mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-15 11:56:07 +00:00

Commit message from D66935: This patch fixes a bug exposed by D65653 where a subsequent invocation of `determineCalleeSaves` ends up with a different size for the callee save area, leading to different frame-offsets in debug information. In the invocation by PEI, `determineCalleeSaves` tries to determine whether it needs to spill an extra callee-saved register to get an emergency spill slot. To do this, it calls 'estimateStackSize' and manually adds the size of the callee-saves to this. PEI then allocates the spill objects for the callee saves and the remaining frame layout is calculated accordingly. A second invocation in LiveDebugValues causes estimateStackSize to return the size of the stack frame including the callee-saves. Given that the size of the callee-saves is added to this, these callee-saves are counted twice, which leads `determineCalleeSaves` to believe the stack has become big enough to require spilling an extra callee-save as emergency spillslot. It then updates CalleeSavedStackSize with a larger value. Since CalleeSavedStackSize is used in the calculation of the frame offset in getFrameIndexReference, this leads to incorrect offsets for variables/locals when this information is recalculated after PEI. This patch fixes the lldb unit tests in `functionalities/thread/concurrent_events/*` Changes after D66935: Ensures AArch64FunctionInfo::getCalleeSavedStackSize does not return the uninitialized CalleeSavedStackSize when running `llc` on a specific pass where the MIR code has already been expected to have gone through PEI. Instead, getCalleeSavedStackSize (when passed the MachineFrameInfo) will try to recalculate the CalleeSavedStackSize from the CalleeSavedInfo. In debug mode, the compiler will assert the recalculated size equals the cached size as calculated through a call to determineCalleeSaves. This fixes two tests: test/DebugInfo/AArch64/asan-stack-vars.mir test/DebugInfo/AArch64/compiler-gen-bbs-livedebugvalues.mir that otherwise fail when compiled using msan. Reviewed By: omjavaid, efriedma Tags: #llvm Differential Revision: https://reviews.llvm.org/D68783 llvm-svn: 375425
217 lines
7.4 KiB
C++
217 lines
7.4 KiB
C++
//===-- RegUsageInfoCollector.cpp - Register Usage Information Collector --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// This pass is required to take advantage of the interprocedural register
|
|
/// allocation infrastructure.
|
|
///
|
|
/// This pass is simple MachineFunction pass which collects register usage
|
|
/// details by iterating through each physical registers and checking
|
|
/// MRI::isPhysRegUsed() then creates a RegMask based on this details.
|
|
/// The pass then stores this RegMask in PhysicalRegisterUsageInfo.cpp
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegisterUsageInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ip-regalloc"
|
|
|
|
STATISTIC(NumCSROpt,
|
|
"Number of functions optimized for callee saved registers");
|
|
|
|
namespace {
|
|
|
|
class RegUsageInfoCollector : public MachineFunctionPass {
|
|
public:
|
|
RegUsageInfoCollector() : MachineFunctionPass(ID) {
|
|
PassRegistry &Registry = *PassRegistry::getPassRegistry();
|
|
initializeRegUsageInfoCollectorPass(Registry);
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return "Register Usage Information Collector Pass";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<PhysicalRegisterUsageInfo>();
|
|
AU.setPreservesAll();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
// Call getCalleeSaves and then also set the bits for subregs and
|
|
// fully saved superregs.
|
|
static void computeCalleeSavedRegs(BitVector &SavedRegs, MachineFunction &MF);
|
|
|
|
static char ID;
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
char RegUsageInfoCollector::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(RegUsageInfoCollector, "RegUsageInfoCollector",
|
|
"Register Usage Information Collector", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(PhysicalRegisterUsageInfo)
|
|
INITIALIZE_PASS_END(RegUsageInfoCollector, "RegUsageInfoCollector",
|
|
"Register Usage Information Collector", false, false)
|
|
|
|
FunctionPass *llvm::createRegUsageInfoCollector() {
|
|
return new RegUsageInfoCollector();
|
|
}
|
|
|
|
// TODO: Move to hook somwehere?
|
|
|
|
// Return true if it is useful to track the used registers for IPRA / no CSR
|
|
// optimizations. This is not useful for entry points, and computing the
|
|
// register usage information is expensive.
|
|
static bool isCallableFunction(const MachineFunction &MF) {
|
|
switch (MF.getFunction().getCallingConv()) {
|
|
case CallingConv::AMDGPU_VS:
|
|
case CallingConv::AMDGPU_GS:
|
|
case CallingConv::AMDGPU_PS:
|
|
case CallingConv::AMDGPU_CS:
|
|
case CallingConv::AMDGPU_HS:
|
|
case CallingConv::AMDGPU_ES:
|
|
case CallingConv::AMDGPU_LS:
|
|
case CallingConv::AMDGPU_KERNEL:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool RegUsageInfoCollector::runOnMachineFunction(MachineFunction &MF) {
|
|
MachineRegisterInfo *MRI = &MF.getRegInfo();
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
const LLVMTargetMachine &TM = MF.getTarget();
|
|
|
|
LLVM_DEBUG(dbgs() << " -------------------- " << getPassName()
|
|
<< " -------------------- \nFunction Name : "
|
|
<< MF.getName() << '\n');
|
|
|
|
// Analyzing the register usage may be expensive on some targets.
|
|
if (!isCallableFunction(MF)) {
|
|
LLVM_DEBUG(dbgs() << "Not analyzing non-callable function\n");
|
|
return false;
|
|
}
|
|
|
|
// If there are no callers, there's no point in computing more precise
|
|
// register usage here.
|
|
if (MF.getFunction().use_empty()) {
|
|
LLVM_DEBUG(dbgs() << "Not analyzing function with no callers\n");
|
|
return false;
|
|
}
|
|
|
|
std::vector<uint32_t> RegMask;
|
|
|
|
// Compute the size of the bit vector to represent all the registers.
|
|
// The bit vector is broken into 32-bit chunks, thus takes the ceil of
|
|
// the number of registers divided by 32 for the size.
|
|
unsigned RegMaskSize = MachineOperand::getRegMaskSize(TRI->getNumRegs());
|
|
RegMask.resize(RegMaskSize, ~((uint32_t)0));
|
|
|
|
const Function &F = MF.getFunction();
|
|
|
|
PhysicalRegisterUsageInfo &PRUI = getAnalysis<PhysicalRegisterUsageInfo>();
|
|
PRUI.setTargetMachine(TM);
|
|
|
|
LLVM_DEBUG(dbgs() << "Clobbered Registers: ");
|
|
|
|
BitVector SavedRegs;
|
|
computeCalleeSavedRegs(SavedRegs, MF);
|
|
|
|
const BitVector &UsedPhysRegsMask = MRI->getUsedPhysRegsMask();
|
|
auto SetRegAsDefined = [&RegMask] (unsigned Reg) {
|
|
RegMask[Reg / 32] &= ~(1u << Reg % 32);
|
|
};
|
|
|
|
// Some targets can clobber registers "inside" a call, typically in
|
|
// linker-generated code.
|
|
for (const MCPhysReg Reg : TRI->getIntraCallClobberedRegs(&MF))
|
|
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
|
|
SetRegAsDefined(*AI);
|
|
|
|
// Scan all the physical registers. When a register is defined in the current
|
|
// function set it and all the aliasing registers as defined in the regmask.
|
|
// FIXME: Rewrite to use regunits.
|
|
for (unsigned PReg = 1, PRegE = TRI->getNumRegs(); PReg < PRegE; ++PReg) {
|
|
// Don't count registers that are saved and restored.
|
|
if (SavedRegs.test(PReg))
|
|
continue;
|
|
// If a register is defined by an instruction mark it as defined together
|
|
// with all it's unsaved aliases.
|
|
if (!MRI->def_empty(PReg)) {
|
|
for (MCRegAliasIterator AI(PReg, TRI, true); AI.isValid(); ++AI)
|
|
if (!SavedRegs.test(*AI))
|
|
SetRegAsDefined(*AI);
|
|
continue;
|
|
}
|
|
// If a register is in the UsedPhysRegsMask set then mark it as defined.
|
|
// All clobbered aliases will also be in the set, so we can skip setting
|
|
// as defined all the aliases here.
|
|
if (UsedPhysRegsMask.test(PReg))
|
|
SetRegAsDefined(PReg);
|
|
}
|
|
|
|
if (TargetFrameLowering::isSafeForNoCSROpt(F) &&
|
|
MF.getSubtarget().getFrameLowering()->isProfitableForNoCSROpt(F)) {
|
|
++NumCSROpt;
|
|
LLVM_DEBUG(dbgs() << MF.getName()
|
|
<< " function optimized for not having CSR.\n");
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
for (unsigned PReg = 1, PRegE = TRI->getNumRegs(); PReg < PRegE; ++PReg) {
|
|
if (MachineOperand::clobbersPhysReg(&(RegMask[0]), PReg))
|
|
dbgs() << printReg(PReg, TRI) << " ";
|
|
}
|
|
|
|
dbgs() << " \n----------------------------------------\n";
|
|
);
|
|
|
|
PRUI.storeUpdateRegUsageInfo(F, RegMask);
|
|
|
|
return false;
|
|
}
|
|
|
|
void RegUsageInfoCollector::
|
|
computeCalleeSavedRegs(BitVector &SavedRegs, MachineFunction &MF) {
|
|
const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
|
|
// Target will return the set of registers that it saves/restores as needed.
|
|
SavedRegs.clear();
|
|
TFI.getCalleeSaves(MF, SavedRegs);
|
|
if (SavedRegs.none())
|
|
return;
|
|
|
|
// Insert subregs.
|
|
const MCPhysReg *CSRegs = TRI.getCalleeSavedRegs(&MF);
|
|
for (unsigned i = 0; CSRegs[i]; ++i) {
|
|
MCPhysReg Reg = CSRegs[i];
|
|
if (SavedRegs.test(Reg)) {
|
|
// Save subregisters
|
|
for (MCSubRegIterator SR(Reg, &TRI); SR.isValid(); ++SR)
|
|
SavedRegs.set(*SR);
|
|
}
|
|
}
|
|
}
|