mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-08 13:46:08 +00:00

if ((a & 0x1) == 0x1) { .. } In this case we don't actually have any branch probability information and should not assume to have any. LLVM transforms this into: %and = and i32 %a, 1 %tobool = icmp eq i32 %and, 0 So, in this case, the result of a bitwise and is compared against 0, but nevertheless, we should not assume to have probability information. llvm-svn: 234898
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//