llvm-project/clang/lib/Interpreter/Interpreter.cpp
Davide Italiano 61ab36a3e2 Revert "[Clang-REPL] Fix crash during __run_exit_handlers with dynamic libraries. (#117475)"
This reverts commit 30ad53b92cec0cff9679d559edcc5b933312ba0c as it breaks
systems that don't have a systemwide libc++ or libstdc++ installed. It should
be rewritten to not invoke the system linker. In the meanwhile, reverting
to unblock the bots.
2024-12-14 18:26:32 +00:00

760 lines
27 KiB
C++

//===------ Interpreter.cpp - Incremental Compilation and Execution -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the component which performs incremental code
// compilation and execution.
//
//===----------------------------------------------------------------------===//
#include "DeviceOffload.h"
#include "IncrementalExecutor.h"
#include "IncrementalParser.h"
#include "InterpreterUtils.h"
#include "llvm/Support/VirtualFileSystem.h"
#ifdef __EMSCRIPTEN__
#include "Wasm.h"
#endif // __EMSCRIPTEN__
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/CodeGen/ObjectFilePCHContainerWriter.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/Tool.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendAction.h"
#include "clang/Frontend/MultiplexConsumer.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/FrontendTool/Utils.h"
#include "clang/Interpreter/Interpreter.h"
#include "clang/Interpreter/Value.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/Lookup.h"
#include "clang/Serialization/ObjectFilePCHContainerReader.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/Transforms/Utils/Cloning.h" // for CloneModule
#define DEBUG_TYPE "clang-repl"
using namespace clang;
// FIXME: Figure out how to unify with namespace init_convenience from
// tools/clang-import-test/clang-import-test.cpp
namespace {
/// Retrieves the clang CC1 specific flags out of the compilation's jobs.
/// \returns NULL on error.
static llvm::Expected<const llvm::opt::ArgStringList *>
GetCC1Arguments(DiagnosticsEngine *Diagnostics,
driver::Compilation *Compilation) {
// We expect to get back exactly one Command job, if we didn't something
// failed. Extract that job from the Compilation.
const driver::JobList &Jobs = Compilation->getJobs();
if (!Jobs.size() || !isa<driver::Command>(*Jobs.begin()))
return llvm::createStringError(llvm::errc::not_supported,
"Driver initialization failed. "
"Unable to create a driver job");
// The one job we find should be to invoke clang again.
const driver::Command *Cmd = cast<driver::Command>(&(*Jobs.begin()));
if (llvm::StringRef(Cmd->getCreator().getName()) != "clang")
return llvm::createStringError(llvm::errc::not_supported,
"Driver initialization failed");
return &Cmd->getArguments();
}
static llvm::Expected<std::unique_ptr<CompilerInstance>>
CreateCI(const llvm::opt::ArgStringList &Argv) {
std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
// Register the support for object-file-wrapped Clang modules.
// FIXME: Clang should register these container operations automatically.
auto PCHOps = Clang->getPCHContainerOperations();
PCHOps->registerWriter(std::make_unique<ObjectFilePCHContainerWriter>());
PCHOps->registerReader(std::make_unique<ObjectFilePCHContainerReader>());
// Buffer diagnostics from argument parsing so that we can output them using
// a well formed diagnostic object.
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
bool Success = CompilerInvocation::CreateFromArgs(
Clang->getInvocation(), llvm::ArrayRef(Argv.begin(), Argv.size()), Diags);
// Infer the builtin include path if unspecified.
if (Clang->getHeaderSearchOpts().UseBuiltinIncludes &&
Clang->getHeaderSearchOpts().ResourceDir.empty())
Clang->getHeaderSearchOpts().ResourceDir =
CompilerInvocation::GetResourcesPath(Argv[0], nullptr);
// Create the actual diagnostics engine.
Clang->createDiagnostics(*llvm::vfs::getRealFileSystem());
if (!Clang->hasDiagnostics())
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Unable to create diagnostics engine");
DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics());
if (!Success)
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Unable to flush diagnostics");
// FIXME: Merge with CompilerInstance::ExecuteAction.
llvm::MemoryBuffer *MB = llvm::MemoryBuffer::getMemBuffer("").release();
Clang->getPreprocessorOpts().addRemappedFile("<<< inputs >>>", MB);
Clang->setTarget(TargetInfo::CreateTargetInfo(
Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
if (!Clang->hasTarget())
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Target is missing");
Clang->getTarget().adjust(Clang->getDiagnostics(), Clang->getLangOpts());
// Don't clear the AST before backend codegen since we do codegen multiple
// times, reusing the same AST.
Clang->getCodeGenOpts().ClearASTBeforeBackend = false;
Clang->getFrontendOpts().DisableFree = false;
Clang->getCodeGenOpts().DisableFree = false;
return std::move(Clang);
}
} // anonymous namespace
namespace clang {
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::create(std::string TT,
std::vector<const char *> &ClangArgv) {
// If we don't know ClangArgv0 or the address of main() at this point, try
// to guess it anyway (it's possible on some platforms).
std::string MainExecutableName =
llvm::sys::fs::getMainExecutable(nullptr, nullptr);
ClangArgv.insert(ClangArgv.begin(), MainExecutableName.c_str());
// Prepending -c to force the driver to do something if no action was
// specified. By prepending we allow users to override the default
// action and use other actions in incremental mode.
// FIXME: Print proper driver diagnostics if the driver flags are wrong.
// We do C++ by default; append right after argv[0] if no "-x" given
ClangArgv.insert(ClangArgv.end(), "-Xclang");
ClangArgv.insert(ClangArgv.end(), "-fincremental-extensions");
ClangArgv.insert(ClangArgv.end(), "-c");
// Put a dummy C++ file on to ensure there's at least one compile job for the
// driver to construct.
ClangArgv.push_back("<<< inputs >>>");
// Buffer diagnostics from argument parsing so that we can output them using a
// well formed diagnostic object.
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts =
CreateAndPopulateDiagOpts(ClangArgv);
TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
driver::Driver Driver(/*MainBinaryName=*/ClangArgv[0], TT, Diags);
Driver.setCheckInputsExist(false); // the input comes from mem buffers
llvm::ArrayRef<const char *> RF = llvm::ArrayRef(ClangArgv);
std::unique_ptr<driver::Compilation> Compilation(Driver.BuildCompilation(RF));
if (Compilation->getArgs().hasArg(driver::options::OPT_v))
Compilation->getJobs().Print(llvm::errs(), "\n", /*Quote=*/false);
auto ErrOrCC1Args = GetCC1Arguments(&Diags, Compilation.get());
if (auto Err = ErrOrCC1Args.takeError())
return std::move(Err);
return CreateCI(**ErrOrCC1Args);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCpp() {
std::vector<const char *> Argv;
Argv.reserve(5 + 1 + UserArgs.size());
Argv.push_back("-xc++");
#ifdef __EMSCRIPTEN__
Argv.push_back("-target");
Argv.push_back("wasm32-unknown-emscripten");
Argv.push_back("-fvisibility=default");
#endif
Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end());
std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
return IncrementalCompilerBuilder::create(TT, Argv);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::createCuda(bool device) {
std::vector<const char *> Argv;
Argv.reserve(5 + 4 + UserArgs.size());
Argv.push_back("-xcuda");
if (device)
Argv.push_back("--cuda-device-only");
else
Argv.push_back("--cuda-host-only");
std::string SDKPathArg = "--cuda-path=";
if (!CudaSDKPath.empty()) {
SDKPathArg += CudaSDKPath;
Argv.push_back(SDKPathArg.c_str());
}
std::string ArchArg = "--offload-arch=";
if (!OffloadArch.empty()) {
ArchArg += OffloadArch;
Argv.push_back(ArchArg.c_str());
}
Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end());
std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
return IncrementalCompilerBuilder::create(TT, Argv);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaDevice() {
return IncrementalCompilerBuilder::createCuda(true);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaHost() {
return IncrementalCompilerBuilder::createCuda(false);
}
class InProcessPrintingASTConsumer final : public MultiplexConsumer {
Interpreter &Interp;
public:
InProcessPrintingASTConsumer(std::unique_ptr<ASTConsumer> C, Interpreter &I)
: MultiplexConsumer(std::move(C)), Interp(I) {}
bool HandleTopLevelDecl(DeclGroupRef DGR) override final {
if (DGR.isNull())
return true;
for (Decl *D : DGR)
if (auto *TLSD = llvm::dyn_cast<TopLevelStmtDecl>(D))
if (TLSD && TLSD->isSemiMissing()) {
auto ExprOrErr =
Interp.ExtractValueFromExpr(cast<Expr>(TLSD->getStmt()));
if (llvm::Error E = ExprOrErr.takeError()) {
llvm::logAllUnhandledErrors(std::move(E), llvm::errs(),
"Value printing failed: ");
return false; // abort parsing
}
TLSD->setStmt(*ExprOrErr);
}
return MultiplexConsumer::HandleTopLevelDecl(DGR);
}
};
/// A custom action enabling the incremental processing functionality.
///
/// The usual \p FrontendAction expects one call to ExecuteAction and once it
/// sees a call to \p EndSourceFile it deletes some of the important objects
/// such as \p Preprocessor and \p Sema assuming no further input will come.
///
/// \p IncrementalAction ensures it keep its underlying action's objects alive
/// as long as the \p IncrementalParser needs them.
///
class IncrementalAction : public WrapperFrontendAction {
private:
bool IsTerminating = false;
Interpreter &Interp;
std::unique_ptr<ASTConsumer> Consumer;
public:
IncrementalAction(CompilerInstance &CI, llvm::LLVMContext &LLVMCtx,
llvm::Error &Err, Interpreter &I,
std::unique_ptr<ASTConsumer> Consumer = nullptr)
: WrapperFrontendAction([&]() {
llvm::ErrorAsOutParameter EAO(&Err);
std::unique_ptr<FrontendAction> Act;
switch (CI.getFrontendOpts().ProgramAction) {
default:
Err = llvm::createStringError(
std::errc::state_not_recoverable,
"Driver initialization failed. "
"Incremental mode for action %d is not supported",
CI.getFrontendOpts().ProgramAction);
return Act;
case frontend::ASTDump:
case frontend::ASTPrint:
case frontend::ParseSyntaxOnly:
Act = CreateFrontendAction(CI);
break;
case frontend::PluginAction:
case frontend::EmitAssembly:
case frontend::EmitBC:
case frontend::EmitObj:
case frontend::PrintPreprocessedInput:
case frontend::EmitLLVMOnly:
Act.reset(new EmitLLVMOnlyAction(&LLVMCtx));
break;
}
return Act;
}()),
Interp(I), Consumer(std::move(Consumer)) {}
FrontendAction *getWrapped() const { return WrappedAction.get(); }
TranslationUnitKind getTranslationUnitKind() override {
return TU_Incremental;
}
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override {
std::unique_ptr<ASTConsumer> C =
WrapperFrontendAction::CreateASTConsumer(CI, InFile);
if (Consumer) {
std::vector<std::unique_ptr<ASTConsumer>> Cs;
Cs.push_back(std::move(Consumer));
Cs.push_back(std::move(C));
return std::make_unique<MultiplexConsumer>(std::move(Cs));
}
return std::make_unique<InProcessPrintingASTConsumer>(std::move(C), Interp);
}
void ExecuteAction() override {
WrapperFrontendAction::ExecuteAction();
getCompilerInstance().getSema().CurContext = nullptr;
}
// Do not terminate after processing the input. This allows us to keep various
// clang objects alive and to incrementally grow the current TU.
void EndSourceFile() override {
// The WrappedAction can be nullptr if we issued an error in the ctor.
if (IsTerminating && getWrapped())
WrapperFrontendAction::EndSourceFile();
}
void FinalizeAction() {
assert(!IsTerminating && "Already finalized!");
IsTerminating = true;
EndSourceFile();
}
};
Interpreter::Interpreter(std::unique_ptr<CompilerInstance> Instance,
llvm::Error &ErrOut,
std::unique_ptr<llvm::orc::LLJITBuilder> JITBuilder,
std::unique_ptr<clang::ASTConsumer> Consumer)
: JITBuilder(std::move(JITBuilder)) {
CI = std::move(Instance);
llvm::ErrorAsOutParameter EAO(&ErrOut);
auto LLVMCtx = std::make_unique<llvm::LLVMContext>();
TSCtx = std::make_unique<llvm::orc::ThreadSafeContext>(std::move(LLVMCtx));
Act = std::make_unique<IncrementalAction>(*CI, *TSCtx->getContext(), ErrOut,
*this, std::move(Consumer));
if (ErrOut)
return;
CI->ExecuteAction(*Act);
IncrParser = std::make_unique<IncrementalParser>(*CI, ErrOut);
if (ErrOut)
return;
if (getCodeGen()) {
CachedInCodeGenModule = GenModule();
// The initial PTU is filled by `-include` or by CUDA includes
// automatically.
if (!CI->getPreprocessorOpts().Includes.empty()) {
// We can't really directly pass the CachedInCodeGenModule to the Jit
// because it will steal it, causing dangling references as explained in
// Interpreter::Execute
auto M = llvm::CloneModule(*CachedInCodeGenModule);
ASTContext &C = CI->getASTContext();
RegisterPTU(C.getTranslationUnitDecl(), std::move(M));
}
if (llvm::Error Err = CreateExecutor()) {
ErrOut = joinErrors(std::move(ErrOut), std::move(Err));
return;
}
}
// Not all frontends support code-generation, e.g. ast-dump actions don't
if (getCodeGen()) {
// Process the PTUs that came from initialization. For example -include will
// give us a header that's processed at initialization of the preprocessor.
for (PartialTranslationUnit &PTU : PTUs)
if (llvm::Error Err = Execute(PTU)) {
ErrOut = joinErrors(std::move(ErrOut), std::move(Err));
return;
}
}
}
Interpreter::~Interpreter() {
IncrParser.reset();
Act->FinalizeAction();
if (IncrExecutor) {
if (llvm::Error Err = IncrExecutor->cleanUp())
llvm::report_fatal_error(
llvm::Twine("Failed to clean up IncrementalExecutor: ") +
toString(std::move(Err)));
}
}
// These better to put in a runtime header but we can't. This is because we
// can't find the precise resource directory in unittests so we have to hard
// code them.
const char *const Runtimes = R"(
#define __CLANG_REPL__ 1
#ifdef __cplusplus
#define EXTERN_C extern "C"
void *__clang_Interpreter_SetValueWithAlloc(void*, void*, void*);
struct __clang_Interpreter_NewTag{} __ci_newtag;
void* operator new(__SIZE_TYPE__, void* __p, __clang_Interpreter_NewTag) noexcept;
template <class T, class = T (*)() /*disable for arrays*/>
void __clang_Interpreter_SetValueCopyArr(T* Src, void* Placement, unsigned long Size) {
for (auto Idx = 0; Idx < Size; ++Idx)
new ((void*)(((T*)Placement) + Idx), __ci_newtag) T(Src[Idx]);
}
template <class T, unsigned long N>
void __clang_Interpreter_SetValueCopyArr(const T (*Src)[N], void* Placement, unsigned long Size) {
__clang_Interpreter_SetValueCopyArr(Src[0], Placement, Size);
}
#else
#define EXTERN_C extern
#endif // __cplusplus
EXTERN_C void __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, ...);
)";
llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::create(std::unique_ptr<CompilerInstance> CI) {
llvm::Error Err = llvm::Error::success();
auto Interp =
std::unique_ptr<Interpreter>(new Interpreter(std::move(CI), Err));
if (Err)
return std::move(Err);
// Add runtime code and set a marker to hide it from user code. Undo will not
// go through that.
auto PTU = Interp->Parse(Runtimes);
if (!PTU)
return PTU.takeError();
Interp->markUserCodeStart();
Interp->ValuePrintingInfo.resize(4);
return std::move(Interp);
}
llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::createWithCUDA(std::unique_ptr<CompilerInstance> CI,
std::unique_ptr<CompilerInstance> DCI) {
// avoid writing fat binary to disk using an in-memory virtual file system
llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> IMVFS =
std::make_unique<llvm::vfs::InMemoryFileSystem>();
llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> OverlayVFS =
std::make_unique<llvm::vfs::OverlayFileSystem>(
llvm::vfs::getRealFileSystem());
OverlayVFS->pushOverlay(IMVFS);
CI->createFileManager(OverlayVFS);
auto Interp = Interpreter::create(std::move(CI));
if (auto E = Interp.takeError())
return std::move(E);
llvm::Error Err = llvm::Error::success();
auto DeviceParser = std::make_unique<IncrementalCUDADeviceParser>(
std::move(DCI), *(*Interp)->getCompilerInstance(), IMVFS, Err,
(*Interp)->PTUs);
if (Err)
return std::move(Err);
(*Interp)->DeviceParser = std::move(DeviceParser);
return Interp;
}
const CompilerInstance *Interpreter::getCompilerInstance() const {
return CI.get();
}
CompilerInstance *Interpreter::getCompilerInstance() { return CI.get(); }
llvm::Expected<llvm::orc::LLJIT &> Interpreter::getExecutionEngine() {
if (!IncrExecutor) {
if (auto Err = CreateExecutor())
return std::move(Err);
}
return IncrExecutor->GetExecutionEngine();
}
ASTContext &Interpreter::getASTContext() {
return getCompilerInstance()->getASTContext();
}
const ASTContext &Interpreter::getASTContext() const {
return getCompilerInstance()->getASTContext();
}
void Interpreter::markUserCodeStart() {
assert(!InitPTUSize && "We only do this once");
InitPTUSize = PTUs.size();
}
size_t Interpreter::getEffectivePTUSize() const {
assert(PTUs.size() >= InitPTUSize && "empty PTU list?");
return PTUs.size() - InitPTUSize;
}
PartialTranslationUnit &
Interpreter::RegisterPTU(TranslationUnitDecl *TU,
std::unique_ptr<llvm::Module> M /*={}*/) {
PTUs.emplace_back(PartialTranslationUnit());
PartialTranslationUnit &LastPTU = PTUs.back();
LastPTU.TUPart = TU;
if (!M)
M = GenModule();
assert((!getCodeGen() || M) && "Must have a llvm::Module at this point");
LastPTU.TheModule = std::move(M);
LLVM_DEBUG(llvm::dbgs() << "compile-ptu " << PTUs.size() - 1
<< ": [TU=" << LastPTU.TUPart);
if (LastPTU.TheModule)
LLVM_DEBUG(llvm::dbgs() << ", M=" << LastPTU.TheModule.get() << " ("
<< LastPTU.TheModule->getName() << ")");
LLVM_DEBUG(llvm::dbgs() << "]\n");
return LastPTU;
}
llvm::Expected<PartialTranslationUnit &>
Interpreter::Parse(llvm::StringRef Code) {
// If we have a device parser, parse it first. The generated code will be
// included in the host compilation
if (DeviceParser) {
llvm::Expected<TranslationUnitDecl *> DeviceTU = DeviceParser->Parse(Code);
if (auto E = DeviceTU.takeError())
return std::move(E);
}
// Tell the interpreter sliently ignore unused expressions since value
// printing could cause it.
getCompilerInstance()->getDiagnostics().setSeverity(
clang::diag::warn_unused_expr, diag::Severity::Ignored, SourceLocation());
llvm::Expected<TranslationUnitDecl *> TuOrErr = IncrParser->Parse(Code);
if (!TuOrErr)
return TuOrErr.takeError();
return RegisterPTU(*TuOrErr);
}
static llvm::Expected<llvm::orc::JITTargetMachineBuilder>
createJITTargetMachineBuilder(const std::string &TT) {
if (TT == llvm::sys::getProcessTriple())
// This fails immediately if the target backend is not registered
return llvm::orc::JITTargetMachineBuilder::detectHost();
// If the target backend is not registered, LLJITBuilder::create() will fail
return llvm::orc::JITTargetMachineBuilder(llvm::Triple(TT));
}
llvm::Error Interpreter::CreateExecutor() {
if (IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"Execution engine exists",
std::error_code());
if (!getCodeGen())
return llvm::make_error<llvm::StringError>("Operation failed. "
"No code generator available",
std::error_code());
if (!JITBuilder) {
const std::string &TT = getCompilerInstance()->getTargetOpts().Triple;
auto JTMB = createJITTargetMachineBuilder(TT);
if (!JTMB)
return JTMB.takeError();
auto JB = IncrementalExecutor::createDefaultJITBuilder(std::move(*JTMB));
if (!JB)
return JB.takeError();
JITBuilder = std::move(*JB);
}
llvm::Error Err = llvm::Error::success();
#ifdef __EMSCRIPTEN__
auto Executor = std::make_unique<WasmIncrementalExecutor>(*TSCtx);
#else
auto Executor =
std::make_unique<IncrementalExecutor>(*TSCtx, *JITBuilder, Err);
#endif
if (!Err)
IncrExecutor = std::move(Executor);
return Err;
}
void Interpreter::ResetExecutor() { IncrExecutor.reset(); }
llvm::Error Interpreter::Execute(PartialTranslationUnit &T) {
assert(T.TheModule);
LLVM_DEBUG(llvm::dbgs()
<< "execute-ptu "
<< ((std::find(PTUs.begin(), PTUs.end(), T) != PTUs.end())
? std::distance(PTUs.begin(),
std::find(PTUs.begin(), PTUs.end(), T))
: -1)
<< ": [TU=" << T.TUPart << ", M=" << T.TheModule.get() << " ("
<< T.TheModule->getName() << ")]\n");
if (!IncrExecutor) {
auto Err = CreateExecutor();
if (Err)
return Err;
}
// FIXME: Add a callback to retain the llvm::Module once the JIT is done.
if (auto Err = IncrExecutor->addModule(T))
return Err;
if (auto Err = IncrExecutor->runCtors())
return Err;
return llvm::Error::success();
}
llvm::Error Interpreter::ParseAndExecute(llvm::StringRef Code, Value *V) {
auto PTU = Parse(Code);
if (!PTU)
return PTU.takeError();
if (PTU->TheModule)
if (llvm::Error Err = Execute(*PTU))
return Err;
if (LastValue.isValid()) {
if (!V) {
LastValue.dump();
LastValue.clear();
} else
*V = std::move(LastValue);
}
return llvm::Error::success();
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(GlobalDecl GD) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
llvm::StringRef MangledName = getCodeGen()->GetMangledName(GD);
return getSymbolAddress(MangledName);
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(llvm::StringRef IRName) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
return IncrExecutor->getSymbolAddress(IRName, IncrementalExecutor::IRName);
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddressFromLinkerName(llvm::StringRef Name) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
return IncrExecutor->getSymbolAddress(Name, IncrementalExecutor::LinkerName);
}
llvm::Error Interpreter::Undo(unsigned N) {
if (N > getEffectivePTUSize())
return llvm::make_error<llvm::StringError>("Operation failed. "
"Too many undos",
std::error_code());
for (unsigned I = 0; I < N; I++) {
if (IncrExecutor) {
if (llvm::Error Err = IncrExecutor->removeModule(PTUs.back()))
return Err;
}
IncrParser->CleanUpPTU(PTUs.back().TUPart);
PTUs.pop_back();
}
return llvm::Error::success();
}
llvm::Error Interpreter::LoadDynamicLibrary(const char *name) {
auto EE = getExecutionEngine();
if (!EE)
return EE.takeError();
auto &DL = EE->getDataLayout();
if (auto DLSG = llvm::orc::DynamicLibrarySearchGenerator::Load(
name, DL.getGlobalPrefix()))
EE->getMainJITDylib().addGenerator(std::move(*DLSG));
else
return DLSG.takeError();
return llvm::Error::success();
}
std::unique_ptr<llvm::Module> Interpreter::GenModule() {
static unsigned ID = 0;
if (CodeGenerator *CG = getCodeGen()) {
// Clang's CodeGen is designed to work with a single llvm::Module. In many
// cases for convenience various CodeGen parts have a reference to the
// llvm::Module (TheModule or Module) which does not change when a new
// module is pushed. However, the execution engine wants to take ownership
// of the module which does not map well to CodeGen's design. To work this
// around we created an empty module to make CodeGen happy. We should make
// sure it always stays empty.
assert(((!CachedInCodeGenModule ||
!getCompilerInstance()->getPreprocessorOpts().Includes.empty()) ||
(CachedInCodeGenModule->empty() &&
CachedInCodeGenModule->global_empty() &&
CachedInCodeGenModule->alias_empty() &&
CachedInCodeGenModule->ifunc_empty())) &&
"CodeGen wrote to a readonly module");
std::unique_ptr<llvm::Module> M(CG->ReleaseModule());
CG->StartModule("incr_module_" + std::to_string(ID++), M->getContext());
return M;
}
return nullptr;
}
CodeGenerator *Interpreter::getCodeGen() const {
FrontendAction *WrappedAct = Act->getWrapped();
if (!WrappedAct->hasIRSupport())
return nullptr;
return static_cast<CodeGenAction *>(WrappedAct)->getCodeGenerator();
}
} // namespace clang