llvm-project/clang/lib/Parse/ParseExprCXX.cpp
Douglas Gregor 7bab5ff8e7 Eliminate CXXConditionDeclExpr with extreme prejudice.
All statements that involve conditions can now hold on to a separate
condition declaration (a VarDecl), and will use a DeclRefExpr
referring to that VarDecl for the condition expression. ForStmts now
have such a VarDecl (I'd missed those in previous commits).

Also, since this change reworks the Action interface for
if/while/switch/for, use FullExprArg for the full expressions in those
expressions, to ensure that we're emitting

Note that we are (still) not generating the right cleanups for
condition variables in for statements. That will be a follow-on
commit.

llvm-svn: 89817
2009-11-25 00:27:52 +00:00

1595 lines
54 KiB
C++

//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expression parsing implementation for C++.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Template.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
/// \brief Parse global scope or nested-name-specifier if present.
///
/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
/// may be preceded by '::'). Note that this routine will not parse ::new or
/// ::delete; it will just leave them in the token stream.
///
/// '::'[opt] nested-name-specifier
/// '::'
///
/// nested-name-specifier:
/// type-name '::'
/// namespace-name '::'
/// nested-name-specifier identifier '::'
/// nested-name-specifier 'template'[opt] simple-template-id '::'
///
///
/// \param SS the scope specifier that will be set to the parsed
/// nested-name-specifier (or empty)
///
/// \param ObjectType if this nested-name-specifier is being parsed following
/// the "." or "->" of a member access expression, this parameter provides the
/// type of the object whose members are being accessed.
///
/// \param EnteringContext whether we will be entering into the context of
/// the nested-name-specifier after parsing it.
///
/// \returns true if a scope specifier was parsed.
bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
Action::TypeTy *ObjectType,
bool EnteringContext) {
assert(getLang().CPlusPlus &&
"Call sites of this function should be guarded by checking for C++");
if (Tok.is(tok::annot_cxxscope)) {
SS.setScopeRep(Tok.getAnnotationValue());
SS.setRange(Tok.getAnnotationRange());
ConsumeToken();
return true;
}
bool HasScopeSpecifier = false;
if (Tok.is(tok::coloncolon)) {
// ::new and ::delete aren't nested-name-specifiers.
tok::TokenKind NextKind = NextToken().getKind();
if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
return false;
// '::' - Global scope qualifier.
SourceLocation CCLoc = ConsumeToken();
SS.setBeginLoc(CCLoc);
SS.setScopeRep(Actions.ActOnCXXGlobalScopeSpecifier(CurScope, CCLoc));
SS.setEndLoc(CCLoc);
HasScopeSpecifier = true;
}
while (true) {
if (HasScopeSpecifier) {
// C++ [basic.lookup.classref]p5:
// If the qualified-id has the form
//
// ::class-name-or-namespace-name::...
//
// the class-name-or-namespace-name is looked up in global scope as a
// class-name or namespace-name.
//
// To implement this, we clear out the object type as soon as we've
// seen a leading '::' or part of a nested-name-specifier.
ObjectType = 0;
if (Tok.is(tok::code_completion)) {
// Code completion for a nested-name-specifier, where the code
// code completion token follows the '::'.
Actions.CodeCompleteQualifiedId(CurScope, SS, EnteringContext);
ConsumeToken();
}
}
// nested-name-specifier:
// nested-name-specifier 'template'[opt] simple-template-id '::'
// Parse the optional 'template' keyword, then make sure we have
// 'identifier <' after it.
if (Tok.is(tok::kw_template)) {
// If we don't have a scope specifier or an object type, this isn't a
// nested-name-specifier, since they aren't allowed to start with
// 'template'.
if (!HasScopeSpecifier && !ObjectType)
break;
TentativeParsingAction TPA(*this);
SourceLocation TemplateKWLoc = ConsumeToken();
UnqualifiedId TemplateName;
if (Tok.is(tok::identifier)) {
// Consume the identifier.
TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
} else if (Tok.is(tok::kw_operator)) {
if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
TemplateName)) {
TPA.Commit();
break;
}
if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId) {
Diag(TemplateName.getSourceRange().getBegin(),
diag::err_id_after_template_in_nested_name_spec)
<< TemplateName.getSourceRange();
TPA.Commit();
break;
}
} else {
TPA.Revert();
break;
}
// If the next token is not '<', we have a qualified-id that refers
// to a template name, such as T::template apply, but is not a
// template-id.
if (Tok.isNot(tok::less)) {
TPA.Revert();
break;
}
// Commit to parsing the template-id.
TPA.Commit();
TemplateTy Template
= Actions.ActOnDependentTemplateName(TemplateKWLoc, SS, TemplateName,
ObjectType, EnteringContext);
if (!Template)
break;
if (AnnotateTemplateIdToken(Template, TNK_Dependent_template_name,
&SS, TemplateName, TemplateKWLoc, false))
break;
continue;
}
if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
// We have
//
// simple-template-id '::'
//
// So we need to check whether the simple-template-id is of the
// right kind (it should name a type or be dependent), and then
// convert it into a type within the nested-name-specifier.
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
if (TemplateId->Kind == TNK_Type_template ||
TemplateId->Kind == TNK_Dependent_template_name) {
AnnotateTemplateIdTokenAsType(&SS);
assert(Tok.is(tok::annot_typename) &&
"AnnotateTemplateIdTokenAsType isn't working");
Token TypeToken = Tok;
ConsumeToken();
assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
SourceLocation CCLoc = ConsumeToken();
if (!HasScopeSpecifier) {
SS.setBeginLoc(TypeToken.getLocation());
HasScopeSpecifier = true;
}
if (TypeToken.getAnnotationValue())
SS.setScopeRep(
Actions.ActOnCXXNestedNameSpecifier(CurScope, SS,
TypeToken.getAnnotationValue(),
TypeToken.getAnnotationRange(),
CCLoc));
else
SS.setScopeRep(0);
SS.setEndLoc(CCLoc);
continue;
}
assert(false && "FIXME: Only type template names supported here");
}
// The rest of the nested-name-specifier possibilities start with
// tok::identifier.
if (Tok.isNot(tok::identifier))
break;
IdentifierInfo &II = *Tok.getIdentifierInfo();
// nested-name-specifier:
// type-name '::'
// namespace-name '::'
// nested-name-specifier identifier '::'
Token Next = NextToken();
if (Next.is(tok::coloncolon)) {
// We have an identifier followed by a '::'. Lookup this name
// as the name in a nested-name-specifier.
SourceLocation IdLoc = ConsumeToken();
assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
SourceLocation CCLoc = ConsumeToken();
if (!HasScopeSpecifier) {
SS.setBeginLoc(IdLoc);
HasScopeSpecifier = true;
}
if (SS.isInvalid())
continue;
SS.setScopeRep(
Actions.ActOnCXXNestedNameSpecifier(CurScope, SS, IdLoc, CCLoc, II,
ObjectType, EnteringContext));
SS.setEndLoc(CCLoc);
continue;
}
// nested-name-specifier:
// type-name '<'
if (Next.is(tok::less)) {
TemplateTy Template;
UnqualifiedId TemplateName;
TemplateName.setIdentifier(&II, Tok.getLocation());
if (TemplateNameKind TNK = Actions.isTemplateName(CurScope, SS,
TemplateName,
ObjectType,
EnteringContext,
Template)) {
// We have found a template name, so annotate this this token
// with a template-id annotation. We do not permit the
// template-id to be translated into a type annotation,
// because some clients (e.g., the parsing of class template
// specializations) still want to see the original template-id
// token.
ConsumeToken();
if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName,
SourceLocation(), false))
break;
continue;
}
}
// We don't have any tokens that form the beginning of a
// nested-name-specifier, so we're done.
break;
}
return HasScopeSpecifier;
}
/// ParseCXXIdExpression - Handle id-expression.
///
/// id-expression:
/// unqualified-id
/// qualified-id
///
/// qualified-id:
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
/// '::' identifier
/// '::' operator-function-id
/// '::' template-id
///
/// NOTE: The standard specifies that, for qualified-id, the parser does not
/// expect:
///
/// '::' conversion-function-id
/// '::' '~' class-name
///
/// This may cause a slight inconsistency on diagnostics:
///
/// class C {};
/// namespace A {}
/// void f() {
/// :: A :: ~ C(); // Some Sema error about using destructor with a
/// // namespace.
/// :: ~ C(); // Some Parser error like 'unexpected ~'.
/// }
///
/// We simplify the parser a bit and make it work like:
///
/// qualified-id:
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
/// '::' unqualified-id
///
/// That way Sema can handle and report similar errors for namespaces and the
/// global scope.
///
/// The isAddressOfOperand parameter indicates that this id-expression is a
/// direct operand of the address-of operator. This is, besides member contexts,
/// the only place where a qualified-id naming a non-static class member may
/// appear.
///
Parser::OwningExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
// qualified-id:
// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
// '::' unqualified-id
//
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, false);
UnqualifiedId Name;
if (ParseUnqualifiedId(SS,
/*EnteringContext=*/false,
/*AllowDestructorName=*/false,
/*AllowConstructorName=*/false,
/*ObjectType=*/0,
Name))
return ExprError();
// This is only the direct operand of an & operator if it is not
// followed by a postfix-expression suffix.
if (isAddressOfOperand) {
switch (Tok.getKind()) {
case tok::l_square:
case tok::l_paren:
case tok::arrow:
case tok::period:
case tok::plusplus:
case tok::minusminus:
isAddressOfOperand = false;
break;
default:
break;
}
}
return Actions.ActOnIdExpression(CurScope, SS, Name, Tok.is(tok::l_paren),
isAddressOfOperand);
}
/// ParseCXXCasts - This handles the various ways to cast expressions to another
/// type.
///
/// postfix-expression: [C++ 5.2p1]
/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
/// 'static_cast' '<' type-name '>' '(' expression ')'
/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
/// 'const_cast' '<' type-name '>' '(' expression ')'
///
Parser::OwningExprResult Parser::ParseCXXCasts() {
tok::TokenKind Kind = Tok.getKind();
const char *CastName = 0; // For error messages
switch (Kind) {
default: assert(0 && "Unknown C++ cast!"); abort();
case tok::kw_const_cast: CastName = "const_cast"; break;
case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
case tok::kw_static_cast: CastName = "static_cast"; break;
}
SourceLocation OpLoc = ConsumeToken();
SourceLocation LAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
return ExprError();
TypeResult CastTy = ParseTypeName();
SourceLocation RAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, CastName))
return ExprError();
OwningExprResult Result = ParseExpression();
// Match the ')'.
RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (!Result.isInvalid() && !CastTy.isInvalid())
Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
LAngleBracketLoc, CastTy.get(),
RAngleBracketLoc,
LParenLoc, move(Result), RParenLoc);
return move(Result);
}
/// ParseCXXTypeid - This handles the C++ typeid expression.
///
/// postfix-expression: [C++ 5.2p1]
/// 'typeid' '(' expression ')'
/// 'typeid' '(' type-id ')'
///
Parser::OwningExprResult Parser::ParseCXXTypeid() {
assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
SourceLocation OpLoc = ConsumeToken();
SourceLocation LParenLoc = Tok.getLocation();
SourceLocation RParenLoc;
// typeid expressions are always parenthesized.
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"typeid"))
return ExprError();
OwningExprResult Result(Actions);
if (isTypeIdInParens()) {
TypeResult Ty = ParseTypeName();
// Match the ')'.
MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (Ty.isInvalid())
return ExprError();
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
Ty.get(), RParenLoc);
} else {
// C++0x [expr.typeid]p3:
// When typeid is applied to an expression other than an lvalue of a
// polymorphic class type [...] The expression is an unevaluated
// operand (Clause 5).
//
// Note that we can't tell whether the expression is an lvalue of a
// polymorphic class type until after we've parsed the expression, so
// we the expression is potentially potentially evaluated.
EnterExpressionEvaluationContext Unevaluated(Actions,
Action::PotentiallyPotentiallyEvaluated);
Result = ParseExpression();
// Match the ')'.
if (Result.isInvalid())
SkipUntil(tok::r_paren);
else {
MatchRHSPunctuation(tok::r_paren, LParenLoc);
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
Result.release(), RParenLoc);
}
}
return move(Result);
}
/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
///
/// boolean-literal: [C++ 2.13.5]
/// 'true'
/// 'false'
Parser::OwningExprResult Parser::ParseCXXBoolLiteral() {
tok::TokenKind Kind = Tok.getKind();
return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
}
/// ParseThrowExpression - This handles the C++ throw expression.
///
/// throw-expression: [C++ 15]
/// 'throw' assignment-expression[opt]
Parser::OwningExprResult Parser::ParseThrowExpression() {
assert(Tok.is(tok::kw_throw) && "Not throw!");
SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
// If the current token isn't the start of an assignment-expression,
// then the expression is not present. This handles things like:
// "C ? throw : (void)42", which is crazy but legal.
switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
case tok::semi:
case tok::r_paren:
case tok::r_square:
case tok::r_brace:
case tok::colon:
case tok::comma:
return Actions.ActOnCXXThrow(ThrowLoc, ExprArg(Actions));
default:
OwningExprResult Expr(ParseAssignmentExpression());
if (Expr.isInvalid()) return move(Expr);
return Actions.ActOnCXXThrow(ThrowLoc, move(Expr));
}
}
/// ParseCXXThis - This handles the C++ 'this' pointer.
///
/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
/// a non-lvalue expression whose value is the address of the object for which
/// the function is called.
Parser::OwningExprResult Parser::ParseCXXThis() {
assert(Tok.is(tok::kw_this) && "Not 'this'!");
SourceLocation ThisLoc = ConsumeToken();
return Actions.ActOnCXXThis(ThisLoc);
}
/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
///
/// postfix-expression: [C++ 5.2p1]
/// simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
/// typename-specifier '(' expression-list[opt] ')' [TODO]
///
Parser::OwningExprResult
Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
TypeTy *TypeRep = Actions.ActOnTypeName(CurScope, DeclaratorInfo).get();
assert(Tok.is(tok::l_paren) && "Expected '('!");
SourceLocation LParenLoc = ConsumeParen();
ExprVector Exprs(Actions);
CommaLocsTy CommaLocs;
if (Tok.isNot(tok::r_paren)) {
if (ParseExpressionList(Exprs, CommaLocs)) {
SkipUntil(tok::r_paren);
return ExprError();
}
}
// Match the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
// TypeRep could be null, if it references an invalid typedef.
if (!TypeRep)
return ExprError();
assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
"Unexpected number of commas!");
return Actions.ActOnCXXTypeConstructExpr(DS.getSourceRange(), TypeRep,
LParenLoc, move_arg(Exprs),
CommaLocs.data(), RParenLoc);
}
/// ParseCXXCondition - if/switch/while condition expression.
///
/// condition:
/// expression
/// type-specifier-seq declarator '=' assignment-expression
/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
/// '=' assignment-expression
///
/// \param ExprResult if the condition was parsed as an expression, the
/// parsed expression.
///
/// \param DeclResult if the condition was parsed as a declaration, the
/// parsed declaration.
///
/// \returns true if there was a parsing, false otherwise.
bool Parser::ParseCXXCondition(OwningExprResult &ExprResult,
DeclPtrTy &DeclResult) {
if (!isCXXConditionDeclaration()) {
ExprResult = ParseExpression(); // expression
DeclResult = DeclPtrTy();
return ExprResult.isInvalid();
}
// type-specifier-seq
DeclSpec DS;
ParseSpecifierQualifierList(DS);
// declarator
Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
ParseDeclarator(DeclaratorInfo);
// simple-asm-expr[opt]
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi);
return true;
}
DeclaratorInfo.setAsmLabel(AsmLabel.release());
DeclaratorInfo.SetRangeEnd(Loc);
}
// If attributes are present, parse them.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseGNUAttributes(&Loc);
DeclaratorInfo.AddAttributes(AttrList, Loc);
}
// Type-check the declaration itself.
Action::DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(CurScope,
DeclaratorInfo);
DeclResult = Dcl.get();
ExprResult = ExprError();
// '=' assignment-expression
if (Tok.is(tok::equal)) {
SourceLocation EqualLoc = ConsumeToken();
OwningExprResult AssignExpr(ParseAssignmentExpression());
if (!AssignExpr.isInvalid())
Actions.AddInitializerToDecl(DeclResult, move(AssignExpr));
} else {
// FIXME: C++0x allows a braced-init-list
Diag(Tok, diag::err_expected_equal_after_declarator);
}
return false;
}
/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
/// This should only be called when the current token is known to be part of
/// simple-type-specifier.
///
/// simple-type-specifier:
/// '::'[opt] nested-name-specifier[opt] type-name
/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
/// char
/// wchar_t
/// bool
/// short
/// int
/// long
/// signed
/// unsigned
/// float
/// double
/// void
/// [GNU] typeof-specifier
/// [C++0x] auto [TODO]
///
/// type-name:
/// class-name
/// enum-name
/// typedef-name
///
void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
DS.SetRangeStart(Tok.getLocation());
const char *PrevSpec;
unsigned DiagID;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::identifier: // foo::bar
case tok::coloncolon: // ::foo::bar
assert(0 && "Annotation token should already be formed!");
default:
assert(0 && "Not a simple-type-specifier token!");
abort();
// type-name
case tok::annot_typename: {
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
Tok.getAnnotationValue());
break;
}
// builtin types
case tok::kw_short:
DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
break;
case tok::kw_long:
DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
break;
case tok::kw_signed:
DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
break;
case tok::kw_unsigned:
DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
break;
case tok::kw_void:
DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
break;
case tok::kw_char:
DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
break;
case tok::kw_int:
DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
break;
case tok::kw_float:
DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
break;
case tok::kw_double:
DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
break;
case tok::kw_wchar_t:
DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
break;
case tok::kw_char16_t:
DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
break;
case tok::kw_char32_t:
DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
break;
case tok::kw_bool:
DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
break;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
DS.Finish(Diags, PP);
return;
}
if (Tok.is(tok::annot_typename))
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
else
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
DS.Finish(Diags, PP);
}
/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
/// [dcl.name]), which is a non-empty sequence of type-specifiers,
/// e.g., "const short int". Note that the DeclSpec is *not* finished
/// by parsing the type-specifier-seq, because these sequences are
/// typically followed by some form of declarator. Returns true and
/// emits diagnostics if this is not a type-specifier-seq, false
/// otherwise.
///
/// type-specifier-seq: [C++ 8.1]
/// type-specifier type-specifier-seq[opt]
///
bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
DS.SetRangeStart(Tok.getLocation());
const char *PrevSpec = 0;
unsigned DiagID;
bool isInvalid = 0;
// Parse one or more of the type specifiers.
if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID)) {
Diag(Tok, diag::err_operator_missing_type_specifier);
return true;
}
while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID)) ;
return false;
}
/// \brief Finish parsing a C++ unqualified-id that is a template-id of
/// some form.
///
/// This routine is invoked when a '<' is encountered after an identifier or
/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
/// whether the unqualified-id is actually a template-id. This routine will
/// then parse the template arguments and form the appropriate template-id to
/// return to the caller.
///
/// \param SS the nested-name-specifier that precedes this template-id, if
/// we're actually parsing a qualified-id.
///
/// \param Name for constructor and destructor names, this is the actual
/// identifier that may be a template-name.
///
/// \param NameLoc the location of the class-name in a constructor or
/// destructor.
///
/// \param EnteringContext whether we're entering the scope of the
/// nested-name-specifier.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param Id as input, describes the template-name or operator-function-id
/// that precedes the '<'. If template arguments were parsed successfully,
/// will be updated with the template-id.
///
/// \returns true if a parse error occurred, false otherwise.
bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool EnteringContext,
TypeTy *ObjectType,
UnqualifiedId &Id) {
assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
TemplateTy Template;
TemplateNameKind TNK = TNK_Non_template;
switch (Id.getKind()) {
case UnqualifiedId::IK_Identifier:
case UnqualifiedId::IK_OperatorFunctionId:
TNK = Actions.isTemplateName(CurScope, SS, Id, ObjectType, EnteringContext,
Template);
break;
case UnqualifiedId::IK_ConstructorName: {
UnqualifiedId TemplateName;
TemplateName.setIdentifier(Name, NameLoc);
TNK = Actions.isTemplateName(CurScope, SS, TemplateName, ObjectType,
EnteringContext, Template);
break;
}
case UnqualifiedId::IK_DestructorName: {
UnqualifiedId TemplateName;
TemplateName.setIdentifier(Name, NameLoc);
if (ObjectType) {
Template = Actions.ActOnDependentTemplateName(SourceLocation(), SS,
TemplateName, ObjectType,
EnteringContext);
TNK = TNK_Dependent_template_name;
if (!Template.get())
return true;
} else {
TNK = Actions.isTemplateName(CurScope, SS, TemplateName, ObjectType,
EnteringContext, Template);
if (TNK == TNK_Non_template && Id.DestructorName == 0) {
// The identifier following the destructor did not refer to a template
// or to a type. Complain.
if (ObjectType)
Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
<< Name;
else
Diag(NameLoc, diag::err_destructor_class_name);
return true;
}
}
break;
}
default:
return false;
}
if (TNK == TNK_Non_template)
return false;
// Parse the enclosed template argument list.
SourceLocation LAngleLoc, RAngleLoc;
TemplateArgList TemplateArgs;
if (ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
&SS, true, LAngleLoc,
TemplateArgs,
RAngleLoc))
return true;
if (Id.getKind() == UnqualifiedId::IK_Identifier ||
Id.getKind() == UnqualifiedId::IK_OperatorFunctionId) {
// Form a parsed representation of the template-id to be stored in the
// UnqualifiedId.
TemplateIdAnnotation *TemplateId
= TemplateIdAnnotation::Allocate(TemplateArgs.size());
if (Id.getKind() == UnqualifiedId::IK_Identifier) {
TemplateId->Name = Id.Identifier;
TemplateId->Operator = OO_None;
TemplateId->TemplateNameLoc = Id.StartLocation;
} else {
TemplateId->Name = 0;
TemplateId->Operator = Id.OperatorFunctionId.Operator;
TemplateId->TemplateNameLoc = Id.StartLocation;
}
TemplateId->Template = Template.getAs<void*>();
TemplateId->Kind = TNK;
TemplateId->LAngleLoc = LAngleLoc;
TemplateId->RAngleLoc = RAngleLoc;
ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
Arg != ArgEnd; ++Arg)
Args[Arg] = TemplateArgs[Arg];
Id.setTemplateId(TemplateId);
return false;
}
// Bundle the template arguments together.
ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
TemplateArgs.size());
// Constructor and destructor names.
Action::TypeResult Type
= Actions.ActOnTemplateIdType(Template, NameLoc,
LAngleLoc, TemplateArgsPtr,
RAngleLoc);
if (Type.isInvalid())
return true;
if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
else
Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
return false;
}
/// \brief Parse an operator-function-id or conversion-function-id as part
/// of a C++ unqualified-id.
///
/// This routine is responsible only for parsing the operator-function-id or
/// conversion-function-id; it does not handle template arguments in any way.
///
/// \code
/// operator-function-id: [C++ 13.5]
/// 'operator' operator
///
/// operator: one of
/// new delete new[] delete[]
/// + - * / % ^ & | ~
/// ! = < > += -= *= /= %=
/// ^= &= |= << >> >>= <<= == !=
/// <= >= && || ++ -- , ->* ->
/// () []
///
/// conversion-function-id: [C++ 12.3.2]
/// operator conversion-type-id
///
/// conversion-type-id:
/// type-specifier-seq conversion-declarator[opt]
///
/// conversion-declarator:
/// ptr-operator conversion-declarator[opt]
/// \endcode
///
/// \param The nested-name-specifier that preceded this unqualified-id. If
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
///
/// \param EnteringContext whether we are entering the scope of the
/// nested-name-specifier.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param Result on a successful parse, contains the parsed unqualified-id.
///
/// \returns true if parsing fails, false otherwise.
bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
TypeTy *ObjectType,
UnqualifiedId &Result) {
assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
// Consume the 'operator' keyword.
SourceLocation KeywordLoc = ConsumeToken();
// Determine what kind of operator name we have.
unsigned SymbolIdx = 0;
SourceLocation SymbolLocations[3];
OverloadedOperatorKind Op = OO_None;
switch (Tok.getKind()) {
case tok::kw_new:
case tok::kw_delete: {
bool isNew = Tok.getKind() == tok::kw_new;
// Consume the 'new' or 'delete'.
SymbolLocations[SymbolIdx++] = ConsumeToken();
if (Tok.is(tok::l_square)) {
// Consume the '['.
SourceLocation LBracketLoc = ConsumeBracket();
// Consume the ']'.
SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
LBracketLoc);
if (RBracketLoc.isInvalid())
return true;
SymbolLocations[SymbolIdx++] = LBracketLoc;
SymbolLocations[SymbolIdx++] = RBracketLoc;
Op = isNew? OO_Array_New : OO_Array_Delete;
} else {
Op = isNew? OO_New : OO_Delete;
}
break;
}
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
case tok::Token: \
SymbolLocations[SymbolIdx++] = ConsumeToken(); \
Op = OO_##Name; \
break;
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
#include "clang/Basic/OperatorKinds.def"
case tok::l_paren: {
// Consume the '('.
SourceLocation LParenLoc = ConsumeParen();
// Consume the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren,
LParenLoc);
if (RParenLoc.isInvalid())
return true;
SymbolLocations[SymbolIdx++] = LParenLoc;
SymbolLocations[SymbolIdx++] = RParenLoc;
Op = OO_Call;
break;
}
case tok::l_square: {
// Consume the '['.
SourceLocation LBracketLoc = ConsumeBracket();
// Consume the ']'.
SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
LBracketLoc);
if (RBracketLoc.isInvalid())
return true;
SymbolLocations[SymbolIdx++] = LBracketLoc;
SymbolLocations[SymbolIdx++] = RBracketLoc;
Op = OO_Subscript;
break;
}
case tok::code_completion: {
// Code completion for the operator name.
Actions.CodeCompleteOperatorName(CurScope);
// Consume the operator token.
ConsumeToken();
// Don't try to parse any further.
return true;
}
default:
break;
}
if (Op != OO_None) {
// We have parsed an operator-function-id.
Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
return false;
}
// Parse a conversion-function-id.
//
// conversion-function-id: [C++ 12.3.2]
// operator conversion-type-id
//
// conversion-type-id:
// type-specifier-seq conversion-declarator[opt]
//
// conversion-declarator:
// ptr-operator conversion-declarator[opt]
// Parse the type-specifier-seq.
DeclSpec DS;
if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
return true;
// Parse the conversion-declarator, which is merely a sequence of
// ptr-operators.
Declarator D(DS, Declarator::TypeNameContext);
ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
// Finish up the type.
Action::TypeResult Ty = Actions.ActOnTypeName(CurScope, D);
if (Ty.isInvalid())
return true;
// Note that this is a conversion-function-id.
Result.setConversionFunctionId(KeywordLoc, Ty.get(),
D.getSourceRange().getEnd());
return false;
}
/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
/// name of an entity.
///
/// \code
/// unqualified-id: [C++ expr.prim.general]
/// identifier
/// operator-function-id
/// conversion-function-id
/// [C++0x] literal-operator-id [TODO]
/// ~ class-name
/// template-id
///
/// \endcode
///
/// \param The nested-name-specifier that preceded this unqualified-id. If
/// non-empty, then we are parsing the unqualified-id of a qualified-id.
///
/// \param EnteringContext whether we are entering the scope of the
/// nested-name-specifier.
///
/// \param AllowDestructorName whether we allow parsing of a destructor name.
///
/// \param AllowConstructorName whether we allow parsing a constructor name.
///
/// \param ObjectType if this unqualified-id occurs within a member access
/// expression, the type of the base object whose member is being accessed.
///
/// \param Result on a successful parse, contains the parsed unqualified-id.
///
/// \returns true if parsing fails, false otherwise.
bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
bool AllowDestructorName,
bool AllowConstructorName,
TypeTy *ObjectType,
UnqualifiedId &Result) {
// unqualified-id:
// identifier
// template-id (when it hasn't already been annotated)
if (Tok.is(tok::identifier)) {
// Consume the identifier.
IdentifierInfo *Id = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();
if (AllowConstructorName &&
Actions.isCurrentClassName(*Id, CurScope, &SS)) {
// We have parsed a constructor name.
Result.setConstructorName(Actions.getTypeName(*Id, IdLoc, CurScope,
&SS, false),
IdLoc, IdLoc);
} else {
// We have parsed an identifier.
Result.setIdentifier(Id, IdLoc);
}
// If the next token is a '<', we may have a template.
if (Tok.is(tok::less))
return ParseUnqualifiedIdTemplateId(SS, Id, IdLoc, EnteringContext,
ObjectType, Result);
return false;
}
// unqualified-id:
// template-id (already parsed and annotated)
if (Tok.is(tok::annot_template_id)) {
// FIXME: Could this be a constructor name???
// We have already parsed a template-id; consume the annotation token as
// our unqualified-id.
Result.setTemplateId(
static_cast<TemplateIdAnnotation*>(Tok.getAnnotationValue()));
ConsumeToken();
return false;
}
// unqualified-id:
// operator-function-id
// conversion-function-id
if (Tok.is(tok::kw_operator)) {
if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
return true;
// If we have an operator-function-id and the next token is a '<', we may
// have a
//
// template-id:
// operator-function-id < template-argument-list[opt] >
if (Result.getKind() == UnqualifiedId::IK_OperatorFunctionId &&
Tok.is(tok::less))
return ParseUnqualifiedIdTemplateId(SS, 0, SourceLocation(),
EnteringContext, ObjectType,
Result);
return false;
}
if ((AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
// C++ [expr.unary.op]p10:
// There is an ambiguity in the unary-expression ~X(), where X is a
// class-name. The ambiguity is resolved in favor of treating ~ as a
// unary complement rather than treating ~X as referring to a destructor.
// Parse the '~'.
SourceLocation TildeLoc = ConsumeToken();
// Parse the class-name.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_destructor_class_name);
return true;
}
// Parse the class-name (or template-name in a simple-template-id).
IdentifierInfo *ClassName = Tok.getIdentifierInfo();
SourceLocation ClassNameLoc = ConsumeToken();
if (Tok.is(tok::less)) {
Result.setDestructorName(TildeLoc, 0, ClassNameLoc);
return ParseUnqualifiedIdTemplateId(SS, ClassName, ClassNameLoc,
EnteringContext, ObjectType, Result);
}
// Note that this is a destructor name.
Action::TypeTy *Ty = Actions.getTypeName(*ClassName, ClassNameLoc,
CurScope, &SS, false, ObjectType);
if (!Ty) {
if (ObjectType)
Diag(ClassNameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
<< ClassName;
else
Diag(ClassNameLoc, diag::err_destructor_class_name);
return true;
}
Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
return false;
}
Diag(Tok, diag::err_expected_unqualified_id)
<< getLang().CPlusPlus;
return true;
}
/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
/// memory in a typesafe manner and call constructors.
///
/// This method is called to parse the new expression after the optional :: has
/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
/// is its location. Otherwise, "Start" is the location of the 'new' token.
///
/// new-expression:
/// '::'[opt] 'new' new-placement[opt] new-type-id
/// new-initializer[opt]
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// new-placement:
/// '(' expression-list ')'
///
/// new-type-id:
/// type-specifier-seq new-declarator[opt]
///
/// new-declarator:
/// ptr-operator new-declarator[opt]
/// direct-new-declarator
///
/// new-initializer:
/// '(' expression-list[opt] ')'
/// [C++0x] braced-init-list [TODO]
///
Parser::OwningExprResult
Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
assert(Tok.is(tok::kw_new) && "expected 'new' token");
ConsumeToken(); // Consume 'new'
// A '(' now can be a new-placement or the '(' wrapping the type-id in the
// second form of new-expression. It can't be a new-type-id.
ExprVector PlacementArgs(Actions);
SourceLocation PlacementLParen, PlacementRParen;
bool ParenTypeId;
DeclSpec DS;
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
if (Tok.is(tok::l_paren)) {
// If it turns out to be a placement, we change the type location.
PlacementLParen = ConsumeParen();
if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen);
if (PlacementRParen.isInvalid()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
if (PlacementArgs.empty()) {
// Reset the placement locations. There was no placement.
PlacementLParen = PlacementRParen = SourceLocation();
ParenTypeId = true;
} else {
// We still need the type.
if (Tok.is(tok::l_paren)) {
SourceLocation LParen = ConsumeParen();
ParseSpecifierQualifierList(DS);
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclarator(DeclaratorInfo);
MatchRHSPunctuation(tok::r_paren, LParen);
ParenTypeId = true;
} else {
if (ParseCXXTypeSpecifierSeq(DS))
DeclaratorInfo.setInvalidType(true);
else {
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclaratorInternal(DeclaratorInfo,
&Parser::ParseDirectNewDeclarator);
}
ParenTypeId = false;
}
}
} else {
// A new-type-id is a simplified type-id, where essentially the
// direct-declarator is replaced by a direct-new-declarator.
if (ParseCXXTypeSpecifierSeq(DS))
DeclaratorInfo.setInvalidType(true);
else {
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclaratorInternal(DeclaratorInfo,
&Parser::ParseDirectNewDeclarator);
}
ParenTypeId = false;
}
if (DeclaratorInfo.isInvalidType()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
ExprVector ConstructorArgs(Actions);
SourceLocation ConstructorLParen, ConstructorRParen;
if (Tok.is(tok::l_paren)) {
ConstructorLParen = ConsumeParen();
if (Tok.isNot(tok::r_paren)) {
CommaLocsTy CommaLocs;
if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
}
ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen);
if (ConstructorRParen.isInvalid()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
}
return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
move_arg(PlacementArgs), PlacementRParen,
ParenTypeId, DeclaratorInfo, ConstructorLParen,
move_arg(ConstructorArgs), ConstructorRParen);
}
/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
/// passed to ParseDeclaratorInternal.
///
/// direct-new-declarator:
/// '[' expression ']'
/// direct-new-declarator '[' constant-expression ']'
///
void Parser::ParseDirectNewDeclarator(Declarator &D) {
// Parse the array dimensions.
bool first = true;
while (Tok.is(tok::l_square)) {
SourceLocation LLoc = ConsumeBracket();
OwningExprResult Size(first ? ParseExpression()
: ParseConstantExpression());
if (Size.isInvalid()) {
// Recover
SkipUntil(tok::r_square);
return;
}
first = false;
SourceLocation RLoc = MatchRHSPunctuation(tok::r_square, LLoc);
D.AddTypeInfo(DeclaratorChunk::getArray(0, /*static=*/false, /*star=*/false,
Size.release(), LLoc, RLoc),
RLoc);
if (RLoc.isInvalid())
return;
}
}
/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
/// This ambiguity appears in the syntax of the C++ new operator.
///
/// new-expression:
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// new-placement:
/// '(' expression-list ')'
///
bool Parser::ParseExpressionListOrTypeId(ExprListTy &PlacementArgs,
Declarator &D) {
// The '(' was already consumed.
if (isTypeIdInParens()) {
ParseSpecifierQualifierList(D.getMutableDeclSpec());
D.SetSourceRange(D.getDeclSpec().getSourceRange());
ParseDeclarator(D);
return D.isInvalidType();
}
// It's not a type, it has to be an expression list.
// Discard the comma locations - ActOnCXXNew has enough parameters.
CommaLocsTy CommaLocs;
return ParseExpressionList(PlacementArgs, CommaLocs);
}
/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
/// to free memory allocated by new.
///
/// This method is called to parse the 'delete' expression after the optional
/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
/// and "Start" is its location. Otherwise, "Start" is the location of the
/// 'delete' token.
///
/// delete-expression:
/// '::'[opt] 'delete' cast-expression
/// '::'[opt] 'delete' '[' ']' cast-expression
Parser::OwningExprResult
Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
ConsumeToken(); // Consume 'delete'
// Array delete?
bool ArrayDelete = false;
if (Tok.is(tok::l_square)) {
ArrayDelete = true;
SourceLocation LHS = ConsumeBracket();
SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS);
if (RHS.isInvalid())
return ExprError();
}
OwningExprResult Operand(ParseCastExpression(false));
if (Operand.isInvalid())
return move(Operand);
return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, move(Operand));
}
static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
switch(kind) {
default: assert(false && "Not a known unary type trait.");
case tok::kw___has_nothrow_assign: return UTT_HasNothrowAssign;
case tok::kw___has_nothrow_copy: return UTT_HasNothrowCopy;
case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
case tok::kw___has_trivial_assign: return UTT_HasTrivialAssign;
case tok::kw___has_trivial_copy: return UTT_HasTrivialCopy;
case tok::kw___has_trivial_constructor: return UTT_HasTrivialConstructor;
case tok::kw___has_trivial_destructor: return UTT_HasTrivialDestructor;
case tok::kw___has_virtual_destructor: return UTT_HasVirtualDestructor;
case tok::kw___is_abstract: return UTT_IsAbstract;
case tok::kw___is_class: return UTT_IsClass;
case tok::kw___is_empty: return UTT_IsEmpty;
case tok::kw___is_enum: return UTT_IsEnum;
case tok::kw___is_pod: return UTT_IsPOD;
case tok::kw___is_polymorphic: return UTT_IsPolymorphic;
case tok::kw___is_union: return UTT_IsUnion;
}
}
/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
/// pseudo-functions that allow implementation of the TR1/C++0x type traits
/// templates.
///
/// primary-expression:
/// [GNU] unary-type-trait '(' type-id ')'
///
Parser::OwningExprResult Parser::ParseUnaryTypeTrait() {
UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
SourceLocation Loc = ConsumeToken();
SourceLocation LParen = Tok.getLocation();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
return ExprError();
// FIXME: Error reporting absolutely sucks! If the this fails to parse a type
// there will be cryptic errors about mismatched parentheses and missing
// specifiers.
TypeResult Ty = ParseTypeName();
SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
if (Ty.isInvalid())
return ExprError();
return Actions.ActOnUnaryTypeTrait(UTT, Loc, LParen, Ty.get(), RParen);
}
/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
/// based on the context past the parens.
Parser::OwningExprResult
Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
TypeTy *&CastTy,
SourceLocation LParenLoc,
SourceLocation &RParenLoc) {
assert(getLang().CPlusPlus && "Should only be called for C++!");
assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
assert(isTypeIdInParens() && "Not a type-id!");
OwningExprResult Result(Actions, true);
CastTy = 0;
// We need to disambiguate a very ugly part of the C++ syntax:
//
// (T())x; - type-id
// (T())*x; - type-id
// (T())/x; - expression
// (T()); - expression
//
// The bad news is that we cannot use the specialized tentative parser, since
// it can only verify that the thing inside the parens can be parsed as
// type-id, it is not useful for determining the context past the parens.
//
// The good news is that the parser can disambiguate this part without
// making any unnecessary Action calls.
//
// It uses a scheme similar to parsing inline methods. The parenthesized
// tokens are cached, the context that follows is determined (possibly by
// parsing a cast-expression), and then we re-introduce the cached tokens
// into the token stream and parse them appropriately.
ParenParseOption ParseAs;
CachedTokens Toks;
// Store the tokens of the parentheses. We will parse them after we determine
// the context that follows them.
if (!ConsumeAndStoreUntil(tok::r_paren, tok::unknown, Toks, tok::semi)) {
// We didn't find the ')' we expected.
MatchRHSPunctuation(tok::r_paren, LParenLoc);
return ExprError();
}
if (Tok.is(tok::l_brace)) {
ParseAs = CompoundLiteral;
} else {
bool NotCastExpr;
// FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
NotCastExpr = true;
} else {
// Try parsing the cast-expression that may follow.
// If it is not a cast-expression, NotCastExpr will be true and no token
// will be consumed.
Result = ParseCastExpression(false/*isUnaryExpression*/,
false/*isAddressofOperand*/,
NotCastExpr, false);
}
// If we parsed a cast-expression, it's really a type-id, otherwise it's
// an expression.
ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
}
// The current token should go after the cached tokens.
Toks.push_back(Tok);
// Re-enter the stored parenthesized tokens into the token stream, so we may
// parse them now.
PP.EnterTokenStream(Toks.data(), Toks.size(),
true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
// Drop the current token and bring the first cached one. It's the same token
// as when we entered this function.
ConsumeAnyToken();
if (ParseAs >= CompoundLiteral) {
TypeResult Ty = ParseTypeName();
// Match the ')'.
if (Tok.is(tok::r_paren))
RParenLoc = ConsumeParen();
else
MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (ParseAs == CompoundLiteral) {
ExprType = CompoundLiteral;
return ParseCompoundLiteralExpression(Ty.get(), LParenLoc, RParenLoc);
}
// We parsed '(' type-id ')' and the thing after it wasn't a '{'.
assert(ParseAs == CastExpr);
if (Ty.isInvalid())
return ExprError();
CastTy = Ty.get();
// Result is what ParseCastExpression returned earlier.
if (!Result.isInvalid())
Result = Actions.ActOnCastExpr(CurScope, LParenLoc, CastTy, RParenLoc,
move(Result));
return move(Result);
}
// Not a compound literal, and not followed by a cast-expression.
assert(ParseAs == SimpleExpr);
ExprType = SimpleExpr;
Result = ParseExpression();
if (!Result.isInvalid() && Tok.is(tok::r_paren))
Result = Actions.ActOnParenExpr(LParenLoc, Tok.getLocation(), move(Result));
// Match the ')'.
if (Result.isInvalid()) {
SkipUntil(tok::r_paren);
return ExprError();
}
if (Tok.is(tok::r_paren))
RParenLoc = ConsumeParen();
else
MatchRHSPunctuation(tok::r_paren, LParenLoc);
return move(Result);
}