llvm-project/clang/test/OpenMP/sections_reduction_codegen.cpp
John McCall 7f416cc426 Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment.  Introduce APIs on CGBuilderTy to work with Address
values.  Change core APIs on CGF/CGM to traffic in Address where
appropriate.  Require alignments to be non-zero.  Update a ton
of code to compute and propagate alignment information.

As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.

The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned.  Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay.  I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.

Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.

We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment.  In particular,
field access now uses alignmentAtOffset instead of min.

Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs.  For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint.  That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.

ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments.  In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments.  That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.

I partially punted on applying this work to CGBuiltin.  Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.

llvm-svn: 246985
2015-09-08 08:05:57 +00:00

472 lines
23 KiB
C++

// RUN: %clang_cc1 -verify -fopenmp -x c++ -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck %s
// RUN: %clang_cc1 -fopenmp -x c++ -std=c++11 -triple x86_64-apple-darwin10 -emit-pch -o %t %s
// RUN: %clang_cc1 -fopenmp -x c++ -triple x86_64-apple-darwin10 -std=c++11 -include-pch %t -verify %s -emit-llvm -o - | FileCheck %s
// RUN: %clang_cc1 -verify -fopenmp -x c++ -std=c++11 -DLAMBDA -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck -check-prefix=LAMBDA %s
// RUN: %clang_cc1 -verify -fopenmp -x c++ -fblocks -DBLOCKS -triple x86_64-apple-darwin10 -emit-llvm %s -o - | FileCheck -check-prefix=BLOCKS %s
// expected-no-diagnostics
// REQUIRES: x86-registered-target
#ifndef HEADER
#define HEADER
volatile double g;
template <class T>
struct S {
T f;
S(T a) : f(a + g) {}
S() : f(g) {}
operator T() { return T(); }
S &operator&(const S &) { return *this; }
~S() {}
};
// CHECK-DAG: [[S_FLOAT_TY:%.+]] = type { float }
// CHECK-DAG: [[S_INT_TY:%.+]] = type { i{{[0-9]+}} }
// CHECK-DAG: [[CAP_MAIN_TY:%.+]] = type { float*, [[S_FLOAT_TY]]*, [[S_FLOAT_TY]]*, float*, [2 x i{{[0-9]+}}]*, [2 x [[S_FLOAT_TY]]]* }
// CHECK-DAG: [[CAP_TMAIN_TY:%.+]] = type { i{{[0-9]+}}*, [[S_INT_TY]]*, [[S_INT_TY]]*, i{{[0-9]+}}*, [2 x i{{[0-9]+}}]*, [2 x [[S_INT_TY]]]* }
// CHECK-DAG: [[ATOMIC_REDUCE_BARRIER_LOC:@.+]] = private unnamed_addr constant %{{.+}} { i32 0, i32 18, i32 0, i32 0, i8*
// CHECK-DAG: [[IMPLICIT_BARRIER_LOC:@.+]] = private unnamed_addr constant %{{.+}} { i32 0, i32 66, i32 0, i32 0, i8*
// CHECK-DAG: [[SINGLE_BARRIER_LOC:@.+]] = private unnamed_addr constant %{{.+}} { i32 0, i32 322, i32 0, i32 0, i8*
// CHECK-DAG: [[REDUCTION_LOC:@.+]] = private unnamed_addr constant %{{.+}} { i32 0, i32 18, i32 0, i32 0, i8*
// CHECK-DAG: [[REDUCTION_LOCK:@.+]] = common global [8 x i32] zeroinitializer
template <typename T>
T tmain() {
T t;
S<T> test;
T t_var = T(), t_var1;
T vec[] = {1, 2};
S<T> s_arr[] = {1, 2};
S<T> var(3), var1;
#pragma omp parallel
#pragma omp sections reduction(+:t_var) reduction(&:var) reduction(&& : var1) reduction(min: t_var1) nowait
{
vec[0] = t_var;
#pragma omp section
s_arr[0] = var;
}
return T();
}
int main() {
#ifdef LAMBDA
// LAMBDA: [[G:@.+]] = global double
// LAMBDA-LABEL: @main
// LAMBDA: call void [[OUTER_LAMBDA:@.+]](
[&]() {
// LAMBDA: define{{.*}} internal{{.*}} void [[OUTER_LAMBDA]](
// LAMBDA: call void {{.+}} @__kmpc_fork_call({{.+}}, i32 1, {{.+}}* [[OMP_REGION:@.+]] to {{.+}}, i8* %{{.+}})
#pragma omp parallel
#pragma omp sections reduction(+:g)
{
// LAMBDA: define{{.*}} internal{{.*}} void [[OMP_REGION]](i32* %{{.+}}, i32* %{{.+}}, %{{.+}}* %{{.+}})
// LAMBDA: [[G_PRIVATE_ADDR:%.+]] = alloca double,
// Reduction list for runtime.
// LAMBDA: [[RED_LIST:%.+]] = alloca [1 x i8*],
// LAMBDA: store double 0.0{{.+}}, double* [[G_PRIVATE_ADDR]]
// LAMBDA: call void @__kmpc_for_static_init_4(
g = 1;
// LAMBDA: store double 1.0{{.+}}, double* [[G_PRIVATE_ADDR]],
// LAMBDA: [[G_PRIVATE_ADDR_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[ARG:%.+]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
// LAMBDA: store double* [[G_PRIVATE_ADDR]], double** [[G_PRIVATE_ADDR_REF]]
// LAMBDA: call void [[INNER_LAMBDA:@.+]](%{{.+}}* [[ARG]])
// LAMBDA: call void @__kmpc_for_static_fini(
// LAMBDA: [[G_PRIV_REF:%.+]] = getelementptr inbounds [1 x i8*], [1 x i8*]* [[RED_LIST]], i64 0, i64 0
// LAMBDA: [[BITCAST:%.+]] = bitcast double* [[G_PRIVATE_ADDR]] to i8*
// LAMBDA: store i8* [[BITCAST]], i8** [[G_PRIV_REF]],
// LAMBDA: call i32 @__kmpc_reduce(
// LAMBDA: switch i32 %{{.+}}, label %[[REDUCTION_DONE:.+]] [
// LAMBDA: i32 1, label %[[CASE1:.+]]
// LAMBDA: i32 2, label %[[CASE2:.+]]
// LAMBDA: [[CASE1]]
// LAMBDA: [[G_VAL:%.+]] = load double, double* [[G]]
// LAMBDA: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
// LAMBDA: [[ADD:%.+]] = fadd double [[G_VAL]], [[G_PRIV_VAL]]
// LAMBDA: store double [[ADD]], double* [[G]]
// LAMBDA: call void @__kmpc_end_reduce(
// LAMBDA: br label %[[REDUCTION_DONE]]
// LAMBDA: [[CASE2]]
// LAMBDA: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
// LAMBDA: fadd double
// LAMBDA: cmpxchg i64*
// LAMBDA: call void @__kmpc_end_reduce(
// LAMBDA: br label %[[REDUCTION_DONE]]
// LAMBDA: [[REDUCTION_DONE]]
// LAMBDA: ret void
#pragma omp section
[&]() {
// LAMBDA: define {{.+}} void [[INNER_LAMBDA]](%{{.+}}* [[ARG_PTR:%.+]])
// LAMBDA: store %{{.+}}* [[ARG_PTR]], %{{.+}}** [[ARG_PTR_REF:%.+]],
g = 2;
// LAMBDA: [[ARG_PTR:%.+]] = load %{{.+}}*, %{{.+}}** [[ARG_PTR_REF]]
// LAMBDA: [[G_PTR_REF:%.+]] = getelementptr inbounds %{{.+}}, %{{.+}}* [[ARG_PTR]], i{{[0-9]+}} 0, i{{[0-9]+}} 0
// LAMBDA: [[G_REF:%.+]] = load double*, double** [[G_PTR_REF]]
// LAMBDA: store double 2.0{{.+}}, double* [[G_REF]]
}();
}
}();
return 0;
#elif defined(BLOCKS)
// BLOCKS: [[G:@.+]] = global double
// BLOCKS-LABEL: @main
// BLOCKS: call void {{%.+}}(i8
^{
// BLOCKS: define{{.*}} internal{{.*}} void {{.+}}(i8*
// BLOCKS: call void {{.+}} @__kmpc_fork_call({{.+}}, i32 1, {{.+}}* [[OMP_REGION:@.+]] to {{.+}}, i8* %{{.+}})
#pragma omp parallel
#pragma omp sections reduction(-:g)
{
// BLOCKS: define{{.*}} internal{{.*}} void [[OMP_REGION]](i32* %{{.+}}, i32* %{{.+}}, %{{.+}}* %{{.+}})
// BLOCKS: [[G_PRIVATE_ADDR:%.+]] = alloca double,
// Reduction list for runtime.
// BLOCKS: [[RED_LIST:%.+]] = alloca [1 x i8*],
// BLOCKS: store double 0.0{{.+}}, double* [[G_PRIVATE_ADDR]]
g = 1;
// BLOCKS: call void @__kmpc_for_static_init_4(
// BLOCKS: store double 1.0{{.+}}, double* [[G_PRIVATE_ADDR]],
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
// BLOCKS: double* [[G_PRIVATE_ADDR]]
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
// BLOCKS: call void {{%.+}}(i8
// BLOCKS: call void @__kmpc_for_static_fini(
// BLOCKS: [[G_PRIV_REF:%.+]] = getelementptr inbounds [1 x i8*], [1 x i8*]* [[RED_LIST]], i64 0, i64 0
// BLOCKS: [[BITCAST:%.+]] = bitcast double* [[G_PRIVATE_ADDR]] to i8*
// BLOCKS: store i8* [[BITCAST]], i8** [[G_PRIV_REF]],
// BLOCKS: call i32 @__kmpc_reduce(
// BLOCKS: switch i32 %{{.+}}, label %[[REDUCTION_DONE:.+]] [
// BLOCKS: i32 1, label %[[CASE1:.+]]
// BLOCKS: i32 2, label %[[CASE2:.+]]
// BLOCKS: [[CASE1]]
// BLOCKS: [[G_VAL:%.+]] = load double, double* [[G]]
// BLOCKS: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
// BLOCKS: [[ADD:%.+]] = fadd double [[G_VAL]], [[G_PRIV_VAL]]
// BLOCKS: store double [[ADD]], double* [[G]]
// BLOCKS: call void @__kmpc_end_reduce(
// BLOCKS: br label %[[REDUCTION_DONE]]
// BLOCKS: [[CASE2]]
// BLOCKS: [[G_PRIV_VAL:%.+]] = load double, double* [[G_PRIVATE_ADDR]]
// BLOCKS: fadd double
// BLOCKS: cmpxchg i64*
// BLOCKS: call void @__kmpc_end_reduce(
// BLOCKS: br label %[[REDUCTION_DONE]]
// BLOCKS: [[REDUCTION_DONE]]
// BLOCKS: ret void
#pragma omp section
^{
// BLOCKS: define {{.+}} void {{@.+}}(i8*
g = 2;
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
// BLOCKS: store double 2.0{{.+}}, double*
// BLOCKS-NOT: [[G]]{{[[^:word:]]}}
// BLOCKS: ret
}();
}
}();
return 0;
#else
S<float> test;
float t_var = 0, t_var1;
int vec[] = {1, 2};
S<float> s_arr[] = {1, 2};
S<float> var(3), var1;
#pragma omp parallel
#pragma omp sections reduction(+:t_var) reduction(&:var) reduction(&& : var1) reduction(min: t_var1)
{
{
vec[0] = t_var;
s_arr[0] = var;
vec[1] = t_var1;
s_arr[1] = var1;
}
}
return tmain<int>();
#endif
}
// CHECK: define {{.*}}i{{[0-9]+}} @main()
// CHECK: [[TEST:%.+]] = alloca [[S_FLOAT_TY]],
// CHECK: call {{.*}} [[S_FLOAT_TY_CONSTR:@.+]]([[S_FLOAT_TY]]* [[TEST]])
// CHECK: %{{.+}} = bitcast [[CAP_MAIN_TY]]*
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 1, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, [[CAP_MAIN_TY]]*)* [[MAIN_MICROTASK:@.+]] to void
// CHECK: = call {{.*}}i{{.+}} [[TMAIN_INT:@.+]]()
// CHECK: call {{.*}} [[S_FLOAT_TY_DESTR:@.+]]([[S_FLOAT_TY]]*
// CHECK: ret
//
// CHECK: define internal void [[MAIN_MICROTASK]](i{{[0-9]+}}* [[GTID_ADDR:%.+]], i{{[0-9]+}}* %{{.+}}, [[CAP_MAIN_TY]]* %{{.+}})
// CHECK-NOT: alloca float,
// CHECK-NOT: alloca [[S_FLOAT_TY]],
// CHECK-NOT: alloca [[S_FLOAT_TY]],
// CHECK-NOT: alloca float,
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
// CHECK: [[GTID_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[GTID_ADDR_ADDR]]
// CHECK: [[GTID:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[GTID_REF]]
// CHECK: call i32 @__kmpc_single(
// CHECK-DAG: getelementptr inbounds [[CAP_MAIN_TY]], [[CAP_MAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 0
// CHECK-DAG: getelementptr inbounds [[CAP_MAIN_TY]], [[CAP_MAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 1
// CHECK-DAG: getelementptr inbounds [[CAP_MAIN_TY]], [[CAP_MAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 2
// CHECK-DAG: getelementptr inbounds [[CAP_MAIN_TY]], [[CAP_MAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} 3
// CHECK-NOT: call {{.*}} [[S_FLOAT_TY_DESTR]]([[S_FLOAT_TY]]* [[VAR_PRIV]])
// CHECK-NOT: call {{.*}} [[S_FLOAT_TY_DESTR]]([[S_FLOAT_TY]]*
// CHECK: call void @__kmpc_end_single(
// CHECK: call i32 @__kmpc_cancel_barrier(%{{.+}}* [[SINGLE_BARRIER_LOC]], i{{[0-9]+}} [[GTID]])
// CHECK: call i32 @__kmpc_cancel_barrier(%{{.+}}* [[IMPLICIT_BARRIER_LOC]], i{{[0-9]+}} [[GTID]])
// CHECK: ret void
// CHECK: define {{.*}} i{{[0-9]+}} [[TMAIN_INT]]()
// CHECK: [[TEST:%.+]] = alloca [[S_INT_TY]],
// CHECK: call {{.*}} [[S_INT_TY_CONSTR:@.+]]([[S_INT_TY]]* [[TEST]])
// CHECK: %{{.+}} = bitcast [[CAP_TMAIN_TY]]*
// CHECK: call void (%{{.+}}*, i{{[0-9]+}}, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)*, ...) @__kmpc_fork_call(%{{.+}}* @{{.+}}, i{{[0-9]+}} 1, void (i{{[0-9]+}}*, i{{[0-9]+}}*, ...)* bitcast (void (i{{[0-9]+}}*, i{{[0-9]+}}*, [[CAP_TMAIN_TY]]*)* [[TMAIN_MICROTASK:@.+]] to void
// CHECK: call {{.*}} [[S_INT_TY_DESTR:@.+]]([[S_INT_TY]]*
// CHECK: ret
//
// CHECK: define internal void [[TMAIN_MICROTASK]](i{{[0-9]+}}* [[GTID_ADDR:%.+]], i{{[0-9]+}}* %{{.+}}, [[CAP_TMAIN_TY]]* %{{.+}})
// CHECK: alloca i{{[0-9]+}},
// CHECK: alloca i{{[0-9]+}},
// CHECK: alloca i{{[0-9]+}},
// CHECK: alloca i{{[0-9]+}},
// CHECK: alloca i{{[0-9]+}},
// CHECK: [[T_VAR_PRIV:%.+]] = alloca i{{[0-9]+}},
// CHECK: [[VAR_PRIV:%.+]] = alloca [[S_INT_TY]],
// CHECK: [[VAR1_PRIV:%.+]] = alloca [[S_INT_TY]],
// CHECK: [[T_VAR1_PRIV:%.+]] = alloca i{{[0-9]+}},
// Reduction list for runtime.
// CHECK: [[RED_LIST:%.+]] = alloca [4 x i8*],
// CHECK: store i{{[0-9]+}}* [[GTID_ADDR]], i{{[0-9]+}}** [[GTID_ADDR_ADDR:%.+]],
// CHECK: [[T_VAR_PTR_REF:%.+]] = getelementptr inbounds [[CAP_TMAIN_TY]], [[CAP_TMAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} {{[0-9]+}}
// CHECK: [[T_VAR_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[T_VAR_PTR_REF]],
// For + reduction operation initial value of private variable is 0.
// CHECK: store i{{[0-9]+}} 0, i{{[0-9]+}}* [[T_VAR_PRIV]],
// CHECK: [[VAR_PTR_REF:%.+]] = getelementptr inbounds [[CAP_TMAIN_TY]], [[CAP_TMAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} {{[0-9]+}}
// CHECK: [[VAR_REF:%.+]] = load [[S_INT_TY]]*, [[S_INT_TY]]** [[VAR_PTR_REF:%.+]],
// For & reduction operation initial value of private variable is ones in all bits.
// CHECK: call {{.*}} [[S_INT_TY_CONSTR:@.+]]([[S_INT_TY]]* [[VAR_PRIV]])
// CHECK: [[VAR1_PTR_REF:%.+]] = getelementptr inbounds [[CAP_TMAIN_TY]], [[CAP_TMAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} {{[0-9]+}}
// CHECK: [[VAR1_REF:%.+]] = load [[S_INT_TY]]*, [[S_INT_TY]]** [[VAR_PTR_REF:%.+]],
// For && reduction operation initial value of private variable is 1.0.
// CHECK: call {{.*}} [[S_INT_TY_CONSTR:@.+]]([[S_INT_TY]]* [[VAR1_PRIV]])
// CHECK: [[T_VAR1_PTR_REF:%.+]] = getelementptr inbounds [[CAP_TMAIN_TY]], [[CAP_TMAIN_TY]]* %{{.+}}, i{{[0-9]+}} 0, i{{[0-9]+}} {{[0-9]+}}
// CHECK: [[T_VAR1_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[T_VAR1_PTR_REF]],
// For min reduction operation initial value of private variable is largest repesentable value.
// CHECK: store i{{[0-9]+}} 2147483647, i{{[0-9]+}}* [[T_VAR1_PRIV]],
// CHECK: [[GTID_REF:%.+]] = load i{{[0-9]+}}*, i{{[0-9]+}}** [[GTID_ADDR_ADDR]]
// CHECK: [[GTID:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[GTID_REF]]
// CHECK: call void @__kmpc_for_static_init_4(
// Skip checks for internal operations.
// CHECK: call void @__kmpc_for_static_fini(
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
// CHECK: [[T_VAR_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 0
// CHECK: [[BITCAST:%.+]] = bitcast i{{[0-9]+}}* [[T_VAR_PRIV]] to i8*
// CHECK: store i8* [[BITCAST]], i8** [[T_VAR_PRIV_REF]],
// CHECK: [[VAR_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 1
// CHECK: [[BITCAST:%.+]] = bitcast [[S_INT_TY]]* [[VAR_PRIV]] to i8*
// CHECK: store i8* [[BITCAST]], i8** [[VAR_PRIV_REF]],
// CHECK: [[VAR1_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 2
// CHECK: [[BITCAST:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_PRIV]] to i8*
// CHECK: store i8* [[BITCAST]], i8** [[VAR1_PRIV_REF]],
// CHECK: [[T_VAR1_PRIV_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST]], i64 0, i64 3
// CHECK: [[BITCAST:%.+]] = bitcast i{{[0-9]+}}* [[T_VAR1_PRIV]] to i8*
// CHECK: store i8* [[BITCAST]], i8** [[T_VAR1_PRIV_REF]],
// res = __kmpc_reduce_nowait(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>);
// CHECK: [[BITCAST:%.+]] = bitcast [4 x i8*]* [[RED_LIST]] to i8*
// CHECK: [[RES:%.+]] = call i32 @__kmpc_reduce_nowait(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], i32 4, i64 32, i8* [[BITCAST]], void (i8*, i8*)* [[REDUCTION_FUNC:@.+]], [8 x i32]* [[REDUCTION_LOCK]])
// switch(res)
// CHECK: switch i32 [[RES]], label %[[RED_DONE:.+]] [
// CHECK: i32 1, label %[[CASE1:.+]]
// CHECK: i32 2, label %[[CASE2:.+]]
// CHECK: ]
// case 1:
// t_var += t_var_reduction;
// CHECK: [[T_VAR_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_REF]],
// CHECK: [[T_VAR_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_PRIV]],
// CHECK: [[UP:%.+]] = add nsw i{{[0-9]+}} [[T_VAR_VAL]], [[T_VAR_PRIV_VAL]]
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR_REF]],
// var = var.operator &(var_reduction);
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_INT_TY]]* @{{.+}}([[S_INT_TY]]* [[VAR_REF]], [[S_INT_TY]]* dereferenceable(4) [[VAR_PRIV]])
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR_REF]] to i8*
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[UP]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
// var1 = var1.operator &&(var1_reduction);
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_REF]])
// CHECK: [[VAR1_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
// CHECK: [[TRUE]]
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_PRIV]])
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
// CHECK: br label %[[END2]]
// CHECK: [[END2]]
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
// CHECK: [[CONV:%.+]] = zext i1 [[COND_LVALUE]] to i32
// CHECK: call void @{{.+}}([[S_INT_TY]]* [[COND_LVALUE:%.+]], i32 [[CONV]])
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_REF]] to i8*
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[COND_LVALUE]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
// t_var1 = min(t_var1, t_var1_reduction);
// CHECK: [[T_VAR1_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_REF]],
// CHECK: [[T_VAR1_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_PRIV]],
// CHECK: [[CMP:%.+]] = icmp slt i{{[0-9]+}} [[T_VAR1_VAL]], [[T_VAR1_PRIV_VAL]]
// CHECK: br i1 [[CMP]]
// CHECK: [[UP:%.+]] = phi i32
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR1_REF]],
// __kmpc_end_reduce_nowait(<loc>, <gtid>, &<lock>);
// CHECK: call void @__kmpc_end_reduce_nowait(%{{.+}}* [[REDUCTION_LOC]], i32 [[GTID]], [8 x i32]* [[REDUCTION_LOCK]])
// break;
// CHECK: br label %[[RED_DONE]]
// case 2:
// t_var += t_var_reduction;
// CHECK: [[T_VAR_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_PRIV]]
// CHECK: atomicrmw add i32* [[T_VAR_REF]], i32 [[T_VAR_PRIV_VAL]] monotonic
// var = var.operator &(var_reduction);
// CHECK: call void @__kmpc_critical(
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_INT_TY]]* @{{.+}}([[S_INT_TY]]* [[VAR_REF]], [[S_INT_TY]]* dereferenceable(4) [[VAR_PRIV]])
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR_REF]] to i8*
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[UP]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
// CHECK: call void @__kmpc_end_critical(
// var1 = var1.operator &&(var1_reduction);
// CHECK: call void @__kmpc_critical(
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_REF]])
// CHECK: [[VAR1_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
// CHECK: [[TRUE]]
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_PRIV]])
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
// CHECK: br label %[[END2]]
// CHECK: [[END2]]
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
// CHECK: [[CONV:%.+]] = zext i1 [[COND_LVALUE]] to i32
// CHECK: call void @{{.+}}([[S_INT_TY]]* [[COND_LVALUE:%.+]], i32 [[CONV]])
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_REF]] to i8*
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[COND_LVALUE]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
// CHECK: call void @__kmpc_end_critical(
// t_var1 = min(t_var1, t_var1_reduction);
// CHECK: [[T_VAR1_PRIV_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_PRIV]]
// CHECK: atomicrmw min i32* [[T_VAR1_REF]], i32 [[T_VAR1_PRIV_VAL]] monotonic
// break;
// CHECK: br label %[[RED_DONE]]
// CHECK: [[RED_DONE]]
// CHECK-DAG: call {{.*}} [[S_INT_TY_DESTR]]([[S_INT_TY]]* [[VAR_PRIV]])
// CHECK-DAG: call {{.*}} [[S_INT_TY_DESTR]]([[S_INT_TY]]*
// CHECK: call i32 @__kmpc_cancel_barrier(%{{.+}}* [[IMPLICIT_BARRIER_LOC]], i{{[0-9]+}} [[GTID]])
// CHECK: ret void
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
// ...
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
// *(Type<n>-1*)rhs[<n>-1]);
// }
// CHECK: define internal void [[REDUCTION_FUNC]](i8*, i8*)
// t_var_lhs = (i{{[0-9]+}}*)lhs[0];
// CHECK: [[T_VAR_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS:%.+]], i64 0, i64 0
// CHECK: [[T_VAR_RHS_VOID:%.+]] = load i8*, i8** [[T_VAR_RHS_REF]],
// CHECK: [[T_VAR_RHS:%.+]] = bitcast i8* [[T_VAR_RHS_VOID]] to i{{[0-9]+}}*
// t_var_rhs = (i{{[0-9]+}}*)rhs[0];
// CHECK: [[T_VAR_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS:%.+]], i64 0, i64 0
// CHECK: [[T_VAR_LHS_VOID:%.+]] = load i8*, i8** [[T_VAR_LHS_REF]],
// CHECK: [[T_VAR_LHS:%.+]] = bitcast i8* [[T_VAR_LHS_VOID]] to i{{[0-9]+}}*
// var_lhs = (S<i{{[0-9]+}}>*)lhs[1];
// CHECK: [[VAR_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 1
// CHECK: [[VAR_RHS_VOID:%.+]] = load i8*, i8** [[VAR_RHS_REF]],
// CHECK: [[VAR_RHS:%.+]] = bitcast i8* [[VAR_RHS_VOID]] to [[S_INT_TY]]*
// var_rhs = (S<i{{[0-9]+}}>*)rhs[1];
// CHECK: [[VAR_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 1
// CHECK: [[VAR_LHS_VOID:%.+]] = load i8*, i8** [[VAR_LHS_REF]],
// CHECK: [[VAR_LHS:%.+]] = bitcast i8* [[VAR_LHS_VOID]] to [[S_INT_TY]]*
// var1_lhs = (S<i{{[0-9]+}}>*)lhs[2];
// CHECK: [[VAR1_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 2
// CHECK: [[VAR1_RHS_VOID:%.+]] = load i8*, i8** [[VAR1_RHS_REF]],
// CHECK: [[VAR1_RHS:%.+]] = bitcast i8* [[VAR1_RHS_VOID]] to [[S_INT_TY]]*
// var1_rhs = (S<i{{[0-9]+}}>*)rhs[2];
// CHECK: [[VAR1_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 2
// CHECK: [[VAR1_LHS_VOID:%.+]] = load i8*, i8** [[VAR1_LHS_REF]],
// CHECK: [[VAR1_LHS:%.+]] = bitcast i8* [[VAR1_LHS_VOID]] to [[S_INT_TY]]*
// t_var1_lhs = (i{{[0-9]+}}*)lhs[3];
// CHECK: [[T_VAR1_RHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_RHS]], i64 0, i64 3
// CHECK: [[T_VAR1_RHS_VOID:%.+]] = load i8*, i8** [[T_VAR1_RHS_REF]],
// CHECK: [[T_VAR1_RHS:%.+]] = bitcast i8* [[T_VAR1_RHS_VOID]] to i{{[0-9]+}}*
// t_var1_rhs = (i{{[0-9]+}}*)rhs[3];
// CHECK: [[T_VAR1_LHS_REF:%.+]] = getelementptr inbounds [4 x i8*], [4 x i8*]* [[RED_LIST_LHS]], i64 0, i64 3
// CHECK: [[T_VAR1_LHS_VOID:%.+]] = load i8*, i8** [[T_VAR1_LHS_REF]],
// CHECK: [[T_VAR1_LHS:%.+]] = bitcast i8* [[T_VAR1_LHS_VOID]] to i{{[0-9]+}}*
// t_var_lhs += t_var_rhs;
// CHECK: [[T_VAR_LHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_LHS]],
// CHECK: [[T_VAR_RHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR_RHS]],
// CHECK: [[UP:%.+]] = add nsw i{{[0-9]+}} [[T_VAR_LHS_VAL]], [[T_VAR_RHS_VAL]]
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR_LHS]],
// var_lhs = var_lhs.operator &(var_rhs);
// CHECK: [[UP:%.+]] = call dereferenceable(4) [[S_INT_TY]]* @{{.+}}([[S_INT_TY]]* [[VAR_LHS]], [[S_INT_TY]]* dereferenceable(4) [[VAR_RHS]])
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR_LHS]] to i8*
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[UP]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
// var1_lhs = var1_lhs.operator &&(var1_rhs);
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_LHS]])
// CHECK: [[VAR1_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
// CHECK: br i1 [[VAR1_BOOL]], label %[[TRUE:.+]], label %[[END2:.+]]
// CHECK: [[TRUE]]
// CHECK: [[TO_INT:%.+]] = call i{{[0-9]+}} @{{.+}}([[S_INT_TY]]* [[VAR1_RHS]])
// CHECK: [[VAR1_REDUCTION_BOOL:%.+]] = icmp ne i{{[0-9]+}} [[TO_INT]], 0
// CHECK: br label %[[END2]]
// CHECK: [[END2]]
// CHECK: [[COND_LVALUE:%.+]] = phi i1 [ false, %{{.+}} ], [ [[VAR1_REDUCTION_BOOL]], %[[TRUE]] ]
// CHECK: [[CONV:%.+]] = zext i1 [[COND_LVALUE]] to i32
// CHECK: call void @{{.+}}([[S_INT_TY]]* [[COND_LVALUE:%.+]], i32 [[CONV]])
// CHECK: [[BC1:%.+]] = bitcast [[S_INT_TY]]* [[VAR1_LHS]] to i8*
// CHECK: [[BC2:%.+]] = bitcast [[S_INT_TY]]* [[COND_LVALUE]] to i8*
// CHECK: call void @llvm.memcpy.p0i8.p0i8.i64(i8* [[BC1]], i8* [[BC2]], i64 4, i32 4, i1 false)
// t_var1_lhs = min(t_var1_lhs, t_var1_rhs);
// CHECK: [[T_VAR1_LHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_LHS]],
// CHECK: [[T_VAR1_RHS_VAL:%.+]] = load i{{[0-9]+}}, i{{[0-9]+}}* [[T_VAR1_RHS]],
// CHECK: [[CMP:%.+]] = icmp slt i{{[0-9]+}} [[T_VAR1_LHS_VAL]], [[T_VAR1_RHS_VAL]]
// CHECK: br i1 [[CMP]]
// CHECK: [[UP:%.+]] = phi i32
// CHECK: store i{{[0-9]+}} [[UP]], i{{[0-9]+}}* [[T_VAR1_LHS]],
// CHECK: ret void
#endif