E->getTemplateKWLoc(),
E->getConceptNameInfo(), E->getFoundDecl(), E->getNamedConcept(),
&TransArgs);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformRequiresExpr(RequiresExpr *E) {
SmallVector<ParmVarDecl*, 4> TransParams;
SmallVector<QualType, 4> TransParamTypes;
Sema::ExtParameterInfoBuilder ExtParamInfos;
// C++2a [expr.prim.req]p2
// Expressions appearing within a requirement-body are unevaluated operands.
EnterExpressionEvaluationContext Ctx(
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
Sema::ReuseLambdaContextDecl);
RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(
getSema().Context, getSema().CurContext,
E->getBody()->getBeginLoc());
Sema::ContextRAII SavedContext(getSema(), Body, /*NewThisContext*/false);
ExprResult TypeParamResult = getDerived().TransformRequiresTypeParams(
E->getRequiresKWLoc(), E->getRBraceLoc(), E, Body,
E->getLocalParameters(), TransParamTypes, TransParams, ExtParamInfos);
for (ParmVarDecl *Param : TransParams)
if (Param)
Param->setDeclContext(Body);
// On failure to transform, TransformRequiresTypeParams returns an expression
// in the event that the transformation of the type params failed in some way.
// It is expected that this will result in a 'not satisfied' Requires clause
// when instantiating.
if (!TypeParamResult.isUnset())
return TypeParamResult;
SmallVector<concepts::Requirement *, 4> TransReqs;
if (getDerived().TransformRequiresExprRequirements(E->getRequirements(),
TransReqs))
return ExprError();
for (concepts::Requirement *Req : TransReqs) {
if (auto *ER = dyn_cast<concepts::ExprRequirement>(Req)) {
if (ER->getReturnTypeRequirement().isTypeConstraint()) {
ER->getReturnTypeRequirement()
.getTypeConstraintTemplateParameterList()->getParam(0)
->setDeclContext(Body);
}
}
}
return getDerived().RebuildRequiresExpr(
E->getRequiresKWLoc(), Body, E->getLParenLoc(), TransParams,
E->getRParenLoc(), TransReqs, E->getRBraceLoc());
}
template<typename Derived>
bool TreeTransform<Derived>::TransformRequiresExprRequirements(
ArrayRef<concepts::Requirement *> Reqs,
SmallVectorImpl<concepts::Requirement *> &Transformed) {
for (concepts::Requirement *Req : Reqs) {
concepts::Requirement *TransReq = nullptr;
if (auto *TypeReq = dyn_cast<concepts::TypeRequirement>(Req))
TransReq = getDerived().TransformTypeRequirement(TypeReq);
else if (auto *ExprReq = dyn_cast<concepts::ExprRequirement>(Req))
TransReq = getDerived().TransformExprRequirement(ExprReq);
else
TransReq = getDerived().TransformNestedRequirement(
cast<concepts::NestedRequirement>(Req));
if (!TransReq)
return true;
Transformed.push_back(TransReq);
}
return false;
}
template<typename Derived>
concepts::TypeRequirement *
TreeTransform<Derived>::TransformTypeRequirement(
concepts::TypeRequirement *Req) {
if (Req->isSubstitutionFailure()) {
if (getDerived().AlwaysRebuild())
return getDerived().RebuildTypeRequirement(
Req->getSubstitutionDiagnostic());
return Req;
}
TypeSourceInfo *TransType = getDerived().TransformType(Req->getType());
if (!TransType)
return nullptr;
return getDerived().RebuildTypeRequirement(TransType);
}
template<typename Derived>
concepts::ExprRequirement *
TreeTransform<Derived>::TransformExprRequirement(concepts::ExprRequirement *Req) {
llvm::PointerUnion<Expr *, concepts::Requirement::SubstitutionDiagnostic *> TransExpr;
if (Req->isExprSubstitutionFailure())
TransExpr = Req->getExprSubstitutionDiagnostic();
else {
ExprResult TransExprRes = getDerived().TransformExpr(Req->getExpr());
if (TransExprRes.isUsable() && TransExprRes.get()->hasPlaceholderType())
TransExprRes = SemaRef.CheckPlaceholderExpr(TransExprRes.get());
if (TransExprRes.isInvalid())
return nullptr;
TransExpr = TransExprRes.get();
}
std::optional<concepts::ExprRequirement::ReturnTypeRequirement> TransRetReq;
const auto &RetReq = Req->getReturnTypeRequirement();
if (RetReq.isEmpty())
TransRetReq.emplace();
else if (RetReq.isSubstitutionFailure())
TransRetReq.emplace(RetReq.getSubstitutionDiagnostic());
else if (RetReq.isTypeConstraint()) {
TemplateParameterList *OrigTPL =
RetReq.getTypeConstraintTemplateParameterList();
TemplateParameterList *TPL =
getDerived().TransformTemplateParameterList(OrigTPL);
if (!TPL)
return nullptr;
TransRetReq.emplace(TPL);
}
assert(TransRetReq && "All code paths leading here must set TransRetReq");
if (Expr *E = dyn_cast<Expr *>(TransExpr))
return getDerived().RebuildExprRequirement(E, Req->isSimple(),
Req->getNoexceptLoc(),
std::move(*TransRetReq));
return getDerived().RebuildExprRequirement(
cast<concepts::Requirement::SubstitutionDiagnostic *>(TransExpr),
Req->isSimple(), Req->getNoexceptLoc(), std::move(*TransRetReq));
}
template<typename Derived>
concepts::NestedRequirement *
TreeTransform<Derived>::TransformNestedRequirement(
concepts::NestedRequirement *Req) {
if (Req->hasInvalidConstraint()) {
if (getDerived().AlwaysRebuild())
return getDerived().RebuildNestedRequirement(
Req->getInvalidConstraintEntity(), Req->getConstraintSatisfaction());
return Req;
}
ExprResult TransConstraint =
getDerived().TransformExpr(Req->getConstraintExpr());
if (TransConstraint.isInvalid())
return nullptr;
return getDerived().RebuildNestedRequirement(TransConstraint.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
if (!T)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getQueriedTypeSourceInfo())
return E;
ExprResult SubExpr;
{
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
if (SubExpr.isInvalid())
return ExprError();
}
return getDerived().RebuildArrayTypeTrait(E->getTrait(), E->getBeginLoc(), T,
SubExpr.get(), E->getEndLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
ExprResult SubExpr;
{
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
return E;
}
return getDerived().RebuildExpressionTrait(E->getTrait(), E->getBeginLoc(),
SubExpr.get(), E->getEndLoc());
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformParenDependentScopeDeclRefExpr(
ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken,
TypeSourceInfo **RecoveryTSI) {
ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr(
DRE, AddrTaken, RecoveryTSI);
// Propagate both errors and recovered types, which return ExprEmpty.
if (!NewDRE.isUsable())
return NewDRE;
// We got an expr, wrap it up in parens.
if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE)
return PE;
return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(),
PE->getRParen());
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
DependentScopeDeclRefExpr *E) {
return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false,
nullptr);
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
DependentScopeDeclRefExpr *E, bool IsAddressOfOperand,
TypeSourceInfo **RecoveryTSI) {
assert(E->getQualifierLoc());
NestedNameSpecifierLoc QualifierLoc =
getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
// TODO: If this is a conversion-function-id, verify that the
// destination type name (if present) resolves the same way after
// instantiation as it did in the local scope.
DeclarationNameInfo NameInfo =
getDerived().TransformDeclarationNameInfo(E->getNameInfo());
if (!NameInfo.getName())
return ExprError();
if (!E->hasExplicitTemplateArgs()) {
if (!getDerived().AlwaysRebuild() && QualifierLoc == E->getQualifierLoc() &&
// Note: it is sufficient to compare the Name component of NameInfo:
// if name has not changed, DNLoc has not changed either.
NameInfo.getName() == E->getDeclName())
return E;
return getDerived().RebuildDependentScopeDeclRefExpr(
QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr,
IsAddressOfOperand, RecoveryTSI);
}
TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
if (getDerived().TransformTemplateArguments(
E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs))
return ExprError();
return getDerived().RebuildDependentScopeDeclRefExpr(
QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand,
RecoveryTSI);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
// CXXConstructExprs other than for list-initialization and
// CXXTemporaryObjectExpr are always implicit, so when we have
// a 1-argument construction we just transform that argument.
if (getDerived().AllowSkippingCXXConstructExpr() &&
((E->getNumArgs() == 1 ||
(E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) &&
(!getDerived().DropCallArgument(E->getArg(0))) &&
!E->isListInitialization()))
return getDerived().TransformInitializer(E->getArg(0),
/*DirectInit*/ false);
TemporaryBase Rebase(*this, /*FIXME*/ E->getBeginLoc(), DeclarationName());
QualType T = getDerived().TransformType(E->getType());
if (T.isNull())
return ExprError();
CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
if (!Constructor)
return ExprError();
bool ArgumentChanged = false;
SmallVector<Expr*, 8> Args;
{
EnterExpressionEvaluationContext Context(
getSema(), EnterExpressionEvaluationContext::InitList,
E->isListInitialization());
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
&ArgumentChanged))
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
T == E->getType() &&
Constructor == E->getConstructor() &&
!ArgumentChanged) {
// Mark the constructor as referenced.
// FIXME: Instantiation-specific
SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
return E;
}
return getDerived().RebuildCXXConstructExpr(
T, /*FIXME:*/ E->getBeginLoc(), Constructor, E->isElidable(), Args,
E->hadMultipleCandidates(), E->isListInitialization(),
E->isStdInitListInitialization(), E->requiresZeroInitialization(),
E->getConstructionKind(), E->getParenOrBraceRange());
}
template<typename Derived>
ExprResult TreeTransform<Derived>::TransformCXXInheritedCtorInitExpr(
CXXInheritedCtorInitExpr *E) {
QualType T = getDerived().TransformType(E->getType());
if (T.isNull())
return ExprError();
CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
if (!Constructor)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
T == E->getType() &&
Constructor == E->getConstructor()) {
// Mark the constructor as referenced.
// FIXME: Instantiation-specific
SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
return E;
}
return getDerived().RebuildCXXInheritedCtorInitExpr(
T, E->getLocation(), Constructor,
E->constructsVBase(), E->inheritedFromVBase());
}
/// Transform a C++ temporary-binding expression.
///
/// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
/// transform the subexpression and return that.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
if (auto *Dtor = E->getTemporary()->getDestructor())
SemaRef.MarkFunctionReferenced(E->getBeginLoc(),
const_cast<CXXDestructorDecl *>(Dtor));
return getDerived().TransformExpr(E->getSubExpr());
}
/// Transform a C++ expression that contains cleanups that should
/// be run after the expression is evaluated.
///
/// Since ExprWithCleanups nodes are implicitly generated, we
/// just transform the subexpression and return that.
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
return getDerived().TransformExpr(E->getSubExpr());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
CXXTemporaryObjectExpr *E) {
TypeSourceInfo *T =
getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo());
if (!T)
return ExprError();
CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
if (!Constructor)
return ExprError();
bool ArgumentChanged = false;
SmallVector<Expr*, 8> Args;
Args.reserve(E->getNumArgs());
{
EnterExpressionEvaluationContext Context(
getSema(), EnterExpressionEvaluationContext::InitList,
E->isListInitialization());
if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
&ArgumentChanged))
return ExprError();
if (E->isListInitialization() && !E->isStdInitListInitialization()) {
ExprResult Res = RebuildInitList(E->getBeginLoc(), Args, E->getEndLoc());
if (Res.isInvalid())
return ExprError();
Args = {Res.get()};
}
}
if (!getDerived().AlwaysRebuild() &&
T == E->getTypeSourceInfo() &&
Constructor == E->getConstructor() &&
!ArgumentChanged) {
// FIXME: Instantiation-specific
SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
return SemaRef.MaybeBindToTemporary(E);
}
SourceLocation LParenLoc = T->getTypeLoc().getEndLoc();
return getDerived().RebuildCXXTemporaryObjectExpr(
T, LParenLoc, Args, E->getEndLoc(), E->isListInitialization());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
// Transform any init-capture expressions before entering the scope of the
// lambda body, because they are not semantically within that scope.
typedef std::pair<ExprResult, QualType> InitCaptureInfoTy;
struct TransformedInitCapture {
// The location of the ... if the result is retaining a pack expansion.
SourceLocation EllipsisLoc;
// Zero or more expansions of the init-capture.
SmallVector<InitCaptureInfoTy, 4> Expansions;
};
SmallVector<TransformedInitCapture, 4> InitCaptures;
InitCaptures.resize(E->explicit_capture_end() - E->explicit_capture_begin());
for (LambdaExpr::capture_iterator C = E->capture_begin(),
CEnd = E->capture_end();
C != CEnd; ++C) {
if (!E->isInitCapture(C))
continue;
TransformedInitCapture &Result = InitCaptures[C - E->capture_begin()];
auto *OldVD = cast<VarDecl>(C->getCapturedVar());
auto SubstInitCapture = [&](SourceLocation EllipsisLoc,
UnsignedOrNone NumExpansions) {
ExprResult NewExprInitResult = getDerived().TransformInitializer(
OldVD->getInit(), OldVD->getInitStyle() == VarDecl::CallInit);
if (NewExprInitResult.isInvalid()) {
Result.Expansions.push_back(InitCaptureInfoTy(ExprError(), QualType()));
return;
}
Expr *NewExprInit = NewExprInitResult.get();
QualType NewInitCaptureType =
getSema().buildLambdaInitCaptureInitialization(
C->getLocation(), C->getCaptureKind() == LCK_ByRef,
EllipsisLoc, NumExpansions, OldVD->getIdentifier(),
cast<VarDecl>(C->getCapturedVar())->getInitStyle() !=
VarDecl::CInit,
NewExprInit);
Result.Expansions.push_back(
InitCaptureInfoTy(NewExprInit, NewInitCaptureType));
};
// If this is an init-capture pack, consider expanding the pack now.
if (OldVD->isParameterPack()) {
PackExpansionTypeLoc ExpansionTL = OldVD->getTypeSourceInfo()
->getTypeLoc()
.castAs<PackExpansionTypeLoc>();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
SemaRef.collectUnexpandedParameterPacks(OldVD->getInit(), Unexpanded);
// Determine whether the set of unexpanded parameter packs can and should
// be expanded.
bool Expand = true;
bool RetainExpansion = false;
UnsignedOrNone OrigNumExpansions =
ExpansionTL.getTypePtr()->getNumExpansions();
UnsignedOrNone NumExpansions = OrigNumExpansions;
if (getDerived().TryExpandParameterPacks(
ExpansionTL.getEllipsisLoc(),
OldVD->getInit()->getSourceRange(), Unexpanded, Expand,
RetainExpansion, NumExpansions))
return ExprError();
assert(!RetainExpansion && "Should not need to retain expansion after a "
"capture since it cannot be extended");
if (Expand) {
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), I);
SubstInitCapture(SourceLocation(), std::nullopt);
}
} else {
SubstInitCapture(ExpansionTL.getEllipsisLoc(), NumExpansions);
Result.EllipsisLoc = ExpansionTL.getEllipsisLoc();
}
} else {
SubstInitCapture(SourceLocation(), std::nullopt);
}
}
LambdaScopeInfo *LSI = getSema().PushLambdaScope();
Sema::FunctionScopeRAII FuncScopeCleanup(getSema());
// Create the local class that will describe the lambda.
// FIXME: DependencyKind below is wrong when substituting inside a templated
// context that isn't a DeclContext (such as a variable template), or when
// substituting an unevaluated lambda inside of a function's parameter's type
// - as parameter types are not instantiated from within a function's DC. We
// use evaluation contexts to distinguish the function parameter case.
CXXRecordDecl::LambdaDependencyKind DependencyKind =
CXXRecordDecl::LDK_Unknown;
DeclContext *DC = getSema().CurContext;
// A RequiresExprBodyDecl is not interesting for dependencies.
// For the following case,
//
// template <typename>
// concept C = requires { [] {}; };
//
// template <class F>
// struct Widget;
//
// template <C F>
// struct Widget<F> {};
//
// While we are substituting Widget<F>, the parent of DC would be
// the template specialization itself. Thus, the lambda expression
// will be deemed as dependent even if there are no dependent template
// arguments.
// (A ClassTemplateSpecializationDecl is always a dependent context.)
while (DC->isRequiresExprBody())
DC = DC->getParent();
if ((getSema().isUnevaluatedContext() ||
getSema().isConstantEvaluatedContext()) &&
(DC->isFileContext() || !DC->getParent()->isDependentContext()))
DependencyKind = CXXRecordDecl::LDK_NeverDependent;
CXXRecordDecl *OldClass = E->getLambdaClass();
CXXRecordDecl *Class = getSema().createLambdaClosureType(
E->getIntroducerRange(), /*Info=*/nullptr, DependencyKind,
E->getCaptureDefault());
getDerived().transformedLocalDecl(OldClass, {Class});
CXXMethodDecl *NewCallOperator =
getSema().CreateLambdaCallOperator(E->getIntroducerRange(), Class);
// Enter the scope of the lambda.
getSema().buildLambdaScope(LSI, NewCallOperator, E->getIntroducerRange(),
E->getCaptureDefault(), E->getCaptureDefaultLoc(),
E->hasExplicitParameters(), E->isMutable());
// Introduce the context of the call operator.
Sema::ContextRAII SavedContext(getSema(), NewCallOperator,
/*NewThisContext*/false);
bool Invalid = false;
// Transform captures.
for (LambdaExpr::capture_iterator C = E->capture_begin(),
CEnd = E->capture_end();
C != CEnd; ++C) {
// When we hit the first implicit capture, tell Sema that we've finished
// the list of explicit captures.
if (C->isImplicit())
break;
// Capturing 'this' is trivial.
if (C->capturesThis()) {
// If this is a lambda that is part of a default member initialiser
// and which we're instantiating outside the class that 'this' is
// supposed to refer to, adjust the type of 'this' accordingly.
//
// Otherwise, leave the type of 'this' as-is.
Sema::CXXThisScopeRAII ThisScope(
getSema(),
dyn_cast_if_present<CXXRecordDecl>(
getSema().getFunctionLevelDeclContext()),
Qualifiers());
getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(),
/*BuildAndDiagnose*/ true, nullptr,
C->getCaptureKind() == LCK_StarThis);
continue;
}
// Captured expression will be recaptured during captured variables
// rebuilding.
if (C->capturesVLAType())
continue;
// Rebuild init-captures, including the implied field declaration.
if (E->isInitCapture(C)) {
TransformedInitCapture &NewC = InitCaptures[C - E->capture_begin()];
auto *OldVD = cast<VarDecl>(C->getCapturedVar());
llvm::SmallVector<Decl*, 4> NewVDs;
for (InitCaptureInfoTy &Info : NewC.Expansions) {
ExprResult Init = Info.first;
QualType InitQualType = Info.second;
if (Init.isInvalid() || InitQualType.isNull()) {
Invalid = true;
break;
}
VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl(
OldVD->getLocation(), InitQualType, NewC.EllipsisLoc,
OldVD->getIdentifier(), OldVD->getInitStyle(), Init.get(),
getSema().CurContext);
if (!NewVD) {
Invalid = true;
break;
}
NewVDs.push_back(NewVD);
getSema().addInitCapture(LSI, NewVD, C->getCaptureKind() == LCK_ByRef);
// Cases we want to tackle:
// ([C(Pack)] {}, ...)
// But rule out cases e.g.
// [...C = Pack()] {}
if (NewC.EllipsisLoc.isInvalid())
LSI->ContainsUnexpandedParameterPack |=
Init.get()->containsUnexpandedParameterPack();
}
if (Invalid)
break;
getDerived().transformedLocalDecl(OldVD, NewVDs);
continue;
}
assert(C->capturesVariable() && "unexpected kind of lambda capture");
// Determine the capture kind for Sema.
Sema::TryCaptureKind Kind
= C->isImplicit()? Sema::TryCapture_Implicit
: C->getCaptureKind() == LCK_ByCopy
? Sema::TryCapture_ExplicitByVal
: Sema::TryCapture_ExplicitByRef;
SourceLocation EllipsisLoc;
if (C->isPackExpansion()) {
UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation());
bool ShouldExpand = false;
bool RetainExpansion = false;
UnsignedOrNone NumExpansions = std::nullopt;
if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(),
C->getLocation(),
Unexpanded,
ShouldExpand, RetainExpansion,
NumExpansions)) {
Invalid = true;
continue;
}
if (ShouldExpand) {
// The transform has determined that we should perform an expansion;
// transform and capture each of the arguments.
// expansion of the pattern. Do so.
auto *Pack = cast<ValueDecl>(C->getCapturedVar());
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), I);
ValueDecl *CapturedVar = cast_if_present<ValueDecl>(
getDerived().TransformDecl(C->getLocation(), Pack));
if (!CapturedVar) {
Invalid = true;
continue;
}
// Capture the transformed variable.
getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
}
// FIXME: Retain a pack expansion if RetainExpansion is true.
continue;
}
EllipsisLoc = C->getEllipsisLoc();
}
// Transform the captured variable.
auto *CapturedVar = cast_or_null<ValueDecl>(
getDerived().TransformDecl(C->getLocation(), C->getCapturedVar()));
if (!CapturedVar || CapturedVar->isInvalidDecl()) {
Invalid = true;
continue;
}
// This is not an init-capture; however it contains an unexpanded pack e.g.
// ([Pack] {}(), ...)
if (auto *VD = dyn_cast<VarDecl>(CapturedVar); VD && !C->isPackExpansion())
LSI->ContainsUnexpandedParameterPack |= VD->isParameterPack();
// Capture the transformed variable.
getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind,
EllipsisLoc);
}
getSema().finishLambdaExplicitCaptures(LSI);
// Transform the template parameters, and add them to the current
// instantiation scope. The null case is handled correctly.
auto TPL = getDerived().TransformTemplateParameterList(
E->getTemplateParameterList());
LSI->GLTemplateParameterList = TPL;
if (TPL) {
getSema().AddTemplateParametersToLambdaCallOperator(NewCallOperator, Class,
TPL);
LSI->ContainsUnexpandedParameterPack |=
TPL->containsUnexpandedParameterPack();
}
TypeLocBuilder NewCallOpTLBuilder;
TypeLoc OldCallOpTypeLoc =
E->getCallOperator()->getTypeSourceInfo()->getTypeLoc();
QualType NewCallOpType =
getDerived().TransformType(NewCallOpTLBuilder, OldCallOpTypeLoc);
if (NewCallOpType.isNull())
return ExprError();
LSI->ContainsUnexpandedParameterPack |=
NewCallOpType->containsUnexpandedParameterPack();
TypeSourceInfo *NewCallOpTSI =
NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context, NewCallOpType);
// The type may be an AttributedType or some other kind of sugar;
// get the actual underlying FunctionProtoType.
auto FPTL = NewCallOpTSI->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>();
assert(FPTL && "Not a FunctionProtoType?");
AssociatedConstraint TRC = E->getCallOperator()->getTrailingRequiresClause();
if (!TRC.ArgPackSubstIndex)
TRC.ArgPackSubstIndex = SemaRef.ArgPackSubstIndex;
getSema().CompleteLambdaCallOperator(
NewCallOperator, E->getCallOperator()->getLocation(),
E->getCallOperator()->getInnerLocStart(), TRC, NewCallOpTSI,
E->getCallOperator()->getConstexprKind(),
E->getCallOperator()->getStorageClass(), FPTL.getParams(),
E->hasExplicitResultType());
getDerived().transformAttrs(E->getCallOperator(), NewCallOperator);
getDerived().transformedLocalDecl(E->getCallOperator(), {NewCallOperator});
{
// Number the lambda for linkage purposes if necessary.
Sema::ContextRAII ManglingContext(getSema(), Class->getDeclContext());
std::optional<CXXRecordDecl::LambdaNumbering> Numbering;
if (getDerived().ReplacingOriginal()) {
Numbering = OldClass->getLambdaNumbering();
}
getSema().handleLambdaNumbering(Class, NewCallOperator, Numbering);
}
// FIXME: Sema's lambda-building mechanism expects us to push an expression
// evaluation context even if we're not transforming the function body.
getSema().PushExpressionEvaluationContext(
E->getCallOperator()->isConsteval() ?
Sema::ExpressionEvaluationContext::ImmediateFunctionContext :
Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
getSema().currentEvaluationContext().InImmediateEscalatingFunctionContext =
getSema().getLangOpts().CPlusPlus20 &&
E->getCallOperator()->isImmediateEscalating();
Sema::CodeSynthesisContext C;
C.Kind = clang::Sema::CodeSynthesisContext::LambdaExpressionSubstitution;
C.PointOfInstantiation = E->getBody()->getBeginLoc();
getSema().pushCodeSynthesisContext(C);
// Instantiate the body of the lambda expression.
StmtResult Body =
Invalid ? StmtError() : getDerived().TransformLambdaBody(E, E->getBody());
getSema().popCodeSynthesisContext();
// ActOnLambda* will pop the function scope for us.
FuncScopeCleanup.disable();
if (Body.isInvalid()) {
SavedContext.pop();
getSema().ActOnLambdaError(E->getBeginLoc(), /*CurScope=*/nullptr,
/*IsInstantiation=*/true);
return ExprError();
}
// Copy the LSI before ActOnFinishFunctionBody removes it.
// FIXME: This is dumb. Store the lambda information somewhere that outlives
// the call operator.
auto LSICopy = *LSI;
getSema().ActOnFinishFunctionBody(NewCallOperator, Body.get(),
/*IsInstantiation*/ true);
SavedContext.pop();
// Recompute the dependency of the lambda so that we can defer the lambda call
// construction until after we have all the necessary template arguments. For
// example, given
//
// template <class> struct S {
// template <class U>
// using Type = decltype([](U){}(42.0));
// };
// void foo() {
// using T = S<int>::Type<float>;
// ^~~~~~
// }
//
// We would end up here from instantiating S<int> when ensuring its
// completeness. That would transform the lambda call expression regardless of
// the absence of the corresponding argument for U.
//
// Going ahead with unsubstituted type U makes things worse: we would soon
// compare the argument type (which is float) against the parameter U
// somewhere in Sema::BuildCallExpr. Then we would quickly run into a bogus
// error suggesting unmatched types 'U' and 'float'!
//
// That said, everything will be fine if we defer that semantic checking.
// Fortunately, we have such a mechanism that bypasses it if the CallExpr is
// dependent. Since the CallExpr's dependency boils down to the lambda's
// dependency in this case, we can harness that by recomputing the dependency
// from the instantiation arguments.
//
// FIXME: Creating the type of a lambda requires us to have a dependency
// value, which happens before its substitution. We update its dependency
// *after* the substitution in case we can't decide the dependency
// so early, e.g. because we want to see if any of the *substituted*
// parameters are dependent.
DependencyKind = getDerived().ComputeLambdaDependency(&LSICopy);
Class->setLambdaDependencyKind(DependencyKind);
// Clean up the type cache created previously. Then, we re-create a type for
// such Decl with the new DependencyKind.
Class->setTypeForDecl(nullptr);
getSema().Context.getTypeDeclType(Class);
return getDerived().RebuildLambdaExpr(E->getBeginLoc(),
Body.get()->getEndLoc(), &LSICopy);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformLambdaBody(LambdaExpr *E, Stmt *S) {
return TransformStmt(S);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::SkipLambdaBody(LambdaExpr *E, Stmt *S) {
// Transform captures.
for (LambdaExpr::capture_iterator C = E->capture_begin(),
CEnd = E->capture_end();
C != CEnd; ++C) {
// When we hit the first implicit capture, tell Sema that we've finished
// the list of explicit captures.
if (!C->isImplicit())
continue;
// Capturing 'this' is trivial.
if (C->capturesThis()) {
getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(),
/*BuildAndDiagnose*/ true, nullptr,
C->getCaptureKind() == LCK_StarThis);
continue;
}
// Captured expression will be recaptured during captured variables
// rebuilding.
if (C->capturesVLAType())
continue;
assert(C->capturesVariable() && "unexpected kind of lambda capture");
assert(!E->isInitCapture(C) && "implicit init-capture?");
// Transform the captured variable.
VarDecl *CapturedVar = cast_or_null<VarDecl>(
getDerived().TransformDecl(C->getLocation(), C->getCapturedVar()));
if (!CapturedVar || CapturedVar->isInvalidDecl())
return StmtError();
// Capture the transformed variable.
getSema().tryCaptureVariable(CapturedVar, C->getLocation());
}
return S;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
CXXUnresolvedConstructExpr *E) {
TypeSourceInfo *T =
getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo());
if (!T)
return ExprError();
bool ArgumentChanged = false;
SmallVector<Expr*, 8> Args;
Args.reserve(E->getNumArgs());
{
EnterExpressionEvaluationContext Context(
getSema(), EnterExpressionEvaluationContext::InitList,
E->isListInitialization());
if (getDerived().TransformExprs(E->arg_begin(), E->getNumArgs(), true, Args,
&ArgumentChanged))
return ExprError();
}
if (!getDerived().AlwaysRebuild() &&
T == E->getTypeSourceInfo() &&
!ArgumentChanged)
return E;
// FIXME: we're faking the locations of the commas
return getDerived().RebuildCXXUnresolvedConstructExpr(
T, E->getLParenLoc(), Args, E->getRParenLoc(), E->isListInitialization());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
CXXDependentScopeMemberExpr *E) {
// Transform the base of the expression.
ExprResult Base((Expr*) nullptr);
Expr *OldBase;
QualType BaseType;
QualType ObjectType;
if (!E->isImplicitAccess()) {
OldBase = E->getBase();
Base = getDerived().TransformExpr(OldBase);
if (Base.isInvalid())
return ExprError();
// Start the member reference and compute the object's type.
ParsedType ObjectTy;
bool MayBePseudoDestructor = false;
Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
E->getOperatorLoc(),
E->isArrow()? tok::arrow : tok::period,
ObjectTy,
MayBePseudoDestructor);
if (Base.isInvalid())
return ExprError();
ObjectType = ObjectTy.get();
BaseType = ((Expr*) Base.get())->getType();
} else {
OldBase = nullptr;
BaseType = getDerived().TransformType(E->getBaseType());
ObjectType = BaseType->castAs<PointerType>()->getPointeeType();
}
// Transform the first part of the nested-name-specifier that qualifies
// the member name.
NamedDecl *FirstQualifierInScope
= getDerived().TransformFirstQualifierInScope(
E->getFirstQualifierFoundInScope(),
E->getQualifierLoc().getBeginLoc());
NestedNameSpecifierLoc QualifierLoc;
if (E->getQualifier()) {
QualifierLoc
= getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
ObjectType,
FirstQualifierInScope);
if (!QualifierLoc)
return ExprError();
}
SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
// TODO: If this is a conversion-function-id, verify that the
// destination type name (if present) resolves the same way after
// instantiation as it did in the local scope.
DeclarationNameInfo NameInfo
= getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
if (!NameInfo.getName())
return ExprError();
if (!E->hasExplicitTemplateArgs()) {
// This is a reference to a member without an explicitly-specified
// template argument list. Optimize for this common case.
if (!getDerived().AlwaysRebuild() &&
Base.get() == OldBase &&
BaseType == E->getBaseType() &&
QualifierLoc == E->getQualifierLoc() &&
NameInfo.getName() == E->getMember() &&
FirstQualifierInScope == E->getFirstQualifierFoundInScope())
return E;
return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
BaseType,
E->isArrow(),
E->getOperatorLoc(),
QualifierLoc,
TemplateKWLoc,
FirstQualifierInScope,
NameInfo,
/*TemplateArgs*/nullptr);
}
TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
E->getNumTemplateArgs(),
TransArgs))
return ExprError();
return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
BaseType,
E->isArrow(),
E->getOperatorLoc(),
QualifierLoc,
TemplateKWLoc,
FirstQualifierInScope,
NameInfo,
&TransArgs);
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformUnresolvedMemberExpr(
UnresolvedMemberExpr *Old) {
// Transform the base of the expression.
ExprResult Base((Expr *)nullptr);
QualType BaseType;
if (!Old->isImplicitAccess()) {
Base = getDerived().TransformExpr(Old->getBase());
if (Base.isInvalid())
return ExprError();
Base =
getSema().PerformMemberExprBaseConversion(Base.get(), Old->isArrow());
if (Base.isInvalid())
return ExprError();
BaseType = Base.get()->getType();
} else {
BaseType = getDerived().TransformType(Old->getBaseType());
}
NestedNameSpecifierLoc QualifierLoc;
if (Old->getQualifierLoc()) {
QualifierLoc =
getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
if (!QualifierLoc)
return ExprError();
}
SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
LookupResult R(SemaRef, Old->getMemberNameInfo(), Sema::LookupOrdinaryName);
// Transform the declaration set.
if (TransformOverloadExprDecls(Old, /*RequiresADL*/ false, R))
return ExprError();
// Determine the naming class.
if (Old->getNamingClass()) {
CXXRecordDecl *NamingClass = cast_or_null<CXXRecordDecl>(
getDerived().TransformDecl(Old->getMemberLoc(), Old->getNamingClass()));
if (!NamingClass)
return ExprError();
R.setNamingClass(NamingClass);
}
TemplateArgumentListInfo TransArgs;
if (Old->hasExplicitTemplateArgs()) {
TransArgs.setLAngleLoc(Old->getLAngleLoc());
TransArgs.setRAngleLoc(Old->getRAngleLoc());
if (getDerived().TransformTemplateArguments(
Old->getTemplateArgs(), Old->getNumTemplateArgs(), TransArgs))
return ExprError();
}
// FIXME: to do this check properly, we will need to preserve the
// first-qualifier-in-scope here, just in case we had a dependent
// base (and therefore couldn't do the check) and a
// nested-name-qualifier (and therefore could do the lookup).
NamedDecl *FirstQualifierInScope = nullptr;
return getDerived().RebuildUnresolvedMemberExpr(
Base.get(), BaseType, Old->getOperatorLoc(), Old->isArrow(), QualifierLoc,
TemplateKWLoc, FirstQualifierInScope, R,
(Old->hasExplicitTemplateArgs() ? &TransArgs : nullptr));
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
EnterExpressionEvaluationContext Unevaluated(
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
return E;
return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
if (Pattern.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
return E;
return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
E->getNumExpansions());
}
template <typename Derived>
UnsignedOrNone TreeTransform<Derived>::ComputeSizeOfPackExprWithoutSubstitution(
ArrayRef<TemplateArgument> PackArgs) {
UnsignedOrNone Result = 0u;
for (const TemplateArgument &Arg : PackArgs) {
if (!Arg.isPackExpansion()) {
Result = *Result + 1;
continue;
}
TemplateArgumentLoc ArgLoc;
InventTemplateArgumentLoc(Arg, ArgLoc);
// Find the pattern of the pack expansion.
SourceLocation Ellipsis;
UnsignedOrNone OrigNumExpansions = std::nullopt;
TemplateArgumentLoc Pattern =
getSema().getTemplateArgumentPackExpansionPattern(ArgLoc, Ellipsis,
OrigNumExpansions);
// Substitute under the pack expansion. Do not expand the pack (yet).
TemplateArgumentLoc OutPattern;
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
if (getDerived().TransformTemplateArgument(Pattern, OutPattern,
/*Uneval*/ true))
return 1u;
// See if we can determine the number of arguments from the result.
UnsignedOrNone NumExpansions =
getSema().getFullyPackExpandedSize(OutPattern.getArgument());
if (!NumExpansions) {
// No: we must be in an alias template expansion, and we're going to
// need to actually expand the packs.
Result = std::nullopt;
break;
}
Result = *Result + *NumExpansions;
}
return Result;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
// If E is not value-dependent, then nothing will change when we transform it.
// Note: This is an instantiation-centric view.
if (!E->isValueDependent())
return E;
EnterExpressionEvaluationContext Unevaluated(
getSema(), Sema::ExpressionEvaluationContext::Unevaluated);
ArrayRef<TemplateArgument> PackArgs;
TemplateArgument ArgStorage;
// Find the argument list to transform.
if (E->isPartiallySubstituted()) {
PackArgs = E->getPartialArguments();
} else if (E->isValueDependent()) {
UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
bool ShouldExpand = false;
bool RetainExpansion = false;
UnsignedOrNone NumExpansions = std::nullopt;
if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
Unexpanded,
ShouldExpand, RetainExpansion,
NumExpansions))
return ExprError();
// If we need to expand the pack, build a template argument from it and
// expand that.
if (ShouldExpand) {
auto *Pack = E->getPack();
if (auto *TTPD = dyn_cast<TemplateTypeParmDecl>(Pack)) {
ArgStorage = getSema().Context.getPackExpansionType(
getSema().Context.getTypeDeclType(TTPD), std::nullopt);
} else if (auto *TTPD = dyn_cast<TemplateTemplateParmDecl>(Pack)) {
ArgStorage = TemplateArgument(TemplateName(TTPD), std::nullopt);
} else {
auto *VD = cast<ValueDecl>(Pack);
ExprResult DRE = getSema().BuildDeclRefExpr(
VD, VD->getType().getNonLValueExprType(getSema().Context),
VD->getType()->isReferenceType() ? VK_LValue : VK_PRValue,
E->getPackLoc());
if (DRE.isInvalid())
return ExprError();
ArgStorage = TemplateArgument(
new (getSema().Context)
PackExpansionExpr(DRE.get(), E->getPackLoc(), std::nullopt),
/*IsCanonical=*/false);
}
PackArgs = ArgStorage;
}
}
// If we're not expanding the pack, just transform the decl.
if (!PackArgs.size()) {
auto *Pack = cast_or_null<NamedDecl>(
getDerived().TransformDecl(E->getPackLoc(), E->getPack()));
if (!Pack)
return ExprError();
return getDerived().RebuildSizeOfPackExpr(
E->getOperatorLoc(), Pack, E->getPackLoc(), E->getRParenLoc(),
std::nullopt, {});
}
// Try to compute the result without performing a partial substitution.
UnsignedOrNone Result =
getDerived().ComputeSizeOfPackExprWithoutSubstitution(PackArgs);
// Common case: we could determine the number of expansions without
// substituting.
if (Result)
return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
E->getPackLoc(),
E->getRParenLoc(), *Result, {});
TemplateArgumentListInfo TransformedPackArgs(E->getPackLoc(),
E->getPackLoc());
{
TemporaryBase Rebase(*this, E->getPackLoc(), getBaseEntity());
typedef TemplateArgumentLocInventIterator<
Derived, const TemplateArgument*> PackLocIterator;
if (TransformTemplateArguments(PackLocIterator(*this, PackArgs.begin()),
PackLocIterator(*this, PackArgs.end()),
TransformedPackArgs, /*Uneval*/true))
return ExprError();
}
// Check whether we managed to fully-expand the pack.
// FIXME: Is it possible for us to do so and not hit the early exit path?
SmallVector<TemplateArgument, 8> Args;
bool PartialSubstitution = false;
for (auto &Loc : TransformedPackArgs.arguments()) {
Args.push_back(Loc.getArgument());
if (Loc.getArgument().isPackExpansion())
PartialSubstitution = true;
}
if (PartialSubstitution)
return getDerived().RebuildSizeOfPackExpr(
E->getOperatorLoc(), E->getPack(), E->getPackLoc(), E->getRParenLoc(),
std::nullopt, Args);
return getDerived().RebuildSizeOfPackExpr(
E->getOperatorLoc(), E->getPack(), E->getPackLoc(), E->getRParenLoc(),
/*Length=*/static_cast<unsigned>(Args.size()),
/*PartialArgs=*/std::nullopt);
}
template <typename Derived>
ExprResult
TreeTransform<Derived>::TransformPackIndexingExpr(PackIndexingExpr *E) {
if (!E->isValueDependent())
return E;
// Transform the index
ExprResult IndexExpr;
{
EnterExpressionEvaluationContext ConstantContext(
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
IndexExpr = getDerived().TransformExpr(E->getIndexExpr());
if (IndexExpr.isInvalid())
return ExprError();
}
SmallVector<Expr *, 5> ExpandedExprs;
bool FullySubstituted = true;
if (!E->expandsToEmptyPack() && E->getExpressions().empty()) {
Expr *Pattern = E->getPackIdExpression();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(E->getPackIdExpression(),
Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can and should
// be expanded.
bool ShouldExpand = true;
bool RetainExpansion = false;
UnsignedOrNone OrigNumExpansions = std::nullopt,
NumExpansions = std::nullopt;
if (getDerived().TryExpandParameterPacks(
E->getEllipsisLoc(), Pattern->getSourceRange(), Unexpanded,
ShouldExpand, RetainExpansion, NumExpansions))
return true;
if (!ShouldExpand) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
ExprResult Pack = getDerived().TransformExpr(Pattern);
if (Pack.isInvalid())
return ExprError();
return getDerived().RebuildPackIndexingExpr(
E->getEllipsisLoc(), E->getRSquareLoc(), Pack.get(), IndexExpr.get(),
{}, /*FullySubstituted=*/false);
}
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), I);
ExprResult Out = getDerived().TransformExpr(Pattern);
if (Out.isInvalid())
return true;
if (Out.get()->containsUnexpandedParameterPack()) {
Out = getDerived().RebuildPackExpansion(Out.get(), E->getEllipsisLoc(),
OrigNumExpansions);
if (Out.isInvalid())
return true;
FullySubstituted = false;
}
ExpandedExprs.push_back(Out.get());
}
// If we're supposed to retain a pack expansion, do so by temporarily
// forgetting the partially-substituted parameter pack.
if (RetainExpansion) {
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
ExprResult Out = getDerived().TransformExpr(Pattern);
if (Out.isInvalid())
return true;
Out = getDerived().RebuildPackExpansion(Out.get(), E->getEllipsisLoc(),
OrigNumExpansions);
if (Out.isInvalid())
return true;
FullySubstituted = false;
ExpandedExprs.push_back(Out.get());
}
} else if (!E->expandsToEmptyPack()) {
if (getDerived().TransformExprs(E->getExpressions().data(),
E->getExpressions().size(), false,
ExpandedExprs))
return ExprError();
}
return getDerived().RebuildPackIndexingExpr(
E->getEllipsisLoc(), E->getRSquareLoc(), E->getPackIdExpression(),
IndexExpr.get(), ExpandedExprs, FullySubstituted);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
SubstNonTypeTemplateParmPackExpr *E) {
// Default behavior is to do nothing with this transformation.
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
SubstNonTypeTemplateParmExpr *E) {
// Default behavior is to do nothing with this transformation.
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
// Default behavior is to do nothing with this transformation.
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
MaterializeTemporaryExpr *E) {
return getDerived().TransformExpr(E->getSubExpr());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXFoldExpr(CXXFoldExpr *E) {
UnresolvedLookupExpr *Callee = nullptr;
if (Expr *OldCallee = E->getCallee()) {
ExprResult CalleeResult = getDerived().TransformExpr(OldCallee);
if (CalleeResult.isInvalid())
return ExprError();
Callee = cast<UnresolvedLookupExpr>(CalleeResult.get());
}
Expr *Pattern = E->getPattern();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can and should
// be expanded.
bool Expand = true;
bool RetainExpansion = false;
UnsignedOrNone OrigNumExpansions = E->getNumExpansions(),
NumExpansions = OrigNumExpansions;
if (getDerived().TryExpandParameterPacks(E->getEllipsisLoc(),
Pattern->getSourceRange(),
Unexpanded,
Expand, RetainExpansion,
NumExpansions))
return true;
if (!Expand) {
// Do not expand any packs here, just transform and rebuild a fold
// expression.
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
ExprResult LHS =
E->getLHS() ? getDerived().TransformExpr(E->getLHS()) : ExprResult();
if (LHS.isInvalid())
return true;
ExprResult RHS =
E->getRHS() ? getDerived().TransformExpr(E->getRHS()) : ExprResult();
if (RHS.isInvalid())
return true;
if (!getDerived().AlwaysRebuild() &&
LHS.get() == E->getLHS() && RHS.get() == E->getRHS())
return E;
return getDerived().RebuildCXXFoldExpr(
Callee, E->getBeginLoc(), LHS.get(), E->getOperator(),
E->getEllipsisLoc(), RHS.get(), E->getEndLoc(), NumExpansions);
}
// Formally a fold expression expands to nested parenthesized expressions.
// Enforce this limit to avoid creating trees so deep we can't safely traverse
// them.
if (NumExpansions && SemaRef.getLangOpts().BracketDepth < *NumExpansions) {
SemaRef.Diag(E->getEllipsisLoc(),
clang::diag::err_fold_expression_limit_exceeded)
<< *NumExpansions << SemaRef.getLangOpts().BracketDepth
<< E->getSourceRange();
SemaRef.Diag(E->getEllipsisLoc(), diag::note_bracket_depth);
return ExprError();
}
// The transform has determined that we should perform an elementwise
// expansion of the pattern. Do so.
ExprResult Result = getDerived().TransformExpr(E->getInit());
if (Result.isInvalid())
return true;
bool LeftFold = E->isLeftFold();
// If we're retaining an expansion for a right fold, it is the innermost
// component and takes the init (if any).
if (!LeftFold && RetainExpansion) {
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
ExprResult Out = getDerived().TransformExpr(Pattern);
if (Out.isInvalid())
return true;
Result = getDerived().RebuildCXXFoldExpr(
Callee, E->getBeginLoc(), Out.get(), E->getOperator(),
E->getEllipsisLoc(), Result.get(), E->getEndLoc(), OrigNumExpansions);
if (Result.isInvalid())
return true;
}
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(
getSema(), LeftFold ? I : *NumExpansions - I - 1);
ExprResult Out = getDerived().TransformExpr(Pattern);
if (Out.isInvalid())
return true;
if (Out.get()->containsUnexpandedParameterPack()) {
// We still have a pack; retain a pack expansion for this slice.
Result = getDerived().RebuildCXXFoldExpr(
Callee, E->getBeginLoc(), LeftFold ? Result.get() : Out.get(),
E->getOperator(), E->getEllipsisLoc(),
LeftFold ? Out.get() : Result.get(), E->getEndLoc(),
OrigNumExpansions);
} else if (Result.isUsable()) {
// We've got down to a single element; build a binary operator.
Expr *LHS = LeftFold ? Result.get() : Out.get();
Expr *RHS = LeftFold ? Out.get() : Result.get();
if (Callee) {
UnresolvedSet<16> Functions;
Functions.append(Callee->decls_begin(), Callee->decls_end());
Result = getDerived().RebuildCXXOperatorCallExpr(
BinaryOperator::getOverloadedOperator(E->getOperator()),
E->getEllipsisLoc(), Callee->getBeginLoc(), Callee->requiresADL(),
Functions, LHS, RHS);
} else {
Result = getDerived().RebuildBinaryOperator(E->getEllipsisLoc(),
E->getOperator(), LHS, RHS);
}
} else
Result = Out;
if (Result.isInvalid())
return true;
}
// If we're retaining an expansion for a left fold, it is the outermost
// component and takes the complete expansion so far as its init (if any).
if (LeftFold && RetainExpansion) {
ForgetPartiallySubstitutedPackRAII Forget(getDerived());
ExprResult Out = getDerived().TransformExpr(Pattern);
if (Out.isInvalid())
return true;
Result = getDerived().RebuildCXXFoldExpr(
Callee, E->getBeginLoc(), Result.get(), E->getOperator(),
E->getEllipsisLoc(), Out.get(), E->getEndLoc(), OrigNumExpansions);
if (Result.isInvalid())
return true;
}
if (ParenExpr *PE = dyn_cast_or_null<ParenExpr>(Result.get()))
PE->setIsProducedByFoldExpansion();
// If we had no init and an empty pack, and we're not retaining an expansion,
// then produce a fallback value or error.
if (Result.isUnset())
return getDerived().RebuildEmptyCXXFoldExpr(E->getEllipsisLoc(),
E->getOperator());
return Result;
}
template <typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXParenListInitExpr(CXXParenListInitExpr *E) {
SmallVector<Expr *, 4> TransformedInits;
ArrayRef<Expr *> InitExprs = E->getInitExprs();
if (TransformExprs(InitExprs.data(), InitExprs.size(), true,
TransformedInits))
return ExprError();
return getDerived().RebuildParenListExpr(E->getBeginLoc(), TransformedInits,
E->getEndLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformCXXStdInitializerListExpr(
CXXStdInitializerListExpr *E) {
return getDerived().TransformExpr(E->getSubExpr());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
return SemaRef.MaybeBindToTemporary(E);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) {
ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
if (SubExpr.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
SubExpr.get() == E->getSubExpr())
return E;
return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) {
// Transform each of the elements.
SmallVector<Expr *, 8> Elements;
bool ArgChanged = false;
if (getDerived().TransformExprs(E->getElements(), E->getNumElements(),
/*IsCall=*/false, Elements, &ArgChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() && !ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(),
Elements.data(),
Elements.size());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCDictionaryLiteral(
ObjCDictionaryLiteral *E) {
// Transform each of the elements.
SmallVector<ObjCDictionaryElement, 8> Elements;
bool ArgChanged = false;
for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
ObjCDictionaryElement OrigElement = E->getKeyValueElement(I);
if (OrigElement.isPackExpansion()) {
// This key/value element is a pack expansion.
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded);
getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded);
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
// Determine whether the set of unexpanded parameter packs can
// and should be expanded.
bool Expand = true;
bool RetainExpansion = false;
UnsignedOrNone OrigNumExpansions = OrigElement.NumExpansions;
UnsignedOrNone NumExpansions = OrigNumExpansions;
SourceRange PatternRange(OrigElement.Key->getBeginLoc(),
OrigElement.Value->getEndLoc());
if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc,
PatternRange, Unexpanded, Expand,
RetainExpansion, NumExpansions))
return ExprError();
if (!Expand) {
// The transform has determined that we should perform a simple
// transformation on the pack expansion, producing another pack
// expansion.
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), std::nullopt);
ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
if (Key.isInvalid())
return ExprError();
if (Key.get() != OrigElement.Key)
ArgChanged = true;
ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
if (Value.isInvalid())
return ExprError();
if (Value.get() != OrigElement.Value)
ArgChanged = true;
ObjCDictionaryElement Expansion = {
Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions
};
Elements.push_back(Expansion);
continue;
}
// Record right away that the argument was changed. This needs
// to happen even if the array expands to nothing.
ArgChanged = true;
// The transform has determined that we should perform an elementwise
// expansion of the pattern. Do so.
for (unsigned I = 0; I != *NumExpansions; ++I) {
Sema::ArgPackSubstIndexRAII SubstIndex(getSema(), I);
ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
if (Key.isInvalid())
return ExprError();
ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
if (Value.isInvalid())
return ExprError();
ObjCDictionaryElement Element = {
Key.get(), Value.get(), SourceLocation(), NumExpansions
};
// If any unexpanded parameter packs remain, we still have a
// pack expansion.
// FIXME: Can this really happen?
if (Key.get()->containsUnexpandedParameterPack() ||
Value.get()->containsUnexpandedParameterPack())
Element.EllipsisLoc = OrigElement.EllipsisLoc;
Elements.push_back(Element);
}
// FIXME: Retain a pack expansion if RetainExpansion is true.
// We've finished with this pack expansion.
continue;
}
// Transform and check key.
ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
if (Key.isInvalid())
return ExprError();
if (Key.get() != OrigElement.Key)
ArgChanged = true;
// Transform and check value.
ExprResult Value
= getDerived().TransformExpr(OrigElement.Value);
if (Value.isInvalid())
return ExprError();
if (Value.get() != OrigElement.Value)
ArgChanged = true;
ObjCDictionaryElement Element = {Key.get(), Value.get(), SourceLocation(),
std::nullopt};
Elements.push_back(Element);
}
if (!getDerived().AlwaysRebuild() && !ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(),
Elements);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
TypeSourceInfo *EncodedTypeInfo
= getDerived().TransformType(E->getEncodedTypeSourceInfo());
if (!EncodedTypeInfo)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
EncodedTypeInfo == E->getEncodedTypeSourceInfo())
return E;
return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
EncodedTypeInfo,
E->getRParenLoc());
}
template<typename Derived>
ExprResult TreeTransform<Derived>::
TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
// This is a kind of implicit conversion, and it needs to get dropped
// and recomputed for the same general reasons that ImplicitCastExprs
// do, as well a more specific one: this expression is only valid when
// it appears *immediately* as an argument expression.
return getDerived().TransformExpr(E->getSubExpr());
}
template<typename Derived>
ExprResult TreeTransform<Derived>::
TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
TypeSourceInfo *TSInfo
= getDerived().TransformType(E->getTypeInfoAsWritten());
if (!TSInfo)
return ExprError();
ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
if (Result.isInvalid())
return ExprError();
if (!getDerived().AlwaysRebuild() &&
TSInfo == E->getTypeInfoAsWritten() &&
Result.get() == E->getSubExpr())
return E;
return SemaRef.ObjC().BuildObjCBridgedCast(
E->getLParenLoc(), E->getBridgeKind(), E->getBridgeKeywordLoc(), TSInfo,
Result.get());
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformObjCAvailabilityCheckExpr(
ObjCAvailabilityCheckExpr *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
// Transform arguments.
bool ArgChanged = false;
SmallVector<Expr*, 8> Args;
Args.reserve(E->getNumArgs());
if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
&ArgChanged))
return ExprError();
if (E->getReceiverKind() == ObjCMessageExpr::Class) {
// Class message: transform the receiver type.
TypeSourceInfo *ReceiverTypeInfo
= getDerived().TransformType(E->getClassReceiverTypeInfo());
if (!ReceiverTypeInfo)
return ExprError();
// If nothing changed, just retain the existing message send.
if (!getDerived().AlwaysRebuild() &&
ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
// Build a new class message send.
SmallVector<SourceLocation, 16> SelLocs;
E->getSelectorLocs(SelLocs);
return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
E->getSelector(),
SelLocs,
E->getMethodDecl(),
E->getLeftLoc(),
Args,
E->getRightLoc());
}
else if (E->getReceiverKind() == ObjCMessageExpr::SuperClass ||
E->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
if (!E->getMethodDecl())
return ExprError();
// Build a new class message send to 'super'.
SmallVector<SourceLocation, 16> SelLocs;
E->getSelectorLocs(SelLocs);
return getDerived().RebuildObjCMessageExpr(E->getSuperLoc(),
E->getSelector(),
SelLocs,
E->getReceiverType(),
E->getMethodDecl(),
E->getLeftLoc(),
Args,
E->getRightLoc());
}
// Instance message: transform the receiver
assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
"Only class and instance messages may be instantiated");
ExprResult Receiver
= getDerived().TransformExpr(E->getInstanceReceiver());
if (Receiver.isInvalid())
return ExprError();
// If nothing changed, just retain the existing message send.
if (!getDerived().AlwaysRebuild() &&
Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
return SemaRef.MaybeBindToTemporary(E);
// Build a new instance message send.
SmallVector<SourceLocation, 16> SelLocs;
E->getSelectorLocs(SelLocs);
return getDerived().RebuildObjCMessageExpr(Receiver.get(),
E->getSelector(),
SelLocs,
E->getMethodDecl(),
E->getLeftLoc(),
Args,
E->getRightLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
return E;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
// We don't need to transform the ivar; it will never change.
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return E;
return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
E->getLocation(),
E->isArrow(), E->isFreeIvar());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
// 'super' and types never change. Property never changes. Just
// retain the existing expression.
if (!E->isObjectReceiver())
return E;
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
// We don't need to transform the property; it will never change.
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return E;
if (E->isExplicitProperty())
return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
E->getExplicitProperty(),
E->getLocation());
return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
SemaRef.Context.PseudoObjectTy,
E->getImplicitPropertyGetter(),
E->getImplicitPropertySetter(),
E->getLocation());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
if (Base.isInvalid())
return ExprError();
// Transform the key expression.
ExprResult Key = getDerived().TransformExpr(E->getKeyExpr());
if (Key.isInvalid())
return ExprError();
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr())
return E;
return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(),
Base.get(), Key.get(),
E->getAtIndexMethodDecl(),
E->setAtIndexMethodDecl());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
// Transform the base expression.
ExprResult Base = getDerived().TransformExpr(E->getBase());
if (Base.isInvalid())
return ExprError();
// If nothing changed, just retain the existing expression.
if (!getDerived().AlwaysRebuild() &&
Base.get() == E->getBase())
return E;
return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
E->getOpLoc(),
E->isArrow());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
bool ArgumentChanged = false;
SmallVector<Expr*, 8> SubExprs;
SubExprs.reserve(E->getNumSubExprs());
if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
SubExprs, &ArgumentChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
!ArgumentChanged)
return E;
return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
SubExprs,
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformConvertVectorExpr(ConvertVectorExpr *E) {
ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
if (SrcExpr.isInvalid())
return ExprError();
TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
if (!Type)
return ExprError();
if (!getDerived().AlwaysRebuild() &&
Type == E->getTypeSourceInfo() &&
SrcExpr.get() == E->getSrcExpr())
return E;
return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(),
SrcExpr.get(), Type,
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
BlockDecl *oldBlock = E->getBlockDecl();
SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr);
BlockScopeInfo *blockScope = SemaRef.getCurBlock();
blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
blockScope->TheDecl->setBlockMissingReturnType(
oldBlock->blockMissingReturnType());
SmallVector<ParmVarDecl*, 4> params;
SmallVector<QualType, 4> paramTypes;
const FunctionProtoType *exprFunctionType = E->getFunctionType();
// Parameter substitution.
Sema::ExtParameterInfoBuilder extParamInfos;
if (getDerived().TransformFunctionTypeParams(
E->getCaretLocation(), oldBlock->parameters(), nullptr,
exprFunctionType->getExtParameterInfosOrNull(), paramTypes, &params,
extParamInfos)) {
getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
return ExprError();
}
QualType exprResultType =
getDerived().TransformType(exprFunctionType->getReturnType());
auto epi = exprFunctionType->getExtProtoInfo();
epi.ExtParameterInfos = extParamInfos.getPointerOrNull(paramTypes.size());
QualType functionType =
getDerived().RebuildFunctionProtoType(exprResultType, paramTypes, epi);
blockScope->FunctionType = functionType;
// Set the parameters on the block decl.
if (!params.empty())
blockScope->TheDecl->setParams(params);
if (!oldBlock->blockMissingReturnType()) {
blockScope->HasImplicitReturnType = false;
blockScope->ReturnType = exprResultType;
}
// Transform the body
StmtResult body = getDerived().TransformStmt(E->getBody());
if (body.isInvalid()) {
getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
return ExprError();
}
#ifndef NDEBUG
// In builds with assertions, make sure that we captured everything we
// captured before.
if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
for (const auto &I : oldBlock->captures()) {
VarDecl *oldCapture = I.getVariable();
// Ignore parameter packs.
if (oldCapture->isParameterPack())
continue;
VarDecl *newCapture =
cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
oldCapture));
assert(blockScope->CaptureMap.count(newCapture));
}
// The this pointer may not be captured by the instantiated block, even when
// it's captured by the original block, if the expression causing the
// capture is in the discarded branch of a constexpr if statement.
assert((!blockScope->isCXXThisCaptured() || oldBlock->capturesCXXThis()) &&
"this pointer isn't captured in the old block");
}
#endif
return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
/*Scope=*/nullptr);
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
if (SrcExpr.isInvalid())
return ExprError();
QualType Type = getDerived().TransformType(E->getType());
return SemaRef.BuildAsTypeExpr(SrcExpr.get(), Type, E->getBuiltinLoc(),
E->getRParenLoc());
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) {
bool ArgumentChanged = false;
SmallVector<Expr*, 8> SubExprs;
SubExprs.reserve(E->getNumSubExprs());
if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
SubExprs, &ArgumentChanged))
return ExprError();
if (!getDerived().AlwaysRebuild() &&
!ArgumentChanged)
return E;
return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs,
E->getOp(), E->getRParenLoc());
}
//===----------------------------------------------------------------------===//
// Type reconstruction
//===----------------------------------------------------------------------===//
template<typename Derived>
QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
SourceLocation Star) {
return SemaRef.BuildPointerType(PointeeType, Star,
getDerived().getBaseEntity());
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
SourceLocation Star) {
return SemaRef.BuildBlockPointerType(PointeeType, Star,
getDerived().getBaseEntity());
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
bool WrittenAsLValue,
SourceLocation Sigil) {
return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
Sigil, getDerived().getBaseEntity());
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildMemberPointerType(
QualType PointeeType, const CXXScopeSpec &SS, CXXRecordDecl *Cls,
SourceLocation Sigil) {
return SemaRef.BuildMemberPointerType(PointeeType, SS, Cls, Sigil,
getDerived().getBaseEntity());
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildObjCTypeParamType(
const ObjCTypeParamDecl *Decl,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc) {
return SemaRef.ObjC().BuildObjCTypeParamType(
Decl, ProtocolLAngleLoc, Protocols, ProtocolLocs, ProtocolRAngleLoc,
/*FailOnError=*/true);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildObjCObjectType(
QualType BaseType,
SourceLocation Loc,
SourceLocation TypeArgsLAngleLoc,
ArrayRef<TypeSourceInfo *> TypeArgs,
SourceLocation TypeArgsRAngleLoc,
SourceLocation ProtocolLAngleLoc,
ArrayRef<ObjCProtocolDecl *> Protocols,
ArrayRef<SourceLocation> ProtocolLocs,
SourceLocation ProtocolRAngleLoc) {
return SemaRef.ObjC().BuildObjCObjectType(
BaseType, Loc, TypeArgsLAngleLoc, TypeArgs, TypeArgsRAngleLoc,
ProtocolLAngleLoc, Protocols, ProtocolLocs, ProtocolRAngleLoc,
/*FailOnError=*/true,
/*Rebuilding=*/true);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildObjCObjectPointerType(
QualType PointeeType,
SourceLocation Star) {
return SemaRef.Context.getObjCObjectPointerType(PointeeType);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildArrayType(
QualType ElementType, ArraySizeModifier SizeMod, const llvm::APInt *Size,
Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) {
if (SizeExpr || !Size)
return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
IndexTypeQuals, BracketsRange,
getDerived().getBaseEntity());
QualType Types[] = {
SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
};
QualType SizeType;
for (const auto &T : Types)
if (Size->getBitWidth() == SemaRef.Context.getIntWidth(T)) {
SizeType = T;
break;
}
// Note that we can return a VariableArrayType here in the case where
// the element type was a dependent VariableArrayType.
IntegerLiteral *ArraySize
= IntegerLiteral::Create(SemaRef.Context, *Size, SizeType,
/*FIXME*/BracketsRange.getBegin());
return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize,
IndexTypeQuals, BracketsRange,
getDerived().getBaseEntity());
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildConstantArrayType(
QualType ElementType, ArraySizeModifier SizeMod, const llvm::APInt &Size,
Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, SizeExpr,
IndexTypeQuals, BracketsRange);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildIncompleteArrayType(
QualType ElementType, ArraySizeModifier SizeMod, unsigned IndexTypeQuals,
SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr,
IndexTypeQuals, BracketsRange);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildVariableArrayType(
QualType ElementType, ArraySizeModifier SizeMod, Expr *SizeExpr,
unsigned IndexTypeQuals, SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
SizeExpr,
IndexTypeQuals, BracketsRange);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildDependentSizedArrayType(
QualType ElementType, ArraySizeModifier SizeMod, Expr *SizeExpr,
unsigned IndexTypeQuals, SourceRange BracketsRange) {
return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
SizeExpr,
IndexTypeQuals, BracketsRange);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildDependentAddressSpaceType(
QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttributeLoc) {
return SemaRef.BuildAddressSpaceAttr(PointeeType, AddrSpaceExpr,
AttributeLoc);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
unsigned NumElements,
VectorKind VecKind) {
// FIXME: semantic checking!
return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildDependentVectorType(
QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc,
VectorKind VecKind) {
return SemaRef.BuildVectorType(ElementType, SizeExpr, AttributeLoc);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
unsigned NumElements,
SourceLocation AttributeLoc) {
llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
NumElements, true);
IntegerLiteral *VectorSize
= IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
AttributeLoc);
return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
}
template<typename Derived>
QualType
TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
Expr *SizeExpr,
SourceLocation AttributeLoc) {
return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildConstantMatrixType(
QualType ElementType, unsigned NumRows, unsigned NumColumns) {
return SemaRef.Context.getConstantMatrixType(ElementType, NumRows,
NumColumns);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildDependentSizedMatrixType(
QualType ElementType, Expr *RowExpr, Expr *ColumnExpr,
SourceLocation AttributeLoc) {
return SemaRef.BuildMatrixType(ElementType, RowExpr, ColumnExpr,
AttributeLoc);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildFunctionProtoType(
QualType T, MutableArrayRef<QualType> ParamTypes,
const FunctionProtoType::ExtProtoInfo &EPI) {
return SemaRef.BuildFunctionType(T, ParamTypes,
getDerived().getBaseLocation(),
getDerived().getBaseEntity(),
EPI);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
return SemaRef.Context.getFunctionNoProtoType(T);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(SourceLocation Loc,
Decl *D) {
assert(D && "no decl found");
if (D->isInvalidDecl()) return QualType();
// FIXME: Doesn't account for ObjCInterfaceDecl!
if (auto *UPD = dyn_cast<UsingPackDecl>(D)) {
// A valid resolved using typename pack expansion decl can have multiple
// UsingDecls, but they must each have exactly one type, and it must be
// the same type in every case. But we must have at least one expansion!
if (UPD->expansions().empty()) {
getSema().Diag(Loc, diag::err_using_pack_expansion_empty)
<< UPD->isCXXClassMember() << UPD;
return QualType();
}
// We might still have some unresolved types. Try to pick a resolved type
// if we can. The final instantiation will check that the remaining
// unresolved types instantiate to the type we pick.
QualType FallbackT;
QualType T;
for (auto *E : UPD->expansions()) {
QualType ThisT = RebuildUnresolvedUsingType(Loc, E);
if (ThisT.isNull())
continue;
else if (ThisT->getAs<UnresolvedUsingType>())
FallbackT = ThisT;
else if (T.isNull())
T = ThisT;
else
assert(getSema().Context.hasSameType(ThisT, T) &&
"mismatched resolved types in using pack expansion");
}
return T.isNull() ? FallbackT : T;
} else if (auto *Using = dyn_cast<UsingDecl>(D)) {
assert(Using->hasTypename() &&
"UnresolvedUsingTypenameDecl transformed to non-typename using");
// A valid resolved using typename decl points to exactly one type decl.
assert(++Using->shadow_begin() == Using->shadow_end());
UsingShadowDecl *Shadow = *Using->shadow_begin();
if (SemaRef.DiagnoseUseOfDecl(Shadow->getTargetDecl(), Loc))
return QualType();
return SemaRef.Context.getUsingType(
Shadow, SemaRef.Context.getTypeDeclType(
cast<TypeDecl>(Shadow->getTargetDecl())));
} else {
assert(isa<UnresolvedUsingTypenameDecl>(D) &&
"UnresolvedUsingTypenameDecl transformed to non-using decl");
return SemaRef.Context.getTypeDeclType(
cast<UnresolvedUsingTypenameDecl>(D));
}
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E, SourceLocation,
TypeOfKind Kind) {
return SemaRef.BuildTypeofExprType(E, Kind);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying,
TypeOfKind Kind) {
return SemaRef.Context.getTypeOfType(Underlying, Kind);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E, SourceLocation) {
return SemaRef.BuildDecltypeType(E);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildPackIndexingType(
QualType Pattern, Expr *IndexExpr, SourceLocation Loc,
SourceLocation EllipsisLoc, bool FullySubstituted,
ArrayRef<QualType> Expansions) {
return SemaRef.BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc,
FullySubstituted, Expansions);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
UnaryTransformType::UTTKind UKind,
SourceLocation Loc) {
return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
TemplateName Template,
SourceLocation TemplateNameLoc,
TemplateArgumentListInfo &TemplateArgs) {
return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType,
SourceLocation KWLoc) {
return SemaRef.BuildAtomicType(ValueType, KWLoc);
}
template<typename Derived>
QualType TreeTransform<Derived>::RebuildPipeType(QualType ValueType,
SourceLocation KWLoc,
bool isReadPipe) {
return isReadPipe ? SemaRef.BuildReadPipeType(ValueType, KWLoc)
: SemaRef.BuildWritePipeType(ValueType, KWLoc);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildBitIntType(bool IsUnsigned,
unsigned NumBits,
SourceLocation Loc) {
llvm::APInt NumBitsAP(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
NumBits, true);
IntegerLiteral *Bits = IntegerLiteral::Create(SemaRef.Context, NumBitsAP,
SemaRef.Context.IntTy, Loc);
return SemaRef.BuildBitIntType(IsUnsigned, Bits, Loc);
}
template <typename Derived>
QualType TreeTransform<Derived>::RebuildDependentBitIntType(
bool IsUnsigned, Expr *NumBitsExpr, SourceLocation Loc) {
return SemaRef.BuildBitIntType(IsUnsigned, NumBitsExpr, Loc);
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
bool TemplateKW,
TemplateDecl *Template) {
return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
TemplateName(Template));
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
const IdentifierInfo &Name,
SourceLocation NameLoc,
QualType ObjectType,
NamedDecl *FirstQualifierInScope,
bool AllowInjectedClassName) {
UnqualifiedId TemplateName;
TemplateName.setIdentifier(&Name, NameLoc);
Sema::TemplateTy Template;
getSema().ActOnTemplateName(/*Scope=*/nullptr, SS, TemplateKWLoc,
TemplateName, ParsedType::make(ObjectType),
/*EnteringContext=*/false, Template,
AllowInjectedClassName);
return Template.get();
}
template<typename Derived>
TemplateName
TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
SourceLocation TemplateKWLoc,
OverloadedOperatorKind Operator,
SourceLocation NameLoc,
QualType ObjectType,
bool AllowInjectedClassName) {
UnqualifiedId Name;
// FIXME: Bogus location information.
SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
Sema::TemplateTy Template;
getSema().ActOnTemplateName(
/*Scope=*/nullptr, SS, TemplateKWLoc, Name, ParsedType::make(ObjectType),
/*EnteringContext=*/false, Template, AllowInjectedClassName);
return Template.get();
}
template <typename Derived>
ExprResult TreeTransform<Derived>::RebuildCXXOperatorCallExpr(
OverloadedOperatorKind Op, SourceLocation OpLoc, SourceLocation CalleeLoc,
bool RequiresADL, const UnresolvedSetImpl &Functions, Expr *First,
Expr *Second) {
bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
if (First->getObjectKind() == OK_ObjCProperty) {
BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
if (BinaryOperator::isAssignmentOp(Opc))
return SemaRef.PseudoObject().checkAssignment(/*Scope=*/nullptr, OpLoc,
Opc, First, Second);
ExprResult Result = SemaRef.CheckPlaceholderExpr(First);
if (Result.isInvalid())
return ExprError();
First = Result.get();
}
if (Second && Second->getObjectKind() == OK_ObjCProperty) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Second);
if (Result.isInvalid())
return ExprError();
Second = Result.get();
}
// Determine whether this should be a builtin operation.
if (Op == OO_Subscript) {
if (!First->getType()->isOverloadableType() &&
!Second->getType()->isOverloadableType())
return getSema().CreateBuiltinArraySubscriptExpr(First, CalleeLoc, Second,
OpLoc);
} else if (Op == OO_Arrow) {
// It is possible that the type refers to a RecoveryExpr created earlier
// in the tree transformation.
if (First->getType()->isDependentType())
return ExprError();
// -> is never a builtin operation.
return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc);
} else if (Second == nullptr || isPostIncDec) {
if (!First->getType()->isOverloadableType() ||
(Op == OO_Amp && getSema().isQualifiedMemberAccess(First))) {
// The argument is not of overloadable type, or this is an expression
// of the form &Class::member, so try to create a built-in unary
// operation.
UnaryOperatorKind Opc
= UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
}
} else {
if (!First->isTypeDependent() && !Second->isTypeDependent() &&
!First->getType()->isOverloadableType() &&
!Second->getType()->isOverloadableType()) {
// Neither of the arguments is type-dependent or has an overloadable
// type, so try to create a built-in binary operation.
BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
ExprResult Result
= SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
if (Result.isInvalid())
return ExprError();
return Result;
}
}
// Create the overloaded operator invocation for unary operators.
if (!Second || isPostIncDec) {
UnaryOperatorKind Opc
= UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First,
RequiresADL);
}
// Create the overloaded operator invocation for binary operators.
BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
ExprResult Result = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions,
First, Second, RequiresADL);
if (Result.isInvalid())
return ExprError();
return Result;
}
template<typename Derived>
ExprResult
TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
SourceLocation OperatorLoc,
bool isArrow,
CXXScopeSpec &SS,
TypeSourceInfo *ScopeType,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage Destroyed) {
QualType BaseType = Base->getType();
if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
(!isArrow && !BaseType->getAs<RecordType>()) ||
(isArrow && BaseType->getAs<PointerType>() &&
!BaseType->castAs<PointerType>()->getPointeeType()
->template getAs<RecordType>())){
// This pseudo-destructor expression is still a pseudo-destructor.
return SemaRef.BuildPseudoDestructorExpr(
Base, OperatorLoc, isArrow ? tok::arrow : tok::period, SS, ScopeType,
CCLoc, TildeLoc, Destroyed);
}
TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
SemaRef.Context.getCanonicalType(DestroyedType->getType())));
DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
NameInfo.setNamedTypeInfo(DestroyedType);
// The scope type is now known to be a valid nested name specifier
// component. Tack it on to the end of the nested name specifier.
if (ScopeType) {
if (!ScopeType->getType()->getAs<TagType>()) {
getSema().Diag(ScopeType->getTypeLoc().getBeginLoc(),
diag::err_expected_class_or_namespace)
<< ScopeType->getType() << getSema().getLangOpts().CPlusPlus;
return ExprError();
}
SS.Extend(SemaRef.Context, ScopeType->getTypeLoc(), CCLoc);
}
SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
return getSema().BuildMemberReferenceExpr(Base, BaseType,
OperatorLoc, isArrow,
SS, TemplateKWLoc,
/*FIXME: FirstQualifier*/ nullptr,
NameInfo,
/*TemplateArgs*/ nullptr,
/*S*/nullptr);
}
template<typename Derived>
StmtResult
TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) {
SourceLocation Loc = S->getBeginLoc();
CapturedDecl *CD = S->getCapturedDecl();
unsigned NumParams = CD->getNumParams();
unsigned ContextParamPos = CD->getContextParamPosition();
SmallVector<Sema::CapturedParamNameType, 4> Params;
for (unsigned I = 0; I < NumParams; ++I) {
if (I != ContextParamPos) {
Params.push_back(
std::make_pair(
CD->getParam(I)->getName(),
getDerived().TransformType(CD->getParam(I)->getType())));
} else {
Params.push_back(std::make_pair(StringRef(), QualType()));
}
}
getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr,
S->getCapturedRegionKind(), Params);
StmtResult Body;
{
Sema::CompoundScopeRAII CompoundScope(getSema());
Body = getDerived().TransformStmt(S->getCapturedStmt());
}
if (Body.isInvalid()) {
getSema().ActOnCapturedRegionError();
return StmtError();
}
return getSema().ActOnCapturedRegionEnd(Body.get());
}
template <typename Derived>
StmtResult
TreeTransform<Derived>::TransformSYCLKernelCallStmt(SYCLKernelCallStmt *S) {
// SYCLKernelCallStmt nodes are inserted upon completion of a (non-template)
// function definition or instantiation of a function template specialization
// and will therefore never appear in a dependent context.
llvm_unreachable("SYCL kernel call statement cannot appear in dependent "
"context");
}
template <typename Derived>
ExprResult TreeTransform<Derived>::TransformHLSLOutArgExpr(HLSLOutArgExpr *E) {
// We can transform the base expression and allow argument resolution to fill
// in the rest.
return getDerived().TransformExpr(E->getArgLValue());
}
} // end namespace clang
#endif // LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H