mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-17 22:06:38 +00:00

The LLVM dialect no longer has its own vector types. It uses `mlir::VectorType` everywhere. Remove `LLVM::getFixedVectorType/getScalableVectorType` and use `VectorType::get` instead. This commit addresses a [comment](https://github.com/llvm/llvm-project/pull/133286#discussion_r2022192500) on the PR that deleted the LLVM vector types.
322 lines
13 KiB
C++
322 lines
13 KiB
C++
//===- MMAUtils.cpp - MLIR NVGPU dialect utils for MMA operations----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "mlir/Dialect/NVGPU/Utils/MMAUtils.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
|
|
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::nvgpu;
|
|
|
|
/// There are always 4 threads per [128|256|512] bit row.
|
|
static constexpr int64_t kThreadsPerRow = 4;
|
|
static constexpr int64_t kNumRowsPerTile = 8;
|
|
|
|
static bool isAccumulatorOrResult(MatMulOperandRole operandType) {
|
|
return operandType == MatMulOperandRole::C;
|
|
}
|
|
|
|
/// Returns the number of registers which compose a matrix fragment held by a
|
|
/// single thread.
|
|
static int64_t inferNumRegistersPerMatrixFragment(const WarpMatrixInfo &type) {
|
|
int64_t lineSize = inferTileWidthInBits(type);
|
|
auto shape = type.vectorType.getShape();
|
|
return (shape[0] / kNumRowsPerTile) *
|
|
(shape[1] * type.vectorType.getElementType().getIntOrFloatBitWidth()) /
|
|
lineSize;
|
|
}
|
|
|
|
/// Returns the number of 8 x [128|256|512] bit tiles that compose the given
|
|
/// operand shape.
|
|
static std::array<int64_t, 2> getTileShape(ArrayRef<int64_t> operandShape,
|
|
Type elementType,
|
|
int64_t lineSizeBits) {
|
|
// For each 8x128bit square, a thread is responsible for one 32bit register.
|
|
return {operandShape[0] / kNumRowsPerTile,
|
|
(operandShape[1] * elementType.getIntOrFloatBitWidth()) /
|
|
lineSizeBits};
|
|
}
|
|
|
|
/// Returns the first user of the `op` that is vector.contract. If no
|
|
/// vector.contract user exists, return failure.
|
|
FailureOr<vector::ContractionOp> nvgpu::getUserContract(Operation *op) {
|
|
for (Operation *user : op->getUsers()) {
|
|
if (auto contractOp = dyn_cast<vector::ContractionOp>(user))
|
|
return contractOp;
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
FailureOr<WarpMatrixInfo> nvgpu::getWarpMatrixInfo(Operation *op) {
|
|
WarpMatrixInfo info;
|
|
|
|
// Determine the vector type at warp-level.
|
|
if (vector::TransferWriteOp writeOp = dyn_cast<vector::TransferWriteOp>(op)) {
|
|
info.vectorType = writeOp.getVectorType();
|
|
} else if (isa<vector::TransferReadOp, vector::ContractionOp,
|
|
vector::ExtractStridedSliceOp, arith::ConstantOp>(op)) {
|
|
info.vectorType = cast<VectorType>(op->getResult(0).getType());
|
|
} else {
|
|
return op->emitError()
|
|
<< "unhandled operation type in nvgpu.mma.sync conversion path";
|
|
}
|
|
|
|
// Determine the operand role. We assume it is an accumulator/result unless it
|
|
// is directly consumed by a `vector.contract` op.
|
|
info.operandRole = MatMulOperandRole::C;
|
|
FailureOr<vector::ContractionOp> contractOp = getUserContract(op);
|
|
if (failed(contractOp))
|
|
return info;
|
|
|
|
if ((*contractOp).getLhs() == op->getResult(0))
|
|
info.operandRole = MatMulOperandRole::A;
|
|
else if ((*contractOp).getRhs() == op->getResult(0))
|
|
info.operandRole = MatMulOperandRole::B;
|
|
|
|
return info;
|
|
}
|
|
|
|
int64_t nvgpu::inferTileWidthInBits(const WarpMatrixInfo &type) {
|
|
bool isAcc = isAccumulatorOrResult(type.operandRole);
|
|
Type elType = type.vectorType.getElementType();
|
|
if (isAcc && elType.getIntOrFloatBitWidth() == 32) {
|
|
return 256;
|
|
}
|
|
if (elType.getIntOrFloatBitWidth() == 64) {
|
|
return isAcc ? 512 : 256;
|
|
}
|
|
return 128;
|
|
}
|
|
|
|
FailureOr<FragmentElementInfo>
|
|
nvgpu::getMmaSyncRegisterType(const WarpMatrixInfo &type) {
|
|
MLIRContext *ctx = type.vectorType.getContext();
|
|
const bool isAccum = isAccumulatorOrResult(type.operandRole);
|
|
|
|
Type elType = type.vectorType.getElementType();
|
|
if (elType.isF16()) {
|
|
return FragmentElementInfo{VectorType::get(2, Float16Type::get(ctx)), 2, 32,
|
|
inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
|
|
// f64 operand
|
|
Type f64Ty = Float64Type::get(ctx);
|
|
if (elType.isF64()) {
|
|
return isAccum
|
|
? FragmentElementInfo{VectorType::get(2, f64Ty), 2, 128,
|
|
inferNumRegistersPerMatrixFragment(type)}
|
|
: FragmentElementInfo{f64Ty, 1, 64,
|
|
inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
|
|
// int8 operand
|
|
if (elType.isInteger(8)) {
|
|
return FragmentElementInfo{VectorType::get(4, IntegerType::get(ctx, 8)), 4,
|
|
32, inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
|
|
// int4 operand
|
|
if (elType.isInteger(4)) {
|
|
return FragmentElementInfo{VectorType::get(8, IntegerType::get(ctx, 4)), 8,
|
|
32, inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
|
|
// Integer 32bit acc operands
|
|
if (elType.isInteger(32)) {
|
|
return FragmentElementInfo{VectorType::get(2, IntegerType::get(ctx, 32)), 2,
|
|
64, inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
|
|
// Floating point 32bit operands
|
|
if (elType.isF32()) {
|
|
Type f32Ty = Float32Type::get(ctx);
|
|
return isAccum
|
|
? FragmentElementInfo{VectorType::get(2, f32Ty), 2, 64,
|
|
inferNumRegistersPerMatrixFragment(type)}
|
|
: FragmentElementInfo{f32Ty, 1, 32,
|
|
inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
static AffineMap getRegisterIndexToTileOffsetMap(int64_t lineSize,
|
|
Type elementType,
|
|
ArrayRef<int64_t> operandShape,
|
|
bool isAccumulator,
|
|
int64_t elementsPerRegister,
|
|
AffineExpr logicalValueId) {
|
|
const int64_t elementsPerLine =
|
|
lineSize / elementType.getIntOrFloatBitWidth();
|
|
const std::array<int64_t, 2> num8x128bTiles =
|
|
getTileShape(operandShape, elementType, lineSize);
|
|
AffineExpr registerIdx = logicalValueId.floorDiv(elementsPerRegister);
|
|
return AffineMap::get(
|
|
2, 0,
|
|
{(registerIdx % num8x128bTiles[0]) * 8,
|
|
(registerIdx.floorDiv(num8x128bTiles[0])) * elementsPerLine},
|
|
elementType.getContext());
|
|
}
|
|
|
|
FailureOr<AffineMap>
|
|
nvgpu::getLaneIdAndValueIdToOperandCoord(OpBuilder &builder, Location loc,
|
|
const WarpMatrixInfo &fragmentType) {
|
|
Type elementType = fragmentType.vectorType.getElementType();
|
|
ArrayRef<int64_t> operandShape = fragmentType.vectorType.getShape();
|
|
FailureOr<nvgpu::FragmentElementInfo> regInfo =
|
|
getMmaSyncRegisterType(fragmentType);
|
|
if (failed(regInfo))
|
|
return failure();
|
|
|
|
const int64_t elementBitWidth = elementType.getIntOrFloatBitWidth();
|
|
const int64_t elementsPerRegister =
|
|
regInfo->registerWidthBits / elementBitWidth;
|
|
const int64_t lineSize = inferTileWidthInBits(fragmentType);
|
|
|
|
AffineExpr laneId, logicalValueIdDim;
|
|
bindDims(builder.getContext(), laneId, logicalValueIdDim);
|
|
|
|
// Determine what register logicalValueId corresponds to. Use that as a
|
|
// linear index into the coordinate mapping `index -> (tile row, tile col)`.
|
|
AffineMap registerIndexToTileCoord = getRegisterIndexToTileOffsetMap(
|
|
lineSize, elementType, operandShape,
|
|
isAccumulatorOrResult(fragmentType.operandRole), elementsPerRegister,
|
|
logicalValueIdDim);
|
|
|
|
auto makeMap = [&](ArrayRef<AffineExpr> dimExprs) -> AffineMap {
|
|
return AffineMap::get(2, 0, dimExprs, builder.getContext());
|
|
};
|
|
|
|
auto tileRow = registerIndexToTileCoord.getResult(0);
|
|
auto tileCol = registerIndexToTileCoord.getResult(1);
|
|
return makeMap({tileRow + laneId.floorDiv(kThreadsPerRow),
|
|
tileCol + (laneId % kThreadsPerRow) * elementsPerRegister +
|
|
(logicalValueIdDim % elementsPerRegister)});
|
|
}
|
|
|
|
FailureOr<nvgpu::LdMatrixParams>
|
|
nvgpu::getLdMatrixParams(const WarpMatrixInfo &type, bool transpose) {
|
|
LdMatrixParams params;
|
|
Type elType = type.vectorType.getElementType();
|
|
params.fragmentType = type.vectorType;
|
|
if (type.operandRole == MatMulOperandRole::A ||
|
|
type.operandRole == MatMulOperandRole::C) {
|
|
params.targetLayout = NVVM::MMALayout::row;
|
|
} else {
|
|
params.targetLayout = NVVM::MMALayout::col;
|
|
}
|
|
ArrayRef<int64_t> shape = type.vectorType.getShape();
|
|
params.contiguousDimType = transpose ? vector::IteratorType::parallel
|
|
: vector::IteratorType::reduction;
|
|
|
|
if (params.contiguousDimType == vector::IteratorType::reduction) {
|
|
params.numTiles = (shape[0] / kNumRowsPerTile) *
|
|
((shape[1] * elType.getIntOrFloatBitWidth()) / 128);
|
|
} else {
|
|
params.numTiles = (shape[1] / kNumRowsPerTile) *
|
|
((shape[0] * elType.getIntOrFloatBitWidth()) / 128);
|
|
}
|
|
|
|
if (params.numTiles == 0)
|
|
return failure();
|
|
|
|
return params;
|
|
}
|
|
|
|
FailureOr<AffineMap>
|
|
nvgpu::getLaneIdToLdMatrixMatrixCoord(OpBuilder &builder, Location loc,
|
|
const LdMatrixParams ¶ms) {
|
|
// One thread per 128b row.
|
|
const int bitsPerElement = static_cast<int>(
|
|
params.fragmentType.getElementType().getIntOrFloatBitWidth());
|
|
const int kElementsPer128b = (128 / bitsPerElement);
|
|
ArrayRef<int64_t> operandShape = params.fragmentType.getShape();
|
|
AffineExpr d0 = getAffineDimExpr(0, builder.getContext());
|
|
|
|
auto makeMap = [&](ArrayRef<AffineExpr> dimExprs) -> AffineMap {
|
|
return AffineMap::get(1, 0, dimExprs, builder.getContext());
|
|
};
|
|
|
|
// Index `idx` in vectorType `operandShape` maps to the strided dimension of
|
|
// the `srcMemref` memory of the LdMatrixOp.
|
|
int idx =
|
|
(params.contiguousDimType == vector::IteratorType::reduction) ? 0 : 1;
|
|
|
|
// Affine expr in strided and contiguous dimension encodes the coordinate
|
|
// mapping for the element a thread points to for warp-wide LdMatrixOp.
|
|
AffineExpr strided = d0 % (operandShape[idx]);
|
|
AffineExpr contiguous = d0.floorDiv(operandShape[idx]) * (kElementsPer128b);
|
|
|
|
// This case corresponds to row-major matrixA or col-major matrixB or
|
|
// row-major matrixC. This is when the memory layout in `srcMemref`
|
|
// match mma.sync hardware vector register operand layout.
|
|
if (params.contiguousDimType == vector::IteratorType::reduction)
|
|
return makeMap({strided, contiguous});
|
|
|
|
// This case corresponds to col-major matrixA or row-major matrixB or
|
|
// col-major matrixC. This is when the memory layout in `srcMemref` does not
|
|
// match mma.sync hardware vector register operand layout.
|
|
if (params.contiguousDimType == vector::IteratorType::parallel)
|
|
return makeMap({contiguous, strided});
|
|
|
|
return failure();
|
|
}
|
|
|
|
bool nvgpu::canLowerToWarpMatrixOperation(vector::TransferReadOp op) {
|
|
if (op.getMask() || op.hasOutOfBoundsDim())
|
|
return false;
|
|
VectorType type = op.getType();
|
|
// The result type should be 2D. Note that it is possible to expand support so
|
|
// that we are robust to extra unit dimensions that failed to fold, but that
|
|
// would significantly increase downstream code complexity in the conversion
|
|
// step. For now, we rely on other patterns to ensure canonical 2D form is
|
|
// used when targeting the `nvgpu.mma.sync` lowering path.
|
|
if (!type.hasStaticShape() || type.getRank() != 2)
|
|
return false;
|
|
|
|
// Currently we can't support reads on tensor types because we need stride
|
|
// information to ensure correctness of downstream assumptions. It is possible
|
|
// to enable this if caller can assert that tensor will be lowered in a
|
|
// particular manner.
|
|
auto sourceType = dyn_cast<MemRefType>(op.getSource().getType());
|
|
if (!sourceType)
|
|
return false;
|
|
|
|
// Check that the last dimension of the read is contiguous. Note that it is
|
|
// possible to expand support for this by scalarizing all the loads during
|
|
// conversion.
|
|
auto [strides, offset] = sourceType.getStridesAndOffset();
|
|
return strides.back() == 1;
|
|
}
|
|
|
|
bool nvgpu::canLowerToWarpMatrixOperation(vector::TransferWriteOp op) {
|
|
if (op.getMask() || op.hasOutOfBoundsDim() || op.getTransferRank() == 0)
|
|
return false;
|
|
VectorType type = op.getVectorType();
|
|
if (!type.hasStaticShape() || type.getRank() != 2)
|
|
return false;
|
|
// TODO: Currently we rely on lowering to a `vector.store` operation. We could
|
|
// support the transposed write case by lowering to scalarized `memref.store`
|
|
// operations.
|
|
if (!op.getPermutationMap().isMinorIdentity())
|
|
return false;
|
|
// Currently we can't support reads on tensor types because we need stride
|
|
// information to ensure correctness of downstream assumptions.
|
|
auto sourceType = dyn_cast<MemRefType>(op.getSource().getType());
|
|
if (!sourceType)
|
|
return false;
|
|
|
|
// Check that the last dimension of the target memref is contiguous. Note that
|
|
// it is possible to expand support for this by scalarizing all the stores
|
|
// during conversion.
|
|
auto [strides, offset] = sourceType.getStridesAndOffset();
|
|
return strides.back() == 1;
|
|
}
|