mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 14:16:08 +00:00

This patch adds 'unordered' attribute handling the HLFIR elementals' builders and fixes the attribute handling in lowering and transformations. Depends on D154031, D154032 Reviewed By: jeanPerier, tblah Differential Revision: https://reviews.llvm.org/D154035
122 lines
4.9 KiB
C++
122 lines
4.9 KiB
C++
//===- SimplifyHLFIRIntrinsics.cpp - Simplify HLFIR Intrinsics ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// Normally transformational intrinsics are lowered to calls to runtime
|
|
// functions. However, some cases of the intrinsics are faster when inlined
|
|
// into the calling function.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/HLFIRTools.h"
|
|
#include "flang/Optimizer/Dialect/FIRDialect.h"
|
|
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
|
|
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
|
|
#include "flang/Optimizer/HLFIR/HLFIROps.h"
|
|
#include "flang/Optimizer/HLFIR/Passes.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/IR/BuiltinDialect.h"
|
|
#include "mlir/IR/Location.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
namespace hlfir {
|
|
#define GEN_PASS_DEF_SIMPLIFYHLFIRINTRINSICS
|
|
#include "flang/Optimizer/HLFIR/Passes.h.inc"
|
|
} // namespace hlfir
|
|
|
|
namespace {
|
|
|
|
class TransposeAsElementalConversion
|
|
: public mlir::OpRewritePattern<hlfir::TransposeOp> {
|
|
public:
|
|
using mlir::OpRewritePattern<hlfir::TransposeOp>::OpRewritePattern;
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::TransposeOp transpose,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
mlir::Location loc = transpose.getLoc();
|
|
fir::KindMapping kindMapping{rewriter.getContext()};
|
|
fir::FirOpBuilder builder{rewriter, kindMapping};
|
|
hlfir::ExprType expr = transpose.getType();
|
|
mlir::Type elementType = expr.getElementType();
|
|
hlfir::Entity array = hlfir::Entity{transpose.getArray()};
|
|
mlir::Value resultShape = genResultShape(loc, builder, array);
|
|
llvm::SmallVector<mlir::Value, 1> typeParams;
|
|
hlfir::genLengthParameters(loc, builder, array, typeParams);
|
|
|
|
auto genKernel = [&array](mlir::Location loc, fir::FirOpBuilder &builder,
|
|
mlir::ValueRange inputIndices) -> hlfir::Entity {
|
|
assert(inputIndices.size() == 2 && "checked in TransposeOp::validate");
|
|
mlir::ValueRange transposedIndices{{inputIndices[1], inputIndices[0]}};
|
|
hlfir::Entity element =
|
|
hlfir::getElementAt(loc, builder, array, transposedIndices);
|
|
hlfir::Entity val = hlfir::loadTrivialScalar(loc, builder, element);
|
|
return val;
|
|
};
|
|
hlfir::ElementalOp elementalOp = hlfir::genElementalOp(
|
|
loc, builder, elementType, resultShape, typeParams, genKernel,
|
|
/*isUnordered=*/true, transpose.getResult().getType());
|
|
|
|
// it wouldn't be safe to replace block arguments with a different
|
|
// hlfir.expr type. Types can differ due to differing amounts of shape
|
|
// information
|
|
assert(elementalOp.getResult().getType() ==
|
|
transpose.getResult().getType());
|
|
|
|
rewriter.replaceOp(transpose, elementalOp);
|
|
return mlir::success();
|
|
}
|
|
|
|
private:
|
|
static mlir::Value genResultShape(mlir::Location loc,
|
|
fir::FirOpBuilder &builder,
|
|
hlfir::Entity array) {
|
|
mlir::Value inShape = hlfir::genShape(loc, builder, array);
|
|
llvm::SmallVector<mlir::Value> inExtents =
|
|
hlfir::getExplicitExtentsFromShape(inShape, builder);
|
|
if (inShape.getUses().empty())
|
|
inShape.getDefiningOp()->erase();
|
|
|
|
// transpose indices
|
|
assert(inExtents.size() == 2 && "checked in TransposeOp::validate");
|
|
return builder.create<fir::ShapeOp>(
|
|
loc, mlir::ValueRange{inExtents[1], inExtents[0]});
|
|
}
|
|
};
|
|
|
|
class SimplifyHLFIRIntrinsics
|
|
: public hlfir::impl::SimplifyHLFIRIntrinsicsBase<SimplifyHLFIRIntrinsics> {
|
|
public:
|
|
void runOnOperation() override {
|
|
mlir::func::FuncOp func = this->getOperation();
|
|
mlir::MLIRContext *context = &getContext();
|
|
mlir::RewritePatternSet patterns(context);
|
|
patterns.insert<TransposeAsElementalConversion>(context);
|
|
mlir::ConversionTarget target(*context);
|
|
// don't transform transpose of polymorphic arrays (not currently supported
|
|
// by hlfir.elemental)
|
|
target.addDynamicallyLegalOp<hlfir::TransposeOp>(
|
|
[](hlfir::TransposeOp transpose) {
|
|
return transpose.getType().cast<hlfir::ExprType>().isPolymorphic();
|
|
});
|
|
target.markUnknownOpDynamicallyLegal(
|
|
[](mlir::Operation *) { return true; });
|
|
if (mlir::failed(
|
|
mlir::applyFullConversion(func, target, std::move(patterns)))) {
|
|
mlir::emitError(func->getLoc(),
|
|
"failure in HLFIR intrinsic simplification");
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<mlir::Pass> hlfir::createSimplifyHLFIRIntrinsicsPass() {
|
|
return std::make_unique<SimplifyHLFIRIntrinsics>();
|
|
}
|