llvm-project/mlir/lib/Conversion/VectorToLoops/ConvertVectorToLoops.cpp
Nicolas Vasilache 7923abd357 Add a layer of EDSC for linalg.GenericOp
This will be evolved into a simple programming model for custom ops and custom layers in followup CLs.

This CL also deletes the obsolete tablegen's reference-impl.td that was using EDSCs.

PiperOrigin-RevId: 285459545
2019-12-13 16:57:57 -08:00

367 lines
14 KiB
C++

//===- VectorToLoops.cpp - Conversion from Vector to mix of Loops and Std -===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements target-dependent lowering of vector transfer operations.
//
//===----------------------------------------------------------------------===//
#include <type_traits>
#include "mlir/Conversion/VectorToLoops/ConvertVectorToLoops.h"
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/EDSC/Builders.h"
#include "mlir/EDSC/Helpers.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/Types.h"
using namespace mlir;
using vector::TransferReadOp;
using vector::TransferWriteOp;
namespace {
using vector_type_cast = edsc::intrinsics::ValueBuilder<vector::TypeCastOp>;
/// Implements lowering of TransferReadOp and TransferWriteOp to a
/// proper abstraction for the hardware.
///
/// For now, we only emit a simple loop nest that performs clipped pointwise
/// copies from a remote to a locally allocated memory.
///
/// Consider the case:
///
/// ```mlir
/// // Read the slice `%A[%i0, %i1:%i1+256, %i2:%i2+32]` into
/// // vector<32x256xf32> and pad with %f0 to handle the boundary case:
/// %f0 = constant 0.0f : f32
/// loop.for %i0 = 0 to %0 {
/// loop.for %i1 = 0 to %1 step %c256 {
/// loop.for %i2 = 0 to %2 step %c32 {
/// %v = vector.transfer_read %A[%i0, %i1, %i2], %f0
/// {permutation_map: (d0, d1, d2) -> (d2, d1)} :
/// memref<?x?x?xf32>, vector<32x256xf32>
/// }}}
/// ```
///
/// The rewriters construct loop and indices that access MemRef A in a pattern
/// resembling the following (while guaranteeing an always full-tile
/// abstraction):
///
/// ```mlir
/// loop.for %d2 = 0 to %c256 {
/// loop.for %d1 = 0 to %c32 {
/// %s = %A[%i0, %i1 + %d1, %i2 + %d2] : f32
/// %tmp[%d2, %d1] = %s
/// }
/// }
/// ```
///
/// In the current state, only a clipping transfer is implemented by `clip`,
/// which creates individual indexing expressions of the form:
///
/// ```mlir-dsc
/// auto condMax = i + ii < N;
/// auto max = select(condMax, i + ii, N - one)
/// auto cond = i + ii < zero;
/// select(cond, zero, max);
/// ```
///
/// In the future, clipping should not be the only way and instead we should
/// load vectors + mask them. Similarly on the write side, load/mask/store for
/// implementing RMW behavior.
///
/// Lowers TransferOp into a combination of:
/// 1. local memory allocation;
/// 2. perfect loop nest over:
/// a. scalar load/stores from local buffers (viewed as a scalar memref);
/// a. scalar store/load to original memref (with clipping).
/// 3. vector_load/store
/// 4. local memory deallocation.
/// Minor variations occur depending on whether a TransferReadOp or
/// a TransferWriteOp is rewritten.
template <typename TransferOpTy>
struct VectorTransferRewriter : public RewritePattern {
explicit VectorTransferRewriter(MLIRContext *context)
: RewritePattern(TransferOpTy::getOperationName(), 1, context) {}
/// Used for staging the transfer in a local scalar buffer.
MemRefType tmpMemRefType(TransferOpTy transfer) const {
auto vectorType = transfer.getVectorType();
return MemRefType::get(vectorType.getShape(), vectorType.getElementType(),
{}, 0);
}
/// Performs the rewrite.
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override;
};
/// Analyzes the `transfer` to find an access dimension along the fastest remote
/// MemRef dimension. If such a dimension with coalescing properties is found,
/// `pivs` and `vectorView` are swapped so that the invocation of
/// LoopNestBuilder captures it in the innermost loop.
template <typename TransferOpTy>
void coalesceCopy(TransferOpTy transfer,
SmallVectorImpl<edsc::ValueHandle *> *pivs,
edsc::VectorView *vectorView) {
// rank of the remote memory access, coalescing behavior occurs on the
// innermost memory dimension.
auto remoteRank = transfer.getMemRefType().getRank();
// Iterate over the results expressions of the permutation map to determine
// the loop order for creating pointwise copies between remote and local
// memories.
int coalescedIdx = -1;
auto exprs = transfer.permutation_map().getResults();
for (auto en : llvm::enumerate(exprs)) {
auto dim = en.value().template dyn_cast<AffineDimExpr>();
if (!dim) {
continue;
}
auto memRefDim = dim.getPosition();
if (memRefDim == remoteRank - 1) {
// memRefDim has coalescing properties, it should be swapped in the last
// position.
assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices");
coalescedIdx = en.index();
}
}
if (coalescedIdx >= 0) {
std::swap(pivs->back(), (*pivs)[coalescedIdx]);
vectorView->swapRanges(pivs->size() - 1, coalescedIdx);
}
}
/// Emits remote memory accesses that are clipped to the boundaries of the
/// MemRef.
template <typename TransferOpTy>
llvm::SmallVector<edsc::ValueHandle, 8> clip(TransferOpTy transfer,
edsc::MemRefView &view,
ArrayRef<edsc::IndexHandle> ivs) {
using namespace mlir::edsc;
using namespace edsc::op;
using edsc::intrinsics::select;
IndexHandle zero(index_t(0)), one(index_t(1));
llvm::SmallVector<edsc::ValueHandle, 8> memRefAccess(transfer.indices());
llvm::SmallVector<edsc::ValueHandle, 8> clippedScalarAccessExprs(
memRefAccess.size(), edsc::IndexHandle());
// Indices accessing to remote memory are clipped and their expressions are
// returned in clippedScalarAccessExprs.
for (unsigned memRefDim = 0; memRefDim < clippedScalarAccessExprs.size();
++memRefDim) {
// Linear search on a small number of entries.
int loopIndex = -1;
auto exprs = transfer.permutation_map().getResults();
for (auto en : llvm::enumerate(exprs)) {
auto expr = en.value();
auto dim = expr.template dyn_cast<AffineDimExpr>();
// Sanity check.
assert(
(dim || expr.template cast<AffineConstantExpr>().getValue() == 0) &&
"Expected dim or 0 in permutationMap");
if (dim && memRefDim == dim.getPosition()) {
loopIndex = en.index();
break;
}
}
// We cannot distinguish atm between unrolled dimensions that implement
// the "always full" tile abstraction and need clipping from the other
// ones. So we conservatively clip everything.
auto N = view.ub(memRefDim);
auto i = memRefAccess[memRefDim];
if (loopIndex < 0) {
auto N_minus_1 = N - one;
auto select_1 = select(i < N, i, N_minus_1);
clippedScalarAccessExprs[memRefDim] = select(i < zero, zero, select_1);
} else {
auto ii = ivs[loopIndex];
auto i_plus_ii = i + ii;
auto N_minus_1 = N - one;
auto select_1 = select(i_plus_ii < N, i_plus_ii, N_minus_1);
clippedScalarAccessExprs[memRefDim] =
select(i_plus_ii < zero, zero, select_1);
}
}
return clippedScalarAccessExprs;
}
/// Lowers TransferReadOp into a combination of:
/// 1. local memory allocation;
/// 2. perfect loop nest over:
/// a. scalar load from local buffers (viewed as a scalar memref);
/// a. scalar store to original memref (with clipping).
/// 3. vector_load from local buffer (viewed as a memref<1 x vector>);
/// 4. local memory deallocation.
///
/// Lowers the data transfer part of a TransferReadOp while ensuring no
/// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
/// clipping. This means that a given value in memory can be read multiple
/// times and concurrently.
///
/// Important notes about clipping and "full-tiles only" abstraction:
/// =================================================================
/// When using clipping for dealing with boundary conditions, the same edge
/// value will appear multiple times (a.k.a edge padding). This is fine if the
/// subsequent vector operations are all data-parallel but **is generally
/// incorrect** in the presence of reductions or extract operations.
///
/// More generally, clipping is a scalar abstraction that is expected to work
/// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs.
/// To deal with real vector_load and DMAs, a "padded allocation + view"
/// abstraction with the ability to read out-of-memref-bounds (but still within
/// the allocated region) is necessary.
///
/// Whether using scalar loops or vector_load/DMAs to perform the transfer,
/// junk values will be materialized in the vectors and generally need to be
/// filtered out and replaced by the "neutral element". This neutral element is
/// op-dependent so, in the future, we expect to create a vector filter and
/// apply it to a splatted constant vector with the proper neutral element at
/// each ssa-use. This filtering is not necessary for pure data-parallel
/// operations.
///
/// In the case of vector_store/DMAs, Read-Modify-Write will be required, which
/// also have concurrency implications. Note that by using clipped scalar stores
/// in the presence of data-parallel only operations, we generate code that
/// writes the same value multiple time on the edge locations.
///
/// TODO(ntv): implement alternatives to clipping.
/// TODO(ntv): support non-data-parallel operations.
/// Performs the rewrite.
template <>
PatternMatchResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
using namespace mlir::edsc;
using namespace mlir::edsc::op;
using namespace mlir::edsc::intrinsics;
using IndexedValue =
TemplatedIndexedValue<intrinsics::std_load, intrinsics::std_store>;
TransferReadOp transfer = cast<TransferReadOp>(op);
// 1. Setup all the captures.
ScopedContext scope(rewriter, transfer.getLoc());
IndexedValue remote(transfer.memref());
MemRefView view(transfer.memref());
VectorView vectorView(transfer.vector());
SmallVector<IndexHandle, 8> ivs = makeIndexHandles(vectorView.rank());
SmallVector<ValueHandle *, 8> pivs =
makeHandlePointers(MutableArrayRef<IndexHandle>(ivs));
coalesceCopy(transfer, &pivs, &vectorView);
auto lbs = vectorView.getLbs();
auto ubs = vectorView.getUbs();
SmallVector<ValueHandle, 8> steps;
steps.reserve(vectorView.getSteps().size());
for (auto step : vectorView.getSteps())
steps.push_back(constant_index(step));
// 2. Emit alloc-copy-load-dealloc.
ValueHandle tmp = alloc(tmpMemRefType(transfer));
IndexedValue local(tmp);
ValueHandle vec = vector_type_cast(tmp);
LoopNestBuilder(pivs, lbs, ubs, steps)([&] {
// Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
local(ivs) = remote(clip(transfer, view, ivs));
});
ValueHandle vectorValue = std_load(vec);
(dealloc(tmp)); // vexing parse
// 3. Propagate.
rewriter.replaceOp(op, vectorValue.getValue());
return matchSuccess();
}
/// Lowers TransferWriteOp into a combination of:
/// 1. local memory allocation;
/// 2. vector_store to local buffer (viewed as a memref<1 x vector>);
/// 3. perfect loop nest over:
/// a. scalar load from local buffers (viewed as a scalar memref);
/// a. scalar store to original memref (with clipping).
/// 4. local memory deallocation.
///
/// More specifically, lowers the data transfer part while ensuring no
/// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
/// clipping. This means that a given value in memory can be written to multiple
/// times and concurrently.
///
/// See `Important notes about clipping and full-tiles only abstraction` in the
/// description of `readClipped` above.
///
/// TODO(ntv): implement alternatives to clipping.
/// TODO(ntv): support non-data-parallel operations.
template <>
PatternMatchResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
using namespace mlir::edsc;
using namespace mlir::edsc::op;
using namespace mlir::edsc::intrinsics;
using IndexedValue =
TemplatedIndexedValue<intrinsics::std_load, intrinsics::std_store>;
TransferWriteOp transfer = cast<TransferWriteOp>(op);
// 1. Setup all the captures.
ScopedContext scope(rewriter, transfer.getLoc());
IndexedValue remote(transfer.memref());
MemRefView view(transfer.memref());
ValueHandle vectorValue(transfer.vector());
VectorView vectorView(transfer.vector());
SmallVector<IndexHandle, 8> ivs = makeIndexHandles(vectorView.rank());
SmallVector<ValueHandle *, 8> pivs =
makeHandlePointers(MutableArrayRef<IndexHandle>(ivs));
coalesceCopy(transfer, &pivs, &vectorView);
auto lbs = vectorView.getLbs();
auto ubs = vectorView.getUbs();
SmallVector<ValueHandle, 8> steps;
steps.reserve(vectorView.getSteps().size());
for (auto step : vectorView.getSteps())
steps.push_back(constant_index(step));
// 2. Emit alloc-store-copy-dealloc.
ValueHandle tmp = alloc(tmpMemRefType(transfer));
IndexedValue local(tmp);
ValueHandle vec = vector_type_cast(tmp);
std_store(vectorValue, vec);
LoopNestBuilder(pivs, lbs, ubs, steps)([&] {
// Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
remote(clip(transfer, view, ivs)) = local(ivs);
});
(dealloc(tmp)); // vexing parse...
rewriter.eraseOp(op);
return matchSuccess();
}
} // namespace
void mlir::populateVectorToAffineLoopsConversionPatterns(
MLIRContext *context, OwningRewritePatternList &patterns) {
patterns.insert<VectorTransferRewriter<vector::TransferReadOp>,
VectorTransferRewriter<vector::TransferWriteOp>>(context);
}