mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-28 06:16:06 +00:00

lib dir and move all the libraries into it. This follows the main llvm tree, and allows the libraries to be built in parallel. The top level now enforces that all the libs are built before Driver, but we don't care what order the libs are built in. This speeds up parallel builds, particularly incremental ones. llvm-svn: 48402
628 lines
23 KiB
C++
628 lines
23 KiB
C++
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Constant Expr nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/AST.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN ConstExprEmitter :
|
|
public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
|
|
CodeGenModule &CGM;
|
|
CodeGenFunction *CGF;
|
|
public:
|
|
ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
|
|
: CGM(cgm), CGF(cgf) {
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
llvm::Constant *VisitStmt(Stmt *S) {
|
|
CGM.WarnUnsupported(S, "constant expression");
|
|
QualType T = cast<Expr>(S)->getType();
|
|
return llvm::UndefValue::get(CGM.getTypes().ConvertType(T));
|
|
}
|
|
|
|
llvm::Constant *VisitParenExpr(ParenExpr *PE) {
|
|
return Visit(PE->getSubExpr());
|
|
}
|
|
|
|
// Leaves
|
|
llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *E) {
|
|
return llvm::ConstantInt::get(E->getValue());
|
|
}
|
|
llvm::Constant *VisitFloatingLiteral(const FloatingLiteral *E) {
|
|
return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
llvm::Constant *VisitCharacterLiteral(const CharacterLiteral *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
llvm::Constant *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
|
|
llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
return Visit(E->getInitializer());
|
|
}
|
|
|
|
llvm::Constant *VisitCastExpr(const CastExpr* E) {
|
|
llvm::Constant *C = Visit(E->getSubExpr());
|
|
|
|
return EmitConversion(C, E->getSubExpr()->getType(), E->getType());
|
|
}
|
|
|
|
llvm::Constant *EmitArrayInitialization(InitListExpr *ILE,
|
|
const llvm::ArrayType *AType) {
|
|
std::vector<llvm::Constant*> Elts;
|
|
unsigned NumInitElements = ILE->getNumInits();
|
|
// FIXME: Check for wide strings
|
|
if (NumInitElements > 0 && isa<StringLiteral>(ILE->getInit(0)) &&
|
|
ILE->getType()->getAsArrayType()->getElementType()->isCharType())
|
|
return Visit(ILE->getInit(0));
|
|
const llvm::Type *ElemTy = AType->getElementType();
|
|
unsigned NumElements = AType->getNumElements();
|
|
|
|
// Initialising an array requires us to automatically
|
|
// initialise any elements that have not been initialised explicitly
|
|
unsigned NumInitableElts = std::min(NumInitElements, NumElements);
|
|
|
|
// Copy initializer elements.
|
|
unsigned i = 0;
|
|
for (; i < NumInitableElts; ++i) {
|
|
|
|
llvm::Constant *C = Visit(ILE->getInit(i));
|
|
// FIXME: Remove this when sema of initializers is finished (and the code
|
|
// above).
|
|
if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) {
|
|
if (ILE->getType()->isVoidType()) return 0;
|
|
return llvm::UndefValue::get(AType);
|
|
}
|
|
assert (C && "Failed to create initializer expression");
|
|
Elts.push_back(C);
|
|
}
|
|
|
|
// Initialize remaining array elements.
|
|
for (; i < NumElements; ++i)
|
|
Elts.push_back(llvm::Constant::getNullValue(ElemTy));
|
|
|
|
return llvm::ConstantArray::get(AType, Elts);
|
|
}
|
|
|
|
llvm::Constant *EmitStructInitialization(InitListExpr *ILE,
|
|
const llvm::StructType *SType) {
|
|
|
|
TagDecl *TD = ILE->getType()->getAsRecordType()->getDecl();
|
|
std::vector<llvm::Constant*> Elts;
|
|
const CGRecordLayout *CGR = CGM.getTypes().getCGRecordLayout(TD);
|
|
unsigned NumInitElements = ILE->getNumInits();
|
|
unsigned NumElements = SType->getNumElements();
|
|
|
|
// Initialising an structure requires us to automatically
|
|
// initialise any elements that have not been initialised explicitly
|
|
unsigned NumInitableElts = std::min(NumInitElements, NumElements);
|
|
|
|
// Copy initializer elements. Skip padding fields.
|
|
unsigned EltNo = 0; // Element no in ILE
|
|
unsigned FieldNo = 0; // Field no in SType
|
|
while (EltNo < NumInitableElts) {
|
|
|
|
// Zero initialize padding field.
|
|
if (CGR->isPaddingField(FieldNo)) {
|
|
const llvm::Type *FieldTy = SType->getElementType(FieldNo);
|
|
Elts.push_back(llvm::Constant::getNullValue(FieldTy));
|
|
FieldNo++;
|
|
continue;
|
|
}
|
|
|
|
llvm::Constant *C = Visit(ILE->getInit(EltNo));
|
|
// FIXME: Remove this when sema of initializers is finished (and the code
|
|
// above).
|
|
if (C == 0 && ILE->getInit(EltNo)->getType()->isVoidType()) {
|
|
if (ILE->getType()->isVoidType()) return 0;
|
|
return llvm::UndefValue::get(SType);
|
|
}
|
|
assert (C && "Failed to create initializer expression");
|
|
Elts.push_back(C);
|
|
EltNo++;
|
|
FieldNo++;
|
|
}
|
|
|
|
// Initialize remaining structure elements.
|
|
for (unsigned i = Elts.size(); i < NumElements; ++i) {
|
|
const llvm::Type *FieldTy = SType->getElementType(i);
|
|
Elts.push_back(llvm::Constant::getNullValue(FieldTy));
|
|
}
|
|
|
|
return llvm::ConstantStruct::get(SType, Elts);
|
|
}
|
|
|
|
llvm::Constant *EmitVectorInitialization(InitListExpr *ILE,
|
|
const llvm::VectorType *VType) {
|
|
|
|
std::vector<llvm::Constant*> Elts;
|
|
unsigned NumInitElements = ILE->getNumInits();
|
|
unsigned NumElements = VType->getNumElements();
|
|
|
|
assert (NumInitElements == NumElements
|
|
&& "Unsufficient vector init elelments");
|
|
// Copy initializer elements.
|
|
unsigned i = 0;
|
|
for (; i < NumElements; ++i) {
|
|
|
|
llvm::Constant *C = Visit(ILE->getInit(i));
|
|
// FIXME: Remove this when sema of initializers is finished (and the code
|
|
// above).
|
|
if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) {
|
|
if (ILE->getType()->isVoidType()) return 0;
|
|
return llvm::UndefValue::get(VType);
|
|
}
|
|
assert (C && "Failed to create initializer expression");
|
|
Elts.push_back(C);
|
|
}
|
|
|
|
return llvm::ConstantVector::get(VType, Elts);
|
|
}
|
|
|
|
llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
|
|
const llvm::CompositeType *CType =
|
|
dyn_cast<llvm::CompositeType>(ConvertType(ILE->getType()));
|
|
|
|
if (!CType) {
|
|
// We have a scalar in braces. Just use the first element.
|
|
return Visit(ILE->getInit(0));
|
|
}
|
|
|
|
if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(CType))
|
|
return EmitArrayInitialization(ILE, AType);
|
|
|
|
if (const llvm::StructType *SType = dyn_cast<llvm::StructType>(CType))
|
|
return EmitStructInitialization(ILE, SType);
|
|
|
|
if (const llvm::VectorType *VType = dyn_cast<llvm::VectorType>(CType))
|
|
return EmitVectorInitialization(ILE, VType);
|
|
|
|
// Make sure we have an array at this point
|
|
assert(0 && "Unable to handle InitListExpr");
|
|
// Get rid of control reaches end of void function warning.
|
|
// Not reached.
|
|
return 0;
|
|
}
|
|
|
|
llvm::Constant *VisitImplicitCastExpr(ImplicitCastExpr *ICExpr) {
|
|
Expr* SExpr = ICExpr->getSubExpr();
|
|
QualType SType = SExpr->getType();
|
|
llvm::Constant *C; // the intermediate expression
|
|
QualType T; // the type of the intermediate expression
|
|
if (SType->isArrayType()) {
|
|
// Arrays decay to a pointer to the first element
|
|
// VLAs would require special handling, but they can't occur here
|
|
C = EmitLValue(SExpr);
|
|
llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
|
|
llvm::Constant *Ops[] = {Idx0, Idx0};
|
|
C = llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
|
|
|
|
QualType ElemType = SType->getAsArrayType()->getElementType();
|
|
T = CGM.getContext().getPointerType(ElemType);
|
|
} else if (SType->isFunctionType()) {
|
|
// Function types decay to a pointer to the function
|
|
C = EmitLValue(SExpr);
|
|
T = CGM.getContext().getPointerType(SType);
|
|
} else {
|
|
C = Visit(SExpr);
|
|
T = SType;
|
|
}
|
|
|
|
// Perform the conversion; note that an implicit cast can both promote
|
|
// and convert an array/function
|
|
return EmitConversion(C, T, ICExpr->getType());
|
|
}
|
|
|
|
llvm::Constant *VisitStringLiteral(StringLiteral *E) {
|
|
const char *StrData = E->getStrData();
|
|
unsigned Len = E->getByteLength();
|
|
assert(!E->getType()->isPointerType() && "Strings are always arrays");
|
|
|
|
// Otherwise this must be a string initializing an array in a static
|
|
// initializer. Don't emit it as the address of the string, emit the string
|
|
// data itself as an inline array.
|
|
const ConstantArrayType *CAT = E->getType()->getAsConstantArrayType();
|
|
assert(CAT && "String isn't pointer or array!");
|
|
|
|
std::string Str(StrData, StrData + Len);
|
|
// Null terminate the string before potentially truncating it.
|
|
// FIXME: What about wchar_t strings?
|
|
Str.push_back(0);
|
|
|
|
uint64_t RealLen = CAT->getSize().getZExtValue();
|
|
// String or grow the initializer to the required size.
|
|
if (RealLen != Str.size())
|
|
Str.resize(RealLen);
|
|
|
|
return llvm::ConstantArray::get(Str, false);
|
|
}
|
|
|
|
llvm::Constant *VisitDeclRefExpr(DeclRefExpr *E) {
|
|
const ValueDecl *Decl = E->getDecl();
|
|
if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(Decl))
|
|
return llvm::ConstantInt::get(EC->getInitVal());
|
|
assert(0 && "Unsupported decl ref type!");
|
|
return 0;
|
|
}
|
|
|
|
llvm::Constant *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
|
|
return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
|
|
}
|
|
|
|
// Unary operators
|
|
llvm::Constant *VisitUnaryPlus(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
llvm::Constant *VisitUnaryMinus(const UnaryOperator *E) {
|
|
return llvm::ConstantExpr::getNeg(Visit(E->getSubExpr()));
|
|
}
|
|
llvm::Constant *VisitUnaryNot(const UnaryOperator *E) {
|
|
return llvm::ConstantExpr::getNot(Visit(E->getSubExpr()));
|
|
}
|
|
llvm::Constant *VisitUnaryLNot(const UnaryOperator *E) {
|
|
llvm::Constant *SubExpr = Visit(E->getSubExpr());
|
|
|
|
if (E->getSubExpr()->getType()->isRealFloatingType()) {
|
|
// Compare against 0.0 for fp scalars.
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType());
|
|
SubExpr = llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UEQ, SubExpr,
|
|
Zero);
|
|
} else {
|
|
assert((E->getSubExpr()->getType()->isIntegerType() ||
|
|
E->getSubExpr()->getType()->isPointerType()) &&
|
|
"Unknown scalar type to convert");
|
|
// Compare against an integer or pointer null.
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType());
|
|
SubExpr = llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, SubExpr,
|
|
Zero);
|
|
}
|
|
|
|
return llvm::ConstantExpr::getZExt(SubExpr, ConvertType(E->getType()));
|
|
}
|
|
llvm::Constant *VisitUnarySizeOf(const UnaryOperator *E) {
|
|
return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
|
|
}
|
|
llvm::Constant *VisitUnaryAlignOf(const UnaryOperator *E) {
|
|
return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
|
|
}
|
|
llvm::Constant *VisitUnaryAddrOf(const UnaryOperator *E) {
|
|
return EmitLValue(E->getSubExpr());
|
|
}
|
|
llvm::Constant *VisitUnaryOffsetOf(const UnaryOperator *E) {
|
|
int64_t Val = E->evaluateOffsetOf(CGM.getContext());
|
|
|
|
assert(E->getType()->isIntegerType() && "Result type must be an integer!");
|
|
|
|
uint32_t ResultWidth =
|
|
static_cast<uint32_t>(CGM.getContext().getTypeSize(E->getType()));
|
|
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
|
|
}
|
|
|
|
// Binary operators
|
|
llvm::Constant *VisitBinOr(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
return llvm::ConstantExpr::getOr(LHS, RHS);
|
|
}
|
|
llvm::Constant *VisitBinSub(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
if (!isa<llvm::PointerType>(RHS->getType())) {
|
|
// pointer - int
|
|
if (isa<llvm::PointerType>(LHS->getType())) {
|
|
llvm::Constant *Idx = llvm::ConstantExpr::getNeg(RHS);
|
|
|
|
return llvm::ConstantExpr::getGetElementPtr(LHS, &Idx, 1);
|
|
}
|
|
|
|
// int - int
|
|
return llvm::ConstantExpr::getSub(LHS, RHS);
|
|
}
|
|
|
|
assert(0 && "Unhandled bin sub case!");
|
|
return 0;
|
|
}
|
|
|
|
llvm::Constant *VisitBinShl(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
|
|
// RHS to the same size as the LHS.
|
|
if (LHS->getType() != RHS->getType())
|
|
RHS = llvm::ConstantExpr::getIntegerCast(RHS, LHS->getType(), false);
|
|
|
|
return llvm::ConstantExpr::getShl(LHS, RHS);
|
|
}
|
|
|
|
llvm::Constant *VisitBinMul(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
return llvm::ConstantExpr::getMul(LHS, RHS);
|
|
}
|
|
|
|
llvm::Constant *VisitBinDiv(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
if (LHS->getType()->isFPOrFPVector())
|
|
return llvm::ConstantExpr::getFDiv(LHS, RHS);
|
|
else if (E->getType()->isUnsignedIntegerType())
|
|
return llvm::ConstantExpr::getUDiv(LHS, RHS);
|
|
else
|
|
return llvm::ConstantExpr::getSDiv(LHS, RHS);
|
|
}
|
|
|
|
llvm::Constant *VisitBinAdd(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
if (!E->getType()->isPointerType())
|
|
return llvm::ConstantExpr::getAdd(LHS, RHS);
|
|
|
|
llvm::Constant *Ptr, *Idx;
|
|
if (isa<llvm::PointerType>(LHS->getType())) { // pointer + int
|
|
Ptr = LHS;
|
|
Idx = RHS;
|
|
} else { // int + pointer
|
|
Ptr = RHS;
|
|
Idx = LHS;
|
|
}
|
|
|
|
return llvm::ConstantExpr::getGetElementPtr(Ptr, &Idx, 1);
|
|
}
|
|
|
|
llvm::Constant *VisitBinAnd(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
return llvm::ConstantExpr::getAnd(LHS, RHS);
|
|
}
|
|
|
|
// Utility methods
|
|
const llvm::Type *ConvertType(QualType T) {
|
|
return CGM.getTypes().ConvertType(T);
|
|
}
|
|
|
|
llvm::Constant *EmitConversionToBool(llvm::Constant *Src, QualType SrcType) {
|
|
assert(SrcType->isCanonical() && "EmitConversion strips typedefs");
|
|
|
|
if (SrcType->isRealFloatingType()) {
|
|
// Compare against 0.0 for fp scalars.
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType());
|
|
return llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, Src, Zero);
|
|
}
|
|
|
|
assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
|
|
"Unknown scalar type to convert");
|
|
|
|
// Compare against an integer or pointer null.
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType());
|
|
return llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, Src, Zero);
|
|
}
|
|
|
|
llvm::Constant *EmitConversion(llvm::Constant *Src, QualType SrcType,
|
|
QualType DstType) {
|
|
SrcType = SrcType.getCanonicalType();
|
|
DstType = DstType.getCanonicalType();
|
|
if (SrcType == DstType) return Src;
|
|
|
|
// Handle conversions to bool first, they are special: comparisons against 0.
|
|
if (DstType->isBooleanType())
|
|
return EmitConversionToBool(Src, SrcType);
|
|
|
|
const llvm::Type *DstTy = ConvertType(DstType);
|
|
|
|
// Ignore conversions like int -> uint.
|
|
if (Src->getType() == DstTy)
|
|
return Src;
|
|
|
|
// Handle pointer conversions next: pointers can only be converted to/from
|
|
// other pointers and integers.
|
|
if (isa<PointerType>(DstType)) {
|
|
// The source value may be an integer, or a pointer.
|
|
if (isa<llvm::PointerType>(Src->getType()))
|
|
return llvm::ConstantExpr::getBitCast(Src, DstTy);
|
|
assert(SrcType->isIntegerType() &&"Not ptr->ptr or int->ptr conversion?");
|
|
return llvm::ConstantExpr::getIntToPtr(Src, DstTy);
|
|
}
|
|
|
|
if (isa<PointerType>(SrcType)) {
|
|
// Must be an ptr to int cast.
|
|
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
|
|
return llvm::ConstantExpr::getPtrToInt(Src, DstTy);
|
|
}
|
|
|
|
// A scalar source can be splatted to a vector of the same element type
|
|
if (isa<llvm::VectorType>(DstTy) && !isa<VectorType>(SrcType)) {
|
|
const llvm::VectorType *VT = cast<llvm::VectorType>(DstTy);
|
|
assert((VT->getElementType() == Src->getType()) &&
|
|
"Vector element type must match scalar type to splat.");
|
|
unsigned NumElements = DstType->getAsVectorType()->getNumElements();
|
|
llvm::SmallVector<llvm::Constant*, 16> Elements;
|
|
for (unsigned i = 0; i < NumElements; i++)
|
|
Elements.push_back(Src);
|
|
|
|
return llvm::ConstantVector::get(&Elements[0], NumElements);
|
|
}
|
|
|
|
if (isa<llvm::VectorType>(Src->getType()) ||
|
|
isa<llvm::VectorType>(DstTy)) {
|
|
return llvm::ConstantExpr::getBitCast(Src, DstTy);
|
|
}
|
|
|
|
// Finally, we have the arithmetic types: real int/float.
|
|
if (isa<llvm::IntegerType>(Src->getType())) {
|
|
bool InputSigned = SrcType->isSignedIntegerType();
|
|
if (isa<llvm::IntegerType>(DstTy))
|
|
return llvm::ConstantExpr::getIntegerCast(Src, DstTy, InputSigned);
|
|
else if (InputSigned)
|
|
return llvm::ConstantExpr::getSIToFP(Src, DstTy);
|
|
else
|
|
return llvm::ConstantExpr::getUIToFP(Src, DstTy);
|
|
}
|
|
|
|
assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
|
|
if (isa<llvm::IntegerType>(DstTy)) {
|
|
if (DstType->isSignedIntegerType())
|
|
return llvm::ConstantExpr::getFPToSI(Src, DstTy);
|
|
else
|
|
return llvm::ConstantExpr::getFPToUI(Src, DstTy);
|
|
}
|
|
|
|
assert(DstTy->isFloatingPoint() && "Unknown real conversion");
|
|
if (DstTy->getTypeID() < Src->getType()->getTypeID())
|
|
return llvm::ConstantExpr::getFPTrunc(Src, DstTy);
|
|
else
|
|
return llvm::ConstantExpr::getFPExtend(Src, DstTy);
|
|
}
|
|
|
|
llvm::Constant *EmitSizeAlignOf(QualType TypeToSize,
|
|
QualType RetType, bool isSizeOf) {
|
|
std::pair<uint64_t, unsigned> Info =
|
|
CGM.getContext().getTypeInfo(TypeToSize);
|
|
|
|
uint64_t Val = isSizeOf ? Info.first : Info.second;
|
|
Val /= 8; // Return size in bytes, not bits.
|
|
|
|
assert(RetType->isIntegerType() && "Result type must be an integer!");
|
|
|
|
uint32_t ResultWidth =
|
|
static_cast<uint32_t>(CGM.getContext().getTypeSize(RetType));
|
|
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
|
|
}
|
|
|
|
llvm::Constant *EmitLValue(Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
default: break;
|
|
case Expr::ParenExprClass:
|
|
// Elide parenthesis
|
|
return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
|
|
case Expr::CompoundLiteralExprClass: {
|
|
// Note that due to the nature of compound literals, this is guaranteed
|
|
// to be the only use of the variable, so we just generate it here.
|
|
CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
|
|
llvm::Constant* C = Visit(CLE->getInitializer());
|
|
C = new llvm::GlobalVariable(C->getType(),E->getType().isConstQualified(),
|
|
llvm::GlobalValue::InternalLinkage,
|
|
C, ".compoundliteral", &CGM.getModule());
|
|
return C;
|
|
}
|
|
case Expr::DeclRefExprClass: {
|
|
ValueDecl *Decl = cast<DeclRefExpr>(E)->getDecl();
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
|
|
return CGM.GetAddrOfFunctionDecl(FD, false);
|
|
if (const FileVarDecl* VD = dyn_cast<FileVarDecl>(Decl))
|
|
return CGM.GetAddrOfGlobalVar(VD, false);
|
|
if (const BlockVarDecl* BVD = dyn_cast<BlockVarDecl>(Decl)) {
|
|
assert(CGF && "Can't access static local vars without CGF");
|
|
return CGF->GetAddrOfStaticLocalVar(BVD);
|
|
}
|
|
break;
|
|
}
|
|
case Expr::MemberExprClass: {
|
|
MemberExpr* ME = cast<MemberExpr>(E);
|
|
llvm::Constant *Base;
|
|
if (ME->isArrow())
|
|
Base = Visit(ME->getBase());
|
|
else
|
|
Base = EmitLValue(ME->getBase());
|
|
|
|
unsigned FieldNumber = CGM.getTypes().getLLVMFieldNo(ME->getMemberDecl());
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
|
|
llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty,
|
|
FieldNumber);
|
|
llvm::Value *Ops[] = {Zero, Idx};
|
|
return llvm::ConstantExpr::getGetElementPtr(Base, Ops, 2);
|
|
}
|
|
case Expr::ArraySubscriptExprClass: {
|
|
ArraySubscriptExpr* ASExpr = cast<ArraySubscriptExpr>(E);
|
|
llvm::Constant *Base = Visit(ASExpr->getBase());
|
|
llvm::Constant *Index = Visit(ASExpr->getIdx());
|
|
assert(!ASExpr->getBase()->getType()->isVectorType() &&
|
|
"Taking the address of a vector component is illegal!");
|
|
return llvm::ConstantExpr::getGetElementPtr(Base, &Index, 1);
|
|
}
|
|
case Expr::StringLiteralClass: {
|
|
StringLiteral *String = cast<StringLiteral>(E);
|
|
assert(!String->isWide() && "Cannot codegen wide strings yet");
|
|
const char *StrData = String->getStrData();
|
|
unsigned Len = String->getByteLength();
|
|
|
|
return CGM.GetAddrOfConstantString(std::string(StrData, StrData + Len));
|
|
}
|
|
case Expr::UnaryOperatorClass: {
|
|
UnaryOperator *Exp = cast<UnaryOperator>(E);
|
|
switch (Exp->getOpcode()) {
|
|
default: break;
|
|
case UnaryOperator::Extension:
|
|
// Extension is just a wrapper for expressions
|
|
return EmitLValue(Exp->getSubExpr());
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag: {
|
|
// The address of __real or __imag is just a GEP off the address
|
|
// of the internal expression
|
|
llvm::Constant* C = EmitLValue(Exp->getSubExpr());
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
|
|
llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty,
|
|
Exp->getOpcode() == UnaryOperator::Imag);
|
|
llvm::Value *Ops[] = {Zero, Idx};
|
|
return llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
|
|
}
|
|
case UnaryOperator::Deref:
|
|
// The address of a deref is just the value of the expression
|
|
return Visit(Exp->getSubExpr());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
CGM.WarnUnsupported(E, "constant l-value expression");
|
|
llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
|
|
return llvm::UndefValue::get(Ty);
|
|
}
|
|
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
|
|
llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
|
|
CodeGenFunction *CGF)
|
|
{
|
|
QualType type = E->getType().getCanonicalType();
|
|
|
|
if (type->isIntegerType()) {
|
|
llvm::APSInt Value(static_cast<uint32_t>(Context.getTypeSize(type)));
|
|
if (E->isIntegerConstantExpr(Value, Context)) {
|
|
return llvm::ConstantInt::get(Value);
|
|
}
|
|
}
|
|
|
|
return ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
|
|
}
|