llvm-project/clang/test/SemaCXX/designated-initializers-base-class.cpp
Richard Smith 5030928d60 [c++20] Implement semantic restrictions for C++20 designated
initializers.

This has some interesting interactions with our existing extensions to
support C99 designated initializers as an extension in C++. Those are
resolved as follows:

 * We continue to permit the full breadth of C99 designated initializers
   in C++, with the exception that we disallow a partial overwrite of an
   initializer with a non-trivially-destructible type. (Full overwrite
   is OK, because we won't run the first initializer at all.)

 * The C99 extensions are disallowed in SFINAE contexts and during
   overload resolution, where they could change the meaning of valid
   programs.

 * C++20 disallows reordering of initializers. We only check for that for
   the simple cases that the C++20 rules permit (designators of the form
   '.field_name =' and continue to allow reordering in other cases).
   It would be nice to improve this behavior in future.

 * All C99 designated initializer extensions produce a warning by
   default in C++20 mode. People are going to learn the C++ rules based
   on what Clang diagnoses, so it's important we diagnose these properly
   by default.

 * In C++ <= 17, we apply the C++20 rules rather than the C99 rules, and
   so still diagnose C99 extensions as described above. We continue to
   accept designated C++20-compatible initializers in C++ <= 17 silently
   by default (but naturally still reject under -pedantic-errors).

This is not a complete implementation of P0329R4. In particular, that
paper introduces new non-C99-compatible syntax { .field { init } }, and
we do not support that yet.

This is based on a previous patch by Don Hinton, though I've made
substantial changes when addressing the above interactions.

Differential Revision: https://reviews.llvm.org/D59754

llvm-svn: 370544
2019-08-30 22:52:55 +00:00

12 lines
224 B
C++

// RUN: %clang_cc1 %s -std=c++1z -fsyntax-only -verify -Winitializer-overrides
struct B {
int x;
};
struct D : B {
int y;
};
void test() { D d = {1, .y = 2}; } // expected-warning {{C99 extension}} expected-note {{}}