llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp
2025-03-17 10:11:28 +01:00

8011 lines
280 KiB
C++

//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Analysis/CmpInstAnalysis.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelTypeUtils.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterBankInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DivisionByConstantInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include <cmath>
#include <optional>
#include <tuple>
#define DEBUG_TYPE "gi-combiner"
using namespace llvm;
using namespace MIPatternMatch;
// Option to allow testing of the combiner while no targets know about indexed
// addressing.
static cl::opt<bool>
ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
cl::desc("Force all indexed operations to be "
"legal for the GlobalISel combiner"));
CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
MachineIRBuilder &B, bool IsPreLegalize,
GISelKnownBits *KB, MachineDominatorTree *MDT,
const LegalizerInfo *LI)
: Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB),
MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI),
RBI(Builder.getMF().getSubtarget().getRegBankInfo()),
TRI(Builder.getMF().getSubtarget().getRegisterInfo()) {
(void)this->KB;
}
const TargetLowering &CombinerHelper::getTargetLowering() const {
return *Builder.getMF().getSubtarget().getTargetLowering();
}
const MachineFunction &CombinerHelper::getMachineFunction() const {
return Builder.getMF();
}
const DataLayout &CombinerHelper::getDataLayout() const {
return getMachineFunction().getDataLayout();
}
LLVMContext &CombinerHelper::getContext() const { return Builder.getContext(); }
/// \returns The little endian in-memory byte position of byte \p I in a
/// \p ByteWidth bytes wide type.
///
/// E.g. Given a 4-byte type x, x[0] -> byte 0
static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
assert(I < ByteWidth && "I must be in [0, ByteWidth)");
return I;
}
/// Determines the LogBase2 value for a non-null input value using the
/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
static Register buildLogBase2(Register V, MachineIRBuilder &MIB) {
auto &MRI = *MIB.getMRI();
LLT Ty = MRI.getType(V);
auto Ctlz = MIB.buildCTLZ(Ty, V);
auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1);
return MIB.buildSub(Ty, Base, Ctlz).getReg(0);
}
/// \returns The big endian in-memory byte position of byte \p I in a
/// \p ByteWidth bytes wide type.
///
/// E.g. Given a 4-byte type x, x[0] -> byte 3
static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
assert(I < ByteWidth && "I must be in [0, ByteWidth)");
return ByteWidth - I - 1;
}
/// Given a map from byte offsets in memory to indices in a load/store,
/// determine if that map corresponds to a little or big endian byte pattern.
///
/// \param MemOffset2Idx maps memory offsets to address offsets.
/// \param LowestIdx is the lowest index in \p MemOffset2Idx.
///
/// \returns true if the map corresponds to a big endian byte pattern, false if
/// it corresponds to a little endian byte pattern, and std::nullopt otherwise.
///
/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
/// are as follows:
///
/// AddrOffset Little endian Big endian
/// 0 0 3
/// 1 1 2
/// 2 2 1
/// 3 3 0
static std::optional<bool>
isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
int64_t LowestIdx) {
// Need at least two byte positions to decide on endianness.
unsigned Width = MemOffset2Idx.size();
if (Width < 2)
return std::nullopt;
bool BigEndian = true, LittleEndian = true;
for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
if (MemOffsetAndIdx == MemOffset2Idx.end())
return std::nullopt;
const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
assert(Idx >= 0 && "Expected non-negative byte offset?");
LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
if (!BigEndian && !LittleEndian)
return std::nullopt;
}
assert((BigEndian != LittleEndian) &&
"Pattern cannot be both big and little endian!");
return BigEndian;
}
bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; }
bool CombinerHelper::isLegal(const LegalityQuery &Query) const {
assert(LI && "Must have LegalizerInfo to query isLegal!");
return LI->getAction(Query).Action == LegalizeActions::Legal;
}
bool CombinerHelper::isLegalOrBeforeLegalizer(
const LegalityQuery &Query) const {
return isPreLegalize() || isLegal(Query);
}
bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const {
if (!Ty.isVector())
return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}});
// Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs.
if (isPreLegalize())
return true;
LLT EltTy = Ty.getElementType();
return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) &&
isLegal({TargetOpcode::G_CONSTANT, {EltTy}});
}
void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
Register ToReg) const {
Observer.changingAllUsesOfReg(MRI, FromReg);
if (MRI.constrainRegAttrs(ToReg, FromReg))
MRI.replaceRegWith(FromReg, ToReg);
else
Builder.buildCopy(FromReg, ToReg);
Observer.finishedChangingAllUsesOfReg();
}
void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
MachineOperand &FromRegOp,
Register ToReg) const {
assert(FromRegOp.getParent() && "Expected an operand in an MI");
Observer.changingInstr(*FromRegOp.getParent());
FromRegOp.setReg(ToReg);
Observer.changedInstr(*FromRegOp.getParent());
}
void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI,
unsigned ToOpcode) const {
Observer.changingInstr(FromMI);
FromMI.setDesc(Builder.getTII().get(ToOpcode));
Observer.changedInstr(FromMI);
}
const RegisterBank *CombinerHelper::getRegBank(Register Reg) const {
return RBI->getRegBank(Reg, MRI, *TRI);
}
void CombinerHelper::setRegBank(Register Reg,
const RegisterBank *RegBank) const {
if (RegBank)
MRI.setRegBank(Reg, *RegBank);
}
bool CombinerHelper::tryCombineCopy(MachineInstr &MI) const {
if (matchCombineCopy(MI)) {
applyCombineCopy(MI);
return true;
}
return false;
}
bool CombinerHelper::matchCombineCopy(MachineInstr &MI) const {
if (MI.getOpcode() != TargetOpcode::COPY)
return false;
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
return canReplaceReg(DstReg, SrcReg, MRI);
}
void CombinerHelper::applyCombineCopy(MachineInstr &MI) const {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
replaceRegWith(MRI, DstReg, SrcReg);
MI.eraseFromParent();
}
bool CombinerHelper::matchFreezeOfSingleMaybePoisonOperand(
MachineInstr &MI, BuildFnTy &MatchInfo) const {
// Ported from InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating.
Register DstOp = MI.getOperand(0).getReg();
Register OrigOp = MI.getOperand(1).getReg();
if (!MRI.hasOneNonDBGUse(OrigOp))
return false;
MachineInstr *OrigDef = MRI.getUniqueVRegDef(OrigOp);
// Even if only a single operand of the PHI is not guaranteed non-poison,
// moving freeze() backwards across a PHI can cause optimization issues for
// other users of that operand.
//
// Moving freeze() from one of the output registers of a G_UNMERGE_VALUES to
// the source register is unprofitable because it makes the freeze() more
// strict than is necessary (it would affect the whole register instead of
// just the subreg being frozen).
if (OrigDef->isPHI() || isa<GUnmerge>(OrigDef))
return false;
if (canCreateUndefOrPoison(OrigOp, MRI,
/*ConsiderFlagsAndMetadata=*/false))
return false;
std::optional<MachineOperand> MaybePoisonOperand;
for (MachineOperand &Operand : OrigDef->uses()) {
if (!Operand.isReg())
return false;
if (isGuaranteedNotToBeUndefOrPoison(Operand.getReg(), MRI))
continue;
if (!MaybePoisonOperand)
MaybePoisonOperand = Operand;
else {
// We have more than one maybe-poison operand. Moving the freeze is
// unsafe.
return false;
}
}
// Eliminate freeze if all operands are guaranteed non-poison.
if (!MaybePoisonOperand) {
MatchInfo = [=](MachineIRBuilder &B) {
Observer.changingInstr(*OrigDef);
cast<GenericMachineInstr>(OrigDef)->dropPoisonGeneratingFlags();
Observer.changedInstr(*OrigDef);
B.buildCopy(DstOp, OrigOp);
};
return true;
}
Register MaybePoisonOperandReg = MaybePoisonOperand->getReg();
LLT MaybePoisonOperandRegTy = MRI.getType(MaybePoisonOperandReg);
MatchInfo = [=](MachineIRBuilder &B) mutable {
Observer.changingInstr(*OrigDef);
cast<GenericMachineInstr>(OrigDef)->dropPoisonGeneratingFlags();
Observer.changedInstr(*OrigDef);
B.setInsertPt(*OrigDef->getParent(), OrigDef->getIterator());
auto Freeze = B.buildFreeze(MaybePoisonOperandRegTy, MaybePoisonOperandReg);
replaceRegOpWith(
MRI, *OrigDef->findRegisterUseOperand(MaybePoisonOperandReg, TRI),
Freeze.getReg(0));
replaceRegWith(MRI, DstOp, OrigOp);
};
return true;
}
bool CombinerHelper::matchCombineConcatVectors(
MachineInstr &MI, SmallVector<Register> &Ops) const {
assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
"Invalid instruction");
bool IsUndef = true;
MachineInstr *Undef = nullptr;
// Walk over all the operands of concat vectors and check if they are
// build_vector themselves or undef.
// Then collect their operands in Ops.
for (const MachineOperand &MO : MI.uses()) {
Register Reg = MO.getReg();
MachineInstr *Def = MRI.getVRegDef(Reg);
assert(Def && "Operand not defined");
if (!MRI.hasOneNonDBGUse(Reg))
return false;
switch (Def->getOpcode()) {
case TargetOpcode::G_BUILD_VECTOR:
IsUndef = false;
// Remember the operands of the build_vector to fold
// them into the yet-to-build flattened concat vectors.
for (const MachineOperand &BuildVecMO : Def->uses())
Ops.push_back(BuildVecMO.getReg());
break;
case TargetOpcode::G_IMPLICIT_DEF: {
LLT OpType = MRI.getType(Reg);
// Keep one undef value for all the undef operands.
if (!Undef) {
Builder.setInsertPt(*MI.getParent(), MI);
Undef = Builder.buildUndef(OpType.getScalarType());
}
assert(MRI.getType(Undef->getOperand(0).getReg()) ==
OpType.getScalarType() &&
"All undefs should have the same type");
// Break the undef vector in as many scalar elements as needed
// for the flattening.
for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
EltIdx != EltEnd; ++EltIdx)
Ops.push_back(Undef->getOperand(0).getReg());
break;
}
default:
return false;
}
}
// Check if the combine is illegal
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_BUILD_VECTOR, {DstTy, MRI.getType(Ops[0])}})) {
return false;
}
if (IsUndef)
Ops.clear();
return true;
}
void CombinerHelper::applyCombineConcatVectors(
MachineInstr &MI, SmallVector<Register> &Ops) const {
// We determined that the concat_vectors can be flatten.
// Generate the flattened build_vector.
Register DstReg = MI.getOperand(0).getReg();
Builder.setInsertPt(*MI.getParent(), MI);
Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
// Note: IsUndef is sort of redundant. We could have determine it by
// checking that at all Ops are undef. Alternatively, we could have
// generate a build_vector of undefs and rely on another combine to
// clean that up. For now, given we already gather this information
// in matchCombineConcatVectors, just save compile time and issue the
// right thing.
if (Ops.empty())
Builder.buildUndef(NewDstReg);
else
Builder.buildBuildVector(NewDstReg, Ops);
replaceRegWith(MRI, DstReg, NewDstReg);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineShuffleConcat(
MachineInstr &MI, SmallVector<Register> &Ops) const {
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
auto ConcatMI1 =
dyn_cast<GConcatVectors>(MRI.getVRegDef(MI.getOperand(1).getReg()));
auto ConcatMI2 =
dyn_cast<GConcatVectors>(MRI.getVRegDef(MI.getOperand(2).getReg()));
if (!ConcatMI1 || !ConcatMI2)
return false;
// Check that the sources of the Concat instructions have the same type
if (MRI.getType(ConcatMI1->getSourceReg(0)) !=
MRI.getType(ConcatMI2->getSourceReg(0)))
return false;
LLT ConcatSrcTy = MRI.getType(ConcatMI1->getReg(1));
LLT ShuffleSrcTy1 = MRI.getType(MI.getOperand(1).getReg());
unsigned ConcatSrcNumElt = ConcatSrcTy.getNumElements();
for (unsigned i = 0; i < Mask.size(); i += ConcatSrcNumElt) {
// Check if the index takes a whole source register from G_CONCAT_VECTORS
// Assumes that all Sources of G_CONCAT_VECTORS are the same type
if (Mask[i] == -1) {
for (unsigned j = 1; j < ConcatSrcNumElt; j++) {
if (i + j >= Mask.size())
return false;
if (Mask[i + j] != -1)
return false;
}
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_IMPLICIT_DEF, {ConcatSrcTy}}))
return false;
Ops.push_back(0);
} else if (Mask[i] % ConcatSrcNumElt == 0) {
for (unsigned j = 1; j < ConcatSrcNumElt; j++) {
if (i + j >= Mask.size())
return false;
if (Mask[i + j] != Mask[i] + static_cast<int>(j))
return false;
}
// Retrieve the source register from its respective G_CONCAT_VECTORS
// instruction
if (Mask[i] < ShuffleSrcTy1.getNumElements()) {
Ops.push_back(ConcatMI1->getSourceReg(Mask[i] / ConcatSrcNumElt));
} else {
Ops.push_back(ConcatMI2->getSourceReg(Mask[i] / ConcatSrcNumElt -
ConcatMI1->getNumSources()));
}
} else {
return false;
}
}
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_CONCAT_VECTORS,
{MRI.getType(MI.getOperand(0).getReg()), ConcatSrcTy}}))
return false;
return !Ops.empty();
}
void CombinerHelper::applyCombineShuffleConcat(
MachineInstr &MI, SmallVector<Register> &Ops) const {
LLT SrcTy;
for (Register &Reg : Ops) {
if (Reg != 0)
SrcTy = MRI.getType(Reg);
}
assert(SrcTy.isValid() && "Unexpected full undef vector in concat combine");
Register UndefReg = 0;
for (Register &Reg : Ops) {
if (Reg == 0) {
if (UndefReg == 0)
UndefReg = Builder.buildUndef(SrcTy).getReg(0);
Reg = UndefReg;
}
}
if (Ops.size() > 1)
Builder.buildConcatVectors(MI.getOperand(0).getReg(), Ops);
else
Builder.buildCopy(MI.getOperand(0).getReg(), Ops[0]);
MI.eraseFromParent();
}
bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) const {
SmallVector<Register, 4> Ops;
if (matchCombineShuffleVector(MI, Ops)) {
applyCombineShuffleVector(MI, Ops);
return true;
}
return false;
}
bool CombinerHelper::matchCombineShuffleVector(
MachineInstr &MI, SmallVectorImpl<Register> &Ops) const {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
"Invalid instruction kind");
LLT DstType = MRI.getType(MI.getOperand(0).getReg());
Register Src1 = MI.getOperand(1).getReg();
LLT SrcType = MRI.getType(Src1);
// As bizarre as it may look, shuffle vector can actually produce
// scalar! This is because at the IR level a <1 x ty> shuffle
// vector is perfectly valid.
unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
// If the resulting vector is smaller than the size of the source
// vectors being concatenated, we won't be able to replace the
// shuffle vector into a concat_vectors.
//
// Note: We may still be able to produce a concat_vectors fed by
// extract_vector_elt and so on. It is less clear that would
// be better though, so don't bother for now.
//
// If the destination is a scalar, the size of the sources doesn't
// matter. we will lower the shuffle to a plain copy. This will
// work only if the source and destination have the same size. But
// that's covered by the next condition.
//
// TODO: If the size between the source and destination don't match
// we could still emit an extract vector element in that case.
if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
return false;
// Check that the shuffle mask can be broken evenly between the
// different sources.
if (DstNumElts % SrcNumElts != 0)
return false;
// Mask length is a multiple of the source vector length.
// Check if the shuffle is some kind of concatenation of the input
// vectors.
unsigned NumConcat = DstNumElts / SrcNumElts;
SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
for (unsigned i = 0; i != DstNumElts; ++i) {
int Idx = Mask[i];
// Undef value.
if (Idx < 0)
continue;
// Ensure the indices in each SrcType sized piece are sequential and that
// the same source is used for the whole piece.
if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
(ConcatSrcs[i / SrcNumElts] >= 0 &&
ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
return false;
// Remember which source this index came from.
ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
}
// The shuffle is concatenating multiple vectors together.
// Collect the different operands for that.
Register UndefReg;
Register Src2 = MI.getOperand(2).getReg();
for (auto Src : ConcatSrcs) {
if (Src < 0) {
if (!UndefReg) {
Builder.setInsertPt(*MI.getParent(), MI);
UndefReg = Builder.buildUndef(SrcType).getReg(0);
}
Ops.push_back(UndefReg);
} else if (Src == 0)
Ops.push_back(Src1);
else
Ops.push_back(Src2);
}
return true;
}
void CombinerHelper::applyCombineShuffleVector(
MachineInstr &MI, const ArrayRef<Register> Ops) const {
Register DstReg = MI.getOperand(0).getReg();
Builder.setInsertPt(*MI.getParent(), MI);
Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
if (Ops.size() == 1)
Builder.buildCopy(NewDstReg, Ops[0]);
else
Builder.buildMergeLikeInstr(NewDstReg, Ops);
replaceRegWith(MRI, DstReg, NewDstReg);
MI.eraseFromParent();
}
bool CombinerHelper::matchShuffleToExtract(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
"Invalid instruction kind");
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
return Mask.size() == 1;
}
void CombinerHelper::applyShuffleToExtract(MachineInstr &MI) const {
Register DstReg = MI.getOperand(0).getReg();
Builder.setInsertPt(*MI.getParent(), MI);
int I = MI.getOperand(3).getShuffleMask()[0];
Register Src1 = MI.getOperand(1).getReg();
LLT Src1Ty = MRI.getType(Src1);
int Src1NumElts = Src1Ty.isVector() ? Src1Ty.getNumElements() : 1;
Register SrcReg;
if (I >= Src1NumElts) {
SrcReg = MI.getOperand(2).getReg();
I -= Src1NumElts;
} else if (I >= 0)
SrcReg = Src1;
if (I < 0)
Builder.buildUndef(DstReg);
else if (!MRI.getType(SrcReg).isVector())
Builder.buildCopy(DstReg, SrcReg);
else
Builder.buildExtractVectorElementConstant(DstReg, SrcReg, I);
MI.eraseFromParent();
}
namespace {
/// Select a preference between two uses. CurrentUse is the current preference
/// while *ForCandidate is attributes of the candidate under consideration.
PreferredTuple ChoosePreferredUse(MachineInstr &LoadMI,
PreferredTuple &CurrentUse,
const LLT TyForCandidate,
unsigned OpcodeForCandidate,
MachineInstr *MIForCandidate) {
if (!CurrentUse.Ty.isValid()) {
if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
return CurrentUse;
}
// We permit the extend to hoist through basic blocks but this is only
// sensible if the target has extending loads. If you end up lowering back
// into a load and extend during the legalizer then the end result is
// hoisting the extend up to the load.
// Prefer defined extensions to undefined extensions as these are more
// likely to reduce the number of instructions.
if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
return CurrentUse;
else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
OpcodeForCandidate != TargetOpcode::G_ANYEXT)
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
// Prefer sign extensions to zero extensions as sign-extensions tend to be
// more expensive. Don't do this if the load is already a zero-extend load
// though, otherwise we'll rewrite a zero-extend load into a sign-extend
// later.
if (!isa<GZExtLoad>(LoadMI) && CurrentUse.Ty == TyForCandidate) {
if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
OpcodeForCandidate == TargetOpcode::G_ZEXT)
return CurrentUse;
else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
OpcodeForCandidate == TargetOpcode::G_SEXT)
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
}
// This is potentially target specific. We've chosen the largest type
// because G_TRUNC is usually free. One potential catch with this is that
// some targets have a reduced number of larger registers than smaller
// registers and this choice potentially increases the live-range for the
// larger value.
if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
}
return CurrentUse;
}
/// Find a suitable place to insert some instructions and insert them. This
/// function accounts for special cases like inserting before a PHI node.
/// The current strategy for inserting before PHI's is to duplicate the
/// instructions for each predecessor. However, while that's ok for G_TRUNC
/// on most targets since it generally requires no code, other targets/cases may
/// want to try harder to find a dominating block.
static void InsertInsnsWithoutSideEffectsBeforeUse(
MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
MachineOperand &UseMO)>
Inserter) {
MachineInstr &UseMI = *UseMO.getParent();
MachineBasicBlock *InsertBB = UseMI.getParent();
// If the use is a PHI then we want the predecessor block instead.
if (UseMI.isPHI()) {
MachineOperand *PredBB = std::next(&UseMO);
InsertBB = PredBB->getMBB();
}
// If the block is the same block as the def then we want to insert just after
// the def instead of at the start of the block.
if (InsertBB == DefMI.getParent()) {
MachineBasicBlock::iterator InsertPt = &DefMI;
Inserter(InsertBB, std::next(InsertPt), UseMO);
return;
}
// Otherwise we want the start of the BB
Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
}
} // end anonymous namespace
bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) const {
PreferredTuple Preferred;
if (matchCombineExtendingLoads(MI, Preferred)) {
applyCombineExtendingLoads(MI, Preferred);
return true;
}
return false;
}
static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) {
unsigned CandidateLoadOpc;
switch (ExtOpc) {
case TargetOpcode::G_ANYEXT:
CandidateLoadOpc = TargetOpcode::G_LOAD;
break;
case TargetOpcode::G_SEXT:
CandidateLoadOpc = TargetOpcode::G_SEXTLOAD;
break;
case TargetOpcode::G_ZEXT:
CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD;
break;
default:
llvm_unreachable("Unexpected extend opc");
}
return CandidateLoadOpc;
}
bool CombinerHelper::matchCombineExtendingLoads(
MachineInstr &MI, PreferredTuple &Preferred) const {
// We match the loads and follow the uses to the extend instead of matching
// the extends and following the def to the load. This is because the load
// must remain in the same position for correctness (unless we also add code
// to find a safe place to sink it) whereas the extend is freely movable.
// It also prevents us from duplicating the load for the volatile case or just
// for performance.
GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
if (!LoadMI)
return false;
Register LoadReg = LoadMI->getDstReg();
LLT LoadValueTy = MRI.getType(LoadReg);
if (!LoadValueTy.isScalar())
return false;
// Most architectures are going to legalize <s8 loads into at least a 1 byte
// load, and the MMOs can only describe memory accesses in multiples of bytes.
// If we try to perform extload combining on those, we can end up with
// %a(s8) = extload %ptr (load 1 byte from %ptr)
// ... which is an illegal extload instruction.
if (LoadValueTy.getSizeInBits() < 8)
return false;
// For non power-of-2 types, they will very likely be legalized into multiple
// loads. Don't bother trying to match them into extending loads.
if (!llvm::has_single_bit<uint32_t>(LoadValueTy.getSizeInBits()))
return false;
// Find the preferred type aside from the any-extends (unless it's the only
// one) and non-extending ops. We'll emit an extending load to that type and
// and emit a variant of (extend (trunc X)) for the others according to the
// relative type sizes. At the same time, pick an extend to use based on the
// extend involved in the chosen type.
unsigned PreferredOpcode =
isa<GLoad>(&MI)
? TargetOpcode::G_ANYEXT
: isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
Preferred = {LLT(), PreferredOpcode, nullptr};
for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
(UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
const auto &MMO = LoadMI->getMMO();
// Don't do anything for atomics.
if (MMO.isAtomic())
continue;
// Check for legality.
if (!isPreLegalize()) {
LegalityQuery::MemDesc MMDesc(MMO);
unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode());
LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}})
.Action != LegalizeActions::Legal)
continue;
}
Preferred = ChoosePreferredUse(MI, Preferred,
MRI.getType(UseMI.getOperand(0).getReg()),
UseMI.getOpcode(), &UseMI);
}
}
// There were no extends
if (!Preferred.MI)
return false;
// It should be impossible to chose an extend without selecting a different
// type since by definition the result of an extend is larger.
assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
return true;
}
void CombinerHelper::applyCombineExtendingLoads(
MachineInstr &MI, PreferredTuple &Preferred) const {
// Rewrite the load to the chosen extending load.
Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
// Inserter to insert a truncate back to the original type at a given point
// with some basic CSE to limit truncate duplication to one per BB.
DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
MachineBasicBlock::iterator InsertBefore,
MachineOperand &UseMO) {
MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
if (PreviouslyEmitted) {
Observer.changingInstr(*UseMO.getParent());
UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
Observer.changedInstr(*UseMO.getParent());
return;
}
Builder.setInsertPt(*InsertIntoBB, InsertBefore);
Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
EmittedInsns[InsertIntoBB] = NewMI;
replaceRegOpWith(MRI, UseMO, NewDstReg);
};
Observer.changingInstr(MI);
unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode);
MI.setDesc(Builder.getTII().get(LoadOpc));
// Rewrite all the uses to fix up the types.
auto &LoadValue = MI.getOperand(0);
SmallVector<MachineOperand *, 4> Uses;
for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
Uses.push_back(&UseMO);
for (auto *UseMO : Uses) {
MachineInstr *UseMI = UseMO->getParent();
// If the extend is compatible with the preferred extend then we should fix
// up the type and extend so that it uses the preferred use.
if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
Register UseDstReg = UseMI->getOperand(0).getReg();
MachineOperand &UseSrcMO = UseMI->getOperand(1);
const LLT UseDstTy = MRI.getType(UseDstReg);
if (UseDstReg != ChosenDstReg) {
if (Preferred.Ty == UseDstTy) {
// If the use has the same type as the preferred use, then merge
// the vregs and erase the extend. For example:
// %1:_(s8) = G_LOAD ...
// %2:_(s32) = G_SEXT %1(s8)
// %3:_(s32) = G_ANYEXT %1(s8)
// ... = ... %3(s32)
// rewrites to:
// %2:_(s32) = G_SEXTLOAD ...
// ... = ... %2(s32)
replaceRegWith(MRI, UseDstReg, ChosenDstReg);
Observer.erasingInstr(*UseMO->getParent());
UseMO->getParent()->eraseFromParent();
} else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
// If the preferred size is smaller, then keep the extend but extend
// from the result of the extending load. For example:
// %1:_(s8) = G_LOAD ...
// %2:_(s32) = G_SEXT %1(s8)
// %3:_(s64) = G_ANYEXT %1(s8)
// ... = ... %3(s64)
/// rewrites to:
// %2:_(s32) = G_SEXTLOAD ...
// %3:_(s64) = G_ANYEXT %2:_(s32)
// ... = ... %3(s64)
replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
} else {
// If the preferred size is large, then insert a truncate. For
// example:
// %1:_(s8) = G_LOAD ...
// %2:_(s64) = G_SEXT %1(s8)
// %3:_(s32) = G_ZEXT %1(s8)
// ... = ... %3(s32)
/// rewrites to:
// %2:_(s64) = G_SEXTLOAD ...
// %4:_(s8) = G_TRUNC %2:_(s32)
// %3:_(s64) = G_ZEXT %2:_(s8)
// ... = ... %3(s64)
InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
InsertTruncAt);
}
continue;
}
// The use is (one of) the uses of the preferred use we chose earlier.
// We're going to update the load to def this value later so just erase
// the old extend.
Observer.erasingInstr(*UseMO->getParent());
UseMO->getParent()->eraseFromParent();
continue;
}
// The use isn't an extend. Truncate back to the type we originally loaded.
// This is free on many targets.
InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
}
MI.getOperand(0).setReg(ChosenDstReg);
Observer.changedInstr(MI);
}
bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_AND);
// If we have the following code:
// %mask = G_CONSTANT 255
// %ld = G_LOAD %ptr, (load s16)
// %and = G_AND %ld, %mask
//
// Try to fold it into
// %ld = G_ZEXTLOAD %ptr, (load s8)
Register Dst = MI.getOperand(0).getReg();
if (MRI.getType(Dst).isVector())
return false;
auto MaybeMask =
getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!MaybeMask)
return false;
APInt MaskVal = MaybeMask->Value;
if (!MaskVal.isMask())
return false;
Register SrcReg = MI.getOperand(1).getReg();
// Don't use getOpcodeDef() here since intermediate instructions may have
// multiple users.
GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg));
if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()))
return false;
Register LoadReg = LoadMI->getDstReg();
LLT RegTy = MRI.getType(LoadReg);
Register PtrReg = LoadMI->getPointerReg();
unsigned RegSize = RegTy.getSizeInBits();
LocationSize LoadSizeBits = LoadMI->getMemSizeInBits();
unsigned MaskSizeBits = MaskVal.countr_one();
// The mask may not be larger than the in-memory type, as it might cover sign
// extended bits
if (MaskSizeBits > LoadSizeBits.getValue())
return false;
// If the mask covers the whole destination register, there's nothing to
// extend
if (MaskSizeBits >= RegSize)
return false;
// Most targets cannot deal with loads of size < 8 and need to re-legalize to
// at least byte loads. Avoid creating such loads here
if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits))
return false;
const MachineMemOperand &MMO = LoadMI->getMMO();
LegalityQuery::MemDesc MemDesc(MMO);
// Don't modify the memory access size if this is atomic/volatile, but we can
// still adjust the opcode to indicate the high bit behavior.
if (LoadMI->isSimple())
MemDesc.MemoryTy = LLT::scalar(MaskSizeBits);
else if (LoadSizeBits.getValue() > MaskSizeBits ||
LoadSizeBits.getValue() == RegSize)
return false;
// TODO: Could check if it's legal with the reduced or original memory size.
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}}))
return false;
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*LoadMI);
auto &MF = B.getMF();
auto PtrInfo = MMO.getPointerInfo();
auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy);
B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO);
LoadMI->eraseFromParent();
};
return true;
}
bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
const MachineInstr &UseMI) const {
assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
"shouldn't consider debug uses");
assert(DefMI.getParent() == UseMI.getParent());
if (&DefMI == &UseMI)
return true;
const MachineBasicBlock &MBB = *DefMI.getParent();
auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
return &MI == &DefMI || &MI == &UseMI;
});
if (DefOrUse == MBB.end())
llvm_unreachable("Block must contain both DefMI and UseMI!");
return &*DefOrUse == &DefMI;
}
bool CombinerHelper::dominates(const MachineInstr &DefMI,
const MachineInstr &UseMI) const {
assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
"shouldn't consider debug uses");
if (MDT)
return MDT->dominates(&DefMI, &UseMI);
else if (DefMI.getParent() != UseMI.getParent())
return false;
return isPredecessor(DefMI, UseMI);
}
bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Register SrcReg = MI.getOperand(1).getReg();
Register LoadUser = SrcReg;
if (MRI.getType(SrcReg).isVector())
return false;
Register TruncSrc;
if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
LoadUser = TruncSrc;
uint64_t SizeInBits = MI.getOperand(2).getImm();
// If the source is a G_SEXTLOAD from the same bit width, then we don't
// need any extend at all, just a truncate.
if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
// If truncating more than the original extended value, abort.
auto LoadSizeBits = LoadMI->getMemSizeInBits();
if (TruncSrc &&
MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits.getValue())
return false;
if (LoadSizeBits == SizeInBits)
return true;
}
return false;
}
void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
MI.eraseFromParent();
}
bool CombinerHelper::matchSextInRegOfLoad(
MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Register DstReg = MI.getOperand(0).getReg();
LLT RegTy = MRI.getType(DstReg);
// Only supports scalars for now.
if (RegTy.isVector())
return false;
Register SrcReg = MI.getOperand(1).getReg();
auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
if (!LoadDef || !MRI.hasOneNonDBGUse(SrcReg))
return false;
uint64_t MemBits = LoadDef->getMemSizeInBits().getValue();
// If the sign extend extends from a narrower width than the load's width,
// then we can narrow the load width when we combine to a G_SEXTLOAD.
// Avoid widening the load at all.
unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits);
// Don't generate G_SEXTLOADs with a < 1 byte width.
if (NewSizeBits < 8)
return false;
// Don't bother creating a non-power-2 sextload, it will likely be broken up
// anyway for most targets.
if (!isPowerOf2_32(NewSizeBits))
return false;
const MachineMemOperand &MMO = LoadDef->getMMO();
LegalityQuery::MemDesc MMDesc(MMO);
// Don't modify the memory access size if this is atomic/volatile, but we can
// still adjust the opcode to indicate the high bit behavior.
if (LoadDef->isSimple())
MMDesc.MemoryTy = LLT::scalar(NewSizeBits);
else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits())
return false;
// TODO: Could check if it's legal with the reduced or original memory size.
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD,
{MRI.getType(LoadDef->getDstReg()),
MRI.getType(LoadDef->getPointerReg())},
{MMDesc}}))
return false;
MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
return true;
}
void CombinerHelper::applySextInRegOfLoad(
MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Register LoadReg;
unsigned ScalarSizeBits;
std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
// If we have the following:
// %ld = G_LOAD %ptr, (load 2)
// %ext = G_SEXT_INREG %ld, 8
// ==>
// %ld = G_SEXTLOAD %ptr (load 1)
auto &MMO = LoadDef->getMMO();
Builder.setInstrAndDebugLoc(*LoadDef);
auto &MF = Builder.getMF();
auto PtrInfo = MMO.getPointerInfo();
auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
LoadDef->getPointerReg(), *NewMMO);
MI.eraseFromParent();
// Not all loads can be deleted, so make sure the old one is removed.
LoadDef->eraseFromParent();
}
/// Return true if 'MI' is a load or a store that may be fold it's address
/// operand into the load / store addressing mode.
static bool canFoldInAddressingMode(GLoadStore *MI, const TargetLowering &TLI,
MachineRegisterInfo &MRI) {
TargetLowering::AddrMode AM;
auto *MF = MI->getMF();
auto *Addr = getOpcodeDef<GPtrAdd>(MI->getPointerReg(), MRI);
if (!Addr)
return false;
AM.HasBaseReg = true;
if (auto CstOff = getIConstantVRegVal(Addr->getOffsetReg(), MRI))
AM.BaseOffs = CstOff->getSExtValue(); // [reg +/- imm]
else
AM.Scale = 1; // [reg +/- reg]
return TLI.isLegalAddressingMode(
MF->getDataLayout(), AM,
getTypeForLLT(MI->getMMO().getMemoryType(),
MF->getFunction().getContext()),
MI->getMMO().getAddrSpace());
}
static unsigned getIndexedOpc(unsigned LdStOpc) {
switch (LdStOpc) {
case TargetOpcode::G_LOAD:
return TargetOpcode::G_INDEXED_LOAD;
case TargetOpcode::G_STORE:
return TargetOpcode::G_INDEXED_STORE;
case TargetOpcode::G_ZEXTLOAD:
return TargetOpcode::G_INDEXED_ZEXTLOAD;
case TargetOpcode::G_SEXTLOAD:
return TargetOpcode::G_INDEXED_SEXTLOAD;
default:
llvm_unreachable("Unexpected opcode");
}
}
bool CombinerHelper::isIndexedLoadStoreLegal(GLoadStore &LdSt) const {
// Check for legality.
LLT PtrTy = MRI.getType(LdSt.getPointerReg());
LLT Ty = MRI.getType(LdSt.getReg(0));
LLT MemTy = LdSt.getMMO().getMemoryType();
SmallVector<LegalityQuery::MemDesc, 2> MemDescrs(
{{MemTy, MemTy.getSizeInBits().getKnownMinValue(),
AtomicOrdering::NotAtomic}});
unsigned IndexedOpc = getIndexedOpc(LdSt.getOpcode());
SmallVector<LLT> OpTys;
if (IndexedOpc == TargetOpcode::G_INDEXED_STORE)
OpTys = {PtrTy, Ty, Ty};
else
OpTys = {Ty, PtrTy}; // For G_INDEXED_LOAD, G_INDEXED_[SZ]EXTLOAD
LegalityQuery Q(IndexedOpc, OpTys, MemDescrs);
return isLegal(Q);
}
static cl::opt<unsigned> PostIndexUseThreshold(
"post-index-use-threshold", cl::Hidden, cl::init(32),
cl::desc("Number of uses of a base pointer to check before it is no longer "
"considered for post-indexing."));
bool CombinerHelper::findPostIndexCandidate(GLoadStore &LdSt, Register &Addr,
Register &Base, Register &Offset,
bool &RematOffset) const {
// We're looking for the following pattern, for either load or store:
// %baseptr:_(p0) = ...
// G_STORE %val(s64), %baseptr(p0)
// %offset:_(s64) = G_CONSTANT i64 -256
// %new_addr:_(p0) = G_PTR_ADD %baseptr, %offset(s64)
const auto &TLI = getTargetLowering();
Register Ptr = LdSt.getPointerReg();
// If the store is the only use, don't bother.
if (MRI.hasOneNonDBGUse(Ptr))
return false;
if (!isIndexedLoadStoreLegal(LdSt))
return false;
if (getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Ptr, MRI))
return false;
MachineInstr *StoredValDef = getDefIgnoringCopies(LdSt.getReg(0), MRI);
auto *PtrDef = MRI.getVRegDef(Ptr);
unsigned NumUsesChecked = 0;
for (auto &Use : MRI.use_nodbg_instructions(Ptr)) {
if (++NumUsesChecked > PostIndexUseThreshold)
return false; // Try to avoid exploding compile time.
auto *PtrAdd = dyn_cast<GPtrAdd>(&Use);
// The use itself might be dead. This can happen during combines if DCE
// hasn't had a chance to run yet. Don't allow it to form an indexed op.
if (!PtrAdd || MRI.use_nodbg_empty(PtrAdd->getReg(0)))
continue;
// Check the user of this isn't the store, otherwise we'd be generate a
// indexed store defining its own use.
if (StoredValDef == &Use)
continue;
Offset = PtrAdd->getOffsetReg();
if (!ForceLegalIndexing &&
!TLI.isIndexingLegal(LdSt, PtrAdd->getBaseReg(), Offset,
/*IsPre*/ false, MRI))
continue;
// Make sure the offset calculation is before the potentially indexed op.
MachineInstr *OffsetDef = MRI.getVRegDef(Offset);
RematOffset = false;
if (!dominates(*OffsetDef, LdSt)) {
// If the offset however is just a G_CONSTANT, we can always just
// rematerialize it where we need it.
if (OffsetDef->getOpcode() != TargetOpcode::G_CONSTANT)
continue;
RematOffset = true;
}
for (auto &BasePtrUse : MRI.use_nodbg_instructions(PtrAdd->getBaseReg())) {
if (&BasePtrUse == PtrDef)
continue;
// If the user is a later load/store that can be post-indexed, then don't
// combine this one.
auto *BasePtrLdSt = dyn_cast<GLoadStore>(&BasePtrUse);
if (BasePtrLdSt && BasePtrLdSt != &LdSt &&
dominates(LdSt, *BasePtrLdSt) &&
isIndexedLoadStoreLegal(*BasePtrLdSt))
return false;
// Now we're looking for the key G_PTR_ADD instruction, which contains
// the offset add that we want to fold.
if (auto *BasePtrUseDef = dyn_cast<GPtrAdd>(&BasePtrUse)) {
Register PtrAddDefReg = BasePtrUseDef->getReg(0);
for (auto &BaseUseUse : MRI.use_nodbg_instructions(PtrAddDefReg)) {
// If the use is in a different block, then we may produce worse code
// due to the extra register pressure.
if (BaseUseUse.getParent() != LdSt.getParent())
return false;
if (auto *UseUseLdSt = dyn_cast<GLoadStore>(&BaseUseUse))
if (canFoldInAddressingMode(UseUseLdSt, TLI, MRI))
return false;
}
if (!dominates(LdSt, BasePtrUse))
return false; // All use must be dominated by the load/store.
}
}
Addr = PtrAdd->getReg(0);
Base = PtrAdd->getBaseReg();
return true;
}
return false;
}
bool CombinerHelper::findPreIndexCandidate(GLoadStore &LdSt, Register &Addr,
Register &Base,
Register &Offset) const {
auto &MF = *LdSt.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
Addr = LdSt.getPointerReg();
if (!mi_match(Addr, MRI, m_GPtrAdd(m_Reg(Base), m_Reg(Offset))) ||
MRI.hasOneNonDBGUse(Addr))
return false;
if (!ForceLegalIndexing &&
!TLI.isIndexingLegal(LdSt, Base, Offset, /*IsPre*/ true, MRI))
return false;
if (!isIndexedLoadStoreLegal(LdSt))
return false;
MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
return false;
if (auto *St = dyn_cast<GStore>(&LdSt)) {
// Would require a copy.
if (Base == St->getValueReg())
return false;
// We're expecting one use of Addr in MI, but it could also be the
// value stored, which isn't actually dominated by the instruction.
if (St->getValueReg() == Addr)
return false;
}
// Avoid increasing cross-block register pressure.
for (auto &AddrUse : MRI.use_nodbg_instructions(Addr))
if (AddrUse.getParent() != LdSt.getParent())
return false;
// FIXME: check whether all uses of the base pointer are constant PtrAdds.
// That might allow us to end base's liveness here by adjusting the constant.
bool RealUse = false;
for (auto &AddrUse : MRI.use_nodbg_instructions(Addr)) {
if (!dominates(LdSt, AddrUse))
return false; // All use must be dominated by the load/store.
// If Ptr may be folded in addressing mode of other use, then it's
// not profitable to do this transformation.
if (auto *UseLdSt = dyn_cast<GLoadStore>(&AddrUse)) {
if (!canFoldInAddressingMode(UseLdSt, TLI, MRI))
RealUse = true;
} else {
RealUse = true;
}
}
return RealUse;
}
bool CombinerHelper::matchCombineExtractedVectorLoad(
MachineInstr &MI, BuildFnTy &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
// Check if there is a load that defines the vector being extracted from.
auto *LoadMI = getOpcodeDef<GLoad>(MI.getOperand(1).getReg(), MRI);
if (!LoadMI)
return false;
Register Vector = MI.getOperand(1).getReg();
LLT VecEltTy = MRI.getType(Vector).getElementType();
assert(MRI.getType(MI.getOperand(0).getReg()) == VecEltTy);
// Checking whether we should reduce the load width.
if (!MRI.hasOneNonDBGUse(Vector))
return false;
// Check if the defining load is simple.
if (!LoadMI->isSimple())
return false;
// If the vector element type is not a multiple of a byte then we are unable
// to correctly compute an address to load only the extracted element as a
// scalar.
if (!VecEltTy.isByteSized())
return false;
// Check for load fold barriers between the extraction and the load.
if (MI.getParent() != LoadMI->getParent())
return false;
const unsigned MaxIter = 20;
unsigned Iter = 0;
for (auto II = LoadMI->getIterator(), IE = MI.getIterator(); II != IE; ++II) {
if (II->isLoadFoldBarrier())
return false;
if (Iter++ == MaxIter)
return false;
}
// Check if the new load that we are going to create is legal
// if we are in the post-legalization phase.
MachineMemOperand MMO = LoadMI->getMMO();
Align Alignment = MMO.getAlign();
MachinePointerInfo PtrInfo;
uint64_t Offset;
// Finding the appropriate PtrInfo if offset is a known constant.
// This is required to create the memory operand for the narrowed load.
// This machine memory operand object helps us infer about legality
// before we proceed to combine the instruction.
if (auto CVal = getIConstantVRegVal(Vector, MRI)) {
int Elt = CVal->getZExtValue();
// FIXME: should be (ABI size)*Elt.
Offset = VecEltTy.getSizeInBits() * Elt / 8;
PtrInfo = MMO.getPointerInfo().getWithOffset(Offset);
} else {
// Discard the pointer info except the address space because the memory
// operand can't represent this new access since the offset is variable.
Offset = VecEltTy.getSizeInBits() / 8;
PtrInfo = MachinePointerInfo(MMO.getPointerInfo().getAddrSpace());
}
Alignment = commonAlignment(Alignment, Offset);
Register VecPtr = LoadMI->getPointerReg();
LLT PtrTy = MRI.getType(VecPtr);
MachineFunction &MF = *MI.getMF();
auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, VecEltTy);
LegalityQuery::MemDesc MMDesc(*NewMMO);
LegalityQuery Q = {TargetOpcode::G_LOAD, {VecEltTy, PtrTy}, {MMDesc}};
if (!isLegalOrBeforeLegalizer(Q))
return false;
// Load must be allowed and fast on the target.
LLVMContext &C = MF.getFunction().getContext();
auto &DL = MF.getDataLayout();
unsigned Fast = 0;
if (!getTargetLowering().allowsMemoryAccess(C, DL, VecEltTy, *NewMMO,
&Fast) ||
!Fast)
return false;
Register Result = MI.getOperand(0).getReg();
Register Index = MI.getOperand(2).getReg();
MatchInfo = [=](MachineIRBuilder &B) {
GISelObserverWrapper DummyObserver;
LegalizerHelper Helper(B.getMF(), DummyObserver, B);
//// Get pointer to the vector element.
Register finalPtr = Helper.getVectorElementPointer(
LoadMI->getPointerReg(), MRI.getType(LoadMI->getOperand(0).getReg()),
Index);
// New G_LOAD instruction.
B.buildLoad(Result, finalPtr, PtrInfo, Alignment);
// Remove original GLOAD instruction.
LoadMI->eraseFromParent();
};
return true;
}
bool CombinerHelper::matchCombineIndexedLoadStore(
MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) const {
auto &LdSt = cast<GLoadStore>(MI);
if (LdSt.isAtomic())
return false;
MatchInfo.IsPre = findPreIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base,
MatchInfo.Offset);
if (!MatchInfo.IsPre &&
!findPostIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base,
MatchInfo.Offset, MatchInfo.RematOffset))
return false;
return true;
}
void CombinerHelper::applyCombineIndexedLoadStore(
MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) const {
MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
unsigned Opcode = MI.getOpcode();
bool IsStore = Opcode == TargetOpcode::G_STORE;
unsigned NewOpcode = getIndexedOpc(Opcode);
// If the offset constant didn't happen to dominate the load/store, we can
// just clone it as needed.
if (MatchInfo.RematOffset) {
auto *OldCst = MRI.getVRegDef(MatchInfo.Offset);
auto NewCst = Builder.buildConstant(MRI.getType(MatchInfo.Offset),
*OldCst->getOperand(1).getCImm());
MatchInfo.Offset = NewCst.getReg(0);
}
auto MIB = Builder.buildInstr(NewOpcode);
if (IsStore) {
MIB.addDef(MatchInfo.Addr);
MIB.addUse(MI.getOperand(0).getReg());
} else {
MIB.addDef(MI.getOperand(0).getReg());
MIB.addDef(MatchInfo.Addr);
}
MIB.addUse(MatchInfo.Base);
MIB.addUse(MatchInfo.Offset);
MIB.addImm(MatchInfo.IsPre);
MIB->cloneMemRefs(*MI.getMF(), MI);
MI.eraseFromParent();
AddrDef.eraseFromParent();
LLVM_DEBUG(dbgs() << " Combinined to indexed operation");
}
bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
MachineInstr *&OtherMI) const {
unsigned Opcode = MI.getOpcode();
bool IsDiv, IsSigned;
switch (Opcode) {
default:
llvm_unreachable("Unexpected opcode!");
case TargetOpcode::G_SDIV:
case TargetOpcode::G_UDIV: {
IsDiv = true;
IsSigned = Opcode == TargetOpcode::G_SDIV;
break;
}
case TargetOpcode::G_SREM:
case TargetOpcode::G_UREM: {
IsDiv = false;
IsSigned = Opcode == TargetOpcode::G_SREM;
break;
}
}
Register Src1 = MI.getOperand(1).getReg();
unsigned DivOpcode, RemOpcode, DivremOpcode;
if (IsSigned) {
DivOpcode = TargetOpcode::G_SDIV;
RemOpcode = TargetOpcode::G_SREM;
DivremOpcode = TargetOpcode::G_SDIVREM;
} else {
DivOpcode = TargetOpcode::G_UDIV;
RemOpcode = TargetOpcode::G_UREM;
DivremOpcode = TargetOpcode::G_UDIVREM;
}
if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
return false;
// Combine:
// %div:_ = G_[SU]DIV %src1:_, %src2:_
// %rem:_ = G_[SU]REM %src1:_, %src2:_
// into:
// %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
// Combine:
// %rem:_ = G_[SU]REM %src1:_, %src2:_
// %div:_ = G_[SU]DIV %src1:_, %src2:_
// into:
// %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
if (MI.getParent() == UseMI.getParent() &&
((IsDiv && UseMI.getOpcode() == RemOpcode) ||
(!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) &&
matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) {
OtherMI = &UseMI;
return true;
}
}
return false;
}
void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
MachineInstr *&OtherMI) const {
unsigned Opcode = MI.getOpcode();
assert(OtherMI && "OtherMI shouldn't be empty.");
Register DestDivReg, DestRemReg;
if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
DestDivReg = MI.getOperand(0).getReg();
DestRemReg = OtherMI->getOperand(0).getReg();
} else {
DestDivReg = OtherMI->getOperand(0).getReg();
DestRemReg = MI.getOperand(0).getReg();
}
bool IsSigned =
Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
// Check which instruction is first in the block so we don't break def-use
// deps by "moving" the instruction incorrectly. Also keep track of which
// instruction is first so we pick it's operands, avoiding use-before-def
// bugs.
MachineInstr *FirstInst = dominates(MI, *OtherMI) ? &MI : OtherMI;
Builder.setInstrAndDebugLoc(*FirstInst);
Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
: TargetOpcode::G_UDIVREM,
{DestDivReg, DestRemReg},
{ FirstInst->getOperand(1), FirstInst->getOperand(2) });
MI.eraseFromParent();
OtherMI->eraseFromParent();
}
bool CombinerHelper::matchOptBrCondByInvertingCond(
MachineInstr &MI, MachineInstr *&BrCond) const {
assert(MI.getOpcode() == TargetOpcode::G_BR);
// Try to match the following:
// bb1:
// G_BRCOND %c1, %bb2
// G_BR %bb3
// bb2:
// ...
// bb3:
// The above pattern does not have a fall through to the successor bb2, always
// resulting in a branch no matter which path is taken. Here we try to find
// and replace that pattern with conditional branch to bb3 and otherwise
// fallthrough to bb2. This is generally better for branch predictors.
MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock::iterator BrIt(MI);
if (BrIt == MBB->begin())
return false;
assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
BrCond = &*std::prev(BrIt);
if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
return false;
// Check that the next block is the conditional branch target. Also make sure
// that it isn't the same as the G_BR's target (otherwise, this will loop.)
MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
return BrCondTarget != MI.getOperand(0).getMBB() &&
MBB->isLayoutSuccessor(BrCondTarget);
}
void CombinerHelper::applyOptBrCondByInvertingCond(
MachineInstr &MI, MachineInstr *&BrCond) const {
MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
Builder.setInstrAndDebugLoc(*BrCond);
LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
// FIXME: Does int/fp matter for this? If so, we might need to restrict
// this to i1 only since we might not know for sure what kind of
// compare generated the condition value.
auto True = Builder.buildConstant(
Ty, getICmpTrueVal(getTargetLowering(), false, false));
auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
auto *FallthroughBB = BrCond->getOperand(1).getMBB();
Observer.changingInstr(MI);
MI.getOperand(0).setMBB(FallthroughBB);
Observer.changedInstr(MI);
// Change the conditional branch to use the inverted condition and
// new target block.
Observer.changingInstr(*BrCond);
BrCond->getOperand(0).setReg(Xor.getReg(0));
BrCond->getOperand(1).setMBB(BrTarget);
Observer.changedInstr(*BrCond);
}
bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) const {
MachineIRBuilder HelperBuilder(MI);
GISelObserverWrapper DummyObserver;
LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
return Helper.lowerMemcpyInline(MI) ==
LegalizerHelper::LegalizeResult::Legalized;
}
bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI,
unsigned MaxLen) const {
MachineIRBuilder HelperBuilder(MI);
GISelObserverWrapper DummyObserver;
LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
return Helper.lowerMemCpyFamily(MI, MaxLen) ==
LegalizerHelper::LegalizeResult::Legalized;
}
static APFloat constantFoldFpUnary(const MachineInstr &MI,
const MachineRegisterInfo &MRI,
const APFloat &Val) {
APFloat Result(Val);
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case TargetOpcode::G_FNEG: {
Result.changeSign();
return Result;
}
case TargetOpcode::G_FABS: {
Result.clearSign();
return Result;
}
case TargetOpcode::G_FPTRUNC: {
bool Unused;
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
Result.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven,
&Unused);
return Result;
}
case TargetOpcode::G_FSQRT: {
bool Unused;
Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&Unused);
Result = APFloat(sqrt(Result.convertToDouble()));
break;
}
case TargetOpcode::G_FLOG2: {
bool Unused;
Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&Unused);
Result = APFloat(log2(Result.convertToDouble()));
break;
}
}
// Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
// `buildFConstant` will assert on size mismatch. Only `G_FSQRT`, and
// `G_FLOG2` reach here.
bool Unused;
Result.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &Unused);
return Result;
}
void CombinerHelper::applyCombineConstantFoldFpUnary(
MachineInstr &MI, const ConstantFP *Cst) const {
APFloat Folded = constantFoldFpUnary(MI, MRI, Cst->getValue());
const ConstantFP *NewCst = ConstantFP::get(Builder.getContext(), Folded);
Builder.buildFConstant(MI.getOperand(0), *NewCst);
MI.eraseFromParent();
}
bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
PtrAddChain &MatchInfo) const {
// We're trying to match the following pattern:
// %t1 = G_PTR_ADD %base, G_CONSTANT imm1
// %root = G_PTR_ADD %t1, G_CONSTANT imm2
// -->
// %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
return false;
Register Add2 = MI.getOperand(1).getReg();
Register Imm1 = MI.getOperand(2).getReg();
auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
if (!MaybeImmVal)
return false;
MachineInstr *Add2Def = MRI.getVRegDef(Add2);
if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
return false;
Register Base = Add2Def->getOperand(1).getReg();
Register Imm2 = Add2Def->getOperand(2).getReg();
auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
if (!MaybeImm2Val)
return false;
// Check if the new combined immediate forms an illegal addressing mode.
// Do not combine if it was legal before but would get illegal.
// To do so, we need to find a load/store user of the pointer to get
// the access type.
Type *AccessTy = nullptr;
auto &MF = *MI.getMF();
for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) {
AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)),
MF.getFunction().getContext());
break;
}
}
TargetLoweringBase::AddrMode AMNew;
APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value;
AMNew.BaseOffs = CombinedImm.getSExtValue();
if (AccessTy) {
AMNew.HasBaseReg = true;
TargetLoweringBase::AddrMode AMOld;
AMOld.BaseOffs = MaybeImmVal->Value.getSExtValue();
AMOld.HasBaseReg = true;
unsigned AS = MRI.getType(Add2).getAddressSpace();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) &&
!TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS))
return false;
}
// Pass the combined immediate to the apply function.
MatchInfo.Imm = AMNew.BaseOffs;
MatchInfo.Base = Base;
MatchInfo.Bank = getRegBank(Imm2);
return true;
}
void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
PtrAddChain &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
MachineIRBuilder MIB(MI);
LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
setRegBank(NewOffset.getReg(0), MatchInfo.Bank);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(MatchInfo.Base);
MI.getOperand(2).setReg(NewOffset.getReg(0));
Observer.changedInstr(MI);
}
bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
RegisterImmPair &MatchInfo) const {
// We're trying to match the following pattern with any of
// G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
// %t1 = SHIFT %base, G_CONSTANT imm1
// %root = SHIFT %t1, G_CONSTANT imm2
// -->
// %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
unsigned Opcode = MI.getOpcode();
assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
Opcode == TargetOpcode::G_USHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
Register Shl2 = MI.getOperand(1).getReg();
Register Imm1 = MI.getOperand(2).getReg();
auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
if (!MaybeImmVal)
return false;
MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
if (Shl2Def->getOpcode() != Opcode)
return false;
Register Base = Shl2Def->getOperand(1).getReg();
Register Imm2 = Shl2Def->getOperand(2).getReg();
auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
if (!MaybeImm2Val)
return false;
// Pass the combined immediate to the apply function.
MatchInfo.Imm =
(MaybeImmVal->Value.getZExtValue() + MaybeImm2Val->Value).getZExtValue();
MatchInfo.Reg = Base;
// There is no simple replacement for a saturating unsigned left shift that
// exceeds the scalar size.
if (Opcode == TargetOpcode::G_USHLSAT &&
MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
return false;
return true;
}
void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
RegisterImmPair &MatchInfo) const {
unsigned Opcode = MI.getOpcode();
assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
Opcode == TargetOpcode::G_USHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
auto Imm = MatchInfo.Imm;
if (Imm >= ScalarSizeInBits) {
// Any logical shift that exceeds scalar size will produce zero.
if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
Builder.buildConstant(MI.getOperand(0), 0);
MI.eraseFromParent();
return;
}
// Arithmetic shift and saturating signed left shift have no effect beyond
// scalar size.
Imm = ScalarSizeInBits - 1;
}
LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(MatchInfo.Reg);
MI.getOperand(2).setReg(NewImm);
Observer.changedInstr(MI);
}
bool CombinerHelper::matchShiftOfShiftedLogic(
MachineInstr &MI, ShiftOfShiftedLogic &MatchInfo) const {
// We're trying to match the following pattern with any of
// G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
// with any of G_AND/G_OR/G_XOR logic instructions.
// %t1 = SHIFT %X, G_CONSTANT C0
// %t2 = LOGIC %t1, %Y
// %root = SHIFT %t2, G_CONSTANT C1
// -->
// %t3 = SHIFT %X, G_CONSTANT (C0+C1)
// %t4 = SHIFT %Y, G_CONSTANT C1
// %root = LOGIC %t3, %t4
unsigned ShiftOpcode = MI.getOpcode();
assert((ShiftOpcode == TargetOpcode::G_SHL ||
ShiftOpcode == TargetOpcode::G_ASHR ||
ShiftOpcode == TargetOpcode::G_LSHR ||
ShiftOpcode == TargetOpcode::G_USHLSAT ||
ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
// Match a one-use bitwise logic op.
Register LogicDest = MI.getOperand(1).getReg();
if (!MRI.hasOneNonDBGUse(LogicDest))
return false;
MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
unsigned LogicOpcode = LogicMI->getOpcode();
if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
LogicOpcode != TargetOpcode::G_XOR)
return false;
// Find a matching one-use shift by constant.
const Register C1 = MI.getOperand(2).getReg();
auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI);
if (!MaybeImmVal || MaybeImmVal->Value == 0)
return false;
const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
// Shift should match previous one and should be a one-use.
if (MI->getOpcode() != ShiftOpcode ||
!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
return false;
// Must be a constant.
auto MaybeImmVal =
getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
if (!MaybeImmVal)
return false;
ShiftVal = MaybeImmVal->Value.getSExtValue();
return true;
};
// Logic ops are commutative, so check each operand for a match.
Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
uint64_t C0Val;
if (matchFirstShift(LogicMIOp1, C0Val)) {
MatchInfo.LogicNonShiftReg = LogicMIReg2;
MatchInfo.Shift2 = LogicMIOp1;
} else if (matchFirstShift(LogicMIOp2, C0Val)) {
MatchInfo.LogicNonShiftReg = LogicMIReg1;
MatchInfo.Shift2 = LogicMIOp2;
} else
return false;
MatchInfo.ValSum = C0Val + C1Val;
// The fold is not valid if the sum of the shift values exceeds bitwidth.
if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
return false;
MatchInfo.Logic = LogicMI;
return true;
}
void CombinerHelper::applyShiftOfShiftedLogic(
MachineInstr &MI, ShiftOfShiftedLogic &MatchInfo) const {
unsigned Opcode = MI.getOpcode();
assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
Opcode == TargetOpcode::G_SSHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
LLT DestType = MRI.getType(MI.getOperand(0).getReg());
Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
Register Shift1 =
Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
// If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same
// to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when
// build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we
// remove old shift1. And it will cause crash later. So erase it earlier to
// avoid the crash.
MatchInfo.Shift2->eraseFromParent();
Register Shift2Const = MI.getOperand(2).getReg();
Register Shift2 = Builder
.buildInstr(Opcode, {DestType},
{MatchInfo.LogicNonShiftReg, Shift2Const})
.getReg(0);
Register Dest = MI.getOperand(0).getReg();
Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
// This was one use so it's safe to remove it.
MatchInfo.Logic->eraseFromParent();
MI.eraseFromParent();
}
bool CombinerHelper::matchCommuteShift(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_SHL && "Expected G_SHL");
// Combine (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
// Combine (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
auto &Shl = cast<GenericMachineInstr>(MI);
Register DstReg = Shl.getReg(0);
Register SrcReg = Shl.getReg(1);
Register ShiftReg = Shl.getReg(2);
Register X, C1;
if (!getTargetLowering().isDesirableToCommuteWithShift(MI, !isPreLegalize()))
return false;
if (!mi_match(SrcReg, MRI,
m_OneNonDBGUse(m_any_of(m_GAdd(m_Reg(X), m_Reg(C1)),
m_GOr(m_Reg(X), m_Reg(C1))))))
return false;
APInt C1Val, C2Val;
if (!mi_match(C1, MRI, m_ICstOrSplat(C1Val)) ||
!mi_match(ShiftReg, MRI, m_ICstOrSplat(C2Val)))
return false;
auto *SrcDef = MRI.getVRegDef(SrcReg);
assert((SrcDef->getOpcode() == TargetOpcode::G_ADD ||
SrcDef->getOpcode() == TargetOpcode::G_OR) && "Unexpected op");
LLT SrcTy = MRI.getType(SrcReg);
MatchInfo = [=](MachineIRBuilder &B) {
auto S1 = B.buildShl(SrcTy, X, ShiftReg);
auto S2 = B.buildShl(SrcTy, C1, ShiftReg);
B.buildInstr(SrcDef->getOpcode(), {DstReg}, {S1, S2});
};
return true;
}
bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
unsigned &ShiftVal) const {
assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
auto MaybeImmVal =
getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!MaybeImmVal)
return false;
ShiftVal = MaybeImmVal->Value.exactLogBase2();
return (static_cast<int32_t>(ShiftVal) != -1);
}
void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
unsigned &ShiftVal) const {
assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
MachineIRBuilder MIB(MI);
LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
Observer.changingInstr(MI);
MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
MI.getOperand(2).setReg(ShiftCst.getReg(0));
if (ShiftVal == ShiftTy.getScalarSizeInBits() - 1)
MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
Observer.changedInstr(MI);
}
bool CombinerHelper::matchCombineSubToAdd(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
GSub &Sub = cast<GSub>(MI);
LLT Ty = MRI.getType(Sub.getReg(0));
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_ADD, {Ty}}))
return false;
if (!isConstantLegalOrBeforeLegalizer(Ty))
return false;
APInt Imm = getIConstantFromReg(Sub.getRHSReg(), MRI);
MatchInfo = [=, &MI](MachineIRBuilder &B) {
auto NegCst = B.buildConstant(Ty, -Imm);
Observer.changingInstr(MI);
MI.setDesc(B.getTII().get(TargetOpcode::G_ADD));
MI.getOperand(2).setReg(NegCst.getReg(0));
MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
Observer.changedInstr(MI);
};
return true;
}
// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
RegisterImmPair &MatchData) const {
assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
if (!getTargetLowering().isDesirableToPullExtFromShl(MI))
return false;
Register LHS = MI.getOperand(1).getReg();
Register ExtSrc;
if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
!mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
!mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
return false;
Register RHS = MI.getOperand(2).getReg();
MachineInstr *MIShiftAmt = MRI.getVRegDef(RHS);
auto MaybeShiftAmtVal = isConstantOrConstantSplatVector(*MIShiftAmt, MRI);
if (!MaybeShiftAmtVal)
return false;
if (LI) {
LLT SrcTy = MRI.getType(ExtSrc);
// We only really care about the legality with the shifted value. We can
// pick any type the constant shift amount, so ask the target what to
// use. Otherwise we would have to guess and hope it is reported as legal.
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
return false;
}
int64_t ShiftAmt = MaybeShiftAmtVal->getSExtValue();
MatchData.Reg = ExtSrc;
MatchData.Imm = ShiftAmt;
unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countl_one();
unsigned SrcTySize = MRI.getType(ExtSrc).getScalarSizeInBits();
return MinLeadingZeros >= ShiftAmt && ShiftAmt < SrcTySize;
}
void CombinerHelper::applyCombineShlOfExtend(
MachineInstr &MI, const RegisterImmPair &MatchData) const {
Register ExtSrcReg = MatchData.Reg;
int64_t ShiftAmtVal = MatchData.Imm;
LLT ExtSrcTy = MRI.getType(ExtSrcReg);
auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
auto NarrowShift =
Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
Builder.buildZExt(MI.getOperand(0), NarrowShift);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
Register &MatchInfo) const {
GMerge &Merge = cast<GMerge>(MI);
SmallVector<Register, 16> MergedValues;
for (unsigned I = 0; I < Merge.getNumSources(); ++I)
MergedValues.emplace_back(Merge.getSourceReg(I));
auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
return false;
for (unsigned I = 0; I < MergedValues.size(); ++I)
if (MergedValues[I] != Unmerge->getReg(I))
return false;
MatchInfo = Unmerge->getSourceReg();
return true;
}
static Register peekThroughBitcast(Register Reg,
const MachineRegisterInfo &MRI) {
while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
;
return Reg;
}
bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
MachineInstr &MI, SmallVectorImpl<Register> &Operands) const {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
auto &Unmerge = cast<GUnmerge>(MI);
Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
auto *SrcInstr = getOpcodeDef<GMergeLikeInstr>(SrcReg, MRI);
if (!SrcInstr)
return false;
// Check the source type of the merge.
LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
if (SrcMergeTy != Dst0Ty && !SameSize)
return false;
// They are the same now (modulo a bitcast).
// We can collect all the src registers.
for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
Operands.push_back(SrcInstr->getSourceReg(Idx));
return true;
}
void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
MachineInstr &MI, SmallVectorImpl<Register> &Operands) const {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
assert((MI.getNumOperands() - 1 == Operands.size()) &&
"Not enough operands to replace all defs");
unsigned NumElems = MI.getNumOperands() - 1;
LLT SrcTy = MRI.getType(Operands[0]);
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
bool CanReuseInputDirectly = DstTy == SrcTy;
for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
Register DstReg = MI.getOperand(Idx).getReg();
Register SrcReg = Operands[Idx];
// This combine may run after RegBankSelect, so we need to be aware of
// register banks.
const auto &DstCB = MRI.getRegClassOrRegBank(DstReg);
if (!DstCB.isNull() && DstCB != MRI.getRegClassOrRegBank(SrcReg)) {
SrcReg = Builder.buildCopy(MRI.getType(SrcReg), SrcReg).getReg(0);
MRI.setRegClassOrRegBank(SrcReg, DstCB);
}
if (CanReuseInputDirectly)
replaceRegWith(MRI, DstReg, SrcReg);
else
Builder.buildCast(DstReg, SrcReg);
}
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineUnmergeConstant(
MachineInstr &MI, SmallVectorImpl<APInt> &Csts) const {
unsigned SrcIdx = MI.getNumOperands() - 1;
Register SrcReg = MI.getOperand(SrcIdx).getReg();
MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
return false;
// Break down the big constant in smaller ones.
const MachineOperand &CstVal = SrcInstr->getOperand(1);
APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
? CstVal.getCImm()->getValue()
: CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
unsigned ShiftAmt = Dst0Ty.getSizeInBits();
// Unmerge a constant.
for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
Csts.emplace_back(Val.trunc(ShiftAmt));
Val = Val.lshr(ShiftAmt);
}
return true;
}
void CombinerHelper::applyCombineUnmergeConstant(
MachineInstr &MI, SmallVectorImpl<APInt> &Csts) const {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
assert((MI.getNumOperands() - 1 == Csts.size()) &&
"Not enough operands to replace all defs");
unsigned NumElems = MI.getNumOperands() - 1;
for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
Register DstReg = MI.getOperand(Idx).getReg();
Builder.buildConstant(DstReg, Csts[Idx]);
}
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineUnmergeUndef(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
unsigned SrcIdx = MI.getNumOperands() - 1;
Register SrcReg = MI.getOperand(SrcIdx).getReg();
MatchInfo = [&MI](MachineIRBuilder &B) {
unsigned NumElems = MI.getNumOperands() - 1;
for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
Register DstReg = MI.getOperand(Idx).getReg();
B.buildUndef(DstReg);
}
};
return isa<GImplicitDef>(MRI.getVRegDef(SrcReg));
}
bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(
MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
if (MRI.getType(MI.getOperand(0).getReg()).isVector() ||
MRI.getType(MI.getOperand(MI.getNumDefs()).getReg()).isVector())
return false;
// Check that all the lanes are dead except the first one.
for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
return false;
}
return true;
}
void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(
MachineInstr &MI) const {
Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
Register Dst0Reg = MI.getOperand(0).getReg();
Builder.buildTrunc(Dst0Reg, SrcReg);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
Register Dst0Reg = MI.getOperand(0).getReg();
LLT Dst0Ty = MRI.getType(Dst0Reg);
// G_ZEXT on vector applies to each lane, so it will
// affect all destinations. Therefore we won't be able
// to simplify the unmerge to just the first definition.
if (Dst0Ty.isVector())
return false;
Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy.isVector())
return false;
Register ZExtSrcReg;
if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
return false;
// Finally we can replace the first definition with
// a zext of the source if the definition is big enough to hold
// all of ZExtSrc bits.
LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
}
void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
Register Dst0Reg = MI.getOperand(0).getReg();
MachineInstr *ZExtInstr =
MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
"Expecting a G_ZEXT");
Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
LLT Dst0Ty = MRI.getType(Dst0Reg);
LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
Builder.buildZExt(Dst0Reg, ZExtSrcReg);
} else {
assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
"ZExt src doesn't fit in destination");
replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
}
Register ZeroReg;
for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
if (!ZeroReg)
ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
}
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
unsigned TargetShiftSize,
unsigned &ShiftVal) const {
assert((MI.getOpcode() == TargetOpcode::G_SHL ||
MI.getOpcode() == TargetOpcode::G_LSHR ||
MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (Ty.isVector()) // TODO:
return false;
// Don't narrow further than the requested size.
unsigned Size = Ty.getSizeInBits();
if (Size <= TargetShiftSize)
return false;
auto MaybeImmVal =
getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!MaybeImmVal)
return false;
ShiftVal = MaybeImmVal->Value.getSExtValue();
return ShiftVal >= Size / 2 && ShiftVal < Size;
}
void CombinerHelper::applyCombineShiftToUnmerge(
MachineInstr &MI, const unsigned &ShiftVal) const {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(SrcReg);
unsigned Size = Ty.getSizeInBits();
unsigned HalfSize = Size / 2;
assert(ShiftVal >= HalfSize);
LLT HalfTy = LLT::scalar(HalfSize);
auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
unsigned NarrowShiftAmt = ShiftVal - HalfSize;
if (MI.getOpcode() == TargetOpcode::G_LSHR) {
Register Narrowed = Unmerge.getReg(1);
// dst = G_LSHR s64:x, C for C >= 32
// =>
// lo, hi = G_UNMERGE_VALUES x
// dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
if (NarrowShiftAmt != 0) {
Narrowed = Builder.buildLShr(HalfTy, Narrowed,
Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
}
auto Zero = Builder.buildConstant(HalfTy, 0);
Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero});
} else if (MI.getOpcode() == TargetOpcode::G_SHL) {
Register Narrowed = Unmerge.getReg(0);
// dst = G_SHL s64:x, C for C >= 32
// =>
// lo, hi = G_UNMERGE_VALUES x
// dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
if (NarrowShiftAmt != 0) {
Narrowed = Builder.buildShl(HalfTy, Narrowed,
Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
}
auto Zero = Builder.buildConstant(HalfTy, 0);
Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed});
} else {
assert(MI.getOpcode() == TargetOpcode::G_ASHR);
auto Hi = Builder.buildAShr(
HalfTy, Unmerge.getReg(1),
Builder.buildConstant(HalfTy, HalfSize - 1));
if (ShiftVal == HalfSize) {
// (G_ASHR i64:x, 32) ->
// G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi});
} else if (ShiftVal == Size - 1) {
// Don't need a second shift.
// (G_ASHR i64:x, 63) ->
// %narrowed = (G_ASHR hi_32(x), 31)
// G_MERGE_VALUES %narrowed, %narrowed
Builder.buildMergeLikeInstr(DstReg, {Hi, Hi});
} else {
auto Lo = Builder.buildAShr(
HalfTy, Unmerge.getReg(1),
Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
// (G_ASHR i64:x, C) ->, for C >= 32
// G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
Builder.buildMergeLikeInstr(DstReg, {Lo, Hi});
}
}
MI.eraseFromParent();
}
bool CombinerHelper::tryCombineShiftToUnmerge(
MachineInstr &MI, unsigned TargetShiftAmount) const {
unsigned ShiftAmt;
if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
applyCombineShiftToUnmerge(MI, ShiftAmt);
return true;
}
return false;
}
bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI,
Register &Reg) const {
assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
Register SrcReg = MI.getOperand(1).getReg();
return mi_match(SrcReg, MRI,
m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
}
void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI,
Register &Reg) const {
assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
Register DstReg = MI.getOperand(0).getReg();
Builder.buildCopy(DstReg, Reg);
MI.eraseFromParent();
}
void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI,
Register &Reg) const {
assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
Register DstReg = MI.getOperand(0).getReg();
Builder.buildZExtOrTrunc(DstReg, Reg);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineAddP2IToPtrAdd(
MachineInstr &MI, std::pair<Register, bool> &PtrReg) const {
assert(MI.getOpcode() == TargetOpcode::G_ADD);
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
LLT IntTy = MRI.getType(LHS);
// G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
// instruction.
PtrReg.second = false;
for (Register SrcReg : {LHS, RHS}) {
if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
// Don't handle cases where the integer is implicitly converted to the
// pointer width.
LLT PtrTy = MRI.getType(PtrReg.first);
if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
return true;
}
PtrReg.second = true;
}
return false;
}
void CombinerHelper::applyCombineAddP2IToPtrAdd(
MachineInstr &MI, std::pair<Register, bool> &PtrReg) const {
Register Dst = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
const bool DoCommute = PtrReg.second;
if (DoCommute)
std::swap(LHS, RHS);
LHS = PtrReg.first;
LLT PtrTy = MRI.getType(LHS);
auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
Builder.buildPtrToInt(Dst, PtrAdd);
MI.eraseFromParent();
}
bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
APInt &NewCst) const {
auto &PtrAdd = cast<GPtrAdd>(MI);
Register LHS = PtrAdd.getBaseReg();
Register RHS = PtrAdd.getOffsetReg();
MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) {
APInt Cst;
if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
auto DstTy = MRI.getType(PtrAdd.getReg(0));
// G_INTTOPTR uses zero-extension
NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits());
NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits());
return true;
}
}
return false;
}
void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
APInt &NewCst) const {
auto &PtrAdd = cast<GPtrAdd>(MI);
Register Dst = PtrAdd.getReg(0);
Builder.buildConstant(Dst, NewCst);
PtrAdd.eraseFromParent();
}
bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI,
Register &Reg) const {
assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
Register OriginalSrcReg = getSrcRegIgnoringCopies(SrcReg, MRI);
if (OriginalSrcReg.isValid())
SrcReg = OriginalSrcReg;
LLT DstTy = MRI.getType(DstReg);
return mi_match(SrcReg, MRI,
m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))) &&
canReplaceReg(DstReg, Reg, MRI);
}
bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI,
Register &Reg) const {
assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
if (mi_match(SrcReg, MRI,
m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))) &&
canReplaceReg(DstReg, Reg, MRI)) {
unsigned DstSize = DstTy.getScalarSizeInBits();
unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
}
return false;
}
static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) {
const unsigned ShiftSize = ShiftTy.getScalarSizeInBits();
const unsigned TruncSize = TruncTy.getScalarSizeInBits();
// ShiftTy > 32 > TruncTy -> 32
if (ShiftSize > 32 && TruncSize < 32)
return ShiftTy.changeElementSize(32);
// TODO: We could also reduce to 16 bits, but that's more target-dependent.
// Some targets like it, some don't, some only like it under certain
// conditions/processor versions, etc.
// A TL hook might be needed for this.
// Don't combine
return ShiftTy;
}
bool CombinerHelper::matchCombineTruncOfShift(
MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
if (!MRI.hasOneNonDBGUse(SrcReg))
return false;
LLT SrcTy = MRI.getType(SrcReg);
LLT DstTy = MRI.getType(DstReg);
MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI);
const auto &TL = getTargetLowering();
LLT NewShiftTy;
switch (SrcMI->getOpcode()) {
default:
return false;
case TargetOpcode::G_SHL: {
NewShiftTy = DstTy;
// Make sure new shift amount is legal.
KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits()))
return false;
break;
}
case TargetOpcode::G_LSHR:
case TargetOpcode::G_ASHR: {
// For right shifts, we conservatively do not do the transform if the TRUNC
// has any STORE users. The reason is that if we change the type of the
// shift, we may break the truncstore combine.
//
// TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)).
for (auto &User : MRI.use_instructions(DstReg))
if (User.getOpcode() == TargetOpcode::G_STORE)
return false;
NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy);
if (NewShiftTy == SrcTy)
return false;
// Make sure we won't lose information by truncating the high bits.
KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() -
DstTy.getScalarSizeInBits()))
return false;
break;
}
}
if (!isLegalOrBeforeLegalizer(
{SrcMI->getOpcode(),
{NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}}))
return false;
MatchInfo = std::make_pair(SrcMI, NewShiftTy);
return true;
}
void CombinerHelper::applyCombineTruncOfShift(
MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) const {
MachineInstr *ShiftMI = MatchInfo.first;
LLT NewShiftTy = MatchInfo.second;
Register Dst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(Dst);
Register ShiftAmt = ShiftMI->getOperand(2).getReg();
Register ShiftSrc = ShiftMI->getOperand(1).getReg();
ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0);
Register NewShift =
Builder
.buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt})
.getReg(0);
if (NewShiftTy == DstTy)
replaceRegWith(MRI, Dst, NewShift);
else
Builder.buildTrunc(Dst, NewShift);
eraseInst(MI);
}
bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) const {
return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
return MO.isReg() &&
getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
});
}
bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) const {
return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
return !MO.isReg() ||
getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
});
}
bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
return all_of(Mask, [](int Elt) { return Elt < 0; });
}
bool CombinerHelper::matchUndefStore(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_STORE);
return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
MRI);
}
bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_SELECT);
return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
MRI);
}
bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(
MachineInstr &MI) const {
assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT ||
MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) &&
"Expected an insert/extract element op");
LLT VecTy = MRI.getType(MI.getOperand(1).getReg());
if (VecTy.isScalableVector())
return false;
unsigned IdxIdx =
MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI);
if (!Idx)
return false;
return Idx->getZExtValue() >= VecTy.getNumElements();
}
bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI,
unsigned &OpIdx) const {
GSelect &SelMI = cast<GSelect>(MI);
auto Cst =
isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI);
if (!Cst)
return false;
OpIdx = Cst->isZero() ? 3 : 2;
return true;
}
void CombinerHelper::eraseInst(MachineInstr &MI) const { MI.eraseFromParent(); }
bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
const MachineOperand &MOP2) const {
if (!MOP1.isReg() || !MOP2.isReg())
return false;
auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI);
if (!InstAndDef1)
return false;
auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI);
if (!InstAndDef2)
return false;
MachineInstr *I1 = InstAndDef1->MI;
MachineInstr *I2 = InstAndDef2->MI;
// Handle a case like this:
//
// %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
//
// Even though %0 and %1 are produced by the same instruction they are not
// the same values.
if (I1 == I2)
return MOP1.getReg() == MOP2.getReg();
// If we have an instruction which loads or stores, we can't guarantee that
// it is identical.
//
// For example, we may have
//
// %x1 = G_LOAD %addr (load N from @somewhere)
// ...
// call @foo
// ...
// %x2 = G_LOAD %addr (load N from @somewhere)
// ...
// %or = G_OR %x1, %x2
//
// It's possible that @foo will modify whatever lives at the address we're
// loading from. To be safe, let's just assume that all loads and stores
// are different (unless we have something which is guaranteed to not
// change.)
if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad())
return false;
// If both instructions are loads or stores, they are equal only if both
// are dereferenceable invariant loads with the same number of bits.
if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) {
GLoadStore *LS1 = dyn_cast<GLoadStore>(I1);
GLoadStore *LS2 = dyn_cast<GLoadStore>(I2);
if (!LS1 || !LS2)
return false;
if (!I2->isDereferenceableInvariantLoad() ||
(LS1->getMemSizeInBits() != LS2->getMemSizeInBits()))
return false;
}
// Check for physical registers on the instructions first to avoid cases
// like this:
//
// %a = COPY $physreg
// ...
// SOMETHING implicit-def $physreg
// ...
// %b = COPY $physreg
//
// These copies are not equivalent.
if (any_of(I1->uses(), [](const MachineOperand &MO) {
return MO.isReg() && MO.getReg().isPhysical();
})) {
// Check if we have a case like this:
//
// %a = COPY $physreg
// %b = COPY %a
//
// In this case, I1 and I2 will both be equal to %a = COPY $physreg.
// From that, we know that they must have the same value, since they must
// have come from the same COPY.
return I1->isIdenticalTo(*I2);
}
// We don't have any physical registers, so we don't necessarily need the
// same vreg defs.
//
// On the off-chance that there's some target instruction feeding into the
// instruction, let's use produceSameValue instead of isIdenticalTo.
if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) {
// Handle instructions with multiple defs that produce same values. Values
// are same for operands with same index.
// %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
// %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
// I1 and I2 are different instructions but produce same values,
// %1 and %6 are same, %1 and %7 are not the same value.
return I1->findRegisterDefOperandIdx(InstAndDef1->Reg, /*TRI=*/nullptr) ==
I2->findRegisterDefOperandIdx(InstAndDef2->Reg, /*TRI=*/nullptr);
}
return false;
}
bool CombinerHelper::matchConstantOp(const MachineOperand &MOP,
int64_t C) const {
if (!MOP.isReg())
return false;
auto *MI = MRI.getVRegDef(MOP.getReg());
auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI);
return MaybeCst && MaybeCst->getBitWidth() <= 64 &&
MaybeCst->getSExtValue() == C;
}
bool CombinerHelper::matchConstantFPOp(const MachineOperand &MOP,
double C) const {
if (!MOP.isReg())
return false;
std::optional<FPValueAndVReg> MaybeCst;
if (!mi_match(MOP.getReg(), MRI, m_GFCstOrSplat(MaybeCst)))
return false;
return MaybeCst->Value.isExactlyValue(C);
}
void CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
unsigned OpIdx) const {
assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
Register OldReg = MI.getOperand(0).getReg();
Register Replacement = MI.getOperand(OpIdx).getReg();
assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
replaceRegWith(MRI, OldReg, Replacement);
MI.eraseFromParent();
}
void CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
Register Replacement) const {
assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
Register OldReg = MI.getOperand(0).getReg();
assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
replaceRegWith(MRI, OldReg, Replacement);
MI.eraseFromParent();
}
bool CombinerHelper::matchConstantLargerBitWidth(MachineInstr &MI,
unsigned ConstIdx) const {
Register ConstReg = MI.getOperand(ConstIdx).getReg();
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
// Get the shift amount
auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI);
if (!VRegAndVal)
return false;
// Return true of shift amount >= Bitwidth
return (VRegAndVal->Value.uge(DstTy.getSizeInBits()));
}
void CombinerHelper::applyFunnelShiftConstantModulo(MachineInstr &MI) const {
assert((MI.getOpcode() == TargetOpcode::G_FSHL ||
MI.getOpcode() == TargetOpcode::G_FSHR) &&
"This is not a funnel shift operation");
Register ConstReg = MI.getOperand(3).getReg();
LLT ConstTy = MRI.getType(ConstReg);
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI);
assert((VRegAndVal) && "Value is not a constant");
// Calculate the new Shift Amount = Old Shift Amount % BitWidth
APInt NewConst = VRegAndVal->Value.urem(
APInt(ConstTy.getSizeInBits(), DstTy.getScalarSizeInBits()));
auto NewConstInstr = Builder.buildConstant(ConstTy, NewConst.getZExtValue());
Builder.buildInstr(
MI.getOpcode(), {MI.getOperand(0)},
{MI.getOperand(1), MI.getOperand(2), NewConstInstr.getReg(0)});
MI.eraseFromParent();
}
bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_SELECT);
// Match (cond ? x : x)
return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
MRI);
}
bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) const {
return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
MRI);
}
bool CombinerHelper::matchOperandIsZero(MachineInstr &MI,
unsigned OpIdx) const {
return matchConstantOp(MI.getOperand(OpIdx), 0) &&
canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
MRI);
}
bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI,
unsigned OpIdx) const {
MachineOperand &MO = MI.getOperand(OpIdx);
return MO.isReg() &&
getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
}
bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
unsigned OpIdx) const {
MachineOperand &MO = MI.getOperand(OpIdx);
return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
}
void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI,
double C) const {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.buildFConstant(MI.getOperand(0), C);
MI.eraseFromParent();
}
void CombinerHelper::replaceInstWithConstant(MachineInstr &MI,
int64_t C) const {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.buildConstant(MI.getOperand(0), C);
MI.eraseFromParent();
}
void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) const {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.buildConstant(MI.getOperand(0), C);
MI.eraseFromParent();
}
void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI,
ConstantFP *CFP) const {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.buildFConstant(MI.getOperand(0), CFP->getValueAPF());
MI.eraseFromParent();
}
void CombinerHelper::replaceInstWithUndef(MachineInstr &MI) const {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.buildUndef(MI.getOperand(0));
MI.eraseFromParent();
}
bool CombinerHelper::matchSimplifyAddToSub(
MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) const {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
Register &NewLHS = std::get<0>(MatchInfo);
Register &NewRHS = std::get<1>(MatchInfo);
// Helper lambda to check for opportunities for
// ((0-A) + B) -> B - A
// (A + (0-B)) -> A - B
auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
return false;
NewLHS = MaybeNewLHS;
return true;
};
return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
}
bool CombinerHelper::matchCombineInsertVecElts(
MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
"Invalid opcode");
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
if (DstTy.isScalableVector())
return false;
unsigned NumElts = DstTy.getNumElements();
// If this MI is part of a sequence of insert_vec_elts, then
// don't do the combine in the middle of the sequence.
if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
TargetOpcode::G_INSERT_VECTOR_ELT)
return false;
MachineInstr *CurrInst = &MI;
MachineInstr *TmpInst;
int64_t IntImm;
Register TmpReg;
MatchInfo.resize(NumElts);
while (mi_match(
CurrInst->getOperand(0).getReg(), MRI,
m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
if (IntImm >= NumElts || IntImm < 0)
return false;
if (!MatchInfo[IntImm])
MatchInfo[IntImm] = TmpReg;
CurrInst = TmpInst;
}
// Variable index.
if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
return false;
if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
if (!MatchInfo[I - 1].isValid())
MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
}
return true;
}
// If we didn't end in a G_IMPLICIT_DEF and the source is not fully
// overwritten, bail out.
return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF ||
all_of(MatchInfo, [](Register Reg) { return !!Reg; });
}
void CombinerHelper::applyCombineInsertVecElts(
MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) const {
Register UndefReg;
auto GetUndef = [&]() {
if (UndefReg)
return UndefReg;
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
return UndefReg;
};
for (Register &Reg : MatchInfo) {
if (!Reg)
Reg = GetUndef();
}
Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
MI.eraseFromParent();
}
void CombinerHelper::applySimplifyAddToSub(
MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) const {
Register SubLHS, SubRHS;
std::tie(SubLHS, SubRHS) = MatchInfo;
Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
MI.eraseFromParent();
}
bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) const {
// Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
//
// Creates the new hand + logic instruction (but does not insert them.)
//
// On success, MatchInfo is populated with the new instructions. These are
// inserted in applyHoistLogicOpWithSameOpcodeHands.
unsigned LogicOpcode = MI.getOpcode();
assert(LogicOpcode == TargetOpcode::G_AND ||
LogicOpcode == TargetOpcode::G_OR ||
LogicOpcode == TargetOpcode::G_XOR);
MachineIRBuilder MIB(MI);
Register Dst = MI.getOperand(0).getReg();
Register LHSReg = MI.getOperand(1).getReg();
Register RHSReg = MI.getOperand(2).getReg();
// Don't recompute anything.
if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
return false;
// Make sure we have (hand x, ...), (hand y, ...)
MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
if (!LeftHandInst || !RightHandInst)
return false;
unsigned HandOpcode = LeftHandInst->getOpcode();
if (HandOpcode != RightHandInst->getOpcode())
return false;
if (LeftHandInst->getNumOperands() < 2 ||
!LeftHandInst->getOperand(1).isReg() ||
RightHandInst->getNumOperands() < 2 ||
!RightHandInst->getOperand(1).isReg())
return false;
// Make sure the types match up, and if we're doing this post-legalization,
// we end up with legal types.
Register X = LeftHandInst->getOperand(1).getReg();
Register Y = RightHandInst->getOperand(1).getReg();
LLT XTy = MRI.getType(X);
LLT YTy = MRI.getType(Y);
if (!XTy.isValid() || XTy != YTy)
return false;
// Optional extra source register.
Register ExtraHandOpSrcReg;
switch (HandOpcode) {
default:
return false;
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT: {
// Match: logic (ext X), (ext Y) --> ext (logic X, Y)
break;
}
case TargetOpcode::G_TRUNC: {
// Match: logic (trunc X), (trunc Y) -> trunc (logic X, Y)
const MachineFunction *MF = MI.getMF();
LLVMContext &Ctx = MF->getFunction().getContext();
LLT DstTy = MRI.getType(Dst);
const TargetLowering &TLI = getTargetLowering();
// Be extra careful sinking truncate. If it's free, there's no benefit in
// widening a binop.
if (TLI.isZExtFree(DstTy, XTy, Ctx) && TLI.isTruncateFree(XTy, DstTy, Ctx))
return false;
break;
}
case TargetOpcode::G_AND:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_SHL: {
// Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
MachineOperand &ZOp = LeftHandInst->getOperand(2);
if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
return false;
ExtraHandOpSrcReg = ZOp.getReg();
break;
}
}
if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
return false;
// Record the steps to build the new instructions.
//
// Steps to build (logic x, y)
auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
OperandBuildSteps LogicBuildSteps = {
[=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
// Steps to build hand (logic x, y), ...z
OperandBuildSteps HandBuildSteps = {
[=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
if (ExtraHandOpSrcReg.isValid())
HandBuildSteps.push_back(
[=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
return true;
}
void CombinerHelper::applyBuildInstructionSteps(
MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) const {
assert(MatchInfo.InstrsToBuild.size() &&
"Expected at least one instr to build?");
for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
assert(InstrToBuild.Opcode && "Expected a valid opcode?");
assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
for (auto &OperandFn : InstrToBuild.OperandFns)
OperandFn(Instr);
}
MI.eraseFromParent();
}
bool CombinerHelper::matchAshrShlToSextInreg(
MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_ASHR);
int64_t ShlCst, AshrCst;
Register Src;
if (!mi_match(MI.getOperand(0).getReg(), MRI,
m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)),
m_ICstOrSplat(AshrCst))))
return false;
if (ShlCst != AshrCst)
return false;
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
return false;
MatchInfo = std::make_tuple(Src, ShlCst);
return true;
}
void CombinerHelper::applyAshShlToSextInreg(
MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_ASHR);
Register Src;
int64_t ShiftAmt;
std::tie(Src, ShiftAmt) = MatchInfo;
unsigned Size = MRI.getType(Src).getScalarSizeInBits();
Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
MI.eraseFromParent();
}
/// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
bool CombinerHelper::matchOverlappingAnd(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_AND);
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
Register R;
int64_t C1;
int64_t C2;
if (!mi_match(
Dst, MRI,
m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
return false;
MatchInfo = [=](MachineIRBuilder &B) {
if (C1 & C2) {
B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
return;
}
auto Zero = B.buildConstant(Ty, 0);
replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
};
return true;
}
bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
Register &Replacement) const {
// Given
//
// %y:_(sN) = G_SOMETHING
// %x:_(sN) = G_SOMETHING
// %res:_(sN) = G_AND %x, %y
//
// Eliminate the G_AND when it is known that x & y == x or x & y == y.
//
// Patterns like this can appear as a result of legalization. E.g.
//
// %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
// %one:_(s32) = G_CONSTANT i32 1
// %and:_(s32) = G_AND %cmp, %one
//
// In this case, G_ICMP only produces a single bit, so x & 1 == x.
assert(MI.getOpcode() == TargetOpcode::G_AND);
if (!KB)
return false;
Register AndDst = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
// Check the RHS (maybe a constant) first, and if we have no KnownBits there,
// we can't do anything. If we do, then it depends on whether we have
// KnownBits on the LHS.
KnownBits RHSBits = KB->getKnownBits(RHS);
if (RHSBits.isUnknown())
return false;
KnownBits LHSBits = KB->getKnownBits(LHS);
// Check that x & Mask == x.
// x & 1 == x, always
// x & 0 == x, only if x is also 0
// Meaning Mask has no effect if every bit is either one in Mask or zero in x.
//
// Check if we can replace AndDst with the LHS of the G_AND
if (canReplaceReg(AndDst, LHS, MRI) &&
(LHSBits.Zero | RHSBits.One).isAllOnes()) {
Replacement = LHS;
return true;
}
// Check if we can replace AndDst with the RHS of the G_AND
if (canReplaceReg(AndDst, RHS, MRI) &&
(LHSBits.One | RHSBits.Zero).isAllOnes()) {
Replacement = RHS;
return true;
}
return false;
}
bool CombinerHelper::matchRedundantOr(MachineInstr &MI,
Register &Replacement) const {
// Given
//
// %y:_(sN) = G_SOMETHING
// %x:_(sN) = G_SOMETHING
// %res:_(sN) = G_OR %x, %y
//
// Eliminate the G_OR when it is known that x | y == x or x | y == y.
assert(MI.getOpcode() == TargetOpcode::G_OR);
if (!KB)
return false;
Register OrDst = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
KnownBits LHSBits = KB->getKnownBits(LHS);
KnownBits RHSBits = KB->getKnownBits(RHS);
// Check that x | Mask == x.
// x | 0 == x, always
// x | 1 == x, only if x is also 1
// Meaning Mask has no effect if every bit is either zero in Mask or one in x.
//
// Check if we can replace OrDst with the LHS of the G_OR
if (canReplaceReg(OrDst, LHS, MRI) &&
(LHSBits.One | RHSBits.Zero).isAllOnes()) {
Replacement = LHS;
return true;
}
// Check if we can replace OrDst with the RHS of the G_OR
if (canReplaceReg(OrDst, RHS, MRI) &&
(LHSBits.Zero | RHSBits.One).isAllOnes()) {
Replacement = RHS;
return true;
}
return false;
}
bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) const {
// If the input is already sign extended, just drop the extension.
Register Src = MI.getOperand(1).getReg();
unsigned ExtBits = MI.getOperand(2).getImm();
unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
}
static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
int64_t Cst, bool IsVector, bool IsFP) {
// For i1, Cst will always be -1 regardless of boolean contents.
return (ScalarSizeBits == 1 && Cst == -1) ||
isConstTrueVal(TLI, Cst, IsVector, IsFP);
}
// This combine tries to reduce the number of scalarised G_TRUNC instructions by
// using vector truncates instead
//
// EXAMPLE:
// %a(i32), %b(i32) = G_UNMERGE_VALUES %src(<2 x i32>)
// %T_a(i16) = G_TRUNC %a(i32)
// %T_b(i16) = G_TRUNC %b(i32)
// %Undef(i16) = G_IMPLICIT_DEF(i16)
// %dst(v4i16) = G_BUILD_VECTORS %T_a(i16), %T_b(i16), %Undef(i16), %Undef(i16)
//
// ===>
// %Undef(<2 x i32>) = G_IMPLICIT_DEF(<2 x i32>)
// %Mid(<4 x s32>) = G_CONCAT_VECTORS %src(<2 x i32>), %Undef(<2 x i32>)
// %dst(<4 x s16>) = G_TRUNC %Mid(<4 x s32>)
//
// Only matches sources made up of G_TRUNCs followed by G_IMPLICIT_DEFs
bool CombinerHelper::matchUseVectorTruncate(MachineInstr &MI,
Register &MatchInfo) const {
auto BuildMI = cast<GBuildVector>(&MI);
unsigned NumOperands = BuildMI->getNumSources();
LLT DstTy = MRI.getType(BuildMI->getReg(0));
// Check the G_BUILD_VECTOR sources
unsigned I;
MachineInstr *UnmergeMI = nullptr;
// Check all source TRUNCs come from the same UNMERGE instruction
for (I = 0; I < NumOperands; ++I) {
auto SrcMI = MRI.getVRegDef(BuildMI->getSourceReg(I));
auto SrcMIOpc = SrcMI->getOpcode();
// Check if the G_TRUNC instructions all come from the same MI
if (SrcMIOpc == TargetOpcode::G_TRUNC) {
if (!UnmergeMI) {
UnmergeMI = MRI.getVRegDef(SrcMI->getOperand(1).getReg());
if (UnmergeMI->getOpcode() != TargetOpcode::G_UNMERGE_VALUES)
return false;
} else {
auto UnmergeSrcMI = MRI.getVRegDef(SrcMI->getOperand(1).getReg());
if (UnmergeMI != UnmergeSrcMI)
return false;
}
} else {
break;
}
}
if (I < 2)
return false;
// Check the remaining source elements are only G_IMPLICIT_DEF
for (; I < NumOperands; ++I) {
auto SrcMI = MRI.getVRegDef(BuildMI->getSourceReg(I));
auto SrcMIOpc = SrcMI->getOpcode();
if (SrcMIOpc != TargetOpcode::G_IMPLICIT_DEF)
return false;
}
// Check the size of unmerge source
MatchInfo = cast<GUnmerge>(UnmergeMI)->getSourceReg();
LLT UnmergeSrcTy = MRI.getType(MatchInfo);
if (!DstTy.getElementCount().isKnownMultipleOf(UnmergeSrcTy.getNumElements()))
return false;
// Only generate legal instructions post-legalizer
if (!IsPreLegalize) {
LLT MidTy = DstTy.changeElementType(UnmergeSrcTy.getScalarType());
if (DstTy.getElementCount() != UnmergeSrcTy.getElementCount() &&
!isLegal({TargetOpcode::G_CONCAT_VECTORS, {MidTy, UnmergeSrcTy}}))
return false;
if (!isLegal({TargetOpcode::G_TRUNC, {DstTy, MidTy}}))
return false;
}
return true;
}
void CombinerHelper::applyUseVectorTruncate(MachineInstr &MI,
Register &MatchInfo) const {
Register MidReg;
auto BuildMI = cast<GBuildVector>(&MI);
Register DstReg = BuildMI->getReg(0);
LLT DstTy = MRI.getType(DstReg);
LLT UnmergeSrcTy = MRI.getType(MatchInfo);
unsigned DstTyNumElt = DstTy.getNumElements();
unsigned UnmergeSrcTyNumElt = UnmergeSrcTy.getNumElements();
// No need to pad vector if only G_TRUNC is needed
if (DstTyNumElt / UnmergeSrcTyNumElt == 1) {
MidReg = MatchInfo;
} else {
Register UndefReg = Builder.buildUndef(UnmergeSrcTy).getReg(0);
SmallVector<Register> ConcatRegs = {MatchInfo};
for (unsigned I = 1; I < DstTyNumElt / UnmergeSrcTyNumElt; ++I)
ConcatRegs.push_back(UndefReg);
auto MidTy = DstTy.changeElementType(UnmergeSrcTy.getScalarType());
MidReg = Builder.buildConcatVectors(MidTy, ConcatRegs).getReg(0);
}
Builder.buildTrunc(DstReg, MidReg);
MI.eraseFromParent();
}
bool CombinerHelper::matchNotCmp(
MachineInstr &MI, SmallVectorImpl<Register> &RegsToNegate) const {
assert(MI.getOpcode() == TargetOpcode::G_XOR);
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
Register XorSrc;
Register CstReg;
// We match xor(src, true) here.
if (!mi_match(MI.getOperand(0).getReg(), MRI,
m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
return false;
if (!MRI.hasOneNonDBGUse(XorSrc))
return false;
// Check that XorSrc is the root of a tree of comparisons combined with ANDs
// and ORs. The suffix of RegsToNegate starting from index I is used a work
// list of tree nodes to visit.
RegsToNegate.push_back(XorSrc);
// Remember whether the comparisons are all integer or all floating point.
bool IsInt = false;
bool IsFP = false;
for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
Register Reg = RegsToNegate[I];
if (!MRI.hasOneNonDBGUse(Reg))
return false;
MachineInstr *Def = MRI.getVRegDef(Reg);
switch (Def->getOpcode()) {
default:
// Don't match if the tree contains anything other than ANDs, ORs and
// comparisons.
return false;
case TargetOpcode::G_ICMP:
if (IsFP)
return false;
IsInt = true;
// When we apply the combine we will invert the predicate.
break;
case TargetOpcode::G_FCMP:
if (IsInt)
return false;
IsFP = true;
// When we apply the combine we will invert the predicate.
break;
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
// Implement De Morgan's laws:
// ~(x & y) -> ~x | ~y
// ~(x | y) -> ~x & ~y
// When we apply the combine we will change the opcode and recursively
// negate the operands.
RegsToNegate.push_back(Def->getOperand(1).getReg());
RegsToNegate.push_back(Def->getOperand(2).getReg());
break;
}
}
// Now we know whether the comparisons are integer or floating point, check
// the constant in the xor.
int64_t Cst;
if (Ty.isVector()) {
MachineInstr *CstDef = MRI.getVRegDef(CstReg);
auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI);
if (!MaybeCst)
return false;
if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
return false;
} else {
if (!mi_match(CstReg, MRI, m_ICst(Cst)))
return false;
if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
return false;
}
return true;
}
void CombinerHelper::applyNotCmp(
MachineInstr &MI, SmallVectorImpl<Register> &RegsToNegate) const {
for (Register Reg : RegsToNegate) {
MachineInstr *Def = MRI.getVRegDef(Reg);
Observer.changingInstr(*Def);
// For each comparison, invert the opcode. For each AND and OR, change the
// opcode.
switch (Def->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode");
case TargetOpcode::G_ICMP:
case TargetOpcode::G_FCMP: {
MachineOperand &PredOp = Def->getOperand(1);
CmpInst::Predicate NewP = CmpInst::getInversePredicate(
(CmpInst::Predicate)PredOp.getPredicate());
PredOp.setPredicate(NewP);
break;
}
case TargetOpcode::G_AND:
Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
break;
case TargetOpcode::G_OR:
Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
break;
}
Observer.changedInstr(*Def);
}
replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
MI.eraseFromParent();
}
bool CombinerHelper::matchXorOfAndWithSameReg(
MachineInstr &MI, std::pair<Register, Register> &MatchInfo) const {
// Match (xor (and x, y), y) (or any of its commuted cases)
assert(MI.getOpcode() == TargetOpcode::G_XOR);
Register &X = MatchInfo.first;
Register &Y = MatchInfo.second;
Register AndReg = MI.getOperand(1).getReg();
Register SharedReg = MI.getOperand(2).getReg();
// Find a G_AND on either side of the G_XOR.
// Look for one of
//
// (xor (and x, y), SharedReg)
// (xor SharedReg, (and x, y))
if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
std::swap(AndReg, SharedReg);
if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
return false;
}
// Only do this if we'll eliminate the G_AND.
if (!MRI.hasOneNonDBGUse(AndReg))
return false;
// We can combine if SharedReg is the same as either the LHS or RHS of the
// G_AND.
if (Y != SharedReg)
std::swap(X, Y);
return Y == SharedReg;
}
void CombinerHelper::applyXorOfAndWithSameReg(
MachineInstr &MI, std::pair<Register, Register> &MatchInfo) const {
// Fold (xor (and x, y), y) -> (and (not x), y)
Register X, Y;
std::tie(X, Y) = MatchInfo;
auto Not = Builder.buildNot(MRI.getType(X), X);
Observer.changingInstr(MI);
MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
MI.getOperand(1).setReg(Not->getOperand(0).getReg());
MI.getOperand(2).setReg(Y);
Observer.changedInstr(MI);
}
bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) const {
auto &PtrAdd = cast<GPtrAdd>(MI);
Register DstReg = PtrAdd.getReg(0);
LLT Ty = MRI.getType(DstReg);
const DataLayout &DL = Builder.getMF().getDataLayout();
if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
return false;
if (Ty.isPointer()) {
auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI);
return ConstVal && *ConstVal == 0;
}
assert(Ty.isVector() && "Expecting a vector type");
const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
return isBuildVectorAllZeros(*VecMI, MRI);
}
void CombinerHelper::applyPtrAddZero(MachineInstr &MI) const {
auto &PtrAdd = cast<GPtrAdd>(MI);
Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
PtrAdd.eraseFromParent();
}
/// The second source operand is known to be a power of 2.
void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) const {
Register DstReg = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
Register Pow2Src1 = MI.getOperand(2).getReg();
LLT Ty = MRI.getType(DstReg);
// Fold (urem x, pow2) -> (and x, pow2-1)
auto NegOne = Builder.buildConstant(Ty, -1);
auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
Builder.buildAnd(DstReg, Src0, Add);
MI.eraseFromParent();
}
bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI,
unsigned &SelectOpNo) const {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
Register OtherOperandReg = RHS;
SelectOpNo = 1;
MachineInstr *Select = MRI.getVRegDef(LHS);
// Don't do this unless the old select is going away. We want to eliminate the
// binary operator, not replace a binop with a select.
if (Select->getOpcode() != TargetOpcode::G_SELECT ||
!MRI.hasOneNonDBGUse(LHS)) {
OtherOperandReg = LHS;
SelectOpNo = 2;
Select = MRI.getVRegDef(RHS);
if (Select->getOpcode() != TargetOpcode::G_SELECT ||
!MRI.hasOneNonDBGUse(RHS))
return false;
}
MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg());
MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg());
if (!isConstantOrConstantVector(*SelectLHS, MRI,
/*AllowFP*/ true,
/*AllowOpaqueConstants*/ false))
return false;
if (!isConstantOrConstantVector(*SelectRHS, MRI,
/*AllowFP*/ true,
/*AllowOpaqueConstants*/ false))
return false;
unsigned BinOpcode = MI.getOpcode();
// We know that one of the operands is a select of constants. Now verify that
// the other binary operator operand is either a constant, or we can handle a
// variable.
bool CanFoldNonConst =
(BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) &&
(isNullOrNullSplat(*SelectLHS, MRI) ||
isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) &&
(isNullOrNullSplat(*SelectRHS, MRI) ||
isAllOnesOrAllOnesSplat(*SelectRHS, MRI));
if (CanFoldNonConst)
return true;
return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI,
/*AllowFP*/ true,
/*AllowOpaqueConstants*/ false);
}
/// \p SelectOperand is the operand in binary operator \p MI that is the select
/// to fold.
void CombinerHelper::applyFoldBinOpIntoSelect(
MachineInstr &MI, const unsigned &SelectOperand) const {
Register Dst = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg());
Register SelectCond = Select->getOperand(1).getReg();
Register SelectTrue = Select->getOperand(2).getReg();
Register SelectFalse = Select->getOperand(3).getReg();
LLT Ty = MRI.getType(Dst);
unsigned BinOpcode = MI.getOpcode();
Register FoldTrue, FoldFalse;
// We have a select-of-constants followed by a binary operator with a
// constant. Eliminate the binop by pulling the constant math into the select.
// Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
if (SelectOperand == 1) {
// TODO: SelectionDAG verifies this actually constant folds before
// committing to the combine.
FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0);
FoldFalse =
Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0);
} else {
FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0);
FoldFalse =
Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0);
}
Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags());
MI.eraseFromParent();
}
std::optional<SmallVector<Register, 8>>
CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
// We want to detect if Root is part of a tree which represents a bunch
// of loads being merged into a larger load. We'll try to recognize patterns
// like, for example:
//
// Reg Reg
// \ /
// OR_1 Reg
// \ /
// OR_2
// \ Reg
// .. /
// Root
//
// Reg Reg Reg Reg
// \ / \ /
// OR_1 OR_2
// \ /
// \ /
// ...
// Root
//
// Each "Reg" may have been produced by a load + some arithmetic. This
// function will save each of them.
SmallVector<Register, 8> RegsToVisit;
SmallVector<const MachineInstr *, 7> Ors = {Root};
// In the "worst" case, we're dealing with a load for each byte. So, there
// are at most #bytes - 1 ORs.
const unsigned MaxIter =
MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
if (Ors.empty())
break;
const MachineInstr *Curr = Ors.pop_back_val();
Register OrLHS = Curr->getOperand(1).getReg();
Register OrRHS = Curr->getOperand(2).getReg();
// In the combine, we want to elimate the entire tree.
if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
return std::nullopt;
// If it's a G_OR, save it and continue to walk. If it's not, then it's
// something that may be a load + arithmetic.
if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
Ors.push_back(Or);
else
RegsToVisit.push_back(OrLHS);
if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
Ors.push_back(Or);
else
RegsToVisit.push_back(OrRHS);
}
// We're going to try and merge each register into a wider power-of-2 type,
// so we ought to have an even number of registers.
if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
return std::nullopt;
return RegsToVisit;
}
/// Helper function for findLoadOffsetsForLoadOrCombine.
///
/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
/// and then moving that value into a specific byte offset.
///
/// e.g. x[i] << 24
///
/// \returns The load instruction and the byte offset it is moved into.
static std::optional<std::pair<GZExtLoad *, int64_t>>
matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
const MachineRegisterInfo &MRI) {
assert(MRI.hasOneNonDBGUse(Reg) &&
"Expected Reg to only have one non-debug use?");
Register MaybeLoad;
int64_t Shift;
if (!mi_match(Reg, MRI,
m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
Shift = 0;
MaybeLoad = Reg;
}
if (Shift % MemSizeInBits != 0)
return std::nullopt;
// TODO: Handle other types of loads.
auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
if (!Load)
return std::nullopt;
if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
return std::nullopt;
return std::make_pair(Load, Shift / MemSizeInBits);
}
std::optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
CombinerHelper::findLoadOffsetsForLoadOrCombine(
SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
const SmallVector<Register, 8> &RegsToVisit,
const unsigned MemSizeInBits) const {
// Each load found for the pattern. There should be one for each RegsToVisit.
SmallSetVector<const MachineInstr *, 8> Loads;
// The lowest index used in any load. (The lowest "i" for each x[i].)
int64_t LowestIdx = INT64_MAX;
// The load which uses the lowest index.
GZExtLoad *LowestIdxLoad = nullptr;
// Keeps track of the load indices we see. We shouldn't see any indices twice.
SmallSet<int64_t, 8> SeenIdx;
// Ensure each load is in the same MBB.
// TODO: Support multiple MachineBasicBlocks.
MachineBasicBlock *MBB = nullptr;
const MachineMemOperand *MMO = nullptr;
// Earliest instruction-order load in the pattern.
GZExtLoad *EarliestLoad = nullptr;
// Latest instruction-order load in the pattern.
GZExtLoad *LatestLoad = nullptr;
// Base pointer which every load should share.
Register BasePtr;
// We want to find a load for each register. Each load should have some
// appropriate bit twiddling arithmetic. During this loop, we will also keep
// track of the load which uses the lowest index. Later, we will check if we
// can use its pointer in the final, combined load.
for (auto Reg : RegsToVisit) {
// Find the load, and find the position that it will end up in (e.g. a
// shifted) value.
auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
if (!LoadAndPos)
return std::nullopt;
GZExtLoad *Load;
int64_t DstPos;
std::tie(Load, DstPos) = *LoadAndPos;
// TODO: Handle multiple MachineBasicBlocks. Currently not handled because
// it is difficult to check for stores/calls/etc between loads.
MachineBasicBlock *LoadMBB = Load->getParent();
if (!MBB)
MBB = LoadMBB;
if (LoadMBB != MBB)
return std::nullopt;
// Make sure that the MachineMemOperands of every seen load are compatible.
auto &LoadMMO = Load->getMMO();
if (!MMO)
MMO = &LoadMMO;
if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
return std::nullopt;
// Find out what the base pointer and index for the load is.
Register LoadPtr;
int64_t Idx;
if (!mi_match(Load->getOperand(1).getReg(), MRI,
m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
LoadPtr = Load->getOperand(1).getReg();
Idx = 0;
}
// Don't combine things like a[i], a[i] -> a bigger load.
if (!SeenIdx.insert(Idx).second)
return std::nullopt;
// Every load must share the same base pointer; don't combine things like:
//
// a[i], b[i + 1] -> a bigger load.
if (!BasePtr.isValid())
BasePtr = LoadPtr;
if (BasePtr != LoadPtr)
return std::nullopt;
if (Idx < LowestIdx) {
LowestIdx = Idx;
LowestIdxLoad = Load;
}
// Keep track of the byte offset that this load ends up at. If we have seen
// the byte offset, then stop here. We do not want to combine:
//
// a[i] << 16, a[i + k] << 16 -> a bigger load.
if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
return std::nullopt;
Loads.insert(Load);
// Keep track of the position of the earliest/latest loads in the pattern.
// We will check that there are no load fold barriers between them later
// on.
//
// FIXME: Is there a better way to check for load fold barriers?
if (!EarliestLoad || dominates(*Load, *EarliestLoad))
EarliestLoad = Load;
if (!LatestLoad || dominates(*LatestLoad, *Load))
LatestLoad = Load;
}
// We found a load for each register. Let's check if each load satisfies the
// pattern.
assert(Loads.size() == RegsToVisit.size() &&
"Expected to find a load for each register?");
assert(EarliestLoad != LatestLoad && EarliestLoad &&
LatestLoad && "Expected at least two loads?");
// Check if there are any stores, calls, etc. between any of the loads. If
// there are, then we can't safely perform the combine.
//
// MaxIter is chosen based off the (worst case) number of iterations it
// typically takes to succeed in the LLVM test suite plus some padding.
//
// FIXME: Is there a better way to check for load fold barriers?
const unsigned MaxIter = 20;
unsigned Iter = 0;
for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
LatestLoad->getIterator())) {
if (Loads.count(&MI))
continue;
if (MI.isLoadFoldBarrier())
return std::nullopt;
if (Iter++ == MaxIter)
return std::nullopt;
}
return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
}
bool CombinerHelper::matchLoadOrCombine(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_OR);
MachineFunction &MF = *MI.getMF();
// Assuming a little-endian target, transform:
// s8 *a = ...
// s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
// =>
// s32 val = *((i32)a)
//
// s8 *a = ...
// s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
// =>
// s32 val = BSWAP(*((s32)a))
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
if (Ty.isVector())
return false;
// We need to combine at least two loads into this type. Since the smallest
// possible load is into a byte, we need at least a 16-bit wide type.
const unsigned WideMemSizeInBits = Ty.getSizeInBits();
if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
return false;
// Match a collection of non-OR instructions in the pattern.
auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
if (!RegsToVisit)
return false;
// We have a collection of non-OR instructions. Figure out how wide each of
// the small loads should be based off of the number of potential loads we
// found.
const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
if (NarrowMemSizeInBits % 8 != 0)
return false;
// Check if each register feeding into each OR is a load from the same
// base pointer + some arithmetic.
//
// e.g. a[0], a[1] << 8, a[2] << 16, etc.
//
// Also verify that each of these ends up putting a[i] into the same memory
// offset as a load into a wide type would.
SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
GZExtLoad *LowestIdxLoad, *LatestLoad;
int64_t LowestIdx;
auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
if (!MaybeLoadInfo)
return false;
std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
// We have a bunch of loads being OR'd together. Using the addresses + offsets
// we found before, check if this corresponds to a big or little endian byte
// pattern. If it does, then we can represent it using a load + possibly a
// BSWAP.
bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
std::optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
if (!IsBigEndian)
return false;
bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
return false;
// Make sure that the load from the lowest index produces offset 0 in the
// final value.
//
// This ensures that we won't combine something like this:
//
// load x[i] -> byte 2
// load x[i+1] -> byte 0 ---> wide_load x[i]
// load x[i+2] -> byte 1
const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
const unsigned ZeroByteOffset =
*IsBigEndian
? bigEndianByteAt(NumLoadsInTy, 0)
: littleEndianByteAt(NumLoadsInTy, 0);
auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
if (ZeroOffsetIdx == MemOffset2Idx.end() ||
ZeroOffsetIdx->second != LowestIdx)
return false;
// We wil reuse the pointer from the load which ends up at byte offset 0. It
// may not use index 0.
Register Ptr = LowestIdxLoad->getPointerReg();
const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
LegalityQuery::MemDesc MMDesc(MMO);
MMDesc.MemoryTy = Ty;
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
return false;
auto PtrInfo = MMO.getPointerInfo();
auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
// Load must be allowed and fast on the target.
LLVMContext &C = MF.getFunction().getContext();
auto &DL = MF.getDataLayout();
unsigned Fast = 0;
if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
!Fast)
return false;
MatchInfo = [=](MachineIRBuilder &MIB) {
MIB.setInstrAndDebugLoc(*LatestLoad);
Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
MIB.buildLoad(LoadDst, Ptr, *NewMMO);
if (NeedsBSwap)
MIB.buildBSwap(Dst, LoadDst);
};
return true;
}
bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
MachineInstr *&ExtMI) const {
auto &PHI = cast<GPhi>(MI);
Register DstReg = PHI.getReg(0);
// TODO: Extending a vector may be expensive, don't do this until heuristics
// are better.
if (MRI.getType(DstReg).isVector())
return false;
// Try to match a phi, whose only use is an extend.
if (!MRI.hasOneNonDBGUse(DstReg))
return false;
ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
switch (ExtMI->getOpcode()) {
case TargetOpcode::G_ANYEXT:
return true; // G_ANYEXT is usually free.
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_SEXT:
break;
default:
return false;
}
// If the target is likely to fold this extend away, don't propagate.
if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
return false;
// We don't want to propagate the extends unless there's a good chance that
// they'll be optimized in some way.
// Collect the unique incoming values.
SmallPtrSet<MachineInstr *, 4> InSrcs;
for (unsigned I = 0; I < PHI.getNumIncomingValues(); ++I) {
auto *DefMI = getDefIgnoringCopies(PHI.getIncomingValue(I), MRI);
switch (DefMI->getOpcode()) {
case TargetOpcode::G_LOAD:
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_CONSTANT:
InSrcs.insert(DefMI);
// Don't try to propagate if there are too many places to create new
// extends, chances are it'll increase code size.
if (InSrcs.size() > 2)
return false;
break;
default:
return false;
}
}
return true;
}
void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
MachineInstr *&ExtMI) const {
auto &PHI = cast<GPhi>(MI);
Register DstReg = ExtMI->getOperand(0).getReg();
LLT ExtTy = MRI.getType(DstReg);
// Propagate the extension into the block of each incoming reg's block.
// Use a SetVector here because PHIs can have duplicate edges, and we want
// deterministic iteration order.
SmallSetVector<MachineInstr *, 8> SrcMIs;
SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
for (unsigned I = 0; I < PHI.getNumIncomingValues(); ++I) {
auto SrcReg = PHI.getIncomingValue(I);
auto *SrcMI = MRI.getVRegDef(SrcReg);
if (!SrcMIs.insert(SrcMI))
continue;
// Build an extend after each src inst.
auto *MBB = SrcMI->getParent();
MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
if (InsertPt != MBB->end() && InsertPt->isPHI())
InsertPt = MBB->getFirstNonPHI();
Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
Builder.setDebugLoc(MI.getDebugLoc());
auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, SrcReg);
OldToNewSrcMap[SrcMI] = NewExt;
}
// Create a new phi with the extended inputs.
Builder.setInstrAndDebugLoc(MI);
auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
NewPhi.addDef(DstReg);
for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
if (!MO.isReg()) {
NewPhi.addMBB(MO.getMBB());
continue;
}
auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
NewPhi.addUse(NewSrc->getOperand(0).getReg());
}
Builder.insertInstr(NewPhi);
ExtMI->eraseFromParent();
}
bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
Register &Reg) const {
assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
// If we have a constant index, look for a G_BUILD_VECTOR source
// and find the source register that the index maps to.
Register SrcVec = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(SrcVec);
if (SrcTy.isScalableVector())
return false;
auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
return false;
unsigned VecIdx = Cst->Value.getZExtValue();
// Check if we have a build_vector or build_vector_trunc with an optional
// trunc in front.
MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec);
if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) {
SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg());
}
if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC)
return false;
EVT Ty(getMVTForLLT(SrcTy));
if (!MRI.hasOneNonDBGUse(SrcVec) &&
!getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
return false;
Reg = SrcVecMI->getOperand(VecIdx + 1).getReg();
return true;
}
void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
Register &Reg) const {
// Check the type of the register, since it may have come from a
// G_BUILD_VECTOR_TRUNC.
LLT ScalarTy = MRI.getType(Reg);
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
if (ScalarTy != DstTy) {
assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
Builder.buildTrunc(DstReg, Reg);
MI.eraseFromParent();
return;
}
replaceSingleDefInstWithReg(MI, Reg);
}
bool CombinerHelper::matchExtractAllEltsFromBuildVector(
MachineInstr &MI,
SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) const {
assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
// This combine tries to find build_vector's which have every source element
// extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
// the masked load scalarization is run late in the pipeline. There's already
// a combine for a similar pattern starting from the extract, but that
// doesn't attempt to do it if there are multiple uses of the build_vector,
// which in this case is true. Starting the combine from the build_vector
// feels more natural than trying to find sibling nodes of extracts.
// E.g.
// %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
// %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
// %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
// %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
// %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
// ==>
// replace ext{1,2,3,4} with %s{1,2,3,4}
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
unsigned NumElts = DstTy.getNumElements();
SmallBitVector ExtractedElts(NumElts);
for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) {
if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
return false;
auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI);
if (!Cst)
return false;
unsigned Idx = Cst->getZExtValue();
if (Idx >= NumElts)
return false; // Out of range.
ExtractedElts.set(Idx);
SrcDstPairs.emplace_back(
std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
}
// Match if every element was extracted.
return ExtractedElts.all();
}
void CombinerHelper::applyExtractAllEltsFromBuildVector(
MachineInstr &MI,
SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) const {
assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
for (auto &Pair : SrcDstPairs) {
auto *ExtMI = Pair.second;
replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
ExtMI->eraseFromParent();
}
MI.eraseFromParent();
}
void CombinerHelper::applyBuildFn(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
applyBuildFnNoErase(MI, MatchInfo);
MI.eraseFromParent();
}
void CombinerHelper::applyBuildFnNoErase(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
MatchInfo(Builder);
}
bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_OR);
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
unsigned BitWidth = Ty.getScalarSizeInBits();
Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt;
unsigned FshOpc = 0;
// Match (or (shl ...), (lshr ...)).
if (!mi_match(Dst, MRI,
// m_GOr() handles the commuted version as well.
m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)),
m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)))))
return false;
// Given constants C0 and C1 such that C0 + C1 is bit-width:
// (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1)
int64_t CstShlAmt, CstLShrAmt;
if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) &&
mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) &&
CstShlAmt + CstLShrAmt == BitWidth) {
FshOpc = TargetOpcode::G_FSHR;
Amt = LShrAmt;
} else if (mi_match(LShrAmt, MRI,
m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
ShlAmt == Amt) {
// (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt)
FshOpc = TargetOpcode::G_FSHL;
} else if (mi_match(ShlAmt, MRI,
m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
LShrAmt == Amt) {
// (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt)
FshOpc = TargetOpcode::G_FSHR;
} else {
return false;
}
LLT AmtTy = MRI.getType(Amt);
if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}}))
return false;
MatchInfo = [=](MachineIRBuilder &B) {
B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt});
};
return true;
}
/// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) const {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
Register X = MI.getOperand(1).getReg();
Register Y = MI.getOperand(2).getReg();
if (X != Y)
return false;
unsigned RotateOpc =
Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
}
void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) const {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
bool IsFSHL = Opc == TargetOpcode::G_FSHL;
Observer.changingInstr(MI);
MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
: TargetOpcode::G_ROTR));
MI.removeOperand(2);
Observer.changedInstr(MI);
}
// Fold (rot x, c) -> (rot x, c % BitSize)
bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
MI.getOpcode() == TargetOpcode::G_ROTR);
unsigned Bitsize =
MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
Register AmtReg = MI.getOperand(2).getReg();
bool OutOfRange = false;
auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
if (auto *CI = dyn_cast<ConstantInt>(C))
OutOfRange |= CI->getValue().uge(Bitsize);
return true;
};
return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
}
void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
MI.getOpcode() == TargetOpcode::G_ROTR);
unsigned Bitsize =
MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
Register Amt = MI.getOperand(2).getReg();
LLT AmtTy = MRI.getType(Amt);
auto Bits = Builder.buildConstant(AmtTy, Bitsize);
Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
Observer.changingInstr(MI);
MI.getOperand(2).setReg(Amt);
Observer.changedInstr(MI);
}
bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
int64_t &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
// We want to avoid calling KnownBits on the LHS if possible, as this combine
// has no filter and runs on every G_ICMP instruction. We can avoid calling
// KnownBits on the LHS in two cases:
//
// - The RHS is unknown: Constants are always on RHS. If the RHS is unknown
// we cannot do any transforms so we can safely bail out early.
// - The RHS is zero: we don't need to know the LHS to do unsigned <0 and
// >=0.
auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
if (KnownRHS.isUnknown())
return false;
std::optional<bool> KnownVal;
if (KnownRHS.isZero()) {
// ? uge 0 -> always true
// ? ult 0 -> always false
if (Pred == CmpInst::ICMP_UGE)
KnownVal = true;
else if (Pred == CmpInst::ICMP_ULT)
KnownVal = false;
}
if (!KnownVal) {
auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
KnownVal = ICmpInst::compare(KnownLHS, KnownRHS, Pred);
}
if (!KnownVal)
return false;
MatchInfo =
*KnownVal
? getICmpTrueVal(getTargetLowering(),
/*IsVector = */
MRI.getType(MI.getOperand(0).getReg()).isVector(),
/* IsFP = */ false)
: 0;
return true;
}
bool CombinerHelper::matchICmpToLHSKnownBits(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
// Given:
//
// %x = G_WHATEVER (... x is known to be 0 or 1 ...)
// %cmp = G_ICMP ne %x, 0
//
// Or:
//
// %x = G_WHATEVER (... x is known to be 0 or 1 ...)
// %cmp = G_ICMP eq %x, 1
//
// We can replace %cmp with %x assuming true is 1 on the target.
auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
if (!CmpInst::isEquality(Pred))
return false;
Register Dst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(Dst);
if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(),
/* IsFP = */ false) != 1)
return false;
int64_t OneOrZero = Pred == CmpInst::ICMP_EQ;
if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero)))
return false;
Register LHS = MI.getOperand(2).getReg();
auto KnownLHS = KB->getKnownBits(LHS);
if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1)
return false;
// Make sure replacing Dst with the LHS is a legal operation.
LLT LHSTy = MRI.getType(LHS);
unsigned LHSSize = LHSTy.getSizeInBits();
unsigned DstSize = DstTy.getSizeInBits();
unsigned Op = TargetOpcode::COPY;
if (DstSize != LHSSize)
Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT;
if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}}))
return false;
MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); };
return true;
}
// Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0
bool CombinerHelper::matchAndOrDisjointMask(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_AND);
// Ignore vector types to simplify matching the two constants.
// TODO: do this for vectors and scalars via a demanded bits analysis.
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (Ty.isVector())
return false;
Register Src;
Register AndMaskReg;
int64_t AndMaskBits;
int64_t OrMaskBits;
if (!mi_match(MI, MRI,
m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)),
m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg)))))
return false;
// Check if OrMask could turn on any bits in Src.
if (AndMaskBits & OrMaskBits)
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Observer.changingInstr(MI);
// Canonicalize the result to have the constant on the RHS.
if (MI.getOperand(1).getReg() == AndMaskReg)
MI.getOperand(2).setReg(AndMaskReg);
MI.getOperand(1).setReg(Src);
Observer.changedInstr(MI);
};
return true;
}
/// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(Src);
LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
return false;
int64_t Width = MI.getOperand(2).getImm();
Register ShiftSrc;
int64_t ShiftImm;
if (!mi_match(
Src, MRI,
m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
return false;
if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
return false;
MatchInfo = [=](MachineIRBuilder &B) {
auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
auto Cst2 = B.buildConstant(ExtractTy, Width);
B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
};
return true;
}
/// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
bool CombinerHelper::matchBitfieldExtractFromAnd(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
GAnd *And = cast<GAnd>(&MI);
Register Dst = And->getReg(0);
LLT Ty = MRI.getType(Dst);
LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
// Note that isLegalOrBeforeLegalizer is stricter and does not take custom
// into account.
if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}}))
return false;
int64_t AndImm, LSBImm;
Register ShiftSrc;
const unsigned Size = Ty.getScalarSizeInBits();
if (!mi_match(And->getReg(0), MRI,
m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
m_ICst(AndImm))))
return false;
// The mask is a mask of the low bits iff imm & (imm+1) == 0.
auto MaybeMask = static_cast<uint64_t>(AndImm);
if (MaybeMask & (MaybeMask + 1))
return false;
// LSB must fit within the register.
if (static_cast<uint64_t>(LSBImm) >= Size)
return false;
uint64_t Width = APInt(Size, AndImm).countr_one();
MatchInfo = [=](MachineIRBuilder &B) {
auto WidthCst = B.buildConstant(ExtractTy, Width);
auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
};
return true;
}
bool CombinerHelper::matchBitfieldExtractFromShr(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
const unsigned Opcode = MI.getOpcode();
assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR);
const Register Dst = MI.getOperand(0).getReg();
const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR
? TargetOpcode::G_SBFX
: TargetOpcode::G_UBFX;
// Check if the type we would use for the extract is legal
LLT Ty = MRI.getType(Dst);
LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}}))
return false;
Register ShlSrc;
int64_t ShrAmt;
int64_t ShlAmt;
const unsigned Size = Ty.getScalarSizeInBits();
// Try to match shr (shl x, c1), c2
if (!mi_match(Dst, MRI,
m_BinOp(Opcode,
m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))),
m_ICst(ShrAmt))))
return false;
// Make sure that the shift sizes can fit a bitfield extract
if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size)
return false;
// Skip this combine if the G_SEXT_INREG combine could handle it
if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt)
return false;
// Calculate start position and width of the extract
const int64_t Pos = ShrAmt - ShlAmt;
const int64_t Width = Size - ShrAmt;
MatchInfo = [=](MachineIRBuilder &B) {
auto WidthCst = B.buildConstant(ExtractTy, Width);
auto PosCst = B.buildConstant(ExtractTy, Pos);
B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst});
};
return true;
}
bool CombinerHelper::matchBitfieldExtractFromShrAnd(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
const unsigned Opcode = MI.getOpcode();
assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR);
const Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}}))
return false;
// Try to match shr (and x, c1), c2
Register AndSrc;
int64_t ShrAmt;
int64_t SMask;
if (!mi_match(Dst, MRI,
m_BinOp(Opcode,
m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))),
m_ICst(ShrAmt))))
return false;
const unsigned Size = Ty.getScalarSizeInBits();
if (ShrAmt < 0 || ShrAmt >= Size)
return false;
// If the shift subsumes the mask, emit the 0 directly.
if (0 == (SMask >> ShrAmt)) {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildConstant(Dst, 0);
};
return true;
}
// Check that ubfx can do the extraction, with no holes in the mask.
uint64_t UMask = SMask;
UMask |= maskTrailingOnes<uint64_t>(ShrAmt);
UMask &= maskTrailingOnes<uint64_t>(Size);
if (!isMask_64(UMask))
return false;
// Calculate start position and width of the extract.
const int64_t Pos = ShrAmt;
const int64_t Width = llvm::countr_one(UMask) - ShrAmt;
// It's preferable to keep the shift, rather than form G_SBFX.
// TODO: remove the G_AND via demanded bits analysis.
if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size)
return false;
MatchInfo = [=](MachineIRBuilder &B) {
auto WidthCst = B.buildConstant(ExtractTy, Width);
auto PosCst = B.buildConstant(ExtractTy, Pos);
B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst});
};
return true;
}
bool CombinerHelper::reassociationCanBreakAddressingModePattern(
MachineInstr &MI) const {
auto &PtrAdd = cast<GPtrAdd>(MI);
Register Src1Reg = PtrAdd.getBaseReg();
auto *Src1Def = getOpcodeDef<GPtrAdd>(Src1Reg, MRI);
if (!Src1Def)
return false;
Register Src2Reg = PtrAdd.getOffsetReg();
if (MRI.hasOneNonDBGUse(Src1Reg))
return false;
auto C1 = getIConstantVRegVal(Src1Def->getOffsetReg(), MRI);
if (!C1)
return false;
auto C2 = getIConstantVRegVal(Src2Reg, MRI);
if (!C2)
return false;
const APInt &C1APIntVal = *C1;
const APInt &C2APIntVal = *C2;
const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
for (auto &UseMI : MRI.use_nodbg_instructions(PtrAdd.getReg(0))) {
// This combine may end up running before ptrtoint/inttoptr combines
// manage to eliminate redundant conversions, so try to look through them.
MachineInstr *ConvUseMI = &UseMI;
unsigned ConvUseOpc = ConvUseMI->getOpcode();
while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
ConvUseOpc == TargetOpcode::G_PTRTOINT) {
Register DefReg = ConvUseMI->getOperand(0).getReg();
if (!MRI.hasOneNonDBGUse(DefReg))
break;
ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
ConvUseOpc = ConvUseMI->getOpcode();
}
auto *LdStMI = dyn_cast<GLoadStore>(ConvUseMI);
if (!LdStMI)
continue;
// Is x[offset2] already not a legal addressing mode? If so then
// reassociating the constants breaks nothing (we test offset2 because
// that's the one we hope to fold into the load or store).
TargetLoweringBase::AddrMode AM;
AM.HasBaseReg = true;
AM.BaseOffs = C2APIntVal.getSExtValue();
unsigned AS = MRI.getType(LdStMI->getPointerReg()).getAddressSpace();
Type *AccessTy = getTypeForLLT(LdStMI->getMMO().getMemoryType(),
PtrAdd.getMF()->getFunction().getContext());
const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
AccessTy, AS))
continue;
// Would x[offset1+offset2] still be a legal addressing mode?
AM.BaseOffs = CombinedValue;
if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
AccessTy, AS))
return true;
}
return false;
}
bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI,
MachineInstr *RHS,
BuildFnTy &MatchInfo) const {
// G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
Register Src1Reg = MI.getOperand(1).getReg();
if (RHS->getOpcode() != TargetOpcode::G_ADD)
return false;
auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
if (!C2)
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
auto NewBase =
Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
Observer.changingInstr(MI);
MI.getOperand(1).setReg(NewBase.getReg(0));
MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
Observer.changedInstr(MI);
};
return !reassociationCanBreakAddressingModePattern(MI);
}
bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI,
MachineInstr *LHS,
MachineInstr *RHS,
BuildFnTy &MatchInfo) const {
// G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C)
// if and only if (G_PTR_ADD X, C) has one use.
Register LHSBase;
std::optional<ValueAndVReg> LHSCstOff;
if (!mi_match(MI.getBaseReg(), MRI,
m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff)))))
return false;
auto *LHSPtrAdd = cast<GPtrAdd>(LHS);
MatchInfo = [=, &MI](MachineIRBuilder &B) {
// When we change LHSPtrAdd's offset register we might cause it to use a reg
// before its def. Sink the instruction so the outer PTR_ADD to ensure this
// doesn't happen.
LHSPtrAdd->moveBefore(&MI);
Register RHSReg = MI.getOffsetReg();
// set VReg will cause type mismatch if it comes from extend/trunc
auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value);
Observer.changingInstr(MI);
MI.getOperand(2).setReg(NewCst.getReg(0));
Observer.changedInstr(MI);
Observer.changingInstr(*LHSPtrAdd);
LHSPtrAdd->getOperand(2).setReg(RHSReg);
Observer.changedInstr(*LHSPtrAdd);
};
return !reassociationCanBreakAddressingModePattern(MI);
}
bool CombinerHelper::matchReassocFoldConstantsInSubTree(
GPtrAdd &MI, MachineInstr *LHS, MachineInstr *RHS,
BuildFnTy &MatchInfo) const {
// G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS);
if (!LHSPtrAdd)
return false;
Register Src2Reg = MI.getOperand(2).getReg();
Register LHSSrc1 = LHSPtrAdd->getBaseReg();
Register LHSSrc2 = LHSPtrAdd->getOffsetReg();
auto C1 = getIConstantVRegVal(LHSSrc2, MRI);
if (!C1)
return false;
auto C2 = getIConstantVRegVal(Src2Reg, MRI);
if (!C2)
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(LHSSrc1);
MI.getOperand(2).setReg(NewCst.getReg(0));
Observer.changedInstr(MI);
};
return !reassociationCanBreakAddressingModePattern(MI);
}
bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
auto &PtrAdd = cast<GPtrAdd>(MI);
// We're trying to match a few pointer computation patterns here for
// re-association opportunities.
// 1) Isolating a constant operand to be on the RHS, e.g.:
// G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
//
// 2) Folding two constants in each sub-tree as long as such folding
// doesn't break a legal addressing mode.
// G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
//
// 3) Move a constant from the LHS of an inner op to the RHS of the outer.
// G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C)
// iif (G_PTR_ADD X, C) has one use.
MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg());
MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg());
// Try to match example 2.
if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo))
return true;
// Try to match example 3.
if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo))
return true;
// Try to match example 1.
if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo))
return true;
return false;
}
bool CombinerHelper::tryReassocBinOp(unsigned Opc, Register DstReg,
Register OpLHS, Register OpRHS,
BuildFnTy &MatchInfo) const {
LLT OpRHSTy = MRI.getType(OpRHS);
MachineInstr *OpLHSDef = MRI.getVRegDef(OpLHS);
if (OpLHSDef->getOpcode() != Opc)
return false;
MachineInstr *OpRHSDef = MRI.getVRegDef(OpRHS);
Register OpLHSLHS = OpLHSDef->getOperand(1).getReg();
Register OpLHSRHS = OpLHSDef->getOperand(2).getReg();
// If the inner op is (X op C), pull the constant out so it can be folded with
// other constants in the expression tree. Folding is not guaranteed so we
// might have (C1 op C2). In that case do not pull a constant out because it
// won't help and can lead to infinite loops.
if (isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSRHS), MRI) &&
!isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSLHS), MRI)) {
if (isConstantOrConstantSplatVector(*OpRHSDef, MRI)) {
// (Opc (Opc X, C1), C2) -> (Opc X, (Opc C1, C2))
MatchInfo = [=](MachineIRBuilder &B) {
auto NewCst = B.buildInstr(Opc, {OpRHSTy}, {OpLHSRHS, OpRHS});
B.buildInstr(Opc, {DstReg}, {OpLHSLHS, NewCst});
};
return true;
}
if (getTargetLowering().isReassocProfitable(MRI, OpLHS, OpRHS)) {
// Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
// iff (op x, c1) has one use
MatchInfo = [=](MachineIRBuilder &B) {
auto NewLHSLHS = B.buildInstr(Opc, {OpRHSTy}, {OpLHSLHS, OpRHS});
B.buildInstr(Opc, {DstReg}, {NewLHSLHS, OpLHSRHS});
};
return true;
}
}
return false;
}
bool CombinerHelper::matchReassocCommBinOp(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
// We don't check if the reassociation will break a legal addressing mode
// here since pointer arithmetic is handled by G_PTR_ADD.
unsigned Opc = MI.getOpcode();
Register DstReg = MI.getOperand(0).getReg();
Register LHSReg = MI.getOperand(1).getReg();
Register RHSReg = MI.getOperand(2).getReg();
if (tryReassocBinOp(Opc, DstReg, LHSReg, RHSReg, MatchInfo))
return true;
if (tryReassocBinOp(Opc, DstReg, RHSReg, LHSReg, MatchInfo))
return true;
return false;
}
bool CombinerHelper::matchConstantFoldCastOp(MachineInstr &MI,
APInt &MatchInfo) const {
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
Register SrcOp = MI.getOperand(1).getReg();
if (auto MaybeCst = ConstantFoldCastOp(MI.getOpcode(), DstTy, SrcOp, MRI)) {
MatchInfo = *MaybeCst;
return true;
}
return false;
}
bool CombinerHelper::matchConstantFoldBinOp(MachineInstr &MI,
APInt &MatchInfo) const {
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
if (!MaybeCst)
return false;
MatchInfo = *MaybeCst;
return true;
}
bool CombinerHelper::matchConstantFoldFPBinOp(MachineInstr &MI,
ConstantFP *&MatchInfo) const {
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
auto MaybeCst = ConstantFoldFPBinOp(MI.getOpcode(), Op1, Op2, MRI);
if (!MaybeCst)
return false;
MatchInfo =
ConstantFP::get(MI.getMF()->getFunction().getContext(), *MaybeCst);
return true;
}
bool CombinerHelper::matchConstantFoldFMA(MachineInstr &MI,
ConstantFP *&MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_FMA ||
MI.getOpcode() == TargetOpcode::G_FMAD);
auto [_, Op1, Op2, Op3] = MI.getFirst4Regs();
const ConstantFP *Op3Cst = getConstantFPVRegVal(Op3, MRI);
if (!Op3Cst)
return false;
const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
if (!Op2Cst)
return false;
const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
if (!Op1Cst)
return false;
APFloat Op1F = Op1Cst->getValueAPF();
Op1F.fusedMultiplyAdd(Op2Cst->getValueAPF(), Op3Cst->getValueAPF(),
APFloat::rmNearestTiesToEven);
MatchInfo = ConstantFP::get(MI.getMF()->getFunction().getContext(), Op1F);
return true;
}
bool CombinerHelper::matchNarrowBinopFeedingAnd(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
// Look for a binop feeding into an AND with a mask:
//
// %add = G_ADD %lhs, %rhs
// %and = G_AND %add, 000...11111111
//
// Check if it's possible to perform the binop at a narrower width and zext
// back to the original width like so:
//
// %narrow_lhs = G_TRUNC %lhs
// %narrow_rhs = G_TRUNC %rhs
// %narrow_add = G_ADD %narrow_lhs, %narrow_rhs
// %new_add = G_ZEXT %narrow_add
// %and = G_AND %new_add, 000...11111111
//
// This can allow later combines to eliminate the G_AND if it turns out
// that the mask is irrelevant.
assert(MI.getOpcode() == TargetOpcode::G_AND);
Register Dst = MI.getOperand(0).getReg();
Register AndLHS = MI.getOperand(1).getReg();
Register AndRHS = MI.getOperand(2).getReg();
LLT WideTy = MRI.getType(Dst);
// If the potential binop has more than one use, then it's possible that one
// of those uses will need its full width.
if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS))
return false;
// Check if the LHS feeding the AND is impacted by the high bits that we're
// masking out.
//
// e.g. for 64-bit x, y:
//
// add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535
MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI);
if (!LHSInst)
return false;
unsigned LHSOpc = LHSInst->getOpcode();
switch (LHSOpc) {
default:
return false;
case TargetOpcode::G_ADD:
case TargetOpcode::G_SUB:
case TargetOpcode::G_MUL:
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR:
break;
}
// Find the mask on the RHS.
auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI);
if (!Cst)
return false;
auto Mask = Cst->Value;
if (!Mask.isMask())
return false;
// No point in combining if there's nothing to truncate.
unsigned NarrowWidth = Mask.countr_one();
if (NarrowWidth == WideTy.getSizeInBits())
return false;
LLT NarrowTy = LLT::scalar(NarrowWidth);
// Check if adding the zext + truncates could be harmful.
auto &MF = *MI.getMF();
const auto &TLI = getTargetLowering();
LLVMContext &Ctx = MF.getFunction().getContext();
if (!TLI.isTruncateFree(WideTy, NarrowTy, Ctx) ||
!TLI.isZExtFree(NarrowTy, WideTy, Ctx))
return false;
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) ||
!isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}}))
return false;
Register BinOpLHS = LHSInst->getOperand(1).getReg();
Register BinOpRHS = LHSInst->getOperand(2).getReg();
MatchInfo = [=, &MI](MachineIRBuilder &B) {
auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS);
auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS);
auto NarrowBinOp =
Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS});
auto Ext = Builder.buildZExt(WideTy, NarrowBinOp);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(Ext.getReg(0));
Observer.changedInstr(MI);
};
return true;
}
bool CombinerHelper::matchMulOBy2(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO);
if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2)))
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Observer.changingInstr(MI);
unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO
: TargetOpcode::G_SADDO;
MI.setDesc(Builder.getTII().get(NewOpc));
MI.getOperand(3).setReg(MI.getOperand(2).getReg());
Observer.changedInstr(MI);
};
return true;
}
bool CombinerHelper::matchMulOBy0(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
// (G_*MULO x, 0) -> 0 + no carry out
assert(MI.getOpcode() == TargetOpcode::G_UMULO ||
MI.getOpcode() == TargetOpcode::G_SMULO);
if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
return false;
Register Dst = MI.getOperand(0).getReg();
Register Carry = MI.getOperand(1).getReg();
if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) ||
!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
return false;
MatchInfo = [=](MachineIRBuilder &B) {
B.buildConstant(Dst, 0);
B.buildConstant(Carry, 0);
};
return true;
}
bool CombinerHelper::matchAddEToAddO(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
// (G_*ADDE x, y, 0) -> (G_*ADDO x, y)
// (G_*SUBE x, y, 0) -> (G_*SUBO x, y)
assert(MI.getOpcode() == TargetOpcode::G_UADDE ||
MI.getOpcode() == TargetOpcode::G_SADDE ||
MI.getOpcode() == TargetOpcode::G_USUBE ||
MI.getOpcode() == TargetOpcode::G_SSUBE);
if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0)))
return false;
MatchInfo = [&](MachineIRBuilder &B) {
unsigned NewOpcode;
switch (MI.getOpcode()) {
case TargetOpcode::G_UADDE:
NewOpcode = TargetOpcode::G_UADDO;
break;
case TargetOpcode::G_SADDE:
NewOpcode = TargetOpcode::G_SADDO;
break;
case TargetOpcode::G_USUBE:
NewOpcode = TargetOpcode::G_USUBO;
break;
case TargetOpcode::G_SSUBE:
NewOpcode = TargetOpcode::G_SSUBO;
break;
}
Observer.changingInstr(MI);
MI.setDesc(B.getTII().get(NewOpcode));
MI.removeOperand(4);
Observer.changedInstr(MI);
};
return true;
}
bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_SUB);
Register Dst = MI.getOperand(0).getReg();
// (x + y) - z -> x (if y == z)
// (x + y) - z -> y (if x == z)
Register X, Y, Z;
if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) {
Register ReplaceReg;
int64_t CstX, CstY;
if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) &&
mi_match(Z, MRI, m_SpecificICstOrSplat(CstY))))
ReplaceReg = X;
else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
ReplaceReg = Y;
if (ReplaceReg) {
MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); };
return true;
}
}
// x - (y + z) -> 0 - y (if x == z)
// x - (y + z) -> 0 - z (if x == y)
if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) {
Register ReplaceReg;
int64_t CstX;
if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
ReplaceReg = Y;
else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
mi_match(Y, MRI, m_SpecificICstOrSplat(CstX))))
ReplaceReg = Z;
if (ReplaceReg) {
MatchInfo = [=](MachineIRBuilder &B) {
auto Zero = B.buildConstant(MRI.getType(Dst), 0);
B.buildSub(Dst, Zero, ReplaceReg);
};
return true;
}
}
return false;
}
MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_UDIV);
auto &UDiv = cast<GenericMachineInstr>(MI);
Register Dst = UDiv.getReg(0);
Register LHS = UDiv.getReg(1);
Register RHS = UDiv.getReg(2);
LLT Ty = MRI.getType(Dst);
LLT ScalarTy = Ty.getScalarType();
const unsigned EltBits = ScalarTy.getScalarSizeInBits();
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
auto &MIB = Builder;
bool UseSRL = false;
SmallVector<Register, 16> Shifts, Factors;
auto *RHSDefInstr = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI));
bool IsSplat = getIConstantSplatVal(*RHSDefInstr, MRI).has_value();
auto BuildExactUDIVPattern = [&](const Constant *C) {
// Don't recompute inverses for each splat element.
if (IsSplat && !Factors.empty()) {
Shifts.push_back(Shifts[0]);
Factors.push_back(Factors[0]);
return true;
}
auto *CI = cast<ConstantInt>(C);
APInt Divisor = CI->getValue();
unsigned Shift = Divisor.countr_zero();
if (Shift) {
Divisor.lshrInPlace(Shift);
UseSRL = true;
}
// Calculate the multiplicative inverse modulo BW.
APInt Factor = Divisor.multiplicativeInverse();
Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0));
Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0));
return true;
};
if (MI.getFlag(MachineInstr::MIFlag::IsExact)) {
// Collect all magic values from the build vector.
if (!matchUnaryPredicate(MRI, RHS, BuildExactUDIVPattern))
llvm_unreachable("Expected unary predicate match to succeed");
Register Shift, Factor;
if (Ty.isVector()) {
Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0);
Factor = MIB.buildBuildVector(Ty, Factors).getReg(0);
} else {
Shift = Shifts[0];
Factor = Factors[0];
}
Register Res = LHS;
if (UseSRL)
Res = MIB.buildLShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0);
return MIB.buildMul(Ty, Res, Factor);
}
unsigned KnownLeadingZeros =
KB ? KB->getKnownBits(LHS).countMinLeadingZeros() : 0;
bool UseNPQ = false;
SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
auto BuildUDIVPattern = [&](const Constant *C) {
auto *CI = cast<ConstantInt>(C);
const APInt &Divisor = CI->getValue();
bool SelNPQ = false;
APInt Magic(Divisor.getBitWidth(), 0);
unsigned PreShift = 0, PostShift = 0;
// Magic algorithm doesn't work for division by 1. We need to emit a select
// at the end.
// TODO: Use undef values for divisor of 1.
if (!Divisor.isOne()) {
// UnsignedDivisionByConstantInfo doesn't work correctly if leading zeros
// in the dividend exceeds the leading zeros for the divisor.
UnsignedDivisionByConstantInfo magics =
UnsignedDivisionByConstantInfo::get(
Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
Magic = std::move(magics.Magic);
assert(magics.PreShift < Divisor.getBitWidth() &&
"We shouldn't generate an undefined shift!");
assert(magics.PostShift < Divisor.getBitWidth() &&
"We shouldn't generate an undefined shift!");
assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift");
PreShift = magics.PreShift;
PostShift = magics.PostShift;
SelNPQ = magics.IsAdd;
}
PreShifts.push_back(
MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0));
MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0));
NPQFactors.push_back(
MIB.buildConstant(ScalarTy,
SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
: APInt::getZero(EltBits))
.getReg(0));
PostShifts.push_back(
MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0));
UseNPQ |= SelNPQ;
return true;
};
// Collect the shifts/magic values from each element.
bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern);
(void)Matched;
assert(Matched && "Expected unary predicate match to succeed");
Register PreShift, PostShift, MagicFactor, NPQFactor;
auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI);
if (RHSDef) {
PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0);
MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0);
NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0);
PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0);
} else {
assert(MRI.getType(RHS).isScalar() &&
"Non-build_vector operation should have been a scalar");
PreShift = PreShifts[0];
MagicFactor = MagicFactors[0];
PostShift = PostShifts[0];
}
Register Q = LHS;
Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0);
// Multiply the numerator (operand 0) by the magic value.
Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0);
if (UseNPQ) {
Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0);
// For vectors we might have a mix of non-NPQ/NPQ paths, so use
// G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero.
if (Ty.isVector())
NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0);
else
NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0);
Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0);
}
Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0);
auto One = MIB.buildConstant(Ty, 1);
auto IsOne = MIB.buildICmp(
CmpInst::Predicate::ICMP_EQ,
Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One);
return MIB.buildSelect(Ty, IsOne, LHS, Q);
}
bool CombinerHelper::matchUDivByConst(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_UDIV);
Register Dst = MI.getOperand(0).getReg();
Register RHS = MI.getOperand(2).getReg();
LLT DstTy = MRI.getType(Dst);
auto &MF = *MI.getMF();
AttributeList Attr = MF.getFunction().getAttributes();
const auto &TLI = getTargetLowering();
LLVMContext &Ctx = MF.getFunction().getContext();
if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, Ctx), Attr))
return false;
// Don't do this for minsize because the instruction sequence is usually
// larger.
if (MF.getFunction().hasMinSize())
return false;
if (MI.getFlag(MachineInstr::MIFlag::IsExact)) {
return matchUnaryPredicate(
MRI, RHS, [](const Constant *C) { return C && !C->isNullValue(); });
}
auto *RHSDef = MRI.getVRegDef(RHS);
if (!isConstantOrConstantVector(*RHSDef, MRI))
return false;
// Don't do this if the types are not going to be legal.
if (LI) {
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}}))
return false;
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}}))
return false;
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_ICMP,
{DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1),
DstTy}}))
return false;
}
return matchUnaryPredicate(
MRI, RHS, [](const Constant *C) { return C && !C->isNullValue(); });
}
void CombinerHelper::applyUDivByConst(MachineInstr &MI) const {
auto *NewMI = buildUDivUsingMul(MI);
replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
}
bool CombinerHelper::matchSDivByConst(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
Register Dst = MI.getOperand(0).getReg();
Register RHS = MI.getOperand(2).getReg();
LLT DstTy = MRI.getType(Dst);
auto &MF = *MI.getMF();
AttributeList Attr = MF.getFunction().getAttributes();
const auto &TLI = getTargetLowering();
LLVMContext &Ctx = MF.getFunction().getContext();
if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, Ctx), Attr))
return false;
// Don't do this for minsize because the instruction sequence is usually
// larger.
if (MF.getFunction().hasMinSize())
return false;
// If the sdiv has an 'exact' flag we can use a simpler lowering.
if (MI.getFlag(MachineInstr::MIFlag::IsExact)) {
return matchUnaryPredicate(
MRI, RHS, [](const Constant *C) { return C && !C->isNullValue(); });
}
// Don't support the general case for now.
return false;
}
void CombinerHelper::applySDivByConst(MachineInstr &MI) const {
auto *NewMI = buildSDivUsingMul(MI);
replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
}
MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
auto &SDiv = cast<GenericMachineInstr>(MI);
Register Dst = SDiv.getReg(0);
Register LHS = SDiv.getReg(1);
Register RHS = SDiv.getReg(2);
LLT Ty = MRI.getType(Dst);
LLT ScalarTy = Ty.getScalarType();
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
auto &MIB = Builder;
bool UseSRA = false;
SmallVector<Register, 16> Shifts, Factors;
auto *RHSDef = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI));
bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value();
auto BuildSDIVPattern = [&](const Constant *C) {
// Don't recompute inverses for each splat element.
if (IsSplat && !Factors.empty()) {
Shifts.push_back(Shifts[0]);
Factors.push_back(Factors[0]);
return true;
}
auto *CI = cast<ConstantInt>(C);
APInt Divisor = CI->getValue();
unsigned Shift = Divisor.countr_zero();
if (Shift) {
Divisor.ashrInPlace(Shift);
UseSRA = true;
}
// Calculate the multiplicative inverse modulo BW.
// 2^W requires W + 1 bits, so we have to extend and then truncate.
APInt Factor = Divisor.multiplicativeInverse();
Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0));
Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0));
return true;
};
// Collect all magic values from the build vector.
bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern);
(void)Matched;
assert(Matched && "Expected unary predicate match to succeed");
Register Shift, Factor;
if (Ty.isVector()) {
Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0);
Factor = MIB.buildBuildVector(Ty, Factors).getReg(0);
} else {
Shift = Shifts[0];
Factor = Factors[0];
}
Register Res = LHS;
if (UseSRA)
Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0);
return MIB.buildMul(Ty, Res, Factor);
}
bool CombinerHelper::matchDivByPow2(MachineInstr &MI, bool IsSigned) const {
assert((MI.getOpcode() == TargetOpcode::G_SDIV ||
MI.getOpcode() == TargetOpcode::G_UDIV) &&
"Expected SDIV or UDIV");
auto &Div = cast<GenericMachineInstr>(MI);
Register RHS = Div.getReg(2);
auto MatchPow2 = [&](const Constant *C) {
auto *CI = dyn_cast<ConstantInt>(C);
return CI && (CI->getValue().isPowerOf2() ||
(IsSigned && CI->getValue().isNegatedPowerOf2()));
};
return matchUnaryPredicate(MRI, RHS, MatchPow2, /*AllowUndefs=*/false);
}
void CombinerHelper::applySDivByPow2(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
auto &SDiv = cast<GenericMachineInstr>(MI);
Register Dst = SDiv.getReg(0);
Register LHS = SDiv.getReg(1);
Register RHS = SDiv.getReg(2);
LLT Ty = MRI.getType(Dst);
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
LLT CCVT =
Ty.isVector() ? LLT::vector(Ty.getElementCount(), 1) : LLT::scalar(1);
// Effectively we want to lower G_SDIV %lhs, %rhs, where %rhs is a power of 2,
// to the following version:
//
// %c1 = G_CTTZ %rhs
// %inexact = G_SUB $bitwidth, %c1
// %sign = %G_ASHR %lhs, $(bitwidth - 1)
// %lshr = G_LSHR %sign, %inexact
// %add = G_ADD %lhs, %lshr
// %ashr = G_ASHR %add, %c1
// %ashr = G_SELECT, %isoneorallones, %lhs, %ashr
// %zero = G_CONSTANT $0
// %neg = G_NEG %ashr
// %isneg = G_ICMP SLT %rhs, %zero
// %res = G_SELECT %isneg, %neg, %ashr
unsigned BitWidth = Ty.getScalarSizeInBits();
auto Zero = Builder.buildConstant(Ty, 0);
auto Bits = Builder.buildConstant(ShiftAmtTy, BitWidth);
auto C1 = Builder.buildCTTZ(ShiftAmtTy, RHS);
auto Inexact = Builder.buildSub(ShiftAmtTy, Bits, C1);
// Splat the sign bit into the register
auto Sign = Builder.buildAShr(
Ty, LHS, Builder.buildConstant(ShiftAmtTy, BitWidth - 1));
// Add (LHS < 0) ? abs2 - 1 : 0;
auto LSrl = Builder.buildLShr(Ty, Sign, Inexact);
auto Add = Builder.buildAdd(Ty, LHS, LSrl);
auto AShr = Builder.buildAShr(Ty, Add, C1);
// Special case: (sdiv X, 1) -> X
// Special Case: (sdiv X, -1) -> 0-X
auto One = Builder.buildConstant(Ty, 1);
auto MinusOne = Builder.buildConstant(Ty, -1);
auto IsOne = Builder.buildICmp(CmpInst::Predicate::ICMP_EQ, CCVT, RHS, One);
auto IsMinusOne =
Builder.buildICmp(CmpInst::Predicate::ICMP_EQ, CCVT, RHS, MinusOne);
auto IsOneOrMinusOne = Builder.buildOr(CCVT, IsOne, IsMinusOne);
AShr = Builder.buildSelect(Ty, IsOneOrMinusOne, LHS, AShr);
// If divided by a positive value, we're done. Otherwise, the result must be
// negated.
auto Neg = Builder.buildNeg(Ty, AShr);
auto IsNeg = Builder.buildICmp(CmpInst::Predicate::ICMP_SLT, CCVT, RHS, Zero);
Builder.buildSelect(MI.getOperand(0).getReg(), IsNeg, Neg, AShr);
MI.eraseFromParent();
}
void CombinerHelper::applyUDivByPow2(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_UDIV && "Expected UDIV");
auto &UDiv = cast<GenericMachineInstr>(MI);
Register Dst = UDiv.getReg(0);
Register LHS = UDiv.getReg(1);
Register RHS = UDiv.getReg(2);
LLT Ty = MRI.getType(Dst);
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
auto C1 = Builder.buildCTTZ(ShiftAmtTy, RHS);
Builder.buildLShr(MI.getOperand(0).getReg(), LHS, C1);
MI.eraseFromParent();
}
bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) const {
assert(MI.getOpcode() == TargetOpcode::G_UMULH);
Register RHS = MI.getOperand(2).getReg();
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
LLT RHSTy = MRI.getType(RHS);
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
auto MatchPow2ExceptOne = [&](const Constant *C) {
if (auto *CI = dyn_cast<ConstantInt>(C))
return CI->getValue().isPowerOf2() && !CI->getValue().isOne();
return false;
};
if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false))
return false;
// We need to check both G_LSHR and G_CTLZ because the combine uses G_CTLZ to
// get log base 2, and it is not always legal for on a target.
return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}) &&
isLegalOrBeforeLegalizer({TargetOpcode::G_CTLZ, {RHSTy, RHSTy}});
}
void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) const {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
unsigned NumEltBits = Ty.getScalarSizeInBits();
auto LogBase2 = buildLogBase2(RHS, Builder);
auto ShiftAmt =
Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2);
auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt);
Builder.buildLShr(Dst, LHS, Trunc);
MI.eraseFromParent();
}
bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB ||
Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA);
Register Dst = MI.getOperand(0).getReg();
Register X = MI.getOperand(1).getReg();
Register Y = MI.getOperand(2).getReg();
LLT Type = MRI.getType(Dst);
// fold (fadd x, fneg(y)) -> (fsub x, y)
// fold (fadd fneg(y), x) -> (fsub x, y)
// G_ADD is commutative so both cases are checked by m_GFAdd
if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) {
Opc = TargetOpcode::G_FSUB;
}
/// fold (fsub x, fneg(y)) -> (fadd x, y)
else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) {
Opc = TargetOpcode::G_FADD;
}
// fold (fmul fneg(x), fneg(y)) -> (fmul x, y)
// fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y)
// fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z)
// fold (fma fneg(x), fneg(y), z) -> (fma x, y, z)
else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) &&
mi_match(X, MRI, m_GFNeg(m_Reg(X))) &&
mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) {
// no opcode change
} else
return false;
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Observer.changingInstr(MI);
MI.setDesc(B.getTII().get(Opc));
MI.getOperand(1).setReg(X);
MI.getOperand(2).setReg(Y);
Observer.changedInstr(MI);
};
return true;
}
bool CombinerHelper::matchFsubToFneg(MachineInstr &MI,
Register &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_FSUB);
Register LHS = MI.getOperand(1).getReg();
MatchInfo = MI.getOperand(2).getReg();
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
const auto LHSCst = Ty.isVector()
? getFConstantSplat(LHS, MRI, /* allowUndef */ true)
: getFConstantVRegValWithLookThrough(LHS, MRI);
if (!LHSCst)
return false;
// -0.0 is always allowed
if (LHSCst->Value.isNegZero())
return true;
// +0.0 is only allowed if nsz is set.
if (LHSCst->Value.isPosZero())
return MI.getFlag(MachineInstr::FmNsz);
return false;
}
void CombinerHelper::applyFsubToFneg(MachineInstr &MI,
Register &MatchInfo) const {
Register Dst = MI.getOperand(0).getReg();
Builder.buildFNeg(
Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0));
eraseInst(MI);
}
/// Checks if \p MI is TargetOpcode::G_FMUL and contractable either
/// due to global flags or MachineInstr flags.
static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) {
if (MI.getOpcode() != TargetOpcode::G_FMUL)
return false;
return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract);
}
static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1,
const MachineRegisterInfo &MRI) {
return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()),
MRI.use_instr_nodbg_end()) >
std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()),
MRI.use_instr_nodbg_end());
}
bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI,
bool &AllowFusionGlobally,
bool &HasFMAD, bool &Aggressive,
bool CanReassociate) const {
auto *MF = MI.getMF();
const auto &TLI = *MF->getSubtarget().getTargetLowering();
const TargetOptions &Options = MF->getTarget().Options;
LLT DstType = MRI.getType(MI.getOperand(0).getReg());
if (CanReassociate &&
!(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc)))
return false;
// Floating-point multiply-add with intermediate rounding.
HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType));
// Floating-point multiply-add without intermediate rounding.
bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) &&
isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}});
// No valid opcode, do not combine.
if (!HasFMAD && !HasFMA)
return false;
AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast ||
Options.UnsafeFPMath || HasFMAD;
// If the addition is not contractable, do not combine.
if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract))
return false;
Aggressive = TLI.enableAggressiveFMAFusion(DstType);
return true;
}
bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_FADD);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
std::swap(LHS, RHS);
}
// fold (fadd (fmul x, y), z) -> (fma x, y, z)
if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{LHS.MI->getOperand(1).getReg(),
LHS.MI->getOperand(2).getReg(), RHS.Reg});
};
return true;
}
// fold (fadd x, (fmul y, z)) -> (fma y, z, x)
if (isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{RHS.MI->getOperand(1).getReg(),
RHS.MI->getOperand(2).getReg(), LHS.Reg});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_FADD);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
LLT DstType = MRI.getType(MI.getOperand(0).getReg());
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
std::swap(LHS, RHS);
}
// fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
MachineInstr *FpExtSrc;
if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg});
};
return true;
}
// fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z)
// Note: Commutes FADD operands.
if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_FADD);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true))
return false;
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
std::swap(LHS, RHS);
}
MachineInstr *FMA = nullptr;
Register Z;
// fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z))
if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
(MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() ==
TargetOpcode::G_FMUL) &&
MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) &&
MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) {
FMA = LHS.MI;
Z = RHS.Reg;
}
// fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z))
else if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
(MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() ==
TargetOpcode::G_FMUL) &&
MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) &&
MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) {
Z = LHS.Reg;
FMA = RHS.MI;
}
if (FMA) {
MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg());
Register X = FMA->getOperand(1).getReg();
Register Y = FMA->getOperand(2).getReg();
Register U = FMulMI->getOperand(1).getReg();
Register V = FMulMI->getOperand(2).getReg();
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register InnerFMA = MRI.createGenericVirtualRegister(DstTy);
B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z});
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{X, Y, InnerFMA});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_FADD);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
if (!Aggressive)
return false;
const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
LLT DstType = MRI.getType(MI.getOperand(0).getReg());
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
std::swap(LHS, RHS);
}
// Builds: (fma x, y, (fma (fpext u), (fpext v), z))
auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X,
Register Y, MachineIRBuilder &B) {
Register FpExtU = B.buildFPExt(DstType, U).getReg(0);
Register FpExtV = B.buildFPExt(DstType, V).getReg(0);
Register InnerFMA =
B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z})
.getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{X, Y, InnerFMA});
};
MachineInstr *FMulMI, *FMAMI;
// fold (fadd (fma x, y, (fpext (fmul u, v))), z)
// -> (fma x, y, (fma (fpext u), (fpext v), z))
if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
mi_match(LHS.MI->getOperand(3).getReg(), MRI,
m_GFPExt(m_MInstr(FMulMI))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FMulMI->getOperand(0).getReg()))) {
MatchInfo = [=](MachineIRBuilder &B) {
buildMatchInfo(FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), RHS.Reg,
LHS.MI->getOperand(1).getReg(),
LHS.MI->getOperand(2).getReg(), B);
};
return true;
}
// fold (fadd (fpext (fma x, y, (fmul u, v))), z)
// -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
FMAMI->getOpcode() == PreferredFusedOpcode) {
MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FMAMI->getOperand(0).getReg()))) {
MatchInfo = [=](MachineIRBuilder &B) {
Register X = FMAMI->getOperand(1).getReg();
Register Y = FMAMI->getOperand(2).getReg();
X = B.buildFPExt(DstType, X).getReg(0);
Y = B.buildFPExt(DstType, Y).getReg(0);
buildMatchInfo(FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B);
};
return true;
}
}
// fold (fadd z, (fma x, y, (fpext (fmul u, v)))
// -> (fma x, y, (fma (fpext u), (fpext v), z))
if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
mi_match(RHS.MI->getOperand(3).getReg(), MRI,
m_GFPExt(m_MInstr(FMulMI))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FMulMI->getOperand(0).getReg()))) {
MatchInfo = [=](MachineIRBuilder &B) {
buildMatchInfo(FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), LHS.Reg,
RHS.MI->getOperand(1).getReg(),
RHS.MI->getOperand(2).getReg(), B);
};
return true;
}
// fold (fadd z, (fpext (fma x, y, (fmul u, v)))
// -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
// FIXME: This turns two single-precision and one double-precision
// operation into two double-precision operations, which might not be
// interesting for all targets, especially GPUs.
if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
FMAMI->getOpcode() == PreferredFusedOpcode) {
MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
MRI.getType(FMAMI->getOperand(0).getReg()))) {
MatchInfo = [=](MachineIRBuilder &B) {
Register X = FMAMI->getOperand(1).getReg();
Register Y = FMAMI->getOperand(2).getReg();
X = B.buildFPExt(DstType, X).getReg(0);
Y = B.buildFPExt(DstType, Y).getReg(0);
buildMatchInfo(FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B);
};
return true;
}
}
return false;
}
bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_FSUB);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
Register Op1 = MI.getOperand(1).getReg();
Register Op2 = MI.getOperand(2).getReg();
DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
// prefer to fold the multiply with fewer uses.
int FirstMulHasFewerUses = true;
if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
hasMoreUses(*LHS.MI, *RHS.MI, MRI))
FirstMulHasFewerUses = false;
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
// fold (fsub (fmul x, y), z) -> (fma x, y, -z)
if (FirstMulHasFewerUses &&
(isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{LHS.MI->getOperand(1).getReg(),
LHS.MI->getOperand(2).getReg(), NegZ});
};
return true;
}
// fold (fsub x, (fmul y, z)) -> (fma -y, z, x)
else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register NegY =
B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_FSUB);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
Register LHSReg = MI.getOperand(1).getReg();
Register RHSReg = MI.getOperand(2).getReg();
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
MachineInstr *FMulMI;
// fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z))
if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
(Aggressive || (MRI.hasOneNonDBGUse(LHSReg) &&
MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally)) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register NegX =
B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{NegX, FMulMI->getOperand(2).getReg(), NegZ});
};
return true;
}
// fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x)
if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
(Aggressive || (MRI.hasOneNonDBGUse(RHSReg) &&
MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally)) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), LHSReg});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_FSUB);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
Register LHSReg = MI.getOperand(1).getReg();
Register RHSReg = MI.getOperand(2).getReg();
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
MachineInstr *FMulMI;
// fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z))
if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(LHSReg))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register FpExtX =
B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
Register FpExtY =
B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{FpExtX, FpExtY, NegZ});
};
return true;
}
// fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x)
if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
(Aggressive || MRI.hasOneNonDBGUse(RHSReg))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register FpExtY =
B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0);
Register FpExtZ =
B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
{NegY, FpExtZ, LHSReg});
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA(
MachineInstr &MI,
std::function<void(MachineIRBuilder &)> &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_FSUB);
bool AllowFusionGlobally, HasFMAD, Aggressive;
if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
return false;
const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
Register LHSReg = MI.getOperand(1).getReg();
Register RHSReg = MI.getOperand(2).getReg();
unsigned PreferredFusedOpcode =
HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z,
MachineIRBuilder &B) {
Register FpExtX = B.buildFPExt(DstTy, X).getReg(0);
Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0);
B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z});
};
MachineInstr *FMulMI;
// fold (fsub (fpext (fneg (fmul x, y))), z) ->
// (fneg (fma (fpext x), (fpext y), z))
// fold (fsub (fneg (fpext (fmul x, y))), z) ->
// (fneg (fma (fpext x), (fpext y), z))
if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
MRI.getType(FMulMI->getOperand(0).getReg()))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
Register FMAReg = MRI.createGenericVirtualRegister(DstTy);
buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), RHSReg, B);
B.buildFNeg(MI.getOperand(0).getReg(), FMAReg);
};
return true;
}
// fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
// fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
isContractableFMul(*FMulMI, AllowFusionGlobally) &&
TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
MRI.getType(FMulMI->getOperand(0).getReg()))) {
MatchInfo = [=, &MI](MachineIRBuilder &B) {
buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(),
FMulMI->getOperand(2).getReg(), LHSReg, B);
};
return true;
}
return false;
}
bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI,
unsigned &IdxToPropagate) const {
bool PropagateNaN;
switch (MI.getOpcode()) {
default:
return false;
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMAXNUM:
PropagateNaN = false;
break;
case TargetOpcode::G_FMINIMUM:
case TargetOpcode::G_FMAXIMUM:
PropagateNaN = true;
break;
}
auto MatchNaN = [&](unsigned Idx) {
Register MaybeNaNReg = MI.getOperand(Idx).getReg();
const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI);
if (!MaybeCst || !MaybeCst->getValueAPF().isNaN())
return false;
IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1);
return true;
};
return MatchNaN(1) || MatchNaN(2);
}
bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) const {
assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD");
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
// Helper lambda to check for opportunities for
// A + (B - A) -> B
// (B - A) + A -> B
auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) {
Register Reg;
return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) &&
Reg == MaybeSameReg;
};
return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
}
bool CombinerHelper::matchBuildVectorIdentityFold(MachineInstr &MI,
Register &MatchInfo) const {
// This combine folds the following patterns:
//
// G_BUILD_VECTOR_TRUNC (G_BITCAST(x), G_LSHR(G_BITCAST(x), k))
// G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), G_TRUNC(G_LSHR(G_BITCAST(x), k)))
// into
// x
// if
// k == sizeof(VecEltTy)/2
// type(x) == type(dst)
//
// G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), undef)
// into
// x
// if
// type(x) == type(dst)
LLT DstVecTy = MRI.getType(MI.getOperand(0).getReg());
LLT DstEltTy = DstVecTy.getElementType();
Register Lo, Hi;
if (mi_match(
MI, MRI,
m_GBuildVector(m_GTrunc(m_GBitcast(m_Reg(Lo))), m_GImplicitDef()))) {
MatchInfo = Lo;
return MRI.getType(MatchInfo) == DstVecTy;
}
std::optional<ValueAndVReg> ShiftAmount;
const auto LoPattern = m_GBitcast(m_Reg(Lo));
const auto HiPattern = m_GLShr(m_GBitcast(m_Reg(Hi)), m_GCst(ShiftAmount));
if (mi_match(
MI, MRI,
m_any_of(m_GBuildVectorTrunc(LoPattern, HiPattern),
m_GBuildVector(m_GTrunc(LoPattern), m_GTrunc(HiPattern))))) {
if (Lo == Hi && ShiftAmount->Value == DstEltTy.getSizeInBits()) {
MatchInfo = Lo;
return MRI.getType(MatchInfo) == DstVecTy;
}
}
return false;
}
bool CombinerHelper::matchTruncBuildVectorFold(MachineInstr &MI,
Register &MatchInfo) const {
// Replace (G_TRUNC (G_BITCAST (G_BUILD_VECTOR x, y)) with just x
// if type(x) == type(G_TRUNC)
if (!mi_match(MI.getOperand(1).getReg(), MRI,
m_GBitcast(m_GBuildVector(m_Reg(MatchInfo), m_Reg()))))
return false;
return MRI.getType(MatchInfo) == MRI.getType(MI.getOperand(0).getReg());
}
bool CombinerHelper::matchTruncLshrBuildVectorFold(MachineInstr &MI,
Register &MatchInfo) const {
// Replace (G_TRUNC (G_LSHR (G_BITCAST (G_BUILD_VECTOR x, y)), K)) with
// y if K == size of vector element type
std::optional<ValueAndVReg> ShiftAmt;
if (!mi_match(MI.getOperand(1).getReg(), MRI,
m_GLShr(m_GBitcast(m_GBuildVector(m_Reg(), m_Reg(MatchInfo))),
m_GCst(ShiftAmt))))
return false;
LLT MatchTy = MRI.getType(MatchInfo);
return ShiftAmt->Value.getZExtValue() == MatchTy.getSizeInBits() &&
MatchTy == MRI.getType(MI.getOperand(0).getReg());
}
unsigned CombinerHelper::getFPMinMaxOpcForSelect(
CmpInst::Predicate Pred, LLT DstTy,
SelectPatternNaNBehaviour VsNaNRetVal) const {
assert(VsNaNRetVal != SelectPatternNaNBehaviour::NOT_APPLICABLE &&
"Expected a NaN behaviour?");
// Choose an opcode based off of legality or the behaviour when one of the
// LHS/RHS may be NaN.
switch (Pred) {
default:
return 0;
case CmpInst::FCMP_UGT:
case CmpInst::FCMP_UGE:
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE:
if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER)
return TargetOpcode::G_FMAXNUM;
if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN)
return TargetOpcode::G_FMAXIMUM;
if (isLegal({TargetOpcode::G_FMAXNUM, {DstTy}}))
return TargetOpcode::G_FMAXNUM;
if (isLegal({TargetOpcode::G_FMAXIMUM, {DstTy}}))
return TargetOpcode::G_FMAXIMUM;
return 0;
case CmpInst::FCMP_ULT:
case CmpInst::FCMP_ULE:
case CmpInst::FCMP_OLT:
case CmpInst::FCMP_OLE:
if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER)
return TargetOpcode::G_FMINNUM;
if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN)
return TargetOpcode::G_FMINIMUM;
if (isLegal({TargetOpcode::G_FMINNUM, {DstTy}}))
return TargetOpcode::G_FMINNUM;
if (!isLegal({TargetOpcode::G_FMINIMUM, {DstTy}}))
return 0;
return TargetOpcode::G_FMINIMUM;
}
}
CombinerHelper::SelectPatternNaNBehaviour
CombinerHelper::computeRetValAgainstNaN(Register LHS, Register RHS,
bool IsOrderedComparison) const {
bool LHSSafe = isKnownNeverNaN(LHS, MRI);
bool RHSSafe = isKnownNeverNaN(RHS, MRI);
// Completely unsafe.
if (!LHSSafe && !RHSSafe)
return SelectPatternNaNBehaviour::NOT_APPLICABLE;
if (LHSSafe && RHSSafe)
return SelectPatternNaNBehaviour::RETURNS_ANY;
// An ordered comparison will return false when given a NaN, so it
// returns the RHS.
if (IsOrderedComparison)
return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_NAN
: SelectPatternNaNBehaviour::RETURNS_OTHER;
// An unordered comparison will return true when given a NaN, so it
// returns the LHS.
return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_OTHER
: SelectPatternNaNBehaviour::RETURNS_NAN;
}
bool CombinerHelper::matchFPSelectToMinMax(Register Dst, Register Cond,
Register TrueVal, Register FalseVal,
BuildFnTy &MatchInfo) const {
// Match: select (fcmp cond x, y) x, y
// select (fcmp cond x, y) y, x
// And turn it into fminnum/fmaxnum or fmin/fmax based off of the condition.
LLT DstTy = MRI.getType(Dst);
// Bail out early on pointers, since we'll never want to fold to a min/max.
if (DstTy.isPointer())
return false;
// Match a floating point compare with a less-than/greater-than predicate.
// TODO: Allow multiple users of the compare if they are all selects.
CmpInst::Predicate Pred;
Register CmpLHS, CmpRHS;
if (!mi_match(Cond, MRI,
m_OneNonDBGUse(
m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) ||
CmpInst::isEquality(Pred))
return false;
SelectPatternNaNBehaviour ResWithKnownNaNInfo =
computeRetValAgainstNaN(CmpLHS, CmpRHS, CmpInst::isOrdered(Pred));
if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::NOT_APPLICABLE)
return false;
if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
std::swap(CmpLHS, CmpRHS);
Pred = CmpInst::getSwappedPredicate(Pred);
if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_NAN)
ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_OTHER;
else if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_OTHER)
ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_NAN;
}
if (TrueVal != CmpLHS || FalseVal != CmpRHS)
return false;
// Decide what type of max/min this should be based off of the predicate.
unsigned Opc = getFPMinMaxOpcForSelect(Pred, DstTy, ResWithKnownNaNInfo);
if (!Opc || !isLegal({Opc, {DstTy}}))
return false;
// Comparisons between signed zero and zero may have different results...
// unless we have fmaximum/fminimum. In that case, we know -0 < 0.
if (Opc != TargetOpcode::G_FMAXIMUM && Opc != TargetOpcode::G_FMINIMUM) {
// We don't know if a comparison between two 0s will give us a consistent
// result. Be conservative and only proceed if at least one side is
// non-zero.
auto KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpLHS, MRI);
if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) {
KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpRHS, MRI);
if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero())
return false;
}
}
MatchInfo = [=](MachineIRBuilder &B) {
B.buildInstr(Opc, {Dst}, {CmpLHS, CmpRHS});
};
return true;
}
bool CombinerHelper::matchSimplifySelectToMinMax(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
// TODO: Handle integer cases.
assert(MI.getOpcode() == TargetOpcode::G_SELECT);
// Condition may be fed by a truncated compare.
Register Cond = MI.getOperand(1).getReg();
Register MaybeTrunc;
if (mi_match(Cond, MRI, m_OneNonDBGUse(m_GTrunc(m_Reg(MaybeTrunc)))))
Cond = MaybeTrunc;
Register Dst = MI.getOperand(0).getReg();
Register TrueVal = MI.getOperand(2).getReg();
Register FalseVal = MI.getOperand(3).getReg();
return matchFPSelectToMinMax(Dst, Cond, TrueVal, FalseVal, MatchInfo);
}
bool CombinerHelper::matchRedundantBinOpInEquality(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
// (X + Y) == X --> Y == 0
// (X + Y) != X --> Y != 0
// (X - Y) == X --> Y == 0
// (X - Y) != X --> Y != 0
// (X ^ Y) == X --> Y == 0
// (X ^ Y) != X --> Y != 0
Register Dst = MI.getOperand(0).getReg();
CmpInst::Predicate Pred;
Register X, Y, OpLHS, OpRHS;
bool MatchedSub = mi_match(
Dst, MRI,
m_c_GICmp(m_Pred(Pred), m_Reg(X), m_GSub(m_Reg(OpLHS), m_Reg(Y))));
if (MatchedSub && X != OpLHS)
return false;
if (!MatchedSub) {
if (!mi_match(Dst, MRI,
m_c_GICmp(m_Pred(Pred), m_Reg(X),
m_any_of(m_GAdd(m_Reg(OpLHS), m_Reg(OpRHS)),
m_GXor(m_Reg(OpLHS), m_Reg(OpRHS))))))
return false;
Y = X == OpLHS ? OpRHS : X == OpRHS ? OpLHS : Register();
}
MatchInfo = [=](MachineIRBuilder &B) {
auto Zero = B.buildConstant(MRI.getType(Y), 0);
B.buildICmp(Pred, Dst, Y, Zero);
};
return CmpInst::isEquality(Pred) && Y.isValid();
}
/// Return the minimum useless shift amount that results in complete loss of the
/// source value. Return std::nullopt when it cannot determine a value.
static std::optional<unsigned>
getMinUselessShift(KnownBits ValueKB, unsigned Opcode,
std::optional<int64_t> &Result) {
assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR ||
Opcode == TargetOpcode::G_ASHR) &&
"Expect G_SHL, G_LSHR or G_ASHR.");
auto SignificantBits = 0;
switch (Opcode) {
case TargetOpcode::G_SHL:
SignificantBits = ValueKB.countMinTrailingZeros();
Result = 0;
break;
case TargetOpcode::G_LSHR:
Result = 0;
SignificantBits = ValueKB.countMinLeadingZeros();
break;
case TargetOpcode::G_ASHR:
if (ValueKB.isNonNegative()) {
SignificantBits = ValueKB.countMinLeadingZeros();
Result = 0;
} else if (ValueKB.isNegative()) {
SignificantBits = ValueKB.countMinLeadingOnes();
Result = -1;
} else {
// Cannot determine shift result.
Result = std::nullopt;
}
break;
default:
break;
}
return ValueKB.getBitWidth() - SignificantBits;
}
bool CombinerHelper::matchShiftsTooBig(
MachineInstr &MI, std::optional<int64_t> &MatchInfo) const {
Register ShiftVal = MI.getOperand(1).getReg();
Register ShiftReg = MI.getOperand(2).getReg();
LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
auto IsShiftTooBig = [&](const Constant *C) {
auto *CI = dyn_cast<ConstantInt>(C);
if (!CI)
return false;
if (CI->uge(ResTy.getScalarSizeInBits())) {
MatchInfo = std::nullopt;
return true;
}
auto OptMaxUsefulShift = getMinUselessShift(KB->getKnownBits(ShiftVal),
MI.getOpcode(), MatchInfo);
return OptMaxUsefulShift && CI->uge(*OptMaxUsefulShift);
};
return matchUnaryPredicate(MRI, ShiftReg, IsShiftTooBig);
}
bool CombinerHelper::matchCommuteConstantToRHS(MachineInstr &MI) const {
unsigned LHSOpndIdx = 1;
unsigned RHSOpndIdx = 2;
switch (MI.getOpcode()) {
case TargetOpcode::G_UADDO:
case TargetOpcode::G_SADDO:
case TargetOpcode::G_UMULO:
case TargetOpcode::G_SMULO:
LHSOpndIdx = 2;
RHSOpndIdx = 3;
break;
default:
break;
}
Register LHS = MI.getOperand(LHSOpndIdx).getReg();
Register RHS = MI.getOperand(RHSOpndIdx).getReg();
if (!getIConstantVRegVal(LHS, MRI)) {
// Skip commuting if LHS is not a constant. But, LHS may be a
// G_CONSTANT_FOLD_BARRIER. If so we commute as long as we don't already
// have a constant on the RHS.
if (MRI.getVRegDef(LHS)->getOpcode() !=
TargetOpcode::G_CONSTANT_FOLD_BARRIER)
return false;
}
// Commute as long as RHS is not a constant or G_CONSTANT_FOLD_BARRIER.
return MRI.getVRegDef(RHS)->getOpcode() !=
TargetOpcode::G_CONSTANT_FOLD_BARRIER &&
!getIConstantVRegVal(RHS, MRI);
}
bool CombinerHelper::matchCommuteFPConstantToRHS(MachineInstr &MI) const {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
std::optional<FPValueAndVReg> ValAndVReg;
if (!mi_match(LHS, MRI, m_GFCstOrSplat(ValAndVReg)))
return false;
return !mi_match(RHS, MRI, m_GFCstOrSplat(ValAndVReg));
}
void CombinerHelper::applyCommuteBinOpOperands(MachineInstr &MI) const {
Observer.changingInstr(MI);
unsigned LHSOpndIdx = 1;
unsigned RHSOpndIdx = 2;
switch (MI.getOpcode()) {
case TargetOpcode::G_UADDO:
case TargetOpcode::G_SADDO:
case TargetOpcode::G_UMULO:
case TargetOpcode::G_SMULO:
LHSOpndIdx = 2;
RHSOpndIdx = 3;
break;
default:
break;
}
Register LHSReg = MI.getOperand(LHSOpndIdx).getReg();
Register RHSReg = MI.getOperand(RHSOpndIdx).getReg();
MI.getOperand(LHSOpndIdx).setReg(RHSReg);
MI.getOperand(RHSOpndIdx).setReg(LHSReg);
Observer.changedInstr(MI);
}
bool CombinerHelper::isOneOrOneSplat(Register Src, bool AllowUndefs) const {
LLT SrcTy = MRI.getType(Src);
if (SrcTy.isFixedVector())
return isConstantSplatVector(Src, 1, AllowUndefs);
if (SrcTy.isScalar()) {
if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr)
return true;
auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
return IConstant && IConstant->Value == 1;
}
return false; // scalable vector
}
bool CombinerHelper::isZeroOrZeroSplat(Register Src, bool AllowUndefs) const {
LLT SrcTy = MRI.getType(Src);
if (SrcTy.isFixedVector())
return isConstantSplatVector(Src, 0, AllowUndefs);
if (SrcTy.isScalar()) {
if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr)
return true;
auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
return IConstant && IConstant->Value == 0;
}
return false; // scalable vector
}
// Ignores COPYs during conformance checks.
// FIXME scalable vectors.
bool CombinerHelper::isConstantSplatVector(Register Src, int64_t SplatValue,
bool AllowUndefs) const {
GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI);
if (!BuildVector)
return false;
unsigned NumSources = BuildVector->getNumSources();
for (unsigned I = 0; I < NumSources; ++I) {
GImplicitDef *ImplicitDef =
getOpcodeDef<GImplicitDef>(BuildVector->getSourceReg(I), MRI);
if (ImplicitDef && AllowUndefs)
continue;
if (ImplicitDef && !AllowUndefs)
return false;
std::optional<ValueAndVReg> IConstant =
getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI);
if (IConstant && IConstant->Value == SplatValue)
continue;
return false;
}
return true;
}
// Ignores COPYs during lookups.
// FIXME scalable vectors
std::optional<APInt>
CombinerHelper::getConstantOrConstantSplatVector(Register Src) const {
auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
if (IConstant)
return IConstant->Value;
GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI);
if (!BuildVector)
return std::nullopt;
unsigned NumSources = BuildVector->getNumSources();
std::optional<APInt> Value = std::nullopt;
for (unsigned I = 0; I < NumSources; ++I) {
std::optional<ValueAndVReg> IConstant =
getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI);
if (!IConstant)
return std::nullopt;
if (!Value)
Value = IConstant->Value;
else if (*Value != IConstant->Value)
return std::nullopt;
}
return Value;
}
// FIXME G_SPLAT_VECTOR
bool CombinerHelper::isConstantOrConstantVectorI(Register Src) const {
auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
if (IConstant)
return true;
GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI);
if (!BuildVector)
return false;
unsigned NumSources = BuildVector->getNumSources();
for (unsigned I = 0; I < NumSources; ++I) {
std::optional<ValueAndVReg> IConstant =
getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI);
if (!IConstant)
return false;
}
return true;
}
// TODO: use knownbits to determine zeros
bool CombinerHelper::tryFoldSelectOfConstants(GSelect *Select,
BuildFnTy &MatchInfo) const {
uint32_t Flags = Select->getFlags();
Register Dest = Select->getReg(0);
Register Cond = Select->getCondReg();
Register True = Select->getTrueReg();
Register False = Select->getFalseReg();
LLT CondTy = MRI.getType(Select->getCondReg());
LLT TrueTy = MRI.getType(Select->getTrueReg());
// We only do this combine for scalar boolean conditions.
if (CondTy != LLT::scalar(1))
return false;
if (TrueTy.isPointer())
return false;
// Both are scalars.
std::optional<ValueAndVReg> TrueOpt =
getIConstantVRegValWithLookThrough(True, MRI);
std::optional<ValueAndVReg> FalseOpt =
getIConstantVRegValWithLookThrough(False, MRI);
if (!TrueOpt || !FalseOpt)
return false;
APInt TrueValue = TrueOpt->Value;
APInt FalseValue = FalseOpt->Value;
// select Cond, 1, 0 --> zext (Cond)
if (TrueValue.isOne() && FalseValue.isZero()) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
B.buildZExtOrTrunc(Dest, Cond);
};
return true;
}
// select Cond, -1, 0 --> sext (Cond)
if (TrueValue.isAllOnes() && FalseValue.isZero()) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
B.buildSExtOrTrunc(Dest, Cond);
};
return true;
}
// select Cond, 0, 1 --> zext (!Cond)
if (TrueValue.isZero() && FalseValue.isOne()) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
Register Inner = MRI.createGenericVirtualRegister(CondTy);
B.buildNot(Inner, Cond);
B.buildZExtOrTrunc(Dest, Inner);
};
return true;
}
// select Cond, 0, -1 --> sext (!Cond)
if (TrueValue.isZero() && FalseValue.isAllOnes()) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
Register Inner = MRI.createGenericVirtualRegister(CondTy);
B.buildNot(Inner, Cond);
B.buildSExtOrTrunc(Dest, Inner);
};
return true;
}
// select Cond, C1, C1-1 --> add (zext Cond), C1-1
if (TrueValue - 1 == FalseValue) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
Register Inner = MRI.createGenericVirtualRegister(TrueTy);
B.buildZExtOrTrunc(Inner, Cond);
B.buildAdd(Dest, Inner, False);
};
return true;
}
// select Cond, C1, C1+1 --> add (sext Cond), C1+1
if (TrueValue + 1 == FalseValue) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
Register Inner = MRI.createGenericVirtualRegister(TrueTy);
B.buildSExtOrTrunc(Inner, Cond);
B.buildAdd(Dest, Inner, False);
};
return true;
}
// select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
if (TrueValue.isPowerOf2() && FalseValue.isZero()) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
Register Inner = MRI.createGenericVirtualRegister(TrueTy);
B.buildZExtOrTrunc(Inner, Cond);
// The shift amount must be scalar.
LLT ShiftTy = TrueTy.isVector() ? TrueTy.getElementType() : TrueTy;
auto ShAmtC = B.buildConstant(ShiftTy, TrueValue.exactLogBase2());
B.buildShl(Dest, Inner, ShAmtC, Flags);
};
return true;
}
// select Cond, 0, Pow2 --> (zext (!Cond)) << log2(Pow2)
if (FalseValue.isPowerOf2() && TrueValue.isZero()) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
Register Not = MRI.createGenericVirtualRegister(CondTy);
B.buildNot(Not, Cond);
Register Inner = MRI.createGenericVirtualRegister(TrueTy);
B.buildZExtOrTrunc(Inner, Not);
// The shift amount must be scalar.
LLT ShiftTy = TrueTy.isVector() ? TrueTy.getElementType() : TrueTy;
auto ShAmtC = B.buildConstant(ShiftTy, FalseValue.exactLogBase2());
B.buildShl(Dest, Inner, ShAmtC, Flags);
};
return true;
}
// select Cond, -1, C --> or (sext Cond), C
if (TrueValue.isAllOnes()) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
Register Inner = MRI.createGenericVirtualRegister(TrueTy);
B.buildSExtOrTrunc(Inner, Cond);
B.buildOr(Dest, Inner, False, Flags);
};
return true;
}
// select Cond, C, -1 --> or (sext (not Cond)), C
if (FalseValue.isAllOnes()) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
Register Not = MRI.createGenericVirtualRegister(CondTy);
B.buildNot(Not, Cond);
Register Inner = MRI.createGenericVirtualRegister(TrueTy);
B.buildSExtOrTrunc(Inner, Not);
B.buildOr(Dest, Inner, True, Flags);
};
return true;
}
return false;
}
// TODO: use knownbits to determine zeros
bool CombinerHelper::tryFoldBoolSelectToLogic(GSelect *Select,
BuildFnTy &MatchInfo) const {
uint32_t Flags = Select->getFlags();
Register DstReg = Select->getReg(0);
Register Cond = Select->getCondReg();
Register True = Select->getTrueReg();
Register False = Select->getFalseReg();
LLT CondTy = MRI.getType(Select->getCondReg());
LLT TrueTy = MRI.getType(Select->getTrueReg());
// Boolean or fixed vector of booleans.
if (CondTy.isScalableVector() ||
(CondTy.isFixedVector() &&
CondTy.getElementType().getScalarSizeInBits() != 1) ||
CondTy.getScalarSizeInBits() != 1)
return false;
if (CondTy != TrueTy)
return false;
// select Cond, Cond, F --> or Cond, F
// select Cond, 1, F --> or Cond, F
if ((Cond == True) || isOneOrOneSplat(True, /* AllowUndefs */ true)) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
Register Ext = MRI.createGenericVirtualRegister(TrueTy);
B.buildZExtOrTrunc(Ext, Cond);
auto FreezeFalse = B.buildFreeze(TrueTy, False);
B.buildOr(DstReg, Ext, FreezeFalse, Flags);
};
return true;
}
// select Cond, T, Cond --> and Cond, T
// select Cond, T, 0 --> and Cond, T
if ((Cond == False) || isZeroOrZeroSplat(False, /* AllowUndefs */ true)) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
Register Ext = MRI.createGenericVirtualRegister(TrueTy);
B.buildZExtOrTrunc(Ext, Cond);
auto FreezeTrue = B.buildFreeze(TrueTy, True);
B.buildAnd(DstReg, Ext, FreezeTrue);
};
return true;
}
// select Cond, T, 1 --> or (not Cond), T
if (isOneOrOneSplat(False, /* AllowUndefs */ true)) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
// First the not.
Register Inner = MRI.createGenericVirtualRegister(CondTy);
B.buildNot(Inner, Cond);
// Then an ext to match the destination register.
Register Ext = MRI.createGenericVirtualRegister(TrueTy);
B.buildZExtOrTrunc(Ext, Inner);
auto FreezeTrue = B.buildFreeze(TrueTy, True);
B.buildOr(DstReg, Ext, FreezeTrue, Flags);
};
return true;
}
// select Cond, 0, F --> and (not Cond), F
if (isZeroOrZeroSplat(True, /* AllowUndefs */ true)) {
MatchInfo = [=](MachineIRBuilder &B) {
B.setInstrAndDebugLoc(*Select);
// First the not.
Register Inner = MRI.createGenericVirtualRegister(CondTy);
B.buildNot(Inner, Cond);
// Then an ext to match the destination register.
Register Ext = MRI.createGenericVirtualRegister(TrueTy);
B.buildZExtOrTrunc(Ext, Inner);
auto FreezeFalse = B.buildFreeze(TrueTy, False);
B.buildAnd(DstReg, Ext, FreezeFalse);
};
return true;
}
return false;
}
bool CombinerHelper::matchSelectIMinMax(const MachineOperand &MO,
BuildFnTy &MatchInfo) const {
GSelect *Select = cast<GSelect>(MRI.getVRegDef(MO.getReg()));
GICmp *Cmp = cast<GICmp>(MRI.getVRegDef(Select->getCondReg()));
Register DstReg = Select->getReg(0);
Register True = Select->getTrueReg();
Register False = Select->getFalseReg();
LLT DstTy = MRI.getType(DstReg);
if (DstTy.isPointer())
return false;
// We want to fold the icmp and replace the select.
if (!MRI.hasOneNonDBGUse(Cmp->getReg(0)))
return false;
CmpInst::Predicate Pred = Cmp->getCond();
// We need a larger or smaller predicate for
// canonicalization.
if (CmpInst::isEquality(Pred))
return false;
Register CmpLHS = Cmp->getLHSReg();
Register CmpRHS = Cmp->getRHSReg();
// We can swap CmpLHS and CmpRHS for higher hitrate.
if (True == CmpRHS && False == CmpLHS) {
std::swap(CmpLHS, CmpRHS);
Pred = CmpInst::getSwappedPredicate(Pred);
}
// (icmp X, Y) ? X : Y -> integer minmax.
// see matchSelectPattern in ValueTracking.
// Legality between G_SELECT and integer minmax can differ.
if (True != CmpLHS || False != CmpRHS)
return false;
switch (Pred) {
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: {
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMAX, DstTy}))
return false;
MatchInfo = [=](MachineIRBuilder &B) { B.buildUMax(DstReg, True, False); };
return true;
}
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE: {
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SMAX, DstTy}))
return false;
MatchInfo = [=](MachineIRBuilder &B) { B.buildSMax(DstReg, True, False); };
return true;
}
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE: {
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMIN, DstTy}))
return false;
MatchInfo = [=](MachineIRBuilder &B) { B.buildUMin(DstReg, True, False); };
return true;
}
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE: {
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SMIN, DstTy}))
return false;
MatchInfo = [=](MachineIRBuilder &B) { B.buildSMin(DstReg, True, False); };
return true;
}
default:
return false;
}
}
// (neg (min/max x, (neg x))) --> (max/min x, (neg x))
bool CombinerHelper::matchSimplifyNegMinMax(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
assert(MI.getOpcode() == TargetOpcode::G_SUB);
Register DestReg = MI.getOperand(0).getReg();
LLT DestTy = MRI.getType(DestReg);
Register X;
Register Sub0;
auto NegPattern = m_all_of(m_Neg(m_DeferredReg(X)), m_Reg(Sub0));
if (mi_match(DestReg, MRI,
m_Neg(m_OneUse(m_any_of(m_GSMin(m_Reg(X), NegPattern),
m_GSMax(m_Reg(X), NegPattern),
m_GUMin(m_Reg(X), NegPattern),
m_GUMax(m_Reg(X), NegPattern)))))) {
MachineInstr *MinMaxMI = MRI.getVRegDef(MI.getOperand(2).getReg());
unsigned NewOpc = getInverseGMinMaxOpcode(MinMaxMI->getOpcode());
if (isLegal({NewOpc, {DestTy}})) {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildInstr(NewOpc, {DestReg}, {X, Sub0});
};
return true;
}
}
return false;
}
bool CombinerHelper::matchSelect(MachineInstr &MI, BuildFnTy &MatchInfo) const {
GSelect *Select = cast<GSelect>(&MI);
if (tryFoldSelectOfConstants(Select, MatchInfo))
return true;
if (tryFoldBoolSelectToLogic(Select, MatchInfo))
return true;
return false;
}
/// Fold (icmp Pred1 V1, C1) && (icmp Pred2 V2, C2)
/// or (icmp Pred1 V1, C1) || (icmp Pred2 V2, C2)
/// into a single comparison using range-based reasoning.
/// see InstCombinerImpl::foldAndOrOfICmpsUsingRanges.
bool CombinerHelper::tryFoldAndOrOrICmpsUsingRanges(
GLogicalBinOp *Logic, BuildFnTy &MatchInfo) const {
assert(Logic->getOpcode() != TargetOpcode::G_XOR && "unexpected xor");
bool IsAnd = Logic->getOpcode() == TargetOpcode::G_AND;
Register DstReg = Logic->getReg(0);
Register LHS = Logic->getLHSReg();
Register RHS = Logic->getRHSReg();
unsigned Flags = Logic->getFlags();
// We need an G_ICMP on the LHS register.
GICmp *Cmp1 = getOpcodeDef<GICmp>(LHS, MRI);
if (!Cmp1)
return false;
// We need an G_ICMP on the RHS register.
GICmp *Cmp2 = getOpcodeDef<GICmp>(RHS, MRI);
if (!Cmp2)
return false;
// We want to fold the icmps.
if (!MRI.hasOneNonDBGUse(Cmp1->getReg(0)) ||
!MRI.hasOneNonDBGUse(Cmp2->getReg(0)))
return false;
APInt C1;
APInt C2;
std::optional<ValueAndVReg> MaybeC1 =
getIConstantVRegValWithLookThrough(Cmp1->getRHSReg(), MRI);
if (!MaybeC1)
return false;
C1 = MaybeC1->Value;
std::optional<ValueAndVReg> MaybeC2 =
getIConstantVRegValWithLookThrough(Cmp2->getRHSReg(), MRI);
if (!MaybeC2)
return false;
C2 = MaybeC2->Value;
Register R1 = Cmp1->getLHSReg();
Register R2 = Cmp2->getLHSReg();
CmpInst::Predicate Pred1 = Cmp1->getCond();
CmpInst::Predicate Pred2 = Cmp2->getCond();
LLT CmpTy = MRI.getType(Cmp1->getReg(0));
LLT CmpOperandTy = MRI.getType(R1);
if (CmpOperandTy.isPointer())
return false;
// We build ands, adds, and constants of type CmpOperandTy.
// They must be legal to build.
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_AND, CmpOperandTy}) ||
!isLegalOrBeforeLegalizer({TargetOpcode::G_ADD, CmpOperandTy}) ||
!isConstantLegalOrBeforeLegalizer(CmpOperandTy))
return false;
// Look through add of a constant offset on R1, R2, or both operands. This
// allows us to interpret the R + C' < C'' range idiom into a proper range.
std::optional<APInt> Offset1;
std::optional<APInt> Offset2;
if (R1 != R2) {
if (GAdd *Add = getOpcodeDef<GAdd>(R1, MRI)) {
std::optional<ValueAndVReg> MaybeOffset1 =
getIConstantVRegValWithLookThrough(Add->getRHSReg(), MRI);
if (MaybeOffset1) {
R1 = Add->getLHSReg();
Offset1 = MaybeOffset1->Value;
}
}
if (GAdd *Add = getOpcodeDef<GAdd>(R2, MRI)) {
std::optional<ValueAndVReg> MaybeOffset2 =
getIConstantVRegValWithLookThrough(Add->getRHSReg(), MRI);
if (MaybeOffset2) {
R2 = Add->getLHSReg();
Offset2 = MaybeOffset2->Value;
}
}
}
if (R1 != R2)
return false;
// We calculate the icmp ranges including maybe offsets.
ConstantRange CR1 = ConstantRange::makeExactICmpRegion(
IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, C1);
if (Offset1)
CR1 = CR1.subtract(*Offset1);
ConstantRange CR2 = ConstantRange::makeExactICmpRegion(
IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, C2);
if (Offset2)
CR2 = CR2.subtract(*Offset2);
bool CreateMask = false;
APInt LowerDiff;
std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
if (!CR) {
// We need non-wrapping ranges.
if (CR1.isWrappedSet() || CR2.isWrappedSet())
return false;
// Check whether we have equal-size ranges that only differ by one bit.
// In that case we can apply a mask to map one range onto the other.
LowerDiff = CR1.getLower() ^ CR2.getLower();
APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
APInt CR1Size = CR1.getUpper() - CR1.getLower();
if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
CR1Size != CR2.getUpper() - CR2.getLower())
return false;
CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
CreateMask = true;
}
if (IsAnd)
CR = CR->inverse();
CmpInst::Predicate NewPred;
APInt NewC, Offset;
CR->getEquivalentICmp(NewPred, NewC, Offset);
// We take the result type of one of the original icmps, CmpTy, for
// the to be build icmp. The operand type, CmpOperandTy, is used for
// the other instructions and constants to be build. The types of
// the parameters and output are the same for add and and. CmpTy
// and the type of DstReg might differ. That is why we zext or trunc
// the icmp into the destination register.
MatchInfo = [=](MachineIRBuilder &B) {
if (CreateMask && Offset != 0) {
auto TildeLowerDiff = B.buildConstant(CmpOperandTy, ~LowerDiff);
auto And = B.buildAnd(CmpOperandTy, R1, TildeLowerDiff); // the mask.
auto OffsetC = B.buildConstant(CmpOperandTy, Offset);
auto Add = B.buildAdd(CmpOperandTy, And, OffsetC, Flags);
auto NewCon = B.buildConstant(CmpOperandTy, NewC);
auto ICmp = B.buildICmp(NewPred, CmpTy, Add, NewCon);
B.buildZExtOrTrunc(DstReg, ICmp);
} else if (CreateMask && Offset == 0) {
auto TildeLowerDiff = B.buildConstant(CmpOperandTy, ~LowerDiff);
auto And = B.buildAnd(CmpOperandTy, R1, TildeLowerDiff); // the mask.
auto NewCon = B.buildConstant(CmpOperandTy, NewC);
auto ICmp = B.buildICmp(NewPred, CmpTy, And, NewCon);
B.buildZExtOrTrunc(DstReg, ICmp);
} else if (!CreateMask && Offset != 0) {
auto OffsetC = B.buildConstant(CmpOperandTy, Offset);
auto Add = B.buildAdd(CmpOperandTy, R1, OffsetC, Flags);
auto NewCon = B.buildConstant(CmpOperandTy, NewC);
auto ICmp = B.buildICmp(NewPred, CmpTy, Add, NewCon);
B.buildZExtOrTrunc(DstReg, ICmp);
} else if (!CreateMask && Offset == 0) {
auto NewCon = B.buildConstant(CmpOperandTy, NewC);
auto ICmp = B.buildICmp(NewPred, CmpTy, R1, NewCon);
B.buildZExtOrTrunc(DstReg, ICmp);
} else {
llvm_unreachable("unexpected configuration of CreateMask and Offset");
}
};
return true;
}
bool CombinerHelper::tryFoldLogicOfFCmps(GLogicalBinOp *Logic,
BuildFnTy &MatchInfo) const {
assert(Logic->getOpcode() != TargetOpcode::G_XOR && "unexpecte xor");
Register DestReg = Logic->getReg(0);
Register LHS = Logic->getLHSReg();
Register RHS = Logic->getRHSReg();
bool IsAnd = Logic->getOpcode() == TargetOpcode::G_AND;
// We need a compare on the LHS register.
GFCmp *Cmp1 = getOpcodeDef<GFCmp>(LHS, MRI);
if (!Cmp1)
return false;
// We need a compare on the RHS register.
GFCmp *Cmp2 = getOpcodeDef<GFCmp>(RHS, MRI);
if (!Cmp2)
return false;
LLT CmpTy = MRI.getType(Cmp1->getReg(0));
LLT CmpOperandTy = MRI.getType(Cmp1->getLHSReg());
// We build one fcmp, want to fold the fcmps, replace the logic op,
// and the fcmps must have the same shape.
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_FCMP, {CmpTy, CmpOperandTy}}) ||
!MRI.hasOneNonDBGUse(Logic->getReg(0)) ||
!MRI.hasOneNonDBGUse(Cmp1->getReg(0)) ||
!MRI.hasOneNonDBGUse(Cmp2->getReg(0)) ||
MRI.getType(Cmp1->getLHSReg()) != MRI.getType(Cmp2->getLHSReg()))
return false;
CmpInst::Predicate PredL = Cmp1->getCond();
CmpInst::Predicate PredR = Cmp2->getCond();
Register LHS0 = Cmp1->getLHSReg();
Register LHS1 = Cmp1->getRHSReg();
Register RHS0 = Cmp2->getLHSReg();
Register RHS1 = Cmp2->getRHSReg();
if (LHS0 == RHS1 && LHS1 == RHS0) {
// Swap RHS operands to match LHS.
PredR = CmpInst::getSwappedPredicate(PredR);
std::swap(RHS0, RHS1);
}
if (LHS0 == RHS0 && LHS1 == RHS1) {
// We determine the new predicate.
unsigned CmpCodeL = getFCmpCode(PredL);
unsigned CmpCodeR = getFCmpCode(PredR);
unsigned NewPred = IsAnd ? CmpCodeL & CmpCodeR : CmpCodeL | CmpCodeR;
unsigned Flags = Cmp1->getFlags() | Cmp2->getFlags();
MatchInfo = [=](MachineIRBuilder &B) {
// The fcmp predicates fill the lower part of the enum.
FCmpInst::Predicate Pred = static_cast<FCmpInst::Predicate>(NewPred);
if (Pred == FCmpInst::FCMP_FALSE &&
isConstantLegalOrBeforeLegalizer(CmpTy)) {
auto False = B.buildConstant(CmpTy, 0);
B.buildZExtOrTrunc(DestReg, False);
} else if (Pred == FCmpInst::FCMP_TRUE &&
isConstantLegalOrBeforeLegalizer(CmpTy)) {
auto True =
B.buildConstant(CmpTy, getICmpTrueVal(getTargetLowering(),
CmpTy.isVector() /*isVector*/,
true /*isFP*/));
B.buildZExtOrTrunc(DestReg, True);
} else { // We take the predicate without predicate optimizations.
auto Cmp = B.buildFCmp(Pred, CmpTy, LHS0, LHS1, Flags);
B.buildZExtOrTrunc(DestReg, Cmp);
}
};
return true;
}
return false;
}
bool CombinerHelper::matchAnd(MachineInstr &MI, BuildFnTy &MatchInfo) const {
GAnd *And = cast<GAnd>(&MI);
if (tryFoldAndOrOrICmpsUsingRanges(And, MatchInfo))
return true;
if (tryFoldLogicOfFCmps(And, MatchInfo))
return true;
return false;
}
bool CombinerHelper::matchOr(MachineInstr &MI, BuildFnTy &MatchInfo) const {
GOr *Or = cast<GOr>(&MI);
if (tryFoldAndOrOrICmpsUsingRanges(Or, MatchInfo))
return true;
if (tryFoldLogicOfFCmps(Or, MatchInfo))
return true;
return false;
}
bool CombinerHelper::matchAddOverflow(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
GAddCarryOut *Add = cast<GAddCarryOut>(&MI);
// Addo has no flags
Register Dst = Add->getReg(0);
Register Carry = Add->getReg(1);
Register LHS = Add->getLHSReg();
Register RHS = Add->getRHSReg();
bool IsSigned = Add->isSigned();
LLT DstTy = MRI.getType(Dst);
LLT CarryTy = MRI.getType(Carry);
// Fold addo, if the carry is dead -> add, undef.
if (MRI.use_nodbg_empty(Carry) &&
isLegalOrBeforeLegalizer({TargetOpcode::G_ADD, {DstTy}})) {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildAdd(Dst, LHS, RHS);
B.buildUndef(Carry);
};
return true;
}
// Canonicalize constant to RHS.
if (isConstantOrConstantVectorI(LHS) && !isConstantOrConstantVectorI(RHS)) {
if (IsSigned) {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildSAddo(Dst, Carry, RHS, LHS);
};
return true;
}
// !IsSigned
MatchInfo = [=](MachineIRBuilder &B) {
B.buildUAddo(Dst, Carry, RHS, LHS);
};
return true;
}
std::optional<APInt> MaybeLHS = getConstantOrConstantSplatVector(LHS);
std::optional<APInt> MaybeRHS = getConstantOrConstantSplatVector(RHS);
// Fold addo(c1, c2) -> c3, carry.
if (MaybeLHS && MaybeRHS && isConstantLegalOrBeforeLegalizer(DstTy) &&
isConstantLegalOrBeforeLegalizer(CarryTy)) {
bool Overflow;
APInt Result = IsSigned ? MaybeLHS->sadd_ov(*MaybeRHS, Overflow)
: MaybeLHS->uadd_ov(*MaybeRHS, Overflow);
MatchInfo = [=](MachineIRBuilder &B) {
B.buildConstant(Dst, Result);
B.buildConstant(Carry, Overflow);
};
return true;
}
// Fold (addo x, 0) -> x, no carry
if (MaybeRHS && *MaybeRHS == 0 && isConstantLegalOrBeforeLegalizer(CarryTy)) {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildCopy(Dst, LHS);
B.buildConstant(Carry, 0);
};
return true;
}
// Given 2 constant operands whose sum does not overflow:
// uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
// saddo (X +nsw C0), C1 -> saddo X, C0 + C1
GAdd *AddLHS = getOpcodeDef<GAdd>(LHS, MRI);
if (MaybeRHS && AddLHS && MRI.hasOneNonDBGUse(Add->getReg(0)) &&
((IsSigned && AddLHS->getFlag(MachineInstr::MIFlag::NoSWrap)) ||
(!IsSigned && AddLHS->getFlag(MachineInstr::MIFlag::NoUWrap)))) {
std::optional<APInt> MaybeAddRHS =
getConstantOrConstantSplatVector(AddLHS->getRHSReg());
if (MaybeAddRHS) {
bool Overflow;
APInt NewC = IsSigned ? MaybeAddRHS->sadd_ov(*MaybeRHS, Overflow)
: MaybeAddRHS->uadd_ov(*MaybeRHS, Overflow);
if (!Overflow && isConstantLegalOrBeforeLegalizer(DstTy)) {
if (IsSigned) {
MatchInfo = [=](MachineIRBuilder &B) {
auto ConstRHS = B.buildConstant(DstTy, NewC);
B.buildSAddo(Dst, Carry, AddLHS->getLHSReg(), ConstRHS);
};
return true;
}
// !IsSigned
MatchInfo = [=](MachineIRBuilder &B) {
auto ConstRHS = B.buildConstant(DstTy, NewC);
B.buildUAddo(Dst, Carry, AddLHS->getLHSReg(), ConstRHS);
};
return true;
}
}
};
// We try to combine addo to non-overflowing add.
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_ADD, {DstTy}}) ||
!isConstantLegalOrBeforeLegalizer(CarryTy))
return false;
// We try to combine uaddo to non-overflowing add.
if (!IsSigned) {
ConstantRange CRLHS =
ConstantRange::fromKnownBits(KB->getKnownBits(LHS), /*IsSigned=*/false);
ConstantRange CRRHS =
ConstantRange::fromKnownBits(KB->getKnownBits(RHS), /*IsSigned=*/false);
switch (CRLHS.unsignedAddMayOverflow(CRRHS)) {
case ConstantRange::OverflowResult::MayOverflow:
return false;
case ConstantRange::OverflowResult::NeverOverflows: {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildAdd(Dst, LHS, RHS, MachineInstr::MIFlag::NoUWrap);
B.buildConstant(Carry, 0);
};
return true;
}
case ConstantRange::OverflowResult::AlwaysOverflowsLow:
case ConstantRange::OverflowResult::AlwaysOverflowsHigh: {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildAdd(Dst, LHS, RHS);
B.buildConstant(Carry, 1);
};
return true;
}
}
return false;
}
// We try to combine saddo to non-overflowing add.
// If LHS and RHS each have at least two sign bits, then there is no signed
// overflow.
if (KB->computeNumSignBits(RHS) > 1 && KB->computeNumSignBits(LHS) > 1) {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildAdd(Dst, LHS, RHS, MachineInstr::MIFlag::NoSWrap);
B.buildConstant(Carry, 0);
};
return true;
}
ConstantRange CRLHS =
ConstantRange::fromKnownBits(KB->getKnownBits(LHS), /*IsSigned=*/true);
ConstantRange CRRHS =
ConstantRange::fromKnownBits(KB->getKnownBits(RHS), /*IsSigned=*/true);
switch (CRLHS.signedAddMayOverflow(CRRHS)) {
case ConstantRange::OverflowResult::MayOverflow:
return false;
case ConstantRange::OverflowResult::NeverOverflows: {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildAdd(Dst, LHS, RHS, MachineInstr::MIFlag::NoSWrap);
B.buildConstant(Carry, 0);
};
return true;
}
case ConstantRange::OverflowResult::AlwaysOverflowsLow:
case ConstantRange::OverflowResult::AlwaysOverflowsHigh: {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildAdd(Dst, LHS, RHS);
B.buildConstant(Carry, 1);
};
return true;
}
}
return false;
}
void CombinerHelper::applyBuildFnMO(const MachineOperand &MO,
BuildFnTy &MatchInfo) const {
MachineInstr *Root = getDefIgnoringCopies(MO.getReg(), MRI);
MatchInfo(Builder);
Root->eraseFromParent();
}
bool CombinerHelper::matchFPowIExpansion(MachineInstr &MI,
int64_t Exponent) const {
bool OptForSize = MI.getMF()->getFunction().hasOptSize();
return getTargetLowering().isBeneficialToExpandPowI(Exponent, OptForSize);
}
void CombinerHelper::applyExpandFPowI(MachineInstr &MI,
int64_t Exponent) const {
auto [Dst, Base] = MI.getFirst2Regs();
LLT Ty = MRI.getType(Dst);
int64_t ExpVal = Exponent;
if (ExpVal == 0) {
Builder.buildFConstant(Dst, 1.0);
MI.removeFromParent();
return;
}
if (ExpVal < 0)
ExpVal = -ExpVal;
// We use the simple binary decomposition method from SelectionDAG ExpandPowI
// to generate the multiply sequence. There are more optimal ways to do this
// (for example, powi(x,15) generates one more multiply than it should), but
// this has the benefit of being both really simple and much better than a
// libcall.
std::optional<SrcOp> Res;
SrcOp CurSquare = Base;
while (ExpVal > 0) {
if (ExpVal & 1) {
if (!Res)
Res = CurSquare;
else
Res = Builder.buildFMul(Ty, *Res, CurSquare);
}
CurSquare = Builder.buildFMul(Ty, CurSquare, CurSquare);
ExpVal >>= 1;
}
// If the original exponent was negative, invert the result, producing
// 1/(x*x*x).
if (Exponent < 0)
Res = Builder.buildFDiv(Ty, Builder.buildFConstant(Ty, 1.0), *Res,
MI.getFlags());
Builder.buildCopy(Dst, *Res);
MI.eraseFromParent();
}
bool CombinerHelper::matchFoldAPlusC1MinusC2(const MachineInstr &MI,
BuildFnTy &MatchInfo) const {
// fold (A+C1)-C2 -> A+(C1-C2)
const GSub *Sub = cast<GSub>(&MI);
GAdd *Add = cast<GAdd>(MRI.getVRegDef(Sub->getLHSReg()));
if (!MRI.hasOneNonDBGUse(Add->getReg(0)))
return false;
APInt C2 = getIConstantFromReg(Sub->getRHSReg(), MRI);
APInt C1 = getIConstantFromReg(Add->getRHSReg(), MRI);
Register Dst = Sub->getReg(0);
LLT DstTy = MRI.getType(Dst);
MatchInfo = [=](MachineIRBuilder &B) {
auto Const = B.buildConstant(DstTy, C1 - C2);
B.buildAdd(Dst, Add->getLHSReg(), Const);
};
return true;
}
bool CombinerHelper::matchFoldC2MinusAPlusC1(const MachineInstr &MI,
BuildFnTy &MatchInfo) const {
// fold C2-(A+C1) -> (C2-C1)-A
const GSub *Sub = cast<GSub>(&MI);
GAdd *Add = cast<GAdd>(MRI.getVRegDef(Sub->getRHSReg()));
if (!MRI.hasOneNonDBGUse(Add->getReg(0)))
return false;
APInt C2 = getIConstantFromReg(Sub->getLHSReg(), MRI);
APInt C1 = getIConstantFromReg(Add->getRHSReg(), MRI);
Register Dst = Sub->getReg(0);
LLT DstTy = MRI.getType(Dst);
MatchInfo = [=](MachineIRBuilder &B) {
auto Const = B.buildConstant(DstTy, C2 - C1);
B.buildSub(Dst, Const, Add->getLHSReg());
};
return true;
}
bool CombinerHelper::matchFoldAMinusC1MinusC2(const MachineInstr &MI,
BuildFnTy &MatchInfo) const {
// fold (A-C1)-C2 -> A-(C1+C2)
const GSub *Sub1 = cast<GSub>(&MI);
GSub *Sub2 = cast<GSub>(MRI.getVRegDef(Sub1->getLHSReg()));
if (!MRI.hasOneNonDBGUse(Sub2->getReg(0)))
return false;
APInt C2 = getIConstantFromReg(Sub1->getRHSReg(), MRI);
APInt C1 = getIConstantFromReg(Sub2->getRHSReg(), MRI);
Register Dst = Sub1->getReg(0);
LLT DstTy = MRI.getType(Dst);
MatchInfo = [=](MachineIRBuilder &B) {
auto Const = B.buildConstant(DstTy, C1 + C2);
B.buildSub(Dst, Sub2->getLHSReg(), Const);
};
return true;
}
bool CombinerHelper::matchFoldC1Minus2MinusC2(const MachineInstr &MI,
BuildFnTy &MatchInfo) const {
// fold (C1-A)-C2 -> (C1-C2)-A
const GSub *Sub1 = cast<GSub>(&MI);
GSub *Sub2 = cast<GSub>(MRI.getVRegDef(Sub1->getLHSReg()));
if (!MRI.hasOneNonDBGUse(Sub2->getReg(0)))
return false;
APInt C2 = getIConstantFromReg(Sub1->getRHSReg(), MRI);
APInt C1 = getIConstantFromReg(Sub2->getLHSReg(), MRI);
Register Dst = Sub1->getReg(0);
LLT DstTy = MRI.getType(Dst);
MatchInfo = [=](MachineIRBuilder &B) {
auto Const = B.buildConstant(DstTy, C1 - C2);
B.buildSub(Dst, Const, Sub2->getRHSReg());
};
return true;
}
bool CombinerHelper::matchFoldAMinusC1PlusC2(const MachineInstr &MI,
BuildFnTy &MatchInfo) const {
// fold ((A-C1)+C2) -> (A+(C2-C1))
const GAdd *Add = cast<GAdd>(&MI);
GSub *Sub = cast<GSub>(MRI.getVRegDef(Add->getLHSReg()));
if (!MRI.hasOneNonDBGUse(Sub->getReg(0)))
return false;
APInt C2 = getIConstantFromReg(Add->getRHSReg(), MRI);
APInt C1 = getIConstantFromReg(Sub->getRHSReg(), MRI);
Register Dst = Add->getReg(0);
LLT DstTy = MRI.getType(Dst);
MatchInfo = [=](MachineIRBuilder &B) {
auto Const = B.buildConstant(DstTy, C2 - C1);
B.buildAdd(Dst, Sub->getLHSReg(), Const);
};
return true;
}
bool CombinerHelper::matchUnmergeValuesAnyExtBuildVector(
const MachineInstr &MI, BuildFnTy &MatchInfo) const {
const GUnmerge *Unmerge = cast<GUnmerge>(&MI);
if (!MRI.hasOneNonDBGUse(Unmerge->getSourceReg()))
return false;
const MachineInstr *Source = MRI.getVRegDef(Unmerge->getSourceReg());
LLT DstTy = MRI.getType(Unmerge->getReg(0));
// $bv:_(<8 x s8>) = G_BUILD_VECTOR ....
// $any:_(<8 x s16>) = G_ANYEXT $bv
// $uv:_(<4 x s16>), $uv1:_(<4 x s16>) = G_UNMERGE_VALUES $any
//
// ->
//
// $any:_(s16) = G_ANYEXT $bv[0]
// $any1:_(s16) = G_ANYEXT $bv[1]
// $any2:_(s16) = G_ANYEXT $bv[2]
// $any3:_(s16) = G_ANYEXT $bv[3]
// $any4:_(s16) = G_ANYEXT $bv[4]
// $any5:_(s16) = G_ANYEXT $bv[5]
// $any6:_(s16) = G_ANYEXT $bv[6]
// $any7:_(s16) = G_ANYEXT $bv[7]
// $uv:_(<4 x s16>) = G_BUILD_VECTOR $any, $any1, $any2, $any3
// $uv1:_(<4 x s16>) = G_BUILD_VECTOR $any4, $any5, $any6, $any7
// We want to unmerge into vectors.
if (!DstTy.isFixedVector())
return false;
const GAnyExt *Any = dyn_cast<GAnyExt>(Source);
if (!Any)
return false;
const MachineInstr *NextSource = MRI.getVRegDef(Any->getSrcReg());
if (const GBuildVector *BV = dyn_cast<GBuildVector>(NextSource)) {
// G_UNMERGE_VALUES G_ANYEXT G_BUILD_VECTOR
if (!MRI.hasOneNonDBGUse(BV->getReg(0)))
return false;
// FIXME: check element types?
if (BV->getNumSources() % Unmerge->getNumDefs() != 0)
return false;
LLT BigBvTy = MRI.getType(BV->getReg(0));
LLT SmallBvTy = DstTy;
LLT SmallBvElemenTy = SmallBvTy.getElementType();
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_BUILD_VECTOR, {SmallBvTy, SmallBvElemenTy}}))
return false;
// We check the legality of scalar anyext.
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_ANYEXT,
{SmallBvElemenTy, BigBvTy.getElementType()}}))
return false;
MatchInfo = [=](MachineIRBuilder &B) {
// Build into each G_UNMERGE_VALUES def
// a small build vector with anyext from the source build vector.
for (unsigned I = 0; I < Unmerge->getNumDefs(); ++I) {
SmallVector<Register> Ops;
for (unsigned J = 0; J < SmallBvTy.getNumElements(); ++J) {
Register SourceArray =
BV->getSourceReg(I * SmallBvTy.getNumElements() + J);
auto AnyExt = B.buildAnyExt(SmallBvElemenTy, SourceArray);
Ops.push_back(AnyExt.getReg(0));
}
B.buildBuildVector(Unmerge->getOperand(I).getReg(), Ops);
};
};
return true;
};
return false;
}
bool CombinerHelper::matchShuffleUndefRHS(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
bool Changed = false;
auto &Shuffle = cast<GShuffleVector>(MI);
ArrayRef<int> OrigMask = Shuffle.getMask();
SmallVector<int, 16> NewMask;
const LLT SrcTy = MRI.getType(Shuffle.getSrc1Reg());
const unsigned NumSrcElems = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
const unsigned NumDstElts = OrigMask.size();
for (unsigned i = 0; i != NumDstElts; ++i) {
int Idx = OrigMask[i];
if (Idx >= (int)NumSrcElems) {
Idx = -1;
Changed = true;
}
NewMask.push_back(Idx);
}
if (!Changed)
return false;
MatchInfo = [&, NewMask = std::move(NewMask)](MachineIRBuilder &B) {
B.buildShuffleVector(MI.getOperand(0), MI.getOperand(1), MI.getOperand(2),
std::move(NewMask));
};
return true;
}
static void commuteMask(MutableArrayRef<int> Mask, const unsigned NumElems) {
const unsigned MaskSize = Mask.size();
for (unsigned I = 0; I < MaskSize; ++I) {
int Idx = Mask[I];
if (Idx < 0)
continue;
if (Idx < (int)NumElems)
Mask[I] = Idx + NumElems;
else
Mask[I] = Idx - NumElems;
}
}
bool CombinerHelper::matchShuffleDisjointMask(MachineInstr &MI,
BuildFnTy &MatchInfo) const {
auto &Shuffle = cast<GShuffleVector>(MI);
// If any of the two inputs is already undef, don't check the mask again to
// prevent infinite loop
if (getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, Shuffle.getSrc1Reg(), MRI))
return false;
if (getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, Shuffle.getSrc2Reg(), MRI))
return false;
const LLT DstTy = MRI.getType(Shuffle.getReg(0));
const LLT Src1Ty = MRI.getType(Shuffle.getSrc1Reg());
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_SHUFFLE_VECTOR, {DstTy, Src1Ty}}))
return false;
ArrayRef<int> Mask = Shuffle.getMask();
const unsigned NumSrcElems = Src1Ty.isVector() ? Src1Ty.getNumElements() : 1;
bool TouchesSrc1 = false;
bool TouchesSrc2 = false;
const unsigned NumElems = Mask.size();
for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
if (Mask[Idx] < 0)
continue;
if (Mask[Idx] < (int)NumSrcElems)
TouchesSrc1 = true;
else
TouchesSrc2 = true;
}
if (TouchesSrc1 == TouchesSrc2)
return false;
Register NewSrc1 = Shuffle.getSrc1Reg();
SmallVector<int, 16> NewMask(Mask);
if (TouchesSrc2) {
NewSrc1 = Shuffle.getSrc2Reg();
commuteMask(NewMask, NumSrcElems);
}
MatchInfo = [=, &Shuffle](MachineIRBuilder &B) {
auto Undef = B.buildUndef(Src1Ty);
B.buildShuffleVector(Shuffle.getReg(0), NewSrc1, Undef, NewMask);
};
return true;
}
bool CombinerHelper::matchSuboCarryOut(const MachineInstr &MI,
BuildFnTy &MatchInfo) const {
const GSubCarryOut *Subo = cast<GSubCarryOut>(&MI);
Register Dst = Subo->getReg(0);
Register LHS = Subo->getLHSReg();
Register RHS = Subo->getRHSReg();
Register Carry = Subo->getCarryOutReg();
LLT DstTy = MRI.getType(Dst);
LLT CarryTy = MRI.getType(Carry);
// Check legality before known bits.
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SUB, {DstTy}}) ||
!isConstantLegalOrBeforeLegalizer(CarryTy))
return false;
ConstantRange KBLHS =
ConstantRange::fromKnownBits(KB->getKnownBits(LHS),
/* IsSigned=*/Subo->isSigned());
ConstantRange KBRHS =
ConstantRange::fromKnownBits(KB->getKnownBits(RHS),
/* IsSigned=*/Subo->isSigned());
if (Subo->isSigned()) {
// G_SSUBO
switch (KBLHS.signedSubMayOverflow(KBRHS)) {
case ConstantRange::OverflowResult::MayOverflow:
return false;
case ConstantRange::OverflowResult::NeverOverflows: {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildSub(Dst, LHS, RHS, MachineInstr::MIFlag::NoSWrap);
B.buildConstant(Carry, 0);
};
return true;
}
case ConstantRange::OverflowResult::AlwaysOverflowsLow:
case ConstantRange::OverflowResult::AlwaysOverflowsHigh: {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildSub(Dst, LHS, RHS);
B.buildConstant(Carry, getICmpTrueVal(getTargetLowering(),
/*isVector=*/CarryTy.isVector(),
/*isFP=*/false));
};
return true;
}
}
return false;
}
// G_USUBO
switch (KBLHS.unsignedSubMayOverflow(KBRHS)) {
case ConstantRange::OverflowResult::MayOverflow:
return false;
case ConstantRange::OverflowResult::NeverOverflows: {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildSub(Dst, LHS, RHS, MachineInstr::MIFlag::NoUWrap);
B.buildConstant(Carry, 0);
};
return true;
}
case ConstantRange::OverflowResult::AlwaysOverflowsLow:
case ConstantRange::OverflowResult::AlwaysOverflowsHigh: {
MatchInfo = [=](MachineIRBuilder &B) {
B.buildSub(Dst, LHS, RHS);
B.buildConstant(Carry, getICmpTrueVal(getTargetLowering(),
/*isVector=*/CarryTy.isVector(),
/*isFP=*/false));
};
return true;
}
}
return false;
}