llvm-project/bolt/lib/Passes/NonPacProtectedRetAnalysis.cpp
Kristof Beyls 850b492976
[BOLT][binary-analysis] Add initial pac-ret gadget scanner (#122304)
This adds an initial pac-ret gadget scanner to the
llvm-bolt-binary-analysis-tool.

The scanner is taken from the prototype that was published last year at
https://github.com/llvm/llvm-project/compare/main...kbeyls:llvm-project:bolt-gadget-scanner-prototype,
and has been discussed in RFC

https://discourse.llvm.org/t/rfc-bolt-based-binary-analysis-tool-to-verify-correctness-of-security-hardening/78148
and in the EuroLLVM 2024 keynote "Does LLVM implement security
hardenings correctly? A BOLT-based static analyzer to the rescue?"
[Video](https://youtu.be/Sn_Fxa0tdpY)
[Slides](https://llvm.org/devmtg/2024-04/slides/Keynote/Beyls_EuroLLVM2024_security_hardening_keynote.pdf)

In the spirit of incremental development, this PR aims to add a minimal
implementation that is "fully working" on its own, but has major
limitations, as described in the bolt/docs/BinaryAnalysis.md
documentation in this proposed commit. These and other limitations will
be fixed in follow-on PRs, mostly based on code already existing in the
prototype branch. I hope incrementally upstreaming will make it easier
to review the code.

Note that I believe that this could also form the basis of a scanner to
analyze correct implementation of PAuthABI.
2025-02-24 07:26:28 +00:00

527 lines
20 KiB
C++

//===- bolt/Passes/NonPacProtectedRetAnalysis.cpp -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass that looks for any AArch64 return instructions
// that may not be protected by PAuth authentication instructions when needed.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/NonPacProtectedRetAnalysis.h"
#include "bolt/Core/ParallelUtilities.h"
#include "bolt/Passes/DataflowAnalysis.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Format.h"
#include <memory>
#define DEBUG_TYPE "bolt-nonpacprotectedret"
namespace llvm {
namespace bolt {
raw_ostream &operator<<(raw_ostream &OS, const MCInstInBBReference &Ref) {
OS << "MCInstBBRef<";
if (Ref.BB == nullptr)
OS << "BB:(null)";
else
OS << "BB:" << Ref.BB->getName() << ":" << Ref.BBIndex;
OS << ">";
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const MCInstInBFReference &Ref) {
OS << "MCInstBFRef<";
if (Ref.BF == nullptr)
OS << "BF:(null)";
else
OS << "BF:" << Ref.BF->getPrintName() << ":" << Ref.getOffset();
OS << ">";
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const MCInstReference &Ref) {
switch (Ref.ParentKind) {
case MCInstReference::BasicBlockParent:
OS << Ref.U.BBRef;
return OS;
case MCInstReference::FunctionParent:
OS << Ref.U.BFRef;
return OS;
}
llvm_unreachable("");
}
namespace NonPacProtectedRetAnalysis {
// The security property that is checked is:
// When a register is used as the address to jump to in a return instruction,
// that register must either:
// (a) never be changed within this function, i.e. have the same value as when
// the function started, or
// (b) the last write to the register must be by an authentication instruction.
// This property is checked by using dataflow analysis to keep track of which
// registers have been written (def-ed), since last authenticated. Those are
// exactly the registers containing values that should not be trusted (as they
// could have changed since the last time they were authenticated). For pac-ret,
// any return instruction using such a register is a gadget to be reported. For
// PAuthABI, probably at least any indirect control flow using such a register
// should be reported.
// Furthermore, when producing a diagnostic for a found non-pac-ret protected
// return, the analysis also lists the last instructions that wrote to the
// register used in the return instruction.
// The total set of registers used in return instructions in a given function is
// small. It almost always is just `X30`.
// In order to reduce the memory consumption of storing this additional state
// during the dataflow analysis, this is computed by running the dataflow
// analysis twice:
// 1. In the first run, the dataflow analysis only keeps track of the security
// property: i.e. which registers have been overwritten since the last
// time they've been authenticated.
// 2. If the first run finds any return instructions using a register last
// written by a non-authenticating instruction, the dataflow analysis will
// be run a second time. The first run will return which registers are used
// in the gadgets to be reported. This information is used in the second run
// to also track which instructions last wrote to those registers.
struct State {
/// A BitVector containing the registers that have been clobbered, and
/// not authenticated.
BitVector NonAutClobRegs;
/// A vector of sets, only used in the second data flow run.
/// Each element in the vector represents one of the registers for which we
/// track the set of last instructions that wrote to this register. For
/// pac-ret analysis, the expectation is that almost all return instructions
/// only use register `X30`, and therefore, this vector will probably have
/// length 1 in the second run.
std::vector<SmallPtrSet<const MCInst *, 4>> LastInstWritingReg;
State() {}
State(unsigned NumRegs, unsigned NumRegsToTrack)
: NonAutClobRegs(NumRegs), LastInstWritingReg(NumRegsToTrack) {}
State &operator|=(const State &StateIn) {
NonAutClobRegs |= StateIn.NonAutClobRegs;
for (unsigned I = 0; I < LastInstWritingReg.size(); ++I)
for (const MCInst *J : StateIn.LastInstWritingReg[I])
LastInstWritingReg[I].insert(J);
return *this;
}
bool operator==(const State &RHS) const {
return NonAutClobRegs == RHS.NonAutClobRegs &&
LastInstWritingReg == RHS.LastInstWritingReg;
}
bool operator!=(const State &RHS) const { return !((*this) == RHS); }
};
static void printLastInsts(
raw_ostream &OS,
const std::vector<SmallPtrSet<const MCInst *, 4>> &LastInstWritingReg) {
OS << "Insts: ";
for (unsigned I = 0; I < LastInstWritingReg.size(); ++I) {
auto &Set = LastInstWritingReg[I];
OS << "[" << I << "](";
for (const MCInst *MCInstP : Set)
OS << MCInstP << " ";
OS << ")";
}
}
raw_ostream &operator<<(raw_ostream &OS, const State &S) {
OS << "pacret-state<";
OS << "NonAutClobRegs: " << S.NonAutClobRegs << ", ";
printLastInsts(OS, S.LastInstWritingReg);
OS << ">";
return OS;
}
class PacStatePrinter {
public:
void print(raw_ostream &OS, const State &State) const;
explicit PacStatePrinter(const BinaryContext &BC) : BC(BC) {}
private:
const BinaryContext &BC;
};
void PacStatePrinter::print(raw_ostream &OS, const State &S) const {
RegStatePrinter RegStatePrinter(BC);
OS << "pacret-state<";
OS << "NonAutClobRegs: ";
RegStatePrinter.print(OS, S.NonAutClobRegs);
OS << ", ";
printLastInsts(OS, S.LastInstWritingReg);
OS << ">";
}
class PacRetAnalysis
: public DataflowAnalysis<PacRetAnalysis, State, /*Backward=*/false,
PacStatePrinter> {
using Parent =
DataflowAnalysis<PacRetAnalysis, State, false, PacStatePrinter>;
friend Parent;
public:
PacRetAnalysis(BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId,
const std::vector<MCPhysReg> &RegsToTrackInstsFor)
: Parent(BF, AllocId), NumRegs(BF.getBinaryContext().MRI->getNumRegs()),
RegsToTrackInstsFor(RegsToTrackInstsFor),
TrackingLastInsts(!RegsToTrackInstsFor.empty()),
Reg2StateIdx(RegsToTrackInstsFor.empty()
? 0
: *llvm::max_element(RegsToTrackInstsFor) + 1,
-1) {
for (unsigned I = 0; I < RegsToTrackInstsFor.size(); ++I)
Reg2StateIdx[RegsToTrackInstsFor[I]] = I;
}
virtual ~PacRetAnalysis() {}
protected:
const unsigned NumRegs;
/// RegToTrackInstsFor is the set of registers for which the dataflow analysis
/// must compute which the last set of instructions writing to it are.
const std::vector<MCPhysReg> RegsToTrackInstsFor;
const bool TrackingLastInsts;
/// Reg2StateIdx maps Register to the index in the vector used in State to
/// track which instructions last wrote to this register.
std::vector<uint16_t> Reg2StateIdx;
SmallPtrSet<const MCInst *, 4> &lastWritingInsts(State &S,
MCPhysReg Reg) const {
assert(Reg < Reg2StateIdx.size());
assert(isTrackingReg(Reg));
return S.LastInstWritingReg[Reg2StateIdx[Reg]];
}
const SmallPtrSet<const MCInst *, 4> &lastWritingInsts(const State &S,
MCPhysReg Reg) const {
assert(Reg < Reg2StateIdx.size());
assert(isTrackingReg(Reg));
return S.LastInstWritingReg[Reg2StateIdx[Reg]];
}
bool isTrackingReg(MCPhysReg Reg) const {
return llvm::is_contained(RegsToTrackInstsFor, Reg);
}
void preflight() {}
State getStartingStateAtBB(const BinaryBasicBlock &BB) {
return State(NumRegs, RegsToTrackInstsFor.size());
}
State getStartingStateAtPoint(const MCInst &Point) {
return State(NumRegs, RegsToTrackInstsFor.size());
}
void doConfluence(State &StateOut, const State &StateIn) {
PacStatePrinter P(BC);
LLVM_DEBUG({
dbgs() << " PacRetAnalysis::Confluence(\n";
dbgs() << " State 1: ";
P.print(dbgs(), StateOut);
dbgs() << "\n";
dbgs() << " State 2: ";
P.print(dbgs(), StateIn);
dbgs() << ")\n";
});
StateOut |= StateIn;
LLVM_DEBUG({
dbgs() << " merged state: ";
P.print(dbgs(), StateOut);
dbgs() << "\n";
});
}
State computeNext(const MCInst &Point, const State &Cur) {
PacStatePrinter P(BC);
LLVM_DEBUG({
dbgs() << " PacRetAnalysis::ComputeNext(";
BC.InstPrinter->printInst(&const_cast<MCInst &>(Point), 0, "", *BC.STI,
dbgs());
dbgs() << ", ";
P.print(dbgs(), Cur);
dbgs() << ")\n";
});
State Next = Cur;
BitVector Written = BitVector(NumRegs, false);
// Assume a call can clobber all registers, including callee-saved
// registers. There's a good chance that callee-saved registers will be
// saved on the stack at some point during execution of the callee.
// Therefore they should also be considered as potentially modified by an
// attacker/written to.
// Also, not all functions may respect the AAPCS ABI rules about
// caller/callee-saved registers.
if (BC.MIB->isCall(Point))
Written.set();
else
// FIXME: `getWrittenRegs` only sets the register directly written in the
// instruction, and the smaller aliasing registers. It does not set the
// larger aliasing registers. To also set the larger aliasing registers,
// we'd have to call `getClobberedRegs`.
// It is unclear if there is any test case which shows a different
// behaviour between using `getWrittenRegs` vs `getClobberedRegs`. We'd
// first would like to see such a test case before making a decision
// on whether using `getClobberedRegs` below would be better.
// Also see the discussion on this at
// https://github.com/llvm/llvm-project/pull/122304#discussion_r1939511909
BC.MIB->getWrittenRegs(Point, Written);
Next.NonAutClobRegs |= Written;
// Keep track of this instruction if it writes to any of the registers we
// need to track that for:
for (MCPhysReg Reg : RegsToTrackInstsFor)
if (Written[Reg])
lastWritingInsts(Next, Reg) = {&Point};
ErrorOr<MCPhysReg> AutReg = BC.MIB->getAuthenticatedReg(Point);
if (AutReg && *AutReg != BC.MIB->getNoRegister()) {
// FIXME: should we use `OnlySmaller=false` below? See similar
// FIXME about `getWrittenRegs` above and further discussion about this
// at
// https://github.com/llvm/llvm-project/pull/122304#discussion_r1939515516
Next.NonAutClobRegs.reset(
BC.MIB->getAliases(*AutReg, /*OnlySmaller=*/true));
if (TrackingLastInsts && isTrackingReg(*AutReg))
lastWritingInsts(Next, *AutReg).clear();
}
LLVM_DEBUG({
dbgs() << " .. result: (";
P.print(dbgs(), Next);
dbgs() << ")\n";
});
return Next;
}
StringRef getAnnotationName() const { return StringRef("PacRetAnalysis"); }
public:
std::vector<MCInstReference>
getLastClobberingInsts(const MCInst Ret, BinaryFunction &BF,
const BitVector &UsedDirtyRegs) const {
if (!TrackingLastInsts)
return {};
auto MaybeState = getStateAt(Ret);
if (!MaybeState)
llvm_unreachable("Expected State to be present");
const State &S = *MaybeState;
// Due to aliasing registers, multiple registers may have been tracked.
std::set<const MCInst *> LastWritingInsts;
for (MCPhysReg TrackedReg : UsedDirtyRegs.set_bits()) {
for (const MCInst *Inst : lastWritingInsts(S, TrackedReg))
LastWritingInsts.insert(Inst);
}
std::vector<MCInstReference> Result;
for (const MCInst *Inst : LastWritingInsts) {
MCInstInBBReference Ref = MCInstInBBReference::get(Inst, BF);
assert(Ref.BB != nullptr && "Expected Inst to be found");
Result.push_back(MCInstReference(Ref));
}
return Result;
}
};
FunctionAnalysisResult
Analysis::computeDfState(PacRetAnalysis &PRA, BinaryFunction &BF,
MCPlusBuilder::AllocatorIdTy AllocatorId) {
PRA.run();
LLVM_DEBUG({
dbgs() << " After PacRetAnalysis:\n";
BF.dump();
});
FunctionAnalysisResult Result;
// Now scan the CFG for non-authenticating return instructions that use an
// overwritten, non-authenticated register as return address.
BinaryContext &BC = BF.getBinaryContext();
for (BinaryBasicBlock &BB : BF) {
for (int64_t I = BB.size() - 1; I >= 0; --I) {
MCInst &Inst = BB.getInstructionAtIndex(I);
if (BC.MIB->isReturn(Inst)) {
ErrorOr<MCPhysReg> MaybeRetReg = BC.MIB->getRegUsedAsRetDest(Inst);
if (MaybeRetReg.getError()) {
Result.Diagnostics.push_back(std::make_shared<GenDiag>(
MCInstInBBReference(&BB, I),
"Warning: pac-ret analysis could not analyze this return "
"instruction"));
continue;
}
MCPhysReg RetReg = *MaybeRetReg;
LLVM_DEBUG({
dbgs() << " Found RET inst: ";
BC.printInstruction(dbgs(), Inst);
dbgs() << " RetReg: " << BC.MRI->getName(RetReg)
<< "; authenticatesReg: "
<< BC.MIB->isAuthenticationOfReg(Inst, RetReg) << "\n";
});
if (BC.MIB->isAuthenticationOfReg(Inst, RetReg))
break;
BitVector UsedDirtyRegs = PRA.getStateAt(Inst)->NonAutClobRegs;
LLVM_DEBUG({
dbgs() << " NonAutClobRegs at Ret: ";
RegStatePrinter RSP(BC);
RSP.print(dbgs(), UsedDirtyRegs);
dbgs() << "\n";
});
UsedDirtyRegs &= BC.MIB->getAliases(RetReg, /*OnlySmaller=*/true);
LLVM_DEBUG({
dbgs() << " Intersection with RetReg: ";
RegStatePrinter RSP(BC);
RSP.print(dbgs(), UsedDirtyRegs);
dbgs() << "\n";
});
if (UsedDirtyRegs.any()) {
// This return instruction needs to be reported
Result.Diagnostics.push_back(std::make_shared<Gadget>(
MCInstInBBReference(&BB, I),
PRA.getLastClobberingInsts(Inst, BF, UsedDirtyRegs)));
for (MCPhysReg RetRegWithGadget : UsedDirtyRegs.set_bits())
Result.RegistersAffected.insert(RetRegWithGadget);
}
}
}
}
return Result;
}
void Analysis::runOnFunction(BinaryFunction &BF,
MCPlusBuilder::AllocatorIdTy AllocatorId) {
LLVM_DEBUG({
dbgs() << "Analyzing in function " << BF.getPrintName() << ", AllocatorId "
<< AllocatorId << "\n";
BF.dump();
});
if (BF.hasCFG()) {
PacRetAnalysis PRA(BF, AllocatorId, {});
FunctionAnalysisResult FAR = computeDfState(PRA, BF, AllocatorId);
if (!FAR.RegistersAffected.empty()) {
// Redo the analysis, but now also track which instructions last wrote
// to any of the registers in RetRegsWithGadgets, so that better
// diagnostics can be produced.
std::vector<MCPhysReg> RegsToTrack;
for (MCPhysReg R : FAR.RegistersAffected)
RegsToTrack.push_back(R);
PacRetAnalysis PRWIA(BF, AllocatorId, RegsToTrack);
FAR = computeDfState(PRWIA, BF, AllocatorId);
}
// `runOnFunction` is typically getting called from multiple threads in
// parallel. Therefore, use a lock to avoid data races when storing the
// result of the analysis in the `AnalysisResults` map.
{
std::lock_guard<std::mutex> Lock(AnalysisResultsMutex);
AnalysisResults[&BF] = FAR;
}
}
}
static void printBB(const BinaryContext &BC, const BinaryBasicBlock *BB,
size_t StartIndex = 0, size_t EndIndex = -1) {
if (EndIndex == (size_t)-1)
EndIndex = BB->size() - 1;
const BinaryFunction *BF = BB->getFunction();
for (unsigned I = StartIndex; I <= EndIndex; ++I) {
// FIXME: this assumes all instructions are 4 bytes in size. This is true
// for AArch64, but it might be good to extract this function so it can be
// used elsewhere and for other targets too.
uint64_t Address = BB->getOffset() + BF->getAddress() + 4 * I;
const MCInst &Inst = BB->getInstructionAtIndex(I);
if (BC.MIB->isCFI(Inst))
continue;
BC.printInstruction(outs(), Inst, Address, BF);
}
}
static void reportFoundGadgetInSingleBBSingleOverwInst(
raw_ostream &OS, const BinaryContext &BC, const MCInstReference OverwInst,
const MCInstReference RetInst) {
BinaryBasicBlock *BB = RetInst.getBasicBlock();
assert(OverwInst.ParentKind == MCInstReference::BasicBlockParent);
assert(RetInst.ParentKind == MCInstReference::BasicBlockParent);
MCInstInBBReference OverwInstBB = OverwInst.U.BBRef;
if (BB == OverwInstBB.BB) {
// overwriting inst and ret instruction are in the same basic block.
assert(OverwInstBB.BBIndex < RetInst.U.BBRef.BBIndex);
OS << " This happens in the following basic block:\n";
printBB(BC, BB);
}
}
void Gadget::generateReport(raw_ostream &OS, const BinaryContext &BC) const {
GenDiag(RetInst, "non-protected ret found").generateReport(OS, BC);
BinaryFunction *BF = RetInst.getFunction();
OS << " The " << OverwritingRetRegInst.size()
<< " instructions that write to the return register after any "
"authentication are:\n";
// Sort by address to ensure output is deterministic.
std::vector<MCInstReference> ORRI = OverwritingRetRegInst;
llvm::sort(ORRI, [](const MCInstReference &A, const MCInstReference &B) {
return A.getAddress() < B.getAddress();
});
for (unsigned I = 0; I < ORRI.size(); ++I) {
MCInstReference InstRef = ORRI[I];
OS << " " << (I + 1) << ". ";
BC.printInstruction(OS, InstRef, InstRef.getAddress(), BF);
};
LLVM_DEBUG({
dbgs() << " .. OverWritingRetRegInst:\n";
for (MCInstReference Ref : OverwritingRetRegInst) {
dbgs() << " " << Ref << "\n";
}
});
if (OverwritingRetRegInst.size() == 1) {
const MCInstReference OverwInst = OverwritingRetRegInst[0];
assert(OverwInst.ParentKind == MCInstReference::BasicBlockParent);
reportFoundGadgetInSingleBBSingleOverwInst(OS, BC, OverwInst, RetInst);
}
}
void GenDiag::generateReport(raw_ostream &OS, const BinaryContext &BC) const {
BinaryFunction *BF = RetInst.getFunction();
BinaryBasicBlock *BB = RetInst.getBasicBlock();
OS << "\nGS-PACRET: " << Diag.Text;
OS << " in function " << BF->getPrintName();
if (BB)
OS << ", basic block " << BB->getName();
OS << ", at address " << llvm::format("%x", RetInst.getAddress()) << "\n";
OS << " The return instruction is ";
BC.printInstruction(OS, RetInst, RetInst.getAddress(), BF);
}
Error Analysis::runOnFunctions(BinaryContext &BC) {
ParallelUtilities::WorkFuncWithAllocTy WorkFun =
[&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocatorId) {
runOnFunction(BF, AllocatorId);
};
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
return false;
};
ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
SkipFunc, "NonPacProtectedRetAnalysis");
for (BinaryFunction *BF : BC.getAllBinaryFunctions())
if (AnalysisResults.count(BF) > 0) {
for (const std::shared_ptr<Annotation> &A :
AnalysisResults[BF].Diagnostics)
A->generateReport(outs(), BC);
}
return Error::success();
}
} // namespace NonPacProtectedRetAnalysis
} // namespace bolt
} // namespace llvm