mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-29 19:36:04 +00:00

These changes implement most of the requirements for C1128, which says: "A variable-name that appears in a LOCAL or LOCAL_INIT locality-spec shall not have the ALLOCATABLE; INTENT (IN); or OPTIONAL attribute; shall not be of finalizable type; shall not be a nonpointer polymorphic dummy argument; and shall not be a coarray or an assumed-size array. A variable-name that is not permitted to appear in a variable definition context shall not appear in a LOCAL or LOCAL_INIT locality-spec." The changes do not implement the checking required to determine whether a variable can appear in a "variable definition context". Here's a summary of the changes: - I created the function 'PassesLocalityChecks()' to enforce C1128 along with C1124, C1125, and C1126. - I cleaned up the code to check if a type or symbol is a coarray. - I added functions to tools.[h,cc] to test if a symbol is OPTIONAL, INTENT IN, finalizable, a coarray, or an assumed size array. Should these be member functions of the type "Symbol"? - Since I changed one of the locality related error messages, I needed to change the test resolve35.f90. - I added the test resolve55.f90 to test all of the checks implemented in this update. Original-commit: flang-compiler/f18@4ca5d090b9 Reviewed-on: https://github.com/flang-compiler/f18/pull/542 Tree-same-pre-rewrite: false
182 lines
6.5 KiB
C++
182 lines
6.5 KiB
C++
// Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef FORTRAN_SEMANTICS_TOOLS_H_
|
|
#define FORTRAN_SEMANTICS_TOOLS_H_
|
|
|
|
// Simple predicates and look-up functions that are best defined
|
|
// canonically for use in semantic checking.
|
|
|
|
#include "expression.h"
|
|
#include "semantics.h"
|
|
#include "../common/Fortran.h"
|
|
#include "../evaluate/expression.h"
|
|
#include "../evaluate/variable.h"
|
|
#include "../parser/parse-tree.h"
|
|
#include <functional>
|
|
|
|
namespace Fortran::semantics {
|
|
|
|
class DeclTypeSpec;
|
|
class DerivedTypeSpec;
|
|
class Scope;
|
|
class Symbol;
|
|
|
|
const Symbol *FindCommonBlockContaining(const Symbol &object);
|
|
const Scope *FindProgramUnitContaining(const Scope &);
|
|
const Scope *FindProgramUnitContaining(const Symbol &);
|
|
const Scope *FindPureFunctionContaining(const Scope *);
|
|
const Symbol *FindPointerComponent(const Scope &);
|
|
const Symbol *FindPointerComponent(const DerivedTypeSpec &);
|
|
const Symbol *FindPointerComponent(const DeclTypeSpec &);
|
|
const Symbol *FindPointerComponent(const Symbol &);
|
|
const Symbol *FindFunctionResult(const Symbol &);
|
|
|
|
bool IsCommonBlockContaining(const Symbol &block, const Symbol &object);
|
|
bool DoesScopeContain(const Scope *maybeAncestor, const Scope &maybeDescendent);
|
|
bool DoesScopeContain(const Scope *, const Symbol &);
|
|
bool IsUseAssociated(const Symbol *, const Scope &);
|
|
bool IsHostAssociated(const Symbol &, const Scope &);
|
|
bool IsDummy(const Symbol &);
|
|
bool IsPointerDummy(const Symbol &);
|
|
bool IsFunction(const Symbol &);
|
|
bool IsPureFunction(const Symbol &);
|
|
bool IsPureFunction(const Scope &);
|
|
bool IsProcedure(const Symbol &);
|
|
bool IsProcName(const Symbol &symbol); // proc-name
|
|
bool IsVariableName(const Symbol &symbol); // variable-name
|
|
bool IsProcedurePointer(const Symbol &);
|
|
bool IsExtensibleType(const DerivedTypeSpec *);
|
|
// Is this a derived type from module with this name?
|
|
bool IsDerivedTypeFromModule(
|
|
const DerivedTypeSpec *derived, const char *module, const char *name);
|
|
// Is this derived type TEAM_TYPE from module ISO_FORTRAN_ENV
|
|
bool IsTeamType(const DerivedTypeSpec *);
|
|
// Is this derived type either C_PTR or C_FUNPTR from module ISO_C_BINDING
|
|
bool IsIsoCType(const DerivedTypeSpec *);
|
|
const bool IsEventTypeOrLockType(const DerivedTypeSpec *);
|
|
// Returns an ultimate component symbol that is a
|
|
// coarray or nullptr if there are no such component.
|
|
// There is no guarantee regarding which ultimate coarray
|
|
// component is returned in case there are several because this
|
|
// does not really matter for the checks where it is needed.
|
|
const Symbol *HasCoarrayUltimateComponent(const DerivedTypeSpec &);
|
|
// Same logic as HasCoarrayUltimateComponent, but looking for
|
|
// potential component of EVENT_TYPE or LOCK_TYPE from
|
|
// ISO_FORTRAN_ENV module.
|
|
const Symbol *HasEventOrLockPotentialComponent(const DerivedTypeSpec &);
|
|
|
|
// Return an ultimate component of type that matches predicate, or nullptr.
|
|
const Symbol *FindUltimateComponent(
|
|
const DerivedTypeSpec &type, std::function<bool(const Symbol &)> predicate);
|
|
|
|
inline bool IsPointer(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::POINTER);
|
|
}
|
|
inline bool IsAllocatable(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::ALLOCATABLE);
|
|
}
|
|
inline bool IsAllocatableOrPointer(const Symbol &symbol) {
|
|
return IsPointer(symbol) || IsAllocatable(symbol);
|
|
}
|
|
inline bool IsParameter(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::PARAMETER);
|
|
}
|
|
inline bool IsOptional(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::OPTIONAL);
|
|
}
|
|
inline bool IsIntentIn(const Symbol &symbol) {
|
|
return symbol.attrs().test(Attr::INTENT_IN);
|
|
}
|
|
bool IsFinalizable(const Symbol &symbol);
|
|
bool IsCoarray(const Symbol &symbol);
|
|
bool IsAssumedSizeArray(const Symbol &symbol);
|
|
|
|
// Determines whether an object might be visible outside a
|
|
// PURE function (C1594); returns a non-null Symbol pointer for
|
|
// diagnostic purposes if so.
|
|
const Symbol *FindExternallyVisibleObject(const Symbol &, const Scope &);
|
|
|
|
template<typename A>
|
|
const Symbol *FindExternallyVisibleObject(const A &, const Scope &) {
|
|
return nullptr; // default base case
|
|
}
|
|
|
|
template<typename T>
|
|
const Symbol *FindExternallyVisibleObject(
|
|
const evaluate::Designator<T> &designator, const Scope &scope) {
|
|
if (const Symbol * symbol{designator.GetBaseObject().symbol()}) {
|
|
return FindExternallyVisibleObject(*symbol, scope);
|
|
} else if (std::holds_alternative<evaluate::CoarrayRef>(designator.u)) {
|
|
// Coindexed values are visible even if their image-local objects are not.
|
|
return designator.GetBaseObject().symbol();
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
const Symbol *FindExternallyVisibleObject(
|
|
const evaluate::Expr<T> &expr, const Scope &scope) {
|
|
return std::visit(
|
|
[&](const auto &x) { return FindExternallyVisibleObject(x, scope); },
|
|
expr.u);
|
|
}
|
|
|
|
using SomeExpr = evaluate::Expr<evaluate::SomeType>;
|
|
|
|
bool ExprHasTypeCategory(
|
|
const SomeExpr &expr, const common::TypeCategory &type);
|
|
bool ExprTypeKindIsDefault(
|
|
const SomeExpr &expr, const SemanticsContext &context);
|
|
|
|
struct GetExprHelper {
|
|
const SomeExpr *Get(const parser::Expr::TypedExpr &x) {
|
|
CHECK(x);
|
|
return x->v ? &*x->v : nullptr;
|
|
}
|
|
const SomeExpr *Get(const parser::Expr &x) { return Get(x.typedExpr); }
|
|
const SomeExpr *Get(const parser::Variable &x) { return Get(x.typedExpr); }
|
|
template<typename T> const SomeExpr *Get(const common::Indirection<T> &x) {
|
|
return Get(x.value());
|
|
}
|
|
template<typename T> const SomeExpr *Get(const std::optional<T> &x) {
|
|
return x.has_value() ? Get(x.value()) : nullptr;
|
|
}
|
|
template<typename T> const SomeExpr *Get(const T &x) {
|
|
if constexpr (ConstraintTrait<T>) {
|
|
return Get(x.thing);
|
|
} else if constexpr (WrapperTrait<T>) {
|
|
return Get(x.v);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename T> const SomeExpr *GetExpr(const T &x) {
|
|
return GetExprHelper{}.Get(x);
|
|
}
|
|
|
|
template<typename T> std::optional<std::int64_t> GetIntValue(const T &x) {
|
|
if (const auto *expr{GetExpr(x)}) {
|
|
return evaluate::ToInt64(*expr);
|
|
} else {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
}
|
|
#endif // FORTRAN_SEMANTICS_TOOLS_H_
|